Double checking medicines: defence against error or contributory factor?
Armitage, Gerry
2008-08-01
The double checking of medicines in health care is a contestable procedure. It occupies an obvious position in health care practice and is understood to be an effective defence against medication error but the process is variable and the outcomes have not been exposed to testing. This paper presents an appraisal of the process using data from part of a larger study on the contributory factors in medication errors and their reporting. Previous research studies are reviewed; data are analysed from a review of 991 drug error reports and a subsequent series of 40 in-depth interviews with health professionals in an acute hospital in northern England. The incident reports showed that errors occurred despite double checking but that action taken did not appear to investigate the checking process. Most interview participants (34) talked extensively about double checking but believed the process to be inconsistent. Four key categories were apparent: deference to authority, reduction of responsibility, automatic processing and lack of time. Solutions to the problems were also offered, which are discussed with several recommendations. Double checking medicines should be a selective and systematic procedure informed by key principles and encompassing certain behaviours. Psychological research may be instructive in reducing checking errors but the aviation industry may also have a part to play in increasing error wisdom and reducing risk.
Resource Public Key Infrastructure Extension
2012-01-01
tests for checking compliance with the RFC 3779 extensions that are used in the RPKI. These tests also were used to identify an error in the OPENSSL ...rsync, OpenSSL , Cryptlib, and MySQL/ODBC. We assume that the adversaries can exploit any publicly known vulnerability in this software. • Server...NULL, set FLAG_NOCHAIN in Ctemp, defer verification. T = P Use OpenSSL to verify certificate chain S using trust anchor T, checking signature and
LACIE performance predictor final operational capability program description, volume 1
NASA Technical Reports Server (NTRS)
1976-01-01
The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.
Symbolic Analysis of Concurrent Programs with Polymorphism
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam
2010-01-01
The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, D; McCarthy, A; Galavis, P
Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# tomore » check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria database queries, and eventual automated plan checks.« less
The use of self checks and voting in software error detection - An empirical study
NASA Technical Reports Server (NTRS)
Leveson, Nancy G.; Cha, Stephen S.; Knight, John C.; Shimeall, Timothy J.
1990-01-01
The results of an empirical study of software error detection using self checks and N-version voting are presented. Working independently, each of 24 programmers first prepared a set of self checks using just the requirements specification of an aerospace application, and then each added self checks to an existing implementation of that specification. The modified programs were executed to measure the error-detection performance of the checks and to compare this with error detection using simple voting among multiple versions. The analysis of the checks revealed that there are great differences in the ability of individual programmers to design effective checks. It was found that some checks that might have been effective failed to detect an error because they were badly placed, and there were numerous instances of checks signaling nonexistent errors. In general, specification-based checks alone were not as effective as specification-based checks combined with code-based checks. Self checks made it possible to identify faults that had not been detected previously by voting 28 versions of the program over a million randomly generated inputs. This appeared to result from the fact that the self checks could examine the internal state of the executing program, whereas voting examines only final results of computations. If internal states had to be identical in N-version voting systems, then there would be no reason to write multiple versions.
Model Checker for Java Programs
NASA Technical Reports Server (NTRS)
Visser, Willem
2007-01-01
Java Pathfinder (JPF) is a verification and testing environment for Java that integrates model checking, program analysis, and testing. JPF consists of a custom-made Java Virtual Machine (JVM) that interprets bytecode, combined with a search interface to allow the complete behavior of a Java program to be analyzed, including interleavings of concurrent programs. JPF is implemented in Java, and its architecture is highly modular to support rapid prototyping of new features. JPF is an explicit-state model checker, because it enumerates all visited states and, therefore, suffers from the state-explosion problem inherent in analyzing large programs. It is suited to analyzing programs less than 10kLOC, but has been successfully applied to finding errors in concurrent programs up to 100kLOC. When an error is found, a trace from the initial state to the error is produced to guide the debugging. JPF works at the bytecode level, meaning that all of Java can be model-checked. By default, the software checks for all runtime errors (uncaught exceptions), assertions violations (supports Java s assert), and deadlocks. JPF uses garbage collection and symmetry reductions of the heap during model checking to reduce state-explosion, as well as dynamic partial order reductions to lower the number of interleavings analyzed. JPF is capable of symbolic execution of Java programs, including symbolic execution of complex data such as linked lists and trees. JPF is extensible as it allows for the creation of listeners that can subscribe to events during searches. The creation of dedicated code to be executed in place of regular classes is supported and allows users to easily handle native calls and to improve the efficiency of the analysis.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
Low-density parity-check codes for volume holographic memory systems.
Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali
2003-02-10
We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, J; Yan, Y; Hager, F
Purpose: Radiation therapy has evolved to become not only more precise and potent, but also more complicated to monitor and deliver. More rigorous and comprehensive quality assurance is needed to safeguard ever advancing radiation therapy. ICRU standards dictate that an ever growing set of treatment parameters are manually checked weekly by medical physicists. This “weekly chart check” procedure is laborious and subject to human errors or other factors. A computer-assisted chart checking process will enable more complete and accurate human review of critical parameters, reduce the risk of medical errors, and improve the efficiency. Methods: We developed a web-based softwaremore » system that enables a thorough weekly quality assurance checks. In the backend, the software retrieves all machine parameters from a Treatment Management System (TMS) and compares them against the corresponding ones from the treatment planning system. They are also checked for validity against preset rules. The results are displayed as a web page in the front-end for physicists to review. Then a summary report is generated and uploaded automatically to the TMS as a record for weekly chart checking. Results: The software system has been deployed on a web server in our department’s intranet, and has been tested thoroughly by our clinical physicists. A plan parameter would be highlighted when it is off the preset limit. The developed system has changed the way of checking charts with significantly improved accuracy, efficiency, and completeness. It has been shown to be robust, fast, and easy to use. Conclusion: A computer-assisted system has been developed for efficient, accurate, and comprehensive weekly chart checking. The system has been extensively validated and is being implemented for routine clinical use.« less
Testing Intelligently Includes Double-Checking Wechsler IQ Scores
ERIC Educational Resources Information Center
Kuentzel, Jeffrey G.; Hetterscheidt, Lesley A.; Barnett, Douglas
2011-01-01
The rigors of standardized testing make for numerous opportunities for examiner error, including simple computational mistakes in scoring. Although experts recommend that test scoring be double-checked, the extent to which independent double-checking would reduce scoring errors is not known. A double-checking procedure was established at a…
Design and scheduling for periodic concurrent error detection and recovery in processor arrays
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Chung, Pi-Yu; Fuchs, W. Kent
1992-01-01
Periodic application of time-redundant error checking provides the trade-off between error detection latency and performance degradation. The goal is to achieve high error coverage while satisfying performance requirements. We derive the optimal scheduling of checking patterns in order to uniformly distribute the available checking capability and maximize the error coverage. Synchronous buffering designs using data forwarding and dynamic reconfiguration are described. Efficient single-cycle diagnosis is implemented by error pattern analysis and direct-mapped recovery cache. A rollback recovery scheme using start-up control for local recovery is also presented.
System for Configuring Modular Telemetry Transponders
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2014-01-01
A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S; Chao, C; Columbia University, NY, NY
2014-06-01
Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Yang, F; Ford, E
Purpose: The physics plan check verifies various aspects of a treatment plan after dosimetrists have finished creating the plan. Some errors in the plan which are caught by the physics check could be caught earlier in the departmental workflow. The purpose of this project was to evaluate a plan checking script that can be run within the treatment planning system (TPS) by the dosimetrists prior to plan approval and export to the record and verify system. Methods: A script was created in the Pinnacle TPS to automatically check 15 aspects of a plan for clinical practice conformity. The script outputsmore » a list of checks which the plan has passed and a list of checks which the plan has failed so that appropriate adjustments can be made. For this study, the script was run on a total of 108 plans: IMRT (46/108), VMAT (35/108) and SBRT (27/108). Results: Of the plans checked by the script, 77/108 (71%) failed at least one of the fifteen checks. IMRT plans resulted in more failed checks (91%) than VMAT (51%) or SBRT (63%), due to the high failure rate of an IMRT-specific check, which checks that no IMRT segment < 5 MU. The dose grid size and couch removal checks caught errors in 10% and 14% of all plans – errors that ultimately may have resulted in harm to the patient. Conclusion: Approximately three-fourths of the plans being examined contain errors that could be caught by dosimetrists running an automated script embedded in the TPS. The results of this study will improve the departmental workflow by cutting down on the number of plans that, due to these types of errors, necessitate re-planning and re-approval of plans, increase dosimetrist and physician workload and, in urgent cases, inconvenience patients by causing treatment delays.« less
A rigorous approach to self-checking programming
NASA Technical Reports Server (NTRS)
Hua, Kien A.; Abraham, Jacob A.
1986-01-01
Self-checking programming is shown to be an effective concurrent error detection technique. The reliability of a self-checking program however relies on the quality of its assertion statements. A self-checking program written without formal guidelines could provide a poor coverage of the errors. A constructive technique for self-checking programming is presented. A Structured Program Design Language (SPDL) suitable for self-checking software development is defined. A set of formal rules, was also developed, that allows the transfromation of SPDL designs into self-checking designs to be done in a systematic manner.
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
NASA Astrophysics Data System (ADS)
Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.
2017-11-01
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellefson, S; Department of Human Oncology, University of Wisconsin, Madison, WI; Culberson, W
Purpose: Discrepancies in absolute dose values have been detected between the ViewRay treatment planning system and ArcCHECK readings when performing delivery quality assurance on the ViewRay system with the ArcCHECK-MR diode array (SunNuclear Corporation). In this work, we investigate whether these discrepancies are due to errors in the ViewRay planning and/or delivery system or due to errors in the ArcCHECK’s readings. Methods: Gamma analysis was performed on 19 ViewRay patient plans using the ArcCHECK. Frequency analysis on the dose differences was performed. To investigate whether discrepancies were due to measurement or delivery error, 10 diodes in low-gradient dose regions weremore » chosen to compare with ion chamber measurements in a PMMA phantom with the same size and shape as the ArcCHECK, provided by SunNuclear. The diodes chosen all had significant discrepancies in absolute dose values compared to the ViewRay TPS. Absolute doses to PMMA were compared between the ViewRay TPS calculations, ArcCHECK measurements, and measurements in the PMMA phantom. Results: Three of the 19 patient plans had 3%/3mm gamma passing rates less than 95%, and ten of the 19 plans had 2%/2mm passing rates less than 95%. Frequency analysis implied a non-random error process. Out of the 10 diode locations measured, ion chamber measurements were all within 2.2% error relative to the TPS and had a mean error of 1.2%. ArcCHECK measurements ranged from 4.5% to over 15% error relative to the TPS and had a mean error of 8.0%. Conclusion: The ArcCHECK performs well for quality assurance on the ViewRay under most circumstances. However, under certain conditions the absolute dose readings are significantly higher compared to the planned doses. As the ion chamber measurements consistently agree with the TPS, it can be concluded that the discrepancies are due to ArcCHECK measurement error and not TPS or delivery system error. This work was funded by the Bhudatt Paliwal Professorship and the University of Wisconsin Medical Radiation Research Center.« less
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; ...
2013-01-01
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require ( p ) analysis time permore » MPI operation, for p processes. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Alsulami, Zayed; Choonara, Imti; Conroy, Sharon
2014-06-01
To evaluate how closely double-checking policies are followed by nurses in paediatric areas and also to identify the types, frequency and rates of medication administration errors that occur despite the double-checking process. Double-checking by two nurses is an intervention used in many UK hospitals to prevent or reduce medication administration errors. There is, however, insufficient evidence to either support or refute the practice of double-checking in terms of medication error risk reduction. Prospective observational study. This was a prospective observational study of paediatric nurses' adherence to the double-checking process for medication administration from April-July 2012. Drug dose administration events (n = 2000) were observed. Independent drug dose calculation, rate of administering intravenous bolus drugs and labelling of flush syringes were the steps with lowest adherence rates. Drug dose calculation was only double-checked independently in 591 (30%) drug administrations. There was a statistically significant difference in nurses' adherence rate to the double-checking steps between weekdays and weekends in nine of the 15 evaluated steps. Medication administration errors (n = 191) or deviations from policy were observed, at a rate of 9·6% of drug administrations. These included 64 drug doses, which were left for parents to administer without nurse observation. There was variation between paediatric nurses' adherence to double-checking steps during medication administration. The most frequent type of administration errors or deviation from policy involved the medicine being given to the parents to administer to the child when the nurse was not present. © 2013 John Wiley & Sons Ltd.
Runtime Detection of C-Style Errors in UPC Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirkelbauer, P; Liao, C; Panas, T
2011-09-29
Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covington, E; Younge, K; Chen, X
Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One examplemore » is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.« less
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
76 FR 35344 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on the nose landing... specified products. The MCAI states: During Landing Gear retraction/extension ground checks performed on the... airworthiness information (MCAI) states: During Landing Gear retraction/extension ground checks performed on the...
Strategy optimization for mask rule check in wafer fab
NASA Astrophysics Data System (ADS)
Yang, Chuen Huei; Lin, Shaina; Lin, Roger; Wang, Alice; Lee, Rachel; Deng, Erwin
2015-07-01
Photolithography process is getting more and more sophisticated for wafer production following Moore's law. Therefore, for wafer fab, consolidated and close cooperation with mask house is a key to achieve silicon wafer success. However, generally speaking, it is not easy to preserve such partnership because many engineering efforts and frequent communication are indispensable. The inattentive connection is obvious in mask rule check (MRC). Mask houses will do their own MRC at job deck stage, but the checking is only for identification of mask process limitation including writing, etching, inspection, metrology, etc. No further checking in terms of wafer process concerned mask data errors will be implemented after data files of whole mask are composed in mask house. There are still many potential data errors even post-OPC verification has been done for main circuits. What mentioned here are the kinds of errors which will only occur as main circuits combined with frame and dummy patterns to form whole reticle. Therefore, strategy optimization is on-going in UMC to evaluate MRC especially for wafer fab concerned errors. The prerequisite is that no impact on mask delivery cycle time even adding this extra checking. A full-mask checking based on job deck in gds or oasis format is necessary in order to secure acceptable run time. Form of the summarized error report generated by this checking is also crucial because user friendly interface will shorten engineers' judgment time to release mask for writing. This paper will survey the key factors of MRC in wafer fab.
40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures
Code of Federal Regulations, 2012 CFR
2012-07-01
... Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and linearity checks (e.g., how gases are to be injected..., and when calibration adjustments should be made). Identify any calibration error test and linearity...
40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and linearity checks (e.g., how gases are to be injected..., and when calibration adjustments should be made). Identify any calibration error test and linearity...
A Support System for Error Correction Questions in Programming Education
ERIC Educational Resources Information Center
Hachisu, Yoshinari; Yoshida, Atsushi
2014-01-01
For supporting the education of debugging skills, we propose a system for generating error correction questions of programs and checking the correctness. The system generates HTML files for answering questions and CGI programs for checking answers. Learners read and answer questions on Web browsers. For management of error injection, we have…
Effects of monetary reward and punishment on information checking behaviour.
Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann
2016-03-01
Two experiments were conducted to examine whether checking one's own work can be motivated by monetary reward and punishment. Participants were randomly assigned to one of three conditions: a flat-rate payment for completing the task (Control); payment increased for error-free performance (Reward); payment decreased for error performance (Punishment). Experiment 1 (N = 90) was conducted with liberal arts students, using a general data-entry task. Experiment 2 (N = 90) replicated Experiment 1 with clinical students and a safety-critical 'cover story' for the task. In both studies, Reward and Punishment resulted in significantly fewer errors, more frequent and longer checking, than Control. No such differences were obtained between the Reward and Punishment conditions. It is concluded that error consequences in terms of monetary reward and punishment can result in more accurate task performance and more rigorous checking behaviour than errors without consequences. However, whether punishment is more effective than reward, or vice versa, remains inconclusive. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking
NASA Technical Reports Server (NTRS)
Rozier, Kristin Y.; Vardi, Moshe Y.
2011-01-01
Formal behavioral specifications written early in the system-design process and communicated across all design phases have been shown to increase the efficiency, consistency, and quality of the system under development. To prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. Our focus here is on specifications expressed in linear temporal logic (LTL). We introduce a novel encoding of symbolic transition-based Buchi automata and a novel, "sloppy," transition encoding, both of which result in improved scalability. We also define novel BDD variable orders based on tree decomposition of formula parse trees. We describe and extensively test a new multi-encoding approach utilizing these novel encoding techniques to create 30 encoding variations. We show that our novel encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking.
Passarge, Michelle; Fix, Michael K; Manser, Peter; Stampanoni, Marco F M; Siebers, Jeffrey V
2017-04-01
To develop a robust and efficient process that detects relevant dose errors (dose errors of ≥5%) in external beam radiation therapy and directly indicates the origin of the error. The process is illustrated in the context of electronic portal imaging device (EPID)-based angle-resolved volumetric-modulated arc therapy (VMAT) quality assurance (QA), particularly as would be implemented in a real-time monitoring program. A Swiss cheese error detection (SCED) method was created as a paradigm for a cine EPID-based during-treatment QA. For VMAT, the method compares a treatment plan-based reference set of EPID images with images acquired over each 2° gantry angle interval. The process utilizes a sequence of independent consecutively executed error detection tests: an aperture check that verifies in-field radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment check to examine if rotation, scaling, and translation are within tolerances; pixel intensity check containing the standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each check were determined. To test the SCED method, 12 different types of errors were selected to modify the original plan. A series of angle-resolved predicted EPID images were artificially generated for each test case, resulting in a sequence of precalculated frames for each modified treatment plan. The SCED method was applied multiple times for each test case to assess the ability to detect introduced plan variations. To compare the performance of the SCED process with that of a standard gamma analysis, both error detection methods were applied to the generated test cases with realistic noise variations. Averaged over ten test runs, 95.1% of all plan variations that resulted in relevant patient dose errors were detected within 2° and 100% within 14° (<4% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 89.1% were detected by the SCED method within 2°. Based on the type of check that detected the error, determination of error sources was achieved. With noise ranging from no random noise to four times the established noise value, the averaged relevant dose error detection rate of the SCED method was between 94.0% and 95.8% and that of gamma between 82.8% and 89.8%. An EPID-frame-based error detection process for VMAT deliveries was successfully designed and tested via simulations. The SCED method was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of relevant dose errors. Compared to a typical (3%, 3 mm) gamma analysis, the SCED method produced a higher detection rate for all introduced dose errors, identified errors in an earlier stage, displayed a higher robustness to noise variations, and indicated the error source. © 2017 American Association of Physicists in Medicine.
Barteselli, Giulio; Bartsch, Dirk-Uwe; Viola, Francesco; Mojana, Francesca; Pellegrini, Marco; Hartmann, Kathrin I; Benatti, Eleonora; Leicht, Simon; Ratiglia, Roberto; Staurenghi, Giovanni; Weinreb, Robert N; Freeman, William R
2013-09-01
To evaluate temporal changes and predictors of accuracy in the alignment between simultaneous near-infrared image and optical coherence tomography (OCT) scan on the Heidelberg Spectralis using a model eye. Laboratory investigation. After calibrating the device, 6 sites performed weekly testing of the alignment for 12 weeks using a model eye. The maximum error was compared with multiple variables to evaluate predictors of inaccurate alignment. Variables included the number of weekly scanned patients, total number of OCT scans and B-scans performed, room temperature and its variation, and working time of the scanning laser. A 4-week extension study was subsequently performed to analyze short-term changes in the alignment. The average maximum error in the alignment was 15 ± 6 μm; the greatest error was 35 μm. The error increased significantly at week 1 (P = .01), specifically after the second imaging study (P < .05); reached a maximum after the eighth patient (P < .001); and then varied randomly over time. Predictors for inaccurate alignment were temperature variation and scans per patient (P < .001). For each 1 unit of increase in temperature variation, the estimated increase in maximum error was 1.26 μm. For the average number of scans per patient, each increase of 1 unit increased the error by 0.34 μm. Overall, the accuracy of the Heidelberg Spectralis was excellent. The greatest error happened in the first week after calibration, and specifically after the second imaging study. To improve the accuracy, room temperature should be kept stable and unnecessary scans should be avoided. The alignment of the device does not need to be checked on a regular basis in the clinical setting, but it should be checked after every other patient for more precise research purposes. Published by Elsevier Inc.
Concurrent error detecting codes for arithmetic processors
NASA Technical Reports Server (NTRS)
Lim, R. S.
1979-01-01
A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Modeling the Arden Syntax for medical decisions in XML.
Kim, Sukil; Haug, Peter J; Rocha, Roberto A; Choi, Inyoung
2008-10-01
A new model expressing Arden Syntax with the eXtensible Markup Language (XML) was developed to increase its portability. Every example was manually parsed and reviewed until the schema and the style sheet were considered to be optimized. When the first schema was finished, several MLMs in Arden Syntax Markup Language (ArdenML) were validated against the schema. They were then transformed to HTML formats with the style sheet, during which they were compared to the original text version of their own MLM. When faults were found in the transformed MLM, the schema and/or style sheet was fixed. This cycle continued until all the examples were encoded into XML documents. The original MLMs were encoded in XML according to the proposed XML schema and reverse-parsed MLMs in ArdenML were checked using a public domain Arden Syntax checker. Two hundred seventy seven examples of MLMs were successfully transformed into XML documents using the model, and the reverse-parse yielded the original text version of MLMs. Two hundred sixty five of the 277 MLMs showed the same error patterns before and after transformation, and all 11 errors related to statement structure were resolved in XML version. The model uses two syntax checking mechanisms, first an XML validation process, and second, a syntax check using an XSL style sheet. Now that we have a schema for ArdenML, we can also begin the development of style sheets for transformation ArdenML into other languages.
FPGA-Based, Self-Checking, Fault-Tolerant Computers
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2004-01-01
A proposed computer architecture would exploit the capabilities of commercially available field-programmable gate arrays (FPGAs) to enable computers to detect and recover from bit errors. The main purpose of the proposed architecture is to enable fault-tolerant computing in the presence of single-event upsets (SEUs). [An SEU is a spurious bit flip (also called a soft error) caused by a single impact of ionizing radiation.] The architecture would also enable recovery from some soft errors caused by electrical transients and, to some extent, from intermittent and permanent (hard) errors caused by aging of electronic components. A typical FPGA of the current generation contains one or more complete processor cores, memories, and highspeed serial input/output (I/O) channels, making it possible to shrink a board-level processor node to a single integrated-circuit chip. Custom, highly efficient microcontrollers, general-purpose computers, custom I/O processors, and signal processors can be rapidly and efficiently implemented by use of FPGAs. Unfortunately, FPGAs are susceptible to SEUs. Prior efforts to mitigate the effects of SEUs have yielded solutions that degrade performance of the system and require support from external hardware and software. In comparison with other fault-tolerant- computing architectures (e.g., triple modular redundancy), the proposed architecture could be implemented with less circuitry and lower power demand. Moreover, the fault-tolerant computing functions would require only minimal support from circuitry outside the central processing units (CPUs) of computers, would not require any software support, and would be largely transparent to software and to other computer hardware. There would be two types of modules: a self-checking processor module and a memory system (see figure). The self-checking processor module would be implemented on a single FPGA and would be capable of detecting its own internal errors. It would contain two CPUs executing identical programs in lock step, with comparison of their outputs to detect errors. It would also contain various cache local memory circuits, communication circuits, and configurable special-purpose processors that would use self-checking checkers. (The basic principle of the self-checking checker method is to utilize logic circuitry that generates error signals whenever there is an error in either the checker or the circuit being checked.) The memory system would comprise a main memory and a hardware-controlled check-pointing system (CPS) based on a buffer memory denoted the recovery cache. The main memory would contain random-access memory (RAM) chips and FPGAs that would, in addition to everything else, implement double-error-detecting and single-error-correcting memory functions to enable recovery from single-bit errors.
NASA Technical Reports Server (NTRS)
Izygon, Michel
1992-01-01
This report summarizes the findings and lessons learned from the development of an intelligent user interface for a space flight planning simulation program, in the specific area related to constraint-checking. The different functionalities of the Graphical User Interface part and of the rule-based part of the system have been identified. Their respective domain of applicability for error prevention and error checking have been specified.
Procedural error monitoring and smart checklists
NASA Technical Reports Server (NTRS)
Palmer, Everett
1990-01-01
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.
Checking-up of optical graduated rules by laser interferometry
NASA Astrophysics Data System (ADS)
Miron, Nicolae P.; Sporea, Dan G.
1996-05-01
The main aspects related to the operating principle, design, and implementation of high-productivity equipment for checking-up the graduation accuracy of optical graduated rules used as a length reference in optical measuring instruments for precision machine tools are presented. The graduation error checking-up is done with a Michelson interferometer as a length transducer. The instrument operation is managed by a computer, which controls the equipment, data acquisition, and processing. The evaluation is performed for rule lengths from 100 to 3000 mm, with a checking-up error less than 2 micrometers/m. The checking-up time is about 15 min for a 1000-mm rule, with averaging over four measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, A; Nyflot, M; Sponseller, P
2014-06-01
Purpose: Radiation treatment planning involves a complex workflow that can make safety improvement efforts challenging. This study utilizes an incident reporting system to identify detection points of near-miss errors, in order to guide our departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or their patterns. Methods: 1377 incidents were analyzed from a departmental nearmiss error reporting system from 3/2012–10/2013. All incidents were prospectively reviewed weekly by a multi-disciplinary team, and assigned a near-miss severity score ranging from 0–4 reflecting potential harm (no harm to critical). A 98-step consensus workflow was usedmore » to determine origination and detection points of near-miss errors, categorized into 7 major steps (patient assessment/orders, simulation, contouring/treatment planning, pre-treatment plan checks, therapist/on-treatment review, post-treatment checks, and equipment issues). Categories were compared using ANOVA. Results: In the 7-step workflow, 23% of near-miss errors were detected within the same step in the workflow, while an additional 37% were detected by the next step in the workflow, and 23% were detected two steps downstream. Errors detected further from origination were more severe (p<.001; Figure 1). The most common source of near-miss errors was treatment planning/contouring, with 476 near misses (35%). Of those 476, only 72(15%) were found before leaving treatment planning, 213(45%) were found at physics plan checks, and 191(40%) were caught at the therapist pre-treatment chart review or on portal imaging. Errors that passed through physics plan checks and were detected by therapists were more severe than other errors originating in contouring/treatment planning (1.81 vs 1.33, p<0.001). Conclusion: Errors caught by radiation treatment therapists tend to be more severe than errors caught earlier in the workflow, highlighting the importance of safety checks in dosimetry and physics. We are utilizing our findings to improve manual and automated checklists for dosimetry and physics.« less
Redundancy checking algorithms based on parallel novel extension rule
NASA Astrophysics Data System (ADS)
Liu, Lei; Yang, Yang; Li, Guangli; Wang, Qi; Lü, Shuai
2017-05-01
Redundancy checking (RC) is a key knowledge reduction technology. Extension rule (ER) is a new reasoning method, first presented in 2003 and well received by experts at home and abroad. Novel extension rule (NER) is an improved ER-based reasoning method, presented in 2009. In this paper, we first analyse the characteristics of the extension rule, and then present a simple algorithm for redundancy checking based on extension rule (RCER). In addition, we introduce MIMF, a type of heuristic strategy. Using the aforementioned rule and strategy, we design and implement RCHER algorithm, which relies on MIMF. Next we design and implement an RCNER (redundancy checking based on NER) algorithm based on NER. Parallel computing greatly accelerates the NER algorithm, which has weak dependence among tasks when executed. Considering this, we present PNER (parallel NER) and apply it to redundancy checking and necessity checking. Furthermore, we design and implement the RCPNER (redundancy checking based on PNER) and NCPPNER (necessary clause partition based on PNER) algorithms as well. The experimental results show that MIMF significantly influences the acceleration of algorithm RCER in formulae on a large scale and high redundancy. Comparing PNER with NER and RCPNER with RCNER, the average speedup can reach up to the number of task decompositions when executed. Comparing NCPNER with the RCNER-based algorithm on separating redundant formulae, speedup increases steadily as the scale of the formulae is incrementing. Finally, we describe the challenges that the extension rule will be faced with and suggest possible solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
The systems resilience research community has developed methods to manually insert additional source-program level assertions to trap errors, and also devised tools to conduct fault injection studies for scalar program codes. In this work, we contribute the first vector oriented LLVM-level fault injector VULFI to help study the effects of faults in vector architectures that are of growing importance, especially for vectorizing loops. Using VULFI, we conduct a resiliency study of nine real-world vector benchmarks using Intel’s AVX and SSE extensions as the target vector instruction sets, and offer the first reported understanding of how faults affect vector instruction sets.more » We take this work further toward automating the insertion of resilience assertions during compilation. This is based on our observation that during intermediate (e.g., LLVM-level) code generation to handle full and partial vectorization, modern compilers exploit (and explicate in their code-documentation) critical invariants. These invariants are turned into error-checking code. We confirm the efficacy of these automatically inserted low-overhead error detectors for vectorized for-loops.« less
Re-Computation of Numerical Results Contained in NACA Report No. 496
NASA Technical Reports Server (NTRS)
Perry, Boyd, III
2015-01-01
An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.
Improving treatment plan evaluation with automation.
Covington, Elizabeth L; Chen, Xiaoping; Younge, Kelly C; Lee, Choonik; Matuszak, Martha M; Kessler, Marc L; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M; Filpansick, Stephanie E; Moran, Jean M
2016-11-08
The goal of this work is to evaluate the effectiveness of Plan-Checker Tool (PCT) which was created to improve first-time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the phys-ics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was suc-cessfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. © 2016 The Authors.
A Possible Tool for Checking Errors in the INAA Results, Based on Neutron Data and Method Validation
NASA Astrophysics Data System (ADS)
Cincu, Em.; Grigore, Ioana Manea; Barbos, D.; Cazan, I. L.; Manu, V.
2008-08-01
This work presents preliminary results of a new type of possible application in the INAA experiments of elemental analysis, useful to check errors occurred during investigation of unknown samples; it relies on the INAA method validation experiments and accuracy of the neutron data from the literature. The paper comprises 2 sections, the first one presents—in short—the steps of the experimental tests carried out for INAA method validation and for establishing the `ACTIVA-N' laboratory performance, which is-at the same time-an illustration of the laboratory evolution on the way to get performance. Section 2 presents our recent INAA results on CRMs, of which interpretation opens discussions about the usefulness of using a tool for checking possible errors, different from the usual statistical procedures. The questionable aspects and the requirements to develop a practical checking tool are discussed.
Found Poems, Member Checking and Crises of Representation
ERIC Educational Resources Information Center
Reilly, Rosemary C.
2013-01-01
In order to establish veracity, qualitative researchers frequently rely on member checks to insure credibility by giving participants opportunities to correct errors, challenge interpretations and assess results; however, member checks are not without drawbacks. This paper describes an innovative approach to conducting member checks. Six members…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Eric C., E-mail: eford@uw.edu; Terezakis, Stephanie; Souranis, Annette
Purpose: To quantify the error-detection effectiveness of commonly used quality control (QC) measures. Methods: We analyzed incidents from 2007-2010 logged into a voluntary in-house, electronic incident learning systems at 2 academic radiation oncology clinics. None of the incidents resulted in patient harm. Each incident was graded for potential severity using the French Nuclear Safety Authority scoring scale; high potential severity incidents (score >3) were considered, along with a subset of 30 randomly chosen low severity incidents. Each report was evaluated to identify which of 15 common QC checks could have detected it. The effectiveness was calculated, defined as the percentagemore » of incidents that each QC measure could detect, both for individual QC checks and for combinations of checks. Results: In total, 4407 incidents were reported, 292 of which had high-potential severity. High- and low-severity incidents were detectable by 4.0 {+-} 2.3 (mean {+-} SD) and 2.6 {+-} 1.4 QC checks, respectively (P<.001). All individual checks were less than 50% sensitive with the exception of pretreatment plan review by a physicist (63%). An effectiveness of 97% was achieved with 7 checks used in combination and was not further improved with more checks. The combination of checks with the highest effectiveness includes physics plan review, physician plan review, Electronic Portal Imaging Device-based in vivo portal dosimetry, radiation therapist timeout, weekly physics chart check, the use of checklists, port films, and source-to-skin distance checks. Some commonly used QC checks such as pretreatment intensity modulated radiation therapy QA do not substantially add to the ability to detect errors in these data. Conclusions: The effectiveness of QC measures in radiation oncology depends sensitively on which checks are used and in which combinations. A small percentage of errors cannot be detected by any of the standard formal QC checks currently in broad use, suggesting that further improvements are needed. These data require confirmation with a broader incident-reporting database.« less
Reducing Check-in Errors at Brigham Young University through Statistical Process Control
ERIC Educational Resources Information Center
Spackman, N. Andrew
2005-01-01
The relationship between the library and its patrons is damaged and the library's reputation suffers when returned items are not checked in. An informal survey reveals librarians' concern for this problem and their efforts to combat it, although few libraries collect objective measurements of errors or the effects of improvement efforts. Brigham…
Internal robustness: systematic search for systematic bias in SN Ia data
NASA Astrophysics Data System (ADS)
Amendola, Luca; Marra, Valerio; Quartin, Miguel
2013-04-01
A great deal of effort is currently being devoted to understanding, estimating and removing systematic errors in cosmological data. In the particular case of Type Ia supernovae, systematics are starting to dominate the error budget. Here we propose a Bayesian tool for carrying out a systematic search for systematic contamination. This serves as an extension to the standard goodness-of-fit tests and allows not only to cross-check raw or processed data for the presence of systematics but also to pin-point the data that are most likely contaminated. We successfully test our tool with mock catalogues and conclude that the Union2.1 data do not possess a significant amount of systematics. Finally, we show that if one includes in Union2.1 the supernovae that originally failed the quality cuts, our tool signals the presence of systematics at over 3.8σ confidence level.
Improving treatment plan evaluation with automation
Covington, Elizabeth L.; Chen, Xiaoping; Younge, Kelly C.; Lee, Choonik; Matuszak, Martha M.; Kessler, Marc L.; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M.; Filpansick, Stephanie E.
2016-01-01
The goal of this work is to evaluate the effectiveness of Plan‐Checker Tool (PCT) which was created to improve first‐time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the physics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33 checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was successfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. PACS number(s): 87.55.‐x, 87.55.N‐, 87.55.Qr, 87.55.tm, 89.20.Bb PMID:27929478
Reconnaissance of the Nearby Stars
NASA Technical Reports Server (NTRS)
Henry, Todd
1999-01-01
Accomplishments by the PI during this grant period include: 1. Creating, enhancing, and testing the NStars Database website. During the spring and summer of 1999, the PI performed roughly a dozen extensive "stress tests" of the website. Each test included checking data for individual stars and conducting searches that produced lists of stars from the Database to verify that each entry was correct. In the process, errors were discovered and rectified before the website was made public in July 1999. 2. "Advertising" NStars as a Project to astronomers worldwide. 3. Providing data that has been incorporated into the NStars Database. 4. Observations in Support of the NStars Project.
Method of Error Floor Mitigation in Low-Density Parity-Check Codes
NASA Technical Reports Server (NTRS)
Hamkins, Jon (Inventor)
2014-01-01
A digital communication decoding method for low-density parity-check coded messages. The decoding method decodes the low-density parity-check coded messages within a bipartite graph having check nodes and variable nodes. Messages from check nodes are partially hard limited, so that every message which would otherwise have a magnitude at or above a certain level is re-assigned to a maximum magnitude.
Normality Tests for Statistical Analysis: A Guide for Non-Statisticians
Ghasemi, Asghar; Zahediasl, Saleh
2012-01-01
Statistical errors are common in scientific literature and about 50% of the published articles have at least one error. The assumption of normality needs to be checked for many statistical procedures, namely parametric tests, because their validity depends on it. The aim of this commentary is to overview checking for normality in statistical analysis using SPSS. PMID:23843808
76 FR 18964 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... Landing Gear retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on... condition for the specified products. The MCAI states: During Landing Gear retraction/extension ground... retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on the nose landing...
Ford, Eric C; Terezakis, Stephanie; Souranis, Annette; Harris, Kendra; Gay, Hiram; Mutic, Sasa
2012-11-01
To quantify the error-detection effectiveness of commonly used quality control (QC) measures. We analyzed incidents from 2007-2010 logged into a voluntary in-house, electronic incident learning systems at 2 academic radiation oncology clinics. None of the incidents resulted in patient harm. Each incident was graded for potential severity using the French Nuclear Safety Authority scoring scale; high potential severity incidents (score >3) were considered, along with a subset of 30 randomly chosen low severity incidents. Each report was evaluated to identify which of 15 common QC checks could have detected it. The effectiveness was calculated, defined as the percentage of incidents that each QC measure could detect, both for individual QC checks and for combinations of checks. In total, 4407 incidents were reported, 292 of which had high-potential severity. High- and low-severity incidents were detectable by 4.0 ± 2.3 (mean ± SD) and 2.6 ± 1.4 QC checks, respectively (P<.001). All individual checks were less than 50% sensitive with the exception of pretreatment plan review by a physicist (63%). An effectiveness of 97% was achieved with 7 checks used in combination and was not further improved with more checks. The combination of checks with the highest effectiveness includes physics plan review, physician plan review, Electronic Portal Imaging Device-based in vivo portal dosimetry, radiation therapist timeout, weekly physics chart check, the use of checklists, port films, and source-to-skin distance checks. Some commonly used QC checks such as pretreatment intensity modulated radiation therapy QA do not substantially add to the ability to detect errors in these data. The effectiveness of QC measures in radiation oncology depends sensitively on which checks are used and in which combinations. A small percentage of errors cannot be detected by any of the standard formal QC checks currently in broad use, suggesting that further improvements are needed. These data require confirmation with a broader incident-reporting database. Copyright © 2012 Elsevier Inc. All rights reserved.
On-orbit observations of single event upset in Harris HM-6508 1K RAMs, reissue A
NASA Astrophysics Data System (ADS)
Blake, J. B.; Mandel, R.
1987-02-01
The Harris HM-6508 1K x 1 RAMs are part of a subsystem of a satellite in a low, polar orbit. The memory module, used in the subsystem containing the RAMs, consists of three printed circuit cards, with each card containing eight 2K byte memory hybrids, for a total of 48K bytes. Each memory hybrid contains 16 HM-6508 RAM chips. On a regular basis all but 256 bytes of the 48K bytes are examined for bit errors. Two different techniques were used for detecting bit errors. The first technique, a memory check sum, was capable of automatically detecting all single bit and some double bit errors which occurred within a page of memory. A memory page consists of 256 bytes. Memory check sum tests are performed approximately every 90 minutes. To detect a multiple error or to determine the exact location of the bit error within the page the entire contents of the memory is dumped and compared to the load file. Memory dumps are normally performed once a month, or immediately after the check sum routine detects an error. Once the exact location of the error is found, the correct value is reloaded into memory. After the memory is reloaded, the contents of the memory location in question is verified in order to determine if the error was a soft error generated by an SEU or a hard error generated by a part failure or cosmic-ray induced latchup.
Outpatient Prescribing Errors and the Impact of Computerized Prescribing
Gandhi, Tejal K; Weingart, Saul N; Seger, Andrew C; Borus, Joshua; Burdick, Elisabeth; Poon, Eric G; Leape, Lucian L; Bates, David W
2005-01-01
Background Medication errors are common among inpatients and many are preventable with computerized prescribing. Relatively little is known about outpatient prescribing errors or the impact of computerized prescribing in this setting. Objective To assess the rates, types, and severity of outpatient prescribing errors and understand the potential impact of computerized prescribing. Design Prospective cohort study in 4 adult primary care practices in Boston using prescription review, patient survey, and chart review to identify medication errors, potential adverse drug events (ADEs) and preventable ADEs. Participants Outpatients over age 18 who received a prescription from 24 participating physicians. Results We screened 1879 prescriptions from 1202 patients, and completed 661 surveys (response rate 55%). Of the prescriptions, 143 (7.6%; 95% confidence interval (CI) 6.4% to 8.8%) contained a prescribing error. Three errors led to preventable ADEs and 62 (43%; 3% of all prescriptions) had potential for patient injury (potential ADEs); 1 was potentially life-threatening (2%) and 15 were serious (24%). Errors in frequency (n=77, 54%) and dose (n=26, 18%) were common. The rates of medication errors and potential ADEs were not significantly different at basic computerized prescribing sites (4.3% vs 11.0%, P=.31; 2.6% vs 4.0%, P=.16) compared to handwritten sites. Advanced checks (including dose and frequency checking) could have prevented 95% of potential ADEs. Conclusions Prescribing errors occurred in 7.6% of outpatient prescriptions and many could have harmed patients. Basic computerized prescribing systems may not be adequate to reduce errors. More advanced systems with dose and frequency checking are likely needed to prevent potentially harmful errors. PMID:16117752
Finding Feasible Abstract Counter-Examples
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)
2002-01-01
A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.
Improving the quality of marine geophysical track line data: Along-track analysis
NASA Astrophysics Data System (ADS)
Chandler, Michael T.; Wessel, Paul
2008-02-01
We have examined 4918 track line geophysics cruises archived at the U.S. National Geophysical Data Center (NGDC) using comprehensive error checking methods. Each cruise was checked for observation outliers, excessive gradients, metadata consistency, and general agreement with satellite altimetry-derived gravity and predicted bathymetry grids. Thresholds for error checking were determined empirically through inspection of histograms for all geophysical values, gradients, and differences with gridded data sampled along ship tracks. Robust regression was used to detect systematic scale and offset errors found by comparing ship bathymetry and free-air anomalies to the corresponding values from global grids. We found many recurring error types in the NGDC archive, including poor navigation, inappropriately scaled or offset data, excessive gradients, and extended offsets in depth and gravity when compared to global grids. While ˜5-10% of bathymetry and free-air gravity records fail our conservative tests, residual magnetic errors may exceed twice this proportion. These errors hinder the effective use of the data and may lead to mistakes in interpretation. To enable the removal of gross errors without over-writing original cruise data, we developed an errata system that concisely reports all errors encountered in a cruise. With such errata files, scientists may share cruise corrections, thereby preventing redundant processing. We have implemented these quality control methods in the modified MGD77 supplement to the Generic Mapping Tools software suite.
Bailey, Stephanie L.; Bono, Rose S.; Nash, Denis; Kimmel, April D.
2018-01-01
Background Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. Methods We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. Results We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Conclusions Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited. PMID:29570737
Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D
2018-01-01
Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited.
NASA Astrophysics Data System (ADS)
Servilla, M. S.; O'Brien, M.; Costa, D.
2013-12-01
Considerable ecological research performed today occurs through the analysis of data downloaded from various repositories and archives, often resulting in derived or synthetic products generated by automated workflows. These data are only meaningful for research if they are well documented by metadata, lest semantic or data type errors may occur in interpretation or processing. The Long Term Ecological Research (LTER) Network now screens all data packages entering its long-term archive to ensure that each package contains metadata that is complete, of high quality, and accurately describes the structure of its associated data entity and the data are structurally congruent to the metadata. Screening occurs prior to the upload of a data package into the Provenance Aware Synthesis Tracking Architecture (PASTA) data management system through a series of quality checks, thus preventing ambiguously or incorrectly documented data packages from entering the system. The quality checks within PASTA are designed to work specifically with the Ecological Metadata Language (EML), the metadata standard adopted by the LTER Network to describe data generated by their 26 research sites. Each quality check is codified in Java as part of the ecological community-supported Data Manager Library, which is a resource of the EML specification and used as a component of the PASTA software stack. Quality checks test for metadata quality, data integrity, or metadata-data congruence. Quality checks are further classified as either conditional or informational. Conditional checks issue a 'valid', 'warning' or 'error' response. Only an 'error' response blocks the data package from upload into PASTA. Informational checks only provide descriptive content pertaining to a particular facet of the data package. Quality checks are designed by a group of LTER information managers and reviewed by the LTER community before deploying into PASTA. A total of 32 quality checks have been deployed to date. Quality checks can be customized through a configurable template, which includes turning checks 'on' or 'off' and setting the severity of conditional checks. This feature is important to other potential users of the Data Manager Library who wish to configure its quality checks in accordance with the standards of their community. Executing the complete set of quality checks produces a report that describes the result of each check. The report is an XML document that is stored by PASTA for future reference.
Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets
NASA Astrophysics Data System (ADS)
Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua
2017-09-01
In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.
Spatially coupled low-density parity-check error correction for holographic data storage
NASA Astrophysics Data System (ADS)
Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro
2017-09-01
The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.
A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.
Liu, Shuo; Zhang, Lei; Li, Jian
2016-11-24
The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.
Indirect check of the stability of the reference ion chamber used for accelerator output calibration
NASA Astrophysics Data System (ADS)
Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik
2014-11-01
A linear accelerator's output is periodically checked by using a reference ion chamber which is also periodically calibrated at the accredited standard dosimetry laboratories. We suggest a simple procedure for checking the chamber's stability between calibrations by comparison with another ion chamber. To identify the long-term stability of chambers, we collected and assessed the dose-to-water conversion factors provided by standard laboratories for three chambers during a period of four years. To develop the chamber constancy check program, we used one Farmer-type reference ion chamber FC65-G, two ion chambers (CC13a and CC13b) and one CC01 ion chamber (IBA). Under the accelerator, each chamber was placed inside the solid phantom and irradiated; the experimental configurations were identical. To check the variation in charge collection of the reference chamber, we monitored the ratios of the FC65-G values over each chamber reading. Based on the error propagation of the two chamber ratios, we estimated the uncertainty of the output calibration from the chamber variation. The calibration factors provided for the three chambers showed 0.04 ˜ 0.12% standard deviations during four years. For procedure development, the reading ratios of FC65-G over CCxx showed very good stability; the ratios of FC65-G over CC13a, CC13b and CC01 varied less than 0.059, 0.087 and 0.248%, respectively, over five measurements. By ascribing possible uncertainties of the ratio to the reference chamber alone, we could conservatively check the stability of the reference chamber for treatment safety. An extension of the chamber calibration period was also evaluated. In conclusion, we designed a stability check procedure for the reference chamber based on a reading ratio of two chambers. This could help the user assess the chamber stability between periodic chamber calibration, and the associated patient treatment could be carried out with enhanced safety.
NASA Technical Reports Server (NTRS)
Watson, Robert A.
1991-01-01
Approximate solutions of static and dynamic beam problems by the p-version of the finite element method are investigated. Within a hierarchy of engineering beam idealizations, rigorous formulations of the strain and kinetic energies for straight and circular beam elements are presented. These formulations include rotating coordinate system effects and geometric nonlinearities to allow for the evaluation of vertical axis wind turbines, the motivating problem for this research. Hierarchic finite element spaces, based on extensions of the polynomial orders used to approximate the displacement variables, are constructed. The developed models are implemented into a general purpose computer program for evaluation. Quality control procedures are examined for a diverse set of sample problems. These procedures include estimating discretization errors in energy norm and natural frequencies, performing static and dynamic equilibrium checks, observing convergence for qualities of interest, and comparison with more exacting theories and experimental data. It is demonstrated that p-extensions produce exponential rates of convergence in the approximation of strain energy and natural frequencies for the class of problems investigated.
Building validation tools for knowledge-based systems
NASA Technical Reports Server (NTRS)
Stachowitz, R. A.; Chang, C. L.; Stock, T. S.; Combs, J. B.
1987-01-01
The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification.
The Essential Component in DNA-Based Information Storage System: Robust Error-Tolerating Module
Yim, Aldrin Kay-Yuen; Yu, Allen Chi-Shing; Li, Jing-Woei; Wong, Ada In-Chun; Loo, Jacky F. C.; Chan, King Ming; Kong, S. K.; Yip, Kevin Y.; Chan, Ting-Fung
2014-01-01
The size of digital data is ever increasing and is expected to grow to 40,000 EB by 2020, yet the estimated global information storage capacity in 2011 is <300 EB, indicating that most of the data are transient. DNA, as a very stable nano-molecule, is an ideal massive storage device for long-term data archive. The two most notable illustrations are from Church et al. and Goldman et al., whose approaches are well-optimized for most sequencing platforms – short synthesized DNA fragments without homopolymer. Here, we suggested improvements on error handling methodology that could enable the integration of DNA-based computational process, e.g., algorithms based on self-assembly of DNA. As a proof of concept, a picture of size 438 bytes was encoded to DNA with low-density parity-check error-correction code. We salvaged a significant portion of sequencing reads with mutations generated during DNA synthesis and sequencing and successfully reconstructed the entire picture. A modular-based programing framework – DNAcodec with an eXtensible Markup Language-based data format was also introduced. Our experiments demonstrated the practicability of long DNA message recovery with high error tolerance, which opens the field to biocomputing and synthetic biology. PMID:25414846
A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process
NASA Technical Reports Server (NTRS)
Wang, Yi; Tamai, Tetsuo
2009-01-01
Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.
Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks
NASA Astrophysics Data System (ADS)
Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji
High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J; Wang, J; Peng, J
Purpose: To implement an entire workflow quality assurance (QA) process in the radiotherapy department and to reduce the error rates of radiotherapy based on the entire workflow management in the developing country. Methods: The entire workflow QA process management starts from patient registration to the end of last treatment including all steps through the entire radiotherapy process. Error rate of chartcheck is used to evaluate the the entire workflow QA process. Two to three qualified senior medical physicists checked the documents before the first treatment fraction of every patient. Random check of the treatment history during treatment was also performed.more » A total of around 6000 patients treatment data before and after implementing the entire workflow QA process were compared from May, 2014 to December, 2015. Results: A systemic checklist was established. It mainly includes patient’s registration, treatment plan QA, information exporting to OIS(Oncology Information System), documents of treatment QAand QA of the treatment history. The error rate derived from the chart check decreases from 1.7% to 0.9% after our the entire workflow QA process. All checked errors before the first treatment fraction were corrected as soon as oncologist re-confirmed them and reinforce staff training was accordingly followed to prevent those errors. Conclusion: The entire workflow QA process improved the safety, quality of radiotherapy in our department and we consider that our QA experience can be applicable for the heavily-loaded radiotherapy departments in developing country.« less
Douglas, Julie A.; Skol, Andrew D.; Boehnke, Michael
2002-01-01
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel’s laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele–error model, we find that detection rates are 51%–77% for multiallelic markers and 13%–75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree—rather than genotyping—errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping. PMID:11791214
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, J; Pompos, A; Jiang, S
Purpose: To put forth an innovative clinical paradigm for weekly chart checking so that treatment status is periodically checked accurately and efficiently. This study also aims to help optimize the chart checking clinical workflow in a busy radiation therapy clinic. Methods: It is mandated by the Texas Administrative code to check patient charts of radiation therapy once a week or every five fractions, however it varies drastically among institutions in terms of when and how it is done. Some do it every day, but a lot of efforts are wasted on opening ineligible charts; some do it on a fixedmore » day but the distribution of intervals between subsequent checks is not optimal. To establish an optimal chart checking procedure, a new paradigm was developed to achieve 1) charts are checked more accurately and more efficiently; 2) charts are checked on optimal days without any miss; 3) workload is evened out throughout a week when multiple physicists are involved. All active charts will be accessed by querying the R&V system. Priority is assigned to each chart based on the number of days before the next due date followed by sorting and workload distribution steps. New charts are also taken into account when distributing the workload so it is reasonably even throughout the week. Results: Our clinical workflow became more streamlined and smooth. In addition, charts get checked in a more timely fashion so that errors would get caught earlier should they occur. Conclusion: We developed a new weekly chart checking diagram. It helps physicists check charts in a timely manner, saves their time in busy clinics, and consequently reduces possible errors.« less
OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4.
Schober, Daniel; Tudose, Ilinca; Svatek, Vojtech; Boeker, Martin
2012-09-21
Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future expansions. The OntoCheck plugin facilitates labelling error detection and curation, contributing to lexical quality assurance in OWL ontologies. Ultimately, we hope this Protégé extension will ease ontology alignments as well as lexical post-processing of annotated data and hence can increase overall secondary data usage by humans and computers.
NASA Astrophysics Data System (ADS)
Raghavan, Ajay; Saha, Bhaskar
2013-03-01
Photo enforcement devices for traffic rules such as red lights, toll, stops, and speed limits are increasingly being deployed in cities and counties around the world to ensure smooth traffic flow and public safety. These are typically unattended fielded systems, and so it is important to periodically check them for potential image/video quality problems that might interfere with their intended functionality. There is interest in automating such checks to reduce the operational overhead and human error involved in manually checking large camera device fleets. Examples of problems affecting such camera devices include exposure issues, focus drifts, obstructions, misalignment, download errors, and motion blur. Furthermore, in some cases, in addition to the sub-algorithms for individual problems, one also has to carefully design the overall algorithm and logic to check for and accurately classifying these individual problems. Some of these issues can occur in tandem or have the potential to be confused for each other by automated algorithms. Examples include camera misalignment that can cause some scene elements to go out of focus for wide-area scenes or download errors that can be misinterpreted as an obstruction. Therefore, the sequence in which the sub-algorithms are utilized is also important. This paper presents an overview of these problems along with no-reference and reduced reference image and video quality solutions to detect and classify such faults.
Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID
NASA Astrophysics Data System (ADS)
Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun
2015-11-01
Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.
Reduced circuit implementation of encoder and syndrome generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trager, Barry M; Winograd, Shmuel
An error correction method and system includes an Encoder and Syndrome-generator that operate in parallel to reduce the amount of circuitry used to compute check symbols and syndromes for error correcting codes. The system and method computes the contributions to the syndromes and check symbols 1 bit at a time instead of 1 symbol at a time. As a result, the even syndromes can be computed as powers of the odd syndromes. Further, the system assigns symbol addresses so that there are, for an example GF(2.sup.8) which has 72 symbols, three (3) blocks of addresses which differ by a cubemore » root of unity to allow the data symbols to be combined for reducing size and complexity of odd syndrome circuits. Further, the implementation circuit for generating check symbols is derived from syndrome circuit using the inverse of the part of the syndrome matrix for check locations.« less
Simultaneous message framing and error detection
NASA Technical Reports Server (NTRS)
Frey, A. H., Jr.
1968-01-01
Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.
SU-E-T-210: Surviving a Visit by the Radiological Physics Center.
Grant, W; Mcgary, J; Rosen, I; Nitsch, P; Davidson, S
2012-06-01
To demonstrate an objective approach to determining if a negative report from the Radiological Physics Center (RPC) of greater than 10% error is valid or has clinical significance. The discrepancy involved the clinical activity (mgRaEq) of Cs-137 sources, some manufactured by 3M and some by Amersham. Measurements were made in the proprietary RPC Well Counter calibrated by the MD Anderson ADCL and our Well Counter (CNMC, Model 44D) calibrated by the same laboratory as well as the University of Wisconsin ADCL. In addition, we possess an Amersham Cs-137 Check Source that had been calibrated by the UW-ADCL in 2002. All clinical sources were checked in both Well Counters on the first visit. One clinical source and the Check Source were measured in a second visit that occurred 51 days later. On the initial RPC visit, 9 of 25 sources had a minimum of an 8% discrepancy between the RPC and the Institution, with a maximum of 11%. Contributing errors included using the incorrect straw position by us, an unexplained 2.3% error in the RPC data identified 73 days post-visit, a 2% variation in Chamber Factors for our Well Counter from the two ADCL's. When we use the 2004 value of Air Kerma Strength for the Check Source to determine a Calibration Factor of the Well Counter, all sources were within 0.5% of their decayed value established in 2002. This work emphasizes the value of having simple Constancy Check systems in a Quality Assurance program as 'Accuracy' has error bars. The disagreement in calibration data between the ADCL Laboratories, which was at the 2% maximum quoted in their Calibration Reports, is a reminder that there is uncertainty in measurements. Constancy Checks allow one to sort out discrepancies and to answer challenges to the validity of your program. © 2012 American Association of Physicists in Medicine.
... at the health care provider's office, at the pharmacy, or at home. You can help prevent errors ... medicine and check to make sure that the pharmacy gave you the right medicine. Make sure that ...
Cochran, Gary L; Barrett, Ryan S; Horn, Susan D
2016-08-01
The role of pharmacist transcription, onsite pharmacist dispensing, use of automated dispensing cabinets (ADCs), nurse-nurse double checks, or barcode-assisted medication administration (BCMA) in reducing medication error rates in critical access hospitals (CAHs) was evaluated. Investigators used the practice-based evidence methodology to identify predictors of medication errors in 12 Nebraska CAHs. Detailed information about each medication administered was recorded through direct observation. Errors were identified by comparing the observed medication administered with the physician's order. Chi-square analysis and Fisher's exact test were used to measure differences between groups of medication-dispensing procedures. Nurses observed 6497 medications being administered to 1374 patients. The overall error rate was 1.2%. The transcription error rates for orders transcribed by an onsite pharmacist were slightly lower than for orders transcribed by a telepharmacy service (0.10% and 0.33%, respectively). Fewer dispensing errors occurred when medications were dispensed by an onsite pharmacist versus any other method of medication acquisition (0.10% versus 0.44%, p = 0.0085). The rates of dispensing errors for medications that were retrieved from a single-cell ADC (0.19%), a multicell ADC (0.45%), or a drug closet or general supply (0.77%) did not differ significantly. BCMA was associated with a higher proportion of dispensing and administration errors intercepted before reaching the patient (66.7%) compared with either manual double checks (10%) or no BCMA or double check (30.4%) of the medication before administration (p = 0.0167). Onsite pharmacist dispensing and BCMA were associated with fewer medication errors and are important components of a medication safety strategy in CAHs. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Call, Jared A.; Kwok, John H.; Fisher, Forest W.
2013-01-01
This innovation is a tool used to verify and validate spacecraft sequences at the predicted events file (PEF) level for the GRAIL (Gravity Recovery and Interior Laboratory, see http://www.nasa. gov/mission_pages/grail/main/index. html) mission as part of the Multi-Mission Planning and Sequencing Team (MPST) operations process to reduce the possibility for errors. This tool is used to catch any sequence related errors or issues immediately after the seqgen modeling to streamline downstream processes. This script verifies and validates the seqgen modeling for the GRAIL MPST process. A PEF is provided as input, and dozens of checks are performed on it to verify and validate the command products including command content, command ordering, flight-rule violations, modeling boundary consistency, resource limits, and ground commanding consistency. By performing as many checks as early in the process as possible, grl_pef_check streamlines the MPST task of generating GRAIL command and modeled products on an aggressive schedule. By enumerating each check being performed, and clearly stating the criteria and assumptions made at each step, grl_pef_check can be used as a manual checklist as well as an automated tool. This helper script was written with a focus on enabling the user with the information they need in order to evaluate a sequence quickly and efficiently, while still keeping them informed and active in the overall sequencing process. grl_pef_check verifies and validates the modeling and sequence content prior to investing any more effort into the build. There are dozens of various items in the modeling run that need to be checked, which is a time-consuming and errorprone task. Currently, no software exists that provides this functionality. Compared to a manual process, this script reduces human error and saves considerable man-hours by automating and streamlining the mission planning and sequencing task for the GRAIL mission.
Protecting quantum memories using coherent parity check codes
NASA Astrophysics Data System (ADS)
Roffe, Joschka; Headley, David; Chancellor, Nicholas; Horsman, Dominic; Kendon, Viv
2018-07-01
Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the code distance. In this paper, we provide a detailed introduction to CPC codes using conventional quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by designing a [[4, 2, 2
Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage
NASA Astrophysics Data System (ADS)
Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo
2005-01-01
Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.
75 FR 6707 - Agency Information Collection Activities: Proposed Collection; Comments Requested
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... of Information Collection Under Review: Police Check Inquiry. The Department of Justice (DOJ), Bureau... Collection: Extension of a currently approved collection. (2) Title of the Form/Collection: Police Check... necessary to permit ATF to complete and/or initiate a police check inquiry consisting of criminal record...
Altitude deviations: Breakdowns of an error-tolerant system
NASA Technical Reports Server (NTRS)
Palmer, Everett A.; Hutchins, Edwin L.; Ritter, Richard D.; Vancleemput, Inge
1993-01-01
Pilot reports of aviation incidents to the Aviation Safety Reporting System (ASRS) provide a window on the problems occurring in today's airline cockpits. The narratives of 10 pilot reports of errors made in the automation-assisted altitude-change task are used to illustrate some of the issues of pilots interacting with automatic systems. These narratives are then used to construct a description of the cockpit as an information processing system. The analysis concentrates on the error-tolerant properties of the system and on how breakdowns can occasionally occur. An error-tolerant system can detect and correct its internal processing errors. The cockpit system consists of two or three pilots supported by autoflight, flight-management, and alerting systems. These humans and machines have distributed access to clearance information and perform redundant processing of information. Errors can be detected as deviations from either expected behavior or as deviations from expected information. Breakdowns in this system can occur when the checking and cross-checking tasks that give the system its error-tolerant properties are not performed because of distractions or other task demands. Recommendations based on the analysis for improving the error tolerance of the cockpit system are given.
Biggs, Peter J
2003-04-01
The calibration and monthly QA of an electron-only linear accelerator dedicated to intra-operative radiation therapy has been reviewed. Since this machine is calibrated prior to every procedure, there was no necessity to adjust the output calibration at any time except, perhaps, when the magnetron is changed, provided the machine output is reasonably stable. This gives a unique opportunity to study the dose output of the machine per monitor unit, variation in the timer error, flatness and symmetry of the beam and the energy check as a function of time. The results show that, although the dose per monitor unit varied within +/- 2%, the timer error within +/- 0.005 MU and the asymmetry within 1-2%, none of these parameters showed any systematic change with time. On the other hand, the energy check showed a linear drift with time for 6, 9, and 12 MeV (2.1, 3.5, and 2.5%, respectively, over 5 years), while at 15 and 18 MeV, the energy check was relatively constant. It is further shown that based on annual calibrations and RPC TLD checks, the energy of each beam is constant and that therefore the energy check is an exquisitely sensitive one. The consistency of the independent checks is demonstrated.
SU-D-BRD-01: An Automated Physics Weekly Chart Checking System Supporting ARIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, X; Yang, D
Purpose: A software tool was developed in this study to perform automatic weekly physics chart check on the patient data in ARIA. The tool accesses the electronic patient data directly from ARIA server and checks the accuracy of treatment deliveries, and generates reports which summarize the delivery history and highlight the errors. Methods: The tool has four modules. 1) The database interface is designed to directly access treatment delivery data from the ARIA database before reorganizing the data into the patient chart tree (PCT). 2) PCT is a core data structure designed to store and organize the data in logicalmore » hierarchies, and to be passed among functions. 3) The treatment data check module analyzes the organized data in PCT and stores the checking results into PCT. 4) Report generation module generates reports containing the treatment delivery summary, chart checking results and plots of daily treatment setup parameters (couch table positions, shifts of image guidance). The errors that are found by the tool are highlighted with colors. Results: The weekly check tool has been implemented in MATLAB and clinically tested at two major cancer centers. Javascript, cascading style sheets (CSS) and dynamic HTML were employed to create the user-interactive reports. It takes 0.06 second to search the delivery records of one beam with PCT and compare the delivery records with beam plan. The reports, saved in the HTML files on shared network folder, can be accessed by web browser on computers and mobile devices. Conclusion: The presented weekly check tool is useful to check the electronic patient treatment data in Varian ARIA system. It could be more efficient and reliable than the manually check by physicists. The work was partially supported by a research grant from Varian Medical System.« less
ERIC Educational Resources Information Center
Stufflebeam, Daniel L.
2011-01-01
Good evaluation requires that evaluation efforts themselves be evaluated. Many things can and often do go wrong in evaluation work. Accordingly, it is necessary to check evaluations for problems such as bias, technical error, administrative difficulties, and misuse. Such checks are needed both to improve ongoing evaluation activities and to assess…
MOM: A meteorological data checking expert system in CLIPS
NASA Technical Reports Server (NTRS)
Odonnell, Richard
1990-01-01
Meteorologists have long faced the problem of verifying the data they use. Experience shows that there is a sizable number of errors in the data reported by meteorological observers. This is unacceptable for computer forecast models, which depend on accurate data for accurate results. Most errors that occur in meteorological data are obvious to the meteorologist, but time constraints prevent hand-checking. For this reason, it is necessary to have a 'front end' to the computer model to ensure the accuracy of input. Various approaches to automatic data quality control have been developed by several groups. MOM is a rule-based system implemented in CLIPS and utilizing 'consistency checks' and 'range checks'. The system is generic in the sense that it knows some meteorological principles, regardless of specific station characteristics. Specific constraints kept as CLIPS facts in a separate file provide for system flexibility. Preliminary results show that the expert system has detected some inconsistencies not noticed by a local expert.
Fault isolation through no-overhead link level CRC
Chen, Dong; Coteus, Paul W.; Gara, Alan G.
2007-04-24
A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.
Performance of Compiler-Assisted Memory Safety Checking
2014-08-01
software developer has in mind a particular object to which the pointer should point, the intended referent. A memory access error occurs when an ac...Performance of Compiler-Assisted Memory Safety Checking David Keaton Robert C. Seacord August 2014 TECHNICAL NOTE CMU/SEI-2014-TN...based memory safety checking tool and the performance that can be achieved with two such tools whose source code is freely available. The note then
TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniswaamy, G; Morrow, A; Kim, S
Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerancesmore » were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check time from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce treatment planning errors and increase confidence in the planned treatment.« less
Yang, Kamie K; Lewis, Ian H
2014-06-15
Various equipment malfunctions of anesthesia gas delivery systems have been previously reported. Our profession increasingly uses technology as a means to prevent these errors. We report a case of a near-total anesthesia circuit obstruction that went undetected before the induction of anesthesia despite the use of automated machine check technology. This case highlights that automated machine check modules can fail to detect severe equipment failure and demonstrates how, even in this era of expanding technology, manual checks still remain essential components of safe care.
13Check_RNA: A tool to evaluate 13C chemical shifts assignments of RNA.
Icazatti, A A; Martin, O A; Villegas, M; Szleifer, I; Vila, J A
2018-06-19
Chemical shifts (CS) are an important source of structural information of macromolecules such as RNA. In addition to the scarce availability of CS for RNA, the observed values are prone to errors due to a wrong re-calibration or miss assignments. Different groups have dedicated their efforts to correct CS systematic errors on RNA. Despite this, there are not automated and freely available algorithms for correct assignments of RNA 13C CS before their deposition to the BMRB or re-reference already deposited CS with systematic errors. Based on an existent method we have implemented an open source python module to correct 13C CS (from here on 13Cexp) systematic errors of RNAs and then return the results in 3 formats including the nmrstar one. This software is available on GitHub at https://github.com/BIOS-IMASL/13Check_RNA under a MIT license. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick
2017-09-01
Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.
Extension of optical lithography by mask-litho integration with computational lithography
NASA Astrophysics Data System (ADS)
Takigawa, T.; Gronlund, K.; Wiley, J.
2010-05-01
Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.
NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft
NASA Technical Reports Server (NTRS)
Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.
1983-01-01
Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.
Analysis of the astronomical concepts presented by teachers of some state schools
NASA Astrophysics Data System (ADS)
Gonzaga, E. P.; Voelzke, M. R.
2011-06-01
Many Basic Education's teachers (EB) don't deal concepts related to astronomy and when they do so, they just follow didactic books which contain many conceptual errors. Astronomy is one of the contents taught in the EB and is part of the curriculum proposed by the Education Department of the State of São Paulo. With the intention to minimise some deficiencies, a University Extension Course for teachers of the Diretoria de Ensino Regional (Mauá, Ribeirão Pires and Rio Grande da Serra) was conducted with the following objectives: to raise alternative conceptions, to subsidise teachers by means of lectures, discussions and workshops, and to check the learning after the course. Therefore, sixteen questions were applied before and after the course. The results were quite satisfactory.
Stable lattice Boltzmann model for Maxwell equations in media
NASA Astrophysics Data System (ADS)
Hauser, A.; Verhey, J. L.
2017-12-01
The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.
Ruse, N Dorin
2008-12-01
This brief review essay was triggered by the discovery of two errors that have been perpetuated in the dental literature for the last quarter century and is intended to alert the research community. An extensive search of the published literature, using PubMed and Web of Science search engines, electronic journal resources, and several trips to the library for manual retrievals of articles were used to retrieve hundreds of articles reporting on finite element modeling - finite element analysis (FEM/FEA) involving periodontal ligament (PDL) and gutta percha (GP). The literature search revealed that erroneous values for the modulus of elasticity of PDL and GP were introduced in 1980 and in 1983, respectively. The identified errors range between two to three orders of magnitude and have been used in hundreds of FEM/FEA papers. The finding casts serious doubts regarding the validity of the results published in hundreds of papers and highlights the importance of checking the references cited and citing, or at least confirming, primary sources rather than citing citations.
Charles, Rodolphe; Vallée, Josette; Tissot, Claire; Lucht, Frédéric; Botelho-Nevers, Elisabeth
2016-08-01
Vaccination is a common act in general practice in which, as in all procedures in medicine, errors may occur. To our best knowledge, in this area, few tools exist to prevent them. To create a checklist that could be used in general practice in order to avoid the main errors. From April to July 2013, we systematically searched for vaccination errors using three sources: a review of literature, individual interviews with 25 health care workers and supervised peer review groups meeting at the Medicine school of Saint-Etienne (France). The errors most frequently retrieved were used to create the checklist that was regularly submitted to interviewed caregivers to improve its construction and content; its stabilization has been conceived as an evidence of finalization. The checklist's draw-up included three parts allowing verification at each stage of the vaccination process: before, during and after the vaccine administration. Before the vaccination, items to be checked were mainly does my patient need and may he/she receive this vaccine in accordance with the national French vaccination guidelines? During the preparation and the administration of vaccination, items to be checked were are the patient and the practitioner comfortable? Is all the material needed correctly prepared? Is the appropriate route defined? Ultimately, after the vaccination, most items to be checked concerned traceability. This checklist seemed useful and usable by the panel of practitioners questioned. This vaccination checklist may be useful to prevent errors. Its efficacy and feasibility in clinical practice will require further testing. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Analysis of error-correction constraints in an optical disk.
Roberts, J D; Ryley, A; Jones, D M; Burke, D
1996-07-10
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Analysis of error-correction constraints in an optical disk
NASA Astrophysics Data System (ADS)
Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David
1996-07-01
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V
2012-07-01
The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.
Data quality in a DRG-based information system.
Colin, C; Ecochard, R; Delahaye, F; Landrivon, G; Messy, P; Morgon, E; Matillon, Y
1994-09-01
The aim of this study initiated in May 1990 was to evaluate the quality of the medical data collected from the main hospital of the "Hospices Civils de Lyon", Edouard Herriot Hospital. We studied a random sample of 593 discharge abstracts from 12 wards of the hospital. Quality control was performed by checking multi-hospitalized patients' personal data, checking that each discharge abstract was exhaustive, examining the quality of abstracting, studying diagnoses and medical procedures coding, and checking data entry. Assessment of personal data showed a 4.4% error rate. It was mainly accounted for by spelling mistakes in surnames and first names, and mistakes in dates of birth. The quality of a discharge abstract was estimated according to the two purposes of the medical information system: description of hospital morbidity per patient and Diagnosis Related Group's case mix. Error rates in discharge abstracts were expressed in two ways: an overall rate for errors of concordance between Discharge Abstracts and Medical Records, and a specific rate for errors modifying classification in Diagnosis Related Groups (DRG). For abstracting medical information, these error rates were 11.5% (SE +/- 2.2) and 7.5% (SE +/- 1.9) respectively. For coding diagnoses and procedures, they were 11.4% (SE +/- 1.5) and 1.3% (SE +/- 0.5) respectively. For data entry on the computerized data base, the error rate was 2% (SE +/- 0.5) and 0.2% (SE +/- 0.05). Quality control must be performed regularly because it demonstrates the degree of participation from health care teams and the coherence of the database.(ABSTRACT TRUNCATED AT 250 WORDS)
OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4
2012-01-01
Background Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. Objective We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. Implementation In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. Results The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future expansions. Conclusions The OntoCheck plugin facilitates labelling error detection and curation, contributing to lexical quality assurance in OWL ontologies. Ultimately, we hope this Protégé extension will ease ontology alignments as well as lexical post-processing of annotated data and hence can increase overall secondary data usage by humans and computers. PMID:23046606
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.
Artificial intelligence modeling of cadmium(II) biosorption using rice straw
NASA Astrophysics Data System (ADS)
Nasr, Mahmoud; Mahmoud, Alaa El Din; Fawzy, Manal; Radwan, Ahmed
2017-05-01
The biosorption efficiency of Cd2+ using rice straw was investigated at room temperature (25 ± 4 °C), contact time (2 h) and agitation rate (5 Hz). Experiments studied the effect of three factors, biosorbent dose BD (0.1 and 0.5 g/L), pH (2 and 7) and initial Cd2+ concentration X (10 and 100 mg/L) at two levels "low" and "high". Results showed that, a variation in X from high to low revealed 31 % increase in the Cd2+ biosorption. However, a discrepancy in pH and BD from low to high achieved 28.60 and 23.61 % increase in the removal of Cd2+, respectively. From 23 factorial design, the effects of BD, pH and X achieved p value equals to 0.2248, 0.1881 and 0.1742, respectively, indicating that the influences are in the order X > pH > BD. Similarly, an adaptive neuro-fuzzy inference system indicated that X is the most influential with training and checking errors of 10.87 and 17.94, respectively. This trend was followed by "pH" with training error (15.80) and checking error (17.39), after that BD with training error (16.09) and checking error (16.29). A feed-forward back-propagation neural network with a configuration 3-6-1 achieved correlation ( R) of 0.99 (training), 0.82 (validation) and 0.97 (testing). Thus, the proposed network is capable of predicting Cd2+ biosorption with high accuracy, while the most significant variable was X.
Using Block-local Atomicity to Detect Stale-value Concurrency Errors
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Havelund, Klaus; Biere, Armin
2004-01-01
Data races do not cover all kinds of concurrency errors. This paper presents a data-flow-based technique to find stale-value errors, which are not found by low-level and high-level data race algorithms. Stale values denote copies of shared data where the copy is no longer synchronized. The algorithm to detect such values works as a consistency check that does not require any assumptions or annotations of the program. It has been implemented as a static analysis in JNuke. The analysis is sound and requires only a single execution trace if implemented as a run-time checking algorithm. Being based on an analysis of Java bytecode, it encompasses the full program semantics, including arbitrarily complex expressions. Related techniques are more complex and more prone to over-reporting.
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less
A Categorization of Dynamic Analyzers
NASA Technical Reports Server (NTRS)
Lujan, Michelle R.
1997-01-01
Program analysis techniques and tools are essential to the development process because of the support they provide in detecting errors and deficiencies at different phases of development. The types of information rendered through analysis includes the following: statistical measurements of code, type checks, dataflow analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be broken into two major categories: dynamic and static. Static analyzers examine programs with respect to syntax errors and structural properties., This includes gathering statistical information on program content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition, static analyzers provide the ability to check for the consistency of programs with respect to variables. Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides information on the behavior of a program rather than on the syntax. Both types of analysis detect errors in a program, but dynamic analyzers accomplish this through run-time behavior. This paper focuses on the following broad classification of dynamic analyzers: 1) Metrics; 2) Models; and 3) Monitors. Metrics are those analyzers that provide measurement. The next category, models, captures those analyzers that present the state of the program to the user at specified points in time. The last category, monitors, checks specified code based on some criteria. The paper discusses each classification and the techniques that are included under them. In addition, the role of each technique in the software life cycle is discussed. Familiarization with the tools that measure, model and monitor programs provides a framework for understanding the program's dynamic behavior from different, perspectives through analysis of the input/output data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiCostanzo, D; Ayan, A; Woollard, J
Purpose: To automate the daily verification of each patient’s treatment by utilizing the trajectory log files (TLs) written by the Varian TrueBeam linear accelerator while reducing the number of false positives including jaw and gantry positioning errors, that are displayed in the Treatment History tab of Varian’s Chart QA module. Methods: Small deviations in treatment parameters are difficult to detect in weekly chart checks, but may be significant in reducing delivery errors, and would be critical if detected daily. Software was developed in house to read TLs. Multiple functions were implemented within the software that allow it to operate viamore » a GUI to analyze TLs, or as a script to run on a regular basis. In order to determine tolerance levels for the scripted analysis, 15,241 TLs from seven TrueBeams were analyzed. The maximum error of each axis for each TL was written to a CSV file and statistically analyzed to determine the tolerance for each axis accessible in the TLs to flag for manual review. The software/scripts developed were tested by varying the tolerance values to ensure veracity. After tolerances were determined, multiple weeks of manual chart checks were performed simultaneously with the automated analysis to ensure validity. Results: The tolerance values for the major axis were determined to be, 0.025 degrees for the collimator, 1.0 degree for the gantry, 0.002cm for the y-jaws, 0.01cm for the x-jaws, and 0.5MU for the MU. The automated verification of treatment parameters has been in clinical use for 4 months. During that time, no errors in machine delivery of the patient treatments were found. Conclusion: The process detailed here is a viable and effective alternative to manually checking treatment parameters during weekly chart checks.« less
ERIC Educational Resources Information Center
Chauhan, U.; Kontopantelis, E.; Campbell, S.; Jarrett, H.; Lester, H.
2010-01-01
Background: Routine health checks have gained prominence as a way of detecting unmet need in primary care for adults with intellectual disabilities (ID) and general practitioners are being incentivised in the UK to carry out health checks for many conditions through an incentivisation scheme known as the Quality and Outcomes Framework (QOF).…
Done, Terence; Roelfsema, Chris; Harvey, Andrew; Schuller, Laura; Hill, Jocelyn; Schläppy, Marie-Lise; Lea, Alexandra; Bauer-Civiello, Anne; Loder, Jennifer
2017-04-15
Reef Check Australia (RCA) has collected data on benthic composition and cover at >70 sites along >1000km of Australia's Queensland coast from 2002 to 2015. This paper quantifies the accuracy, precision and power of RCA benthic composition data, to guide its application and interpretation. A simulation study established that the inherent accuracy of the Reef Check point sampling protocol is high (<±7% error absolute), in the range of estimates of benthic cover from 1% to 50%. A field study at three reef sites indicated that, despite minor observer- and deployment-related biases, the protocol does reliably document moderate ecological changes in coral communities. The error analyses were then used to guide the interpretation of inter-annual variability and long term trends at three study sites in RCA's major 2002-2015 data series for the Queensland coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluating mixed samples as a source of error in non-invasive genetic studies using microsatellites
Roon, David A.; Thomas, M.E.; Kendall, K.C.; Waits, L.P.
2005-01-01
The use of noninvasive genetic sampling (NGS) for surveying wild populations is increasing rapidly. Currently, only a limited number of studies have evaluated potential biases associated with NGS. This paper evaluates the potential errors associated with analysing mixed samples drawn from multiple animals. Most NGS studies assume that mixed samples will be identified and removed during the genotyping process. We evaluated this assumption by creating 128 mixed samples of extracted DNA from brown bear (Ursus arctos) hair samples. These mixed samples were genotyped and screened for errors at six microsatellite loci according to protocols consistent with those used in other NGS studies. Five mixed samples produced acceptable genotypes after the first screening. However, all mixed samples produced multiple alleles at one or more loci, amplified as only one of the source samples, or yielded inconsistent electropherograms by the final stage of the error-checking process. These processes could potentially reduce the number of individuals observed in NGS studies, but errors should be conservative within demographic estimates. Researchers should be aware of the potential for mixed samples and carefully design gel analysis criteria and error checking protocols to detect mixed samples.
NASA Astrophysics Data System (ADS)
Quinn, Niall; Freer, Jim; Coxon, Gemma; O'Loughlin, Fiachra; Woods, Ross; Liguori, Sara
2015-04-01
In Great Britain and many other regions of the world, flooding resulting from short duration, high intensity rainfall events can lead to significant economic losses and fatalities. At present, such extreme events are often poorly evaluated using hydrological models due, in part, to their rarity and relatively short duration and a lack of appropriate data. Such storm characteristics are not well represented by daily rainfall records currently available using volumetric gauges and/or derived gridded products. This research aims to address this important data gap by developing a sub-daily gridded precipitation product for Great Britain. Our focus is to better understand these storm events and some of the challenges and uncertainties in quantifying such data across catchment scales. Our goal is to both improve such rainfall characterisation and derive an input to drive hydrological model simulations. Our methodology involves the collation, error checking, and spatial interpolation of approximately 2000 rain gauges located across Great Britain, provided by the Scottish Environment Protection Agency (SEPA) and the Environment Agency (EA). Error checking was conducted over the entirety of the TBR data available, utilising a two stage approach. First, rain gauge data at each site were examined independently, with data exceeding reasonable thresholds marked as suspect. Second, potentially erroneous data were marked using a neighbourhood analysis approach whereby measurements at a given gauge were deemed suspect if they did not fall within defined bounds of measurements at neighbouring gauges. A total of eight error checks were conducted. To provide the user with the greatest flexibility possible, the error markers associated with each check have been recorded at every site. This approach aims to enable the user to choose which checks they deem most suitable for a particular application. The quality assured TBR dataset was then spatially interpolated to produce a national scale gridded rainfall product. Finally, radar rainfall data provided by the UK Met Office was assimilated, where available, to provide an optimal hourly estimate of rainfall, given the error variance associated with both datasets. This research introduces a sub-daily rainfall product that will be of particular value to hydrological modellers requiring rainfall inputs at higher temporal resolutions than those currently available nationally. Further research will aim to quantify the uncertainties in the rainfall product in order to improve our ability to diagnose and identify structural errors in hydrological modelling of extreme events. Here we present our initial findings.
Short-Block Protograph-Based LDPC Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
[Errors in laboratory daily practice].
Larrose, C; Le Carrer, D
2007-01-01
Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.
The rate of cis-trans conformation errors is increasing in low-resolution crystal structures.
Croll, Tristan Ian
2015-03-01
Cis-peptide bonds (with the exception of X-Pro) are exceedingly rare in native protein structures, yet a check for these is not currently included in the standard workflow for some common crystallography packages nor in the automated quality checks that are applied during submission to the Protein Data Bank. This appears to be leading to a growing rate of inclusion of spurious cis-peptide bonds in low-resolution structures both in absolute terms and as a fraction of solved residues. Most concerningly, it is possible for structures to contain very large numbers (>1%) of spurious cis-peptide bonds while still achieving excellent quality reports from MolProbity, leading to concerns that ignoring such errors is allowing software to overfit maps without producing telltale errors in, for example, the Ramachandran plot.
Ray tracing: Experience at SRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, M.
1996-09-01
SHADOW [B. Lai and F. Cerrina, Nucl. Instrum. Methods A {bold 246}, 337 (1986)] is the primary ray-tracing program used at SRC. Ray tracing provides a tremendous amount of information regarding beamline layout, mirror sizes, resolution, alignment tolerances, and beam size at various locations. It also provides a way to check the beamline design for errors. Two recent designs have been ray traced extensively: an undulator-based, 4-meter, normal-incidence monochromator (NIM) [R. Reininger, M.C. Severson, R.W.C. Hansen, W.R. Winter, M.A. Green, and W.S. Trzeciak, Rev. Sci. Instrum. {bold 66}, 2194 (1995)] and an undulator-based, plane-grating monochromator (PGM) [R. Reininger, S.L. Crossley,more » M.A. Lagergren, M.C. Severson, and R.W.C. Hansen, Nucl. Instrum. Methods A {bold 347}, 304 (1994)]. {copyright} {ital 1996 American Institute of Physics.}« less
Performance of Low-Density Parity-Check Coded Modulation
NASA Astrophysics Data System (ADS)
Hamkins, J.
2011-02-01
This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt
TH-AB-201-12: Using Machine Log-Files for Treatment Planning and Delivery QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanhope, C; Liang, J; Drake, D
2016-06-15
Purpose: To determine the segment reduction and dose resolution necessary for machine log-files to effectively replace current phantom-based patient-specific quality assurance, while minimizing computational cost. Methods: Elekta’s Log File Convertor R3.2 records linac delivery parameters (dose rate, gantry angle, leaf position) every 40ms. Five VMAT plans [4 H&N, 1 Pulsed Brain] comprised of 2 arcs each were delivered on the ArcCHECK phantom. Log-files were reconstructed in Pinnacle on the phantom geometry using 1/2/3/4° control point spacing and 2/3/4mm dose grid resolution. Reconstruction effectiveness was quantified by comparing 2%/2mm gamma passing rates of the original and log-file plans. Modulation complexity scoresmore » (MCS) were calculated for each beam to correlate reconstruction accuracy and beam modulation. Percent error in absolute dose for each plan-pair combination (log-file vs. ArcCHECK, original vs. ArcCHECK, log-file vs. original) was calculated for each arc and every diode greater than 10% of the maximum measured dose (per beam). Comparing standard deviations of the three plan-pair distributions, relative noise of the ArcCHECK and log-file systems was elucidated. Results: The original plans exhibit a mean passing rate of 95.1±1.3%. The eight more modulated H&N arcs [MCS=0.088±0.014] and two less modulated brain arcs [MCS=0.291±0.004] yielded log-file pass rates most similar to the original plan when using 1°/2mm [0.05%±1.3% lower] and 2°/3mm [0.35±0.64% higher] log-file reconstructions respectively. Log-file and original plans displayed percent diode dose errors 4.29±6.27% and 3.61±6.57% higher than measurement. Excluding the phantom eliminates diode miscalibration and setup errors; log-file dose errors were 0.72±3.06% higher than the original plans – significantly less noisy. Conclusion: For log-file reconstructed VMAT arcs, 1° control point spacing and 2mm dose resolution is recommended, however, less modulated arcs may allow less stringent reconstructions. Following the aforementioned reconstruction recommendations, the log-file technique is capable of detecting delivery errors with equivalent accuracy and less noise than ArcCHECK QA. I am funded by an Elekta Research Grant.« less
Chemotherapy Order Entry by a Clinical Support Pharmacy Technician in an Outpatient Medical Day Unit
Neville, Heather; Broadfield, Larry; Harding, Claudia; Heukshorst, Shelley; Sweetapple, Jennifer; Rolle, Megan
2016-01-01
Background: Pharmacy technicians are expanding their scope of practice, often in partnership with pharmacists. In oncology, such a shift in responsibilities may lead to workflow efficiencies, but may also cause concerns about patient risk and medication errors. Objectives: The primary objective was to compare the time spent on order entry and order-entry checking before and after training of a clinical support pharmacy technician (CSPT) to perform chemotherapy order entry. The secondary objectives were to document workflow interruptions and to assess medication errors. Methods: This before-and-after observational study investigated chemotherapy order entry for ambulatory oncology patients. Order entry was performed by pharmacists before the process change (phase 1) and by 1 CSPT after the change (phase 2); order-entry checking was performed by a pharmacist during both phases. The tasks were timed by an independent observer using a personal digital assistant. A convenience sample of 125 orders was targeted for each phase. Data were exported to Microsoft Excel software, and timing differences for each task were tested with an unpaired t test. Results: Totals of 143 and 128 individual orders were timed for order entry during phase 1 (pharmacist) and phase 2 (CSPT), respectively. The mean total time to perform order entry was greater during phase 1 (1:37 min versus 1:20 min; p = 0.044). Totals of 144 and 122 individual orders were timed for order-entry checking (by a pharmacist) in phases 1 and 2, respectively, and there was no difference in mean total time for order-entry checking (1:21 min versus 1:20 min; p = 0.69). There were 33 interruptions not related to order entry (totalling 39:38 min) during phase 1 and 25 interruptions (totalling 30:08 min) during phase 2. Three errors were observed during order entry in phase 1 and one error during order-entry checking in phase 2; the errors were rated as having no effect on patient care. Conclusions: Chemotherapy order entry by a trained CSPT appeared to be just as safe and efficient as order entry by a pharmacist. Changes in pharmacy technicians’ scope of practice could increase the amount of time available for pharmacists to provide direct patient care in the oncology setting. PMID:27402999
Neville, Heather; Broadfield, Larry; Harding, Claudia; Heukshorst, Shelley; Sweetapple, Jennifer; Rolle, Megan
2016-01-01
Pharmacy technicians are expanding their scope of practice, often in partnership with pharmacists. In oncology, such a shift in responsibilities may lead to workflow efficiencies, but may also cause concerns about patient risk and medication errors. The primary objective was to compare the time spent on order entry and order-entry checking before and after training of a clinical support pharmacy technician (CSPT) to perform chemotherapy order entry. The secondary objectives were to document workflow interruptions and to assess medication errors. This before-and-after observational study investigated chemotherapy order entry for ambulatory oncology patients. Order entry was performed by pharmacists before the process change (phase 1) and by 1 CSPT after the change (phase 2); order-entry checking was performed by a pharmacist during both phases. The tasks were timed by an independent observer using a personal digital assistant. A convenience sample of 125 orders was targeted for each phase. Data were exported to Microsoft Excel software, and timing differences for each task were tested with an unpaired t test. Totals of 143 and 128 individual orders were timed for order entry during phase 1 (pharmacist) and phase 2 (CSPT), respectively. The mean total time to perform order entry was greater during phase 1 (1:37 min versus 1:20 min; p = 0.044). Totals of 144 and 122 individual orders were timed for order-entry checking (by a pharmacist) in phases 1 and 2, respectively, and there was no difference in mean total time for order-entry checking (1:21 min versus 1:20 min; p = 0.69). There were 33 interruptions not related to order entry (totalling 39:38 min) during phase 1 and 25 interruptions (totalling 30:08 min) during phase 2. Three errors were observed during order entry in phase 1 and one error during order-entry checking in phase 2; the errors were rated as having no effect on patient care. Chemotherapy order entry by a trained CSPT appeared to be just as safe and efficient as order entry by a pharmacist. Changes in pharmacy technicians' scope of practice could increase the amount of time available for pharmacists to provide direct patient care in the oncology setting.
Carrez, Laurent; Bouchoud, Lucie; Fleury-Souverain, Sandrine; Combescure, Christophe; Falaschi, Ludivine; Sadeghipour, Farshid; Bonnabry, Pascal
2017-03-01
Background and objectives Centralized chemotherapy preparation units have established systematic strategies to avoid errors. Our work aimed to evaluate the accuracy of manual preparations associated with different control methods. Method A simulation study in an operational setting used phenylephrine and lidocaine as markers. Each operator prepared syringes that were controlled using a different method during each of three sessions (no control, visual double-checking, and gravimetric control). Eight reconstitutions and dilutions were prepared in each session, with variable doses and volumes, using different concentrations of stock solutions. Results were analyzed according to qualitative (choice of stock solution) and quantitative criteria (accurate, <5% deviation from the target concentration; weakly accurate, 5%-10%; inaccurate, 10%-30%; wrong, >30% deviation). Results Eleven operators carried out 19 sessions. No final preparation (n = 438) contained a wrong drug. The protocol involving no control failed to detect 1 of 3 dose errors made and double-checking failed to detect 3 of 7 dose errors. The gravimetric control method detected all 5 out of 5 dose errors. The accuracy of the doses measured was equivalent across the control methods ( p = 0.63 Kruskal-Wallis). The final preparations ranged from 58% to 60% accurate, 25% to 27% weakly accurate, 14% to 17% inaccurate and 0.9% wrong. A high variability was observed between operators. Discussion Gravimetric control was the only method able to detect all dose errors, but it did not improve dose accuracy. A dose accuracy with <5% deviation cannot always be guaranteed using manual production. Automation should be considered in the future.
1999-01-01
Some means currently under investigation include domain-speci c languages which are easy to check (e.g., PLAN), proof-carrying code [NL96, Nec97...domain-speci c language coupled to an extension system with heavyweight checks. In this way, the frequent (per- packet) dynamic checks are inexpensive...to CISC architectures remains problematic. Typed assembly language [MWCG98] propagates type safety information to the assembly language level, so
On the Validity and Sensitivity of the Phonics Screening Check: Erratum and Further Analysis
ERIC Educational Resources Information Center
Gilchrist, James M.; Snowling, Margaret J.
2018-01-01
Duff, Mengoni, Bailey and Snowling ("Journal of Research in Reading," 38: 109-123; 2015) evaluated the sensitivity and specificity of the phonics screening check against two reference standards. This report aims to correct a minor data error in the original article and to present further analysis of the data. The methods used are…
This SOP describes the methods and procedures for two types of QA procedures: spot checks of hand entered data, and QA procedures for co-located and split samples. The spot checks were used to determine whether the error rate goal for the input of hand entered data was being att...
Local concurrent error detection and correction in data structures using virtual backpointers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.J.; Chen, P.P.; Fuchs, W.K.
1989-11-01
A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.
Quotation accuracy in medical journal articles-a systematic review and meta-analysis.
Jergas, Hannah; Baethge, Christopher
2015-01-01
Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... Request ACTION: 60-Day Notice of Information Collection; G-146; Non-Immigrant Check Letter; OMB Control No... collection. (2) Title of the Form/Collection: Non-Immigrant Check Letter. (3) Agency form number, if any, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... Request ACTION: 60-day notice of information collection; G-146; Non-Immigrant Check Letter; OMB Control No... collection. (2) Title of the Form/Collection: Non-Immigrant Check Letter. (3) Agency form number, if any, and...
Error-Based Design Space Windowing
NASA Technical Reports Server (NTRS)
Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman
2002-01-01
Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.
SU-F-T-558: ArcCheck for Patient Specific QA in Stereotactic Ablative Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, P; RMIT University, Bundoora; Tajaldeen, A
2016-06-15
Purpose: Stereotactic Ablative Radiotherapy (SABR) is one of the most preferred treatment techniques for early stage lung cancer. This technique has been extended to other treatment sites like Spine, Liver, Scapula, Sternum etc., This has resulted in increased physics QA time on machine. In this study, we’ve tested the feasibility of using ArcCheck as an alternative method to replace film dosimetry. Methods: Twelve patients with varied diagnosis of Lung, Liver, scapula, sternum and Spine undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients which include ionization chamber and film dosimetry. The required gamma criteriamore » for each SABR plan to pass QA and proceed to treatment is 95% (3%,1mm). In addition to this routine process, the treatment plans were exported on to an ArcCheck phantom. The planned and measured dose from the ArcCheck device were compared using four different gamma criteria: 2%,2 mm, 3%,2 mm, 3%,1 mm and 3%, 3 mm. In addition to this, we’ve also introduced errors to gantry, collimator and couch angle to assess sensitivity of the ArcCheck with potential delivery errors. Results: The ArcCheck mean passing rates for all twelve cases were 76.1%±9.7% for gamma criteria 3%,1 mm, 89.5%±5.3% for 2%,2 mm, 92.6%±4.2% for 3%,2 mm, and 97.6%±2.4% for 3%,3 mm gamma criteria. When SABR spine cases are excluded, we observe ArcCheck passing rates higher than 95% for all the studied cases with 3%, 3mm, and ArcCheck results in acceptable agreement with the film gamma results. Conclusion: Our ArcCheck results at 3%, 3 mm were found to correlate well with our non-SABR spine routine patient specific QA results (3%,1 mm). We observed significant reduction in QA time on using ArcCheck for SABR QA. This study shows that ArcCheck could replace film dosimetry for all sites except SABR spine.« less
Figueroa, Priscila I; Ziman, Alyssa; Wheeler, Christine; Gornbein, Jeffrey; Monson, Michael; Calhoun, Loni
2006-09-01
To detect miscollected (wrong blood in tube [WBIT]) samples, our institution requires a second independently drawn sample (check-type [CT]) on previously untyped, non-group O patients who are likely to require transfusion. During the 17-year period addressed by this report, 94 WBIT errors were detected: 57% by comparison with a historic blood type, 7% by the CT, and 35% by other means. The CT averted 5 potential ABO-incompatible transfusions. Our corrected WBIT error rate is 1 in 3,713 for verified samples tested between 2000 and 2003, the period for which actual number of CTs performed was available. The estimated rate of WBIT for the 17-year period is 1 in 2,262 samples. ABO-incompatible transfusions due to WBIT-type errors are avoided by comparison of current blood type results with a historic type, and the CT is an effective way to create a historic type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojahn, Christopher K.
2015-10-20
This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.
Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David
2017-01-01
Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. Conclusions The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. PMID:28213343
Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David; Yang, Rong
2017-02-17
As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. ©Xianlai Chen, Yang C Fann, Matthew McAuliffe, David Vismer, Rong Yang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.02.2017.
Using snowball sampling method with nurses to understand medication administration errors.
Sheu, Shuh-Jen; Wei, Ien-Lan; Chen, Ching-Huey; Yu, Shu; Tang, Fu-In
2009-02-01
We aimed to encourage nurses to release information about drug administration errors to increase understanding of error-related circumstances and to identify high-alert situations. Drug administration errors represent the majority of medication errors, but errors are underreported. Effective ways are lacking to encourage nurses to actively report errors. Snowball sampling was conducted to recruit participants. A semi-structured questionnaire was used to record types of error, hospital and nurse backgrounds, patient consequences, error discovery mechanisms and reporting rates. Eighty-five nurses participated, reporting 328 administration errors (259 actual, 69 near misses). Most errors occurred in medical surgical wards of teaching hospitals, during day shifts, committed by nurses working fewer than two years. Leading errors were wrong drugs and doses, each accounting for about one-third of total errors. Among 259 actual errors, 83.8% resulted in no adverse effects; among remaining 16.2%, 6.6% had mild consequences and 9.6% had serious consequences (severe reaction, coma, death). Actual errors and near misses were discovered mainly through double-check procedures by colleagues and nurses responsible for errors; reporting rates were 62.5% (162/259) vs. 50.7% (35/69) and only 3.5% (9/259) vs. 0% (0/69) were disclosed to patients and families. High-alert situations included administration of 15% KCl, insulin and Pitocin; using intravenous pumps; and implementation of cardiopulmonary resuscitation (CPR). Snowball sampling proved to be an effective way to encourage nurses to release details concerning medication errors. Using empirical data, we identified high-alert situations. Strategies for reducing drug administration errors by nurses are suggested. Survey results suggest that nurses should double check medication administration in known high-alert situations. Nursing management can use snowball sampling to gather error details from nurses in a non-reprimanding atmosphere, helping to establish standard operational procedures for known high-alert situations.
Double checking: a second look
Chreim, Samia; Forster, Alan
2015-01-01
Abstract Rationale, aims and objectives Double checking is a standard practice in many areas of health care, notwithstanding the lack of evidence supporting its efficacy. We ask in this study: ‘How do front line practitioners conceptualize double checking? What are the weaknesses of double checking? What alternate views of double checking could render it a more robust process?’ Method This is part of a larger qualitative study based on 85 semi‐structured interviews of health care practitioners in general internal medicine and obstetrics and neonatology; thematic analysis of the transcribed interviews was undertaken. Inductive and deductive themes are reported. Results Weaknesses in the double checking process include inconsistent conceptualization of double checking, double (or more) checking as a costly and time‐consuming procedure, double checking trusted as an accepted and stand‐alone process, and double checking as preventing reporting of near misses. Alternate views of double checking that would render it a more robust process include recognizing that double checking requires training and a dedicated environment, Introducing automated double checking, and expanding double checking beyond error detection. These results are linked with the concepts of collective efficiency thoroughness trade off (ETTO), an in‐family approach, and resilience. Conclusion(s) Double checking deserves more questioning, as there are limitations to the process. Practitioners could view double checking through alternate lenses, and thus help strengthen this ubiquitous practice that is rarely challenged. PMID:26568537
Amelogenin test: From forensics to quality control in clinical and biochemical genomics.
Francès, F; Portolés, O; González, J I; Coltell, O; Verdú, F; Castelló, A; Corella, D
2007-01-01
The increasing number of samples from the biomedical genetic studies and the number of centers participating in the same involves increasing risk of mistakes in the different sample handling stages. We have evaluated the usefulness of the amelogenin test for quality control in sample identification. Amelogenin test (frequently used in forensics) was undertaken on 1224 individuals participating in a biomedical study. Concordance between referred sex in the database and amelogenin test was estimated. Additional sex-error genetic detecting systems were developed. The overall concordance rate was 99.84% (1222/1224). Two samples showed a female amelogenin test outcome, being codified as males in the database. The first, after checking sex-specific biochemical and clinical profile data was found to be due to a codification error in the database. In the second, after checking the database, no apparent error was discovered because a correct male profile was found. False negatives in amelogenin male sex determination were discarded by additional tests, and feminine sex was confirmed. A sample labeling error was revealed after a new DNA extraction. The amelogenin test is a useful quality control tool for detecting sex-identification errors in large genomic studies, and can contribute to increase its validity.
Effects of monetary reward and punishment on information checking behaviour: An eye-tracking study.
Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann
2018-07-01
The aim of the present study was to investigate the effect of error consequence, as reward or punishment, on individuals' checking behaviour following data entry. This study comprised two eye-tracking experiments that replicate and extend the investigation of Li et al. (2016) into the effect of monetary reward and punishment on data-entry performance. The first experiment adopted the same experimental setup as Li et al. (2016) but additionally used an eye tracker. The experiment validated Li et al. (2016) finding that, when compared to no error consequence, both reward and punishment led to improved data-entry performance in terms of reducing errors, and that no performance difference was found between reward and punishment. The second experiment extended the earlier study by associating error consequence to each individual trial by providing immediate performance feedback to participants. It was found that gradual increment (i.e. reward feedback) also led to significantly more accurate performance than no error consequence. It is unclear whether gradual increment is more effective than gradual decrement because of the small sample size tested. However, this study reasserts the effectiveness of reward on data-entry performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
CMM Interim Check Design of Experiments (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua Daniel
2015-07-29
Coordinate Measuring Machines (CMM) are widely used in industry, throughout the Nuclear Weapons Complex and at Los Alamos National Laboratory (LANL) to verify part conformance to design definition. Calibration cycles for CMMs at LANL are predominantly one year in length and include a weekly interim check to reduce risk. The CMM interim check makes use of Renishaw’s Machine Checking Gauge which is an off-the-shelf product simulates a large sphere within a CMM’s measurement volume and allows for error estimation. As verification on the interim check process a design of experiments investigation was proposed to test a couple of key factorsmore » (location and inspector). The results from the two-factor factorial experiment proved that location influenced results more than the inspector or interaction.« less
A switched systems approach to image-based estimation
NASA Astrophysics Data System (ADS)
Parikh, Anup
With the advent of technological improvements in imaging systems and computational resources, as well as the development of image-based reconstruction techniques, it is necessary to understand algorithm performance when subject to real world conditions. Specifically, this dissertation focuses on the stability and performance of a class of image-based observers in the presence of intermittent measurements, caused by e.g., occlusions, limited FOV, feature tracking losses, communication losses, or finite frame rates. Observers or filters that are exponentially stable under persistent observability may have unbounded error growth during intermittent sensing, even while providing seemingly accurate state estimates. In Chapter 3, dwell time conditions are developed to guarantee state estimation error convergence to an ultimate bound for a class of observers while undergoing measurement loss. Bounds are developed on the unstable growth of the estimation errors during the periods when the object being tracked is not visible. A Lyapunov-based analysis for the switched system is performed to develop an inequality in terms of the duration of time the observer can view the moving object and the duration of time the object is out of the field of view. In Chapter 4, a motion model is used to predict the evolution of the states of the system while the object is not visible. This reduces the growth rate of the bounding function to an exponential and enables the use of traditional switched systems Lyapunov analysis techniques. The stability analysis results in an average dwell time condition to guarantee state error convergence with a known decay rate. In comparison with the results in Chapter 3, the estimation errors converge to zero rather than a ball, with relaxed switching conditions, at the cost of requiring additional information about the motion of the feature. In some applications, a motion model of the object may not be available. Numerous adaptive techniques have been developed to compensate for unknown parameters or functions in system dynamics; however, persistent excitation (PE) conditions are typically required to ensure parameter convergence, i.e., learning. Since the motion model is needed in the predictor, model learning is desired; however, PE is difficult to insure a priori and infeasible to check online for nonlinear systems. Concurrent learning (CL) techniques have been developed to use recorded data and a relaxed excitation condition to ensure convergence. In CL, excitation is only required for a finite period of time, and the recorded data can be checked to determine if it is sufficiently rich. However, traditional CL requires knowledge of state derivatives, which are typically not measured and require extensive filter design and tuning to develop satisfactory estimates. In Chapter 5 of this dissertation, a novel formulation of CL is developed in terms of an integral (ICL), removing the need to estimate state derivatives while preserving parameter convergence properties. Using ICL, an estimator is developed in Chapter 6 for simultaneously estimating the pose of an object as well as learning a model of its motion for use in a predictor when the object is not visible. A switched systems analysis is provided to demonstrate the stability of the estimation and prediction with learning scheme. Dwell time conditions as well as excitation conditions are developed to ensure estimation errors converge to an arbitrarily small bound. Experimental results are provided to illustrate the performance of each of the developed estimation schemes. The dissertation concludes with a discussion of the contributions and limitations of the developed techniques, as well as avenues for future extensions.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
Medication-related clinical decision support in computerized provider order entry systems: a review.
Kuperman, Gilad J; Bobb, Anne; Payne, Thomas H; Avery, Anthony J; Gandhi, Tejal K; Burns, Gerard; Classen, David C; Bates, David W
2007-01-01
While medications can improve patients' health, the process of prescribing them is complex and error prone, and medication errors cause many preventable injuries. Computer provider order entry (CPOE) with clinical decision support (CDS), can improve patient safety and lower medication-related costs. To realize the medication-related benefits of CDS within CPOE, one must overcome significant challenges. Healthcare organizations implementing CPOE must understand what classes of CDS their CPOE systems can support, assure that clinical knowledge underlying their CDS systems is reasonable, and appropriately represent electronic patient data. These issues often influence to what extent an institution will succeed with its CPOE implementation and achieve its desired goals. Medication-related decision support is probably best introduced into healthcare organizations in two stages, basic and advanced. Basic decision support includes drug-allergy checking, basic dosing guidance, formulary decision support, duplicate therapy checking, and drug-drug interaction checking. Advanced decision support includes dosing support for renal insufficiency and geriatric patients, guidance for medication-related laboratory testing, drug-pregnancy checking, and drug-disease contraindication checking. In this paper, the authors outline some of the challenges associated with both basic and advanced decision support and discuss how those challenges might be addressed. The authors conclude with summary recommendations for delivering effective medication-related clinical decision support addressed to healthcare organizations, application and knowledge base vendors, policy makers, and researchers.
Quotation accuracy in medical journal articles—a systematic review and meta-analysis
Jergas, Hannah
2015-01-01
Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose—quotation errors—may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress. PMID:26528420
Bounded Parametric Model Checking for Elementary Net Systems
NASA Astrophysics Data System (ADS)
Knapik, Michał; Szreter, Maciej; Penczek, Wojciech
Bounded Model Checking (BMC) is an efficient verification method for reactive systems. BMC has been applied so far to verification of properties expressed in (timed) modal logics, but never to their parametric extensions. In this paper we show, for the first time that BMC can be extended to PRTECTL - a parametric extension of the existential version of CTL. To this aim we define a bounded semantics and a translation from PRTECTL to SAT. The implementation of the algorithm for Elementary Net Systems is presented, together with some experimental results.
Property Differencing for Incremental Checking
NASA Technical Reports Server (NTRS)
Yang, Guowei; Khurshid, Sarfraz; Person, Suzette; Rungta, Neha
2014-01-01
This paper introduces iProperty, a novel approach that facilitates incremental checking of programs based on a property di erencing technique. Speci cally, iProperty aims to reduce the cost of checking properties as they are initially developed and as they co-evolve with the program. The key novelty of iProperty is to compute the di erences between the new and old versions of expected properties to reduce the number and size of the properties that need to be checked during the initial development of the properties. Furthermore, property di erencing is used in synergy with program behavior di erencing techniques to optimize common regression scenarios, such as detecting regression errors or checking feature additions for conformance to new expected properties. Experimental results in the context of symbolic execution of Java programs annotated with properties written as assertions show the e ectiveness of iProperty in utilizing change information to enable more ecient checking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Silva, T; Uneri, A; Ketcha, M
Purpose: Accurate localization of target vertebrae is essential to safe, effective spine surgery, but wrong-level surgery occurs with surprisingly high frequency. Recent research yielded the “LevelCheck” method for 3D-2D registration of preoperative CT to intraoperative radiographs, providing decision support for level localization. We report a new method (MR-LevelCheck) to perform 3D-2D registration based on preoperative MRI, presenting a solution for the increasingly common scenario in which MRI (not CT) is used for preoperative planning. Methods: Direct extension of LevelCheck is confounded by large mismatch in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simplemore » vertebrae segmentation. Using seed points at centroids, vertebrae are segmented using continuous max-flow method and dilated by 1.8 mm to include surrounding cortical bone (inconspicuous in T2w-MRI). MRI projections are computed (analogous to DRR) using segmentation and registered to intraoperative radiographs. The method was tested in a retrospective IRB-approved study involving 11 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Registration accuracy was evaluated in terms of projection-distance-error (PDE) between the true and estimated location of vertebrae in each radiograph. Results: The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch, and large capture range. Segmentation achieved Dice coefficient = 89.2 ± 2.3 and mean-absolute-distance (MAD) = 1.5 ± 0.3 mm. Registration demonstrated robust performance under realistic patient variations, with PDE = 4.0 ± 1.9 mm (median ± iqr) and converged with run-time = 23.3 ± 1.7 s. Conclusion: The MR-LevelCheck algorithm provides an important extension to a previously validated decision support tool in spine surgery by extending its utility to preoperative MRI. With initial studies demonstrating PDE <5 mm and 0% failure rate, the method is now in translation to larger scale prospective clinical studies. S. Vogt and G. Kleinszig are employees of Siemens Healthcare.« less
Self-authentication of value documents
NASA Astrophysics Data System (ADS)
Hayosh, Thomas D.
1998-04-01
To prevent fraud it is critical to distinguish an authentic document from a counterfeit or altered document. Most current technologies rely on difficult-to-print human detectable features which are added to a document to prevent illegal reproduction. Fraud detection is mostly accomplished by human observation and is based upon the examiner's knowledge, experience and time allotted for examination of a document. Another approach to increasing the security of a value document is to add a unique property to each document. Data about that property is then encoded on the document itself and finally secured using a public key based digital signature. In such a scheme, machine readability of authenticity is possible. This paper describes a patent-applied-for methodology using the unique property of magnetic ink printing, magnetic remanence, that provides for full self- authentication when used with a recordable magnetic stripe for storing a digital signature and other document data. Traditionally the authenticity of a document is determined by physical examination for color, background printing, paper texture, printing resolution, and ink characteristics. On an initial level, there may be numerous security features present on a value document but only a few can be detected and evaluated by the untrained individual. Because security features are normally not standardized except on currency, training tellers and cashiers to do extensive security evaluation is not practical, even though these people are often the only people who get a chance to closely examine the document in a payment system which is back-end automated. In the context of this paper, one should be thinking about value documents such as commercial and personal checks although the concepts presented here can easily be applied to travelers cheques, credit cards, event tickets, passports, driver's licenses, motor vehicle titles, and even currency. For a practical self-authentication system, the false alarms should be less than 1% on the first read pass. Causes of false alarms could be the lack of robustness of the taggant discrimination algorithm, excessive document skew as it is being read, or errors in reading the recordable stripe. The false alarm rate is readily tested by reading the magnetic tags and digitally signing documents in one reader and performing authentication in at least two other reading devices. When reading the same check in the same reader where signed, the error metric is typically in the range of 0.0600. When comparing different checks in different readers, the error metric generally reports values in the range of 0.3930. It is clear from tests to date that the taggant patterns are randomly different for checks even when printed serially one after another using the same printing process. Testing results to date on the robustness of the taggant comparison and discrimination algorithms indicate that it is probable that low false alarms and very low false accept rates will be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; STEPANOV, MIKHAIL
2007-01-10
The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less
GeMS: an advanced software package for designing synthetic genes.
Jayaraj, Sebastian; Reid, Ralph; Santi, Daniel V
2005-01-01
A user-friendly, advanced software package for gene design is described. The software comprises an integrated suite of programs-also provided as stand-alone tools-that automatically performs the following tasks in gene design: restriction site prediction, codon optimization for any expression host, restriction site inclusion and exclusion, separation of long sequences into synthesizable fragments, T(m) and stem-loop determinations, optimal oligonucleotide component design and design verification/error-checking. The output is a complete design report and a list of optimized oligonucleotides to be prepared for subsequent gene synthesis. The user interface accommodates both inexperienced and experienced users. For inexperienced users, explanatory notes are provided such that detailed instructions are not necessary; for experienced users, a streamlined interface is provided without such notes. The software has been extensively tested in the design and successful synthesis of over 400 kb of genes, many of which exceeded 5 kb in length.
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.
2001-01-01
An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.
Catuzzo, P; Zenone, F; Aimonetto, S; Peruzzo, A; Casanova Borca, V; Pasquino, M; Franco, P; La Porta, M R; Ricardi, U; Tofani, S
2012-07-01
To investigate the feasibility of implementing a novel approach for patient-specific QA of TomoDirect(TM) whole breast treatment. The most currently used TomoTherapy DQA method, consisting in the verification of the 2D dose distribution in a coronal or sagittal plane of the Cheese Phantom by means of gafchromic films, was compared with an alternative approach based on the use of two commercially available diode arrays, MapCHECK2(TM) and ArcCHECK(TM). The TomoDirect(TM) plans of twenty patients with a primary unilateral breast cancer were applied to a CT scan of the Cheese Phantom and a MVCT dataset of the diode arrays. Then measurements of 2D dose distribution were performed and compared with the calculated ones using the gamma analysis method with different sets of DTA and DD criteria (3%-3 mm, 3%-2 mm). The sensitivity of the diode arrays to detect delivery and setup errors was also investigated. The measured dose distributions showed excellent agreement with the TPS calculations for each detector, with averaged fractions of passed Γ values greater than 95%. The percentage of points satisfying the constraint Γ < 1 was significantly higher for MapCHECK2(TM) than for ArcCHECK(TM) and gafchromic films using both the 3%-3 mm and 3%-2 mm gamma criteria. Both the diode arrays show a good sensitivity to delivery and setup errors using a 3%-2 mm gamma criteria. MapCHECK2™ and ArcCHECK(TM) may fulfill the demands of an adequate system for TomoDirect(TM) patient-specific QA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Novak, A; Zeng, J
Purpose: Physics pre-treatment plan review is crucial to safe radiation oncology treatments. Studies show that most errors originate in treatment planning, which underscores the importance of physics plan review. As a QA measure the physics review is of fundamental importance and is central to the profession of medical physics. However, little is known about its effectiveness. More hard data are needed. The purpose of this study was to quantify the effectiveness of physics review with the goal of improving it. Methods: This study analyzed 315 “potentially serious” near-miss incidents within an institutional incident learning system collected over a two-year period.more » 139 of these originated prior to physics review and were found at the review or after. Incidents were classified as events that: 1)were detected by physics review, 2)could have been detected (but were not), and 3)could not have been detected. Category 1 and 2 events were classified by which specific check (within physics review) detected or could have detected the event. Results: Of the 139 analyzed events, 73/139 (53%) were detected or could have been detected by the physics review; although, 42/73 (58%) were not actually detected. 45/73 (62%) errors originated in treatment planning, making physics review the first step in the workflow that could detect the error. Two specific physics checks were particularly effective (combined effectiveness of >20%): verifying DRRs (8/73) and verifying isocenter (7/73). Software-based plan checking systems were evaluated and found to have potential effectiveness of 40%. Given current data structures, software implementations of some tests such as isocenter verification check would be challenging. Conclusion: Physics plan review is a key safety measure and can detect majority of reported events. However, a majority of events that potentially could have been detected were NOT detected in this study, indicating the need to improve the performance of physics review.« less
Reducing patient identification errors related to glucose point-of-care testing.
Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron
2011-01-01
Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT.
Reducing patient identification errors related to glucose point-of-care testing
Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron
2011-01-01
Background: Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Materials and Methods: Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. Results: When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Conclusion: Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT. PMID:21633490
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
DataPlus - a revolutionary applications generator for DOS hand-held computers
David Dean; Linda Dean
2000-01-01
DataPlus allows the user to easily design data collection templates for DOS-based hand-held computers that mimic clipboard data sheets. The user designs and tests the application on the desktop PC and then transfers it to a DOS field computer. Other features include: error checking, missing data checks, and sensor input from RS-232 devices such as bar code wands,...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
...) make publicly available in BrokerCheck all historic customer complaints that were archived after the... logical extension of the BrokerCheck program that will help protect investors and other users of Broker...., reportable customer complaints or Historic Complaints, criminal charges, terminations, bankruptcies, liens...
The effect of hip positioning on the projected femoral neck-shaft angle: a modeling study.
Bhashyam, Abhiram R; Rodriguez, Edward K; Appleton, Paul; Wixted, John J
2018-04-03
The femoral neck-shaft angle (NSA) is used to restore normal hip geometry during hip fracture repair. Femoral rotation is known to affect NSA measurement, but the effect of hip flexion-extension is unknown. The goals of this study were to determine and test mathematical models of the relationship between hip flexion-extension, femoral rotation and NSA. We hypothesized that hip flexion-extension and femoral rotation would result in NSA measurement error. Two mathematical models were developed to predict NSA in varying degrees of hip flexion-extension and femoral rotation. The predictions of the equations were tested in vitro using a model that varied hip flexion-extension while keeping rotation constant, and vice versa. The NSA was measured from an AP radiograph obtained with a C-arm. Attributable measurement error based on hip positioning was calculated from the models. The predictions of the model correlated well with the experimental data (correlation coefficient = 0.82 - 0.90). A wide range of patient positioning was found to result in less than 5-10 degree error in the measurement of NSA. Hip flexion-extension and femoral rotation had a synergistic effect in measurement error of the NSA. Measurement error was minimized when hip flexion-extension was within 10 degrees of neutral. This study demonstrates that hip flexion-extension and femoral rotation significantly affect the measurement of the NSA. To avoid inadvertently fixing the proximal femur in varus or valgus, the hip should be positioned within 10 degrees of neutral flexion-extension with respect to the C-arm to minimize positional measurement error. N/A, basic science study.
Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.
NASA Technical Reports Server (NTRS)
Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.
1973-01-01
Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.
Evaluation of platinum resistance thermometers
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Dillon-Townes, Lawrence A.
1988-01-01
An evaluation procedure for the characterization of industrial platinum resistance thermometers (PRTs) for use in the temperature range -120 to 160 C was investigated. This evaluation procedure consisted of calibration, thermal stability and hysteresis testing of four surface measuring PRTs. Five different calibration schemes were investigated for these sensors. The IPTS-68 formulation produced the most accurate result, yielding average sensor systematic error of 0.02 C and random error of 0.1 C. The sensors were checked for thermal stability by successive and thermal cycling between room temperature, 160 C, and boiling point of nitrogen. All the PRTs suffered from instability and hysteresis. The applicability of the self-heating technique as an in situ method for checking the calibration of PRTs located inside wind tunnels was investigated.
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
Low Density Parity Check Codes: Bandwidth Efficient Channel Coding
NASA Technical Reports Server (NTRS)
Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu
2003-01-01
Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.
Monitoring in Language Perception: Mild and Strong Conflicts Elicit Different ERP Patterns
ERIC Educational Resources Information Center
van de Meerendonk, Nan; Kolk, Herman H. J.; Vissers, Constance Th. W. M.; Chwilla, Dorothee J.
2010-01-01
In the language domain, most studies of error monitoring have been devoted to language production. However, in language perception, errors are made as well and we are able to detect them. According to the monitoring theory of language perception, a strong conflict between what is expected and what is observed triggers reanalysis to check for…
LDPC Codes--Structural Analysis and Decoding Techniques
ERIC Educational Resources Information Center
Zhang, Xiaojie
2012-01-01
Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…
Quality assurance of dynamic parameters in volumetric modulated arc therapy.
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-07-01
The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N
Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less
Verification of a national water data base using a geographic information system
Harrison, H.E.
1994-01-01
The National Water Data Exchange (NAWDEX) was developed to assist users of water-resource data in the identification, location, and acquisition of data. The Master Water Data Index (MWDI) of NAWDEX currently indexes the data collected by 423 organizations from nearly 500,000 sites throughout the United Stales. The utilization of new computer technologies permit the distribution of the MWDI to the public on compact disc. In addition, geographic information systems (GIS) are now available that can store and analyze these data in a spatial format. These recent innovations could increase access and add new capabilities to the MWDI. Before either of these technologies could be employed, however, a quality-assurance check of the MWDI needed to be performed. The MWDI resides on a mainframe computer in a tabular format. It was copied onto a workstation and converted to a GIS format. The GIS was used to identify errors in the MWDI and produce reports that summarized these errors. The summary reports were sent to the responsible contributing agencies along with instructions for submitting their corrections to the NAWDEX Program Office. The MWDI administrator received reports that summarized all of the errors identified. Of the 494,997 sites checked, 93,440 sites had at least one error (18.9 percent error rate).
77 FR 63215 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... can be found in the Bombardier Q400 Dash 8 Aircraft Maintenance Manual. (h) Retained Actions for... operational check fails, guidance on doing the repair can be found in the Bombardier Q400 Dash 8 Aircraft... which the reidentification is done, an operational check of the alternate extension system of the main...
The Sizing and Optimization Language, (SOL): Computer language for design problems
NASA Technical Reports Server (NTRS)
Lucas, Stephen H.; Scotti, Stephen J.
1988-01-01
The Sizing and Optimization Language, (SOL), a new high level, special purpose computer language was developed to expedite application of numerical optimization to design problems and to make the process less error prone. SOL utilizes the ADS optimization software and provides a clear, concise syntax for describing an optimization problem, the OPTIMIZE description, which closely parallels the mathematical description of the problem. SOL offers language statements which can be used to model a design mathematically, with subroutines or code logic, and with existing FORTRAN routines. In addition, SOL provides error checking and clear output of the optimization results. Because of these language features, SOL is best suited to model and optimize a design concept when the model consits of mathematical expressions written in SOL. For such cases, SOL's unique syntax and error checking can be fully utilized. SOL is presently available for DEC VAX/VMS systems. A SOL package is available which includes the SOL compiler, runtime library routines, and a SOL reference manual.
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H. Lee; Ganti, Anand; Resnick, David R
2013-10-22
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Design, decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-06-17
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-11-18
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
SSC Geopositional Assessment of the Advanced Wide Field Sensor
NASA Technical Reports Server (NTRS)
Ross, Kenton
2006-01-01
The geopositional accuracy of the standard geocorrected product from the Advanced Wide Field Sensor (AWiFS) was evaluated using digital orthophoto quarter quadrangles and other reference sources of similar accuracy. Images were analyzed from summer 2004 through spring 2005. Forty to fifty check points were collected manually per scene and analyzed to determine overall circular error, estimates of horizontal bias, and other systematic errors. Measured errors were somewhat higher than the specifications for the data, but they were consistent with the analysis of the distributing vendor.
40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
... in section 2.3 of this appendix and the Hg emission tests described in §§ 75.81(c) and 75.81(d)(4). 1.2Specific Requirements for Continuous Emissions Monitoring Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and...
Fault-Tolerant Computing: An Overview
1991-06-01
Addison Wesley:, Reading, MA) 1984. [8] J. Wakerly , Error Detecting Codes, Self-Checking Circuits and Applications , (Elsevier North Holland, Inc.- New York... applicable to bit-sliced organi- zations of hardware. In the first time step, the normal computation is performed on the operands and the results...for error detection and fault tolerance in parallel processor systems while perform- ing specific computation-intensive applications [111. Contrary to
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
Code of Federal Regulations, 2011 CFR
2011-04-01
... year and check the appropriate box on Form 4868, “Application for Automatic Extension of Time To File a U.S. Individual Income Tax Return,” or Form 7004, “Application for Automatic Extension of Time to... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Extensions of time in the case of certain...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passarge, M; Fix, M K; Manser, P
Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less
Applying Jlint to Space Exploration Software
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Havelund, Klaus
2004-01-01
Java is a very successful programming language which is also becoming widespread in embedded systems, where software correctness is critical. Jlint is a simple but highly efficient static analyzer that checks a Java program for several common errors, such as null pointer exceptions, and overflow errors. It also includes checks for multi-threading problems, such as deadlocks and data races. The case study described here shows the effectiveness of Jlint in find-false positives in the multi-threading warnings gives an insight into design patterns commonly used in multi-threaded code. The results show that a few analysis techniques are sufficient to avoid almost all false positives. These techniques include investigating all possible callers and a few code idioms. Verifying the correct application of these patterns is still crucial, because their correct usage is not trivial.
A novel method for routine quality assurance of volumetric-modulated arc therapy.
Wang, Qingxin; Dai, Jianrong; Zhang, Ke
2013-10-01
Volumetric-modulated arc therapy (VMAT) is delivered through synchronized variation of gantry angle, dose rate, and multileaf collimator (MLC) leaf positions. The delivery dynamic nature challenges the parameter setting accuracy of linac control system. The purpose of this study was to develop a novel method for routine quality assurance (QA) of VMAT linacs. ArcCheck is a detector array with diodes distributing in spiral pattern on cylindrical surface. Utilizing its features, a QA plan was designed to strictly test all varying parameters during VMAT delivery on an Elekta Synergy linac. In this plan, there are 24 control points. The gantry rotates clockwise from 181° to 179°. The dose rate, gantry speed, and MLC positions cover their ranges commonly used in clinic. The two borders of MLC-shaped field seat over two columns of diodes of ArcCheck when the gantry rotates to the angle specified by each control point. The ratio of dose rate between each of these diodes and the diode closest to the field center is a certain value and sensitive to the MLC positioning error of the leaf crossing the diode. Consequently, the positioning error can be determined by the ratio with the help of a relationship curve. The time when the gantry reaches the angle specified by each control point can be acquired from the virtual inclinometer that is a feature of ArcCheck. The gantry speed between two consecutive control points is then calculated. The aforementioned dose rate is calculated from an acm file that is generated during ArcCheck measurements. This file stores the data measured by each detector in 50 ms updates with each update in a separate row. A computer program was written in MATLAB language to process the data. The program output included MLC positioning errors and the dose rate at each control point as well as the gantry speed between control points. To evaluate this method, this plan was delivered for four consecutive weeks. The actual dose rate and gantry speed were compared with the QA plan specified. Additionally, leaf positioning errors were intentionally introduced to investigate the sensitivity of this method. The relationship curves were established for detecting MLC positioning errors during VMAT delivery. For four consecutive weeks measured, 98.4%, 94.9%, 89.2%, and 91.0% of the leaf positioning errors were within ± 0.5 mm, respectively. For the intentionally introduced leaf positioning systematic errors of -0.5 and +1 mm, the detected leaf positioning errors of 20 Y1 leaf were -0.48 ± 0.14 and 1.02 ± 0.26 mm, respectively. The actual gantry speed and dose rate closely followed the values specified in the VMAT QA plan. This method can assess the accuracy of MLC positions and the dose rate at each control point as well as the gantry speed between control points at the same time. It is efficient and suitable for routine quality assurance of VMAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, E; Harrison, A; Eldredge-Hindy, H
Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less
Aziz, Muhammad Tahir; Ur-Rehman, Tofeeq; Qureshi, Sadia; Bukhari, Nadeem Irfan
Medication errors in chemotherapy are frequent and lead to patient morbidity and mortality, as well as increased rates of re-admission and length of stay, and considerable extra costs. Objective: This study investigated the proposition that computerised chemotherapy ordering reduces the incidence and severity of chemotherapy protocol errors. A computerised physician order entry of chemotherapy order (C-CO) with clinical decision support system was developed in-house, including standardised chemotherapy protocol definitions, automation of pharmacy distribution, clinical checks, labeling and invoicing. A prospective study was then conducted in a C-CO versus paper based chemotherapy order (P-CO) in a 30-bed chemotherapy bay of a tertiary hospital. Both C-CO and P-CO orders, including pharmacoeconomic analysis and the severity of medication errors, were checked and validated by a clinical pharmacist. A group analysis and field trial were also conducted to assess clarity, feasibility and decision making. The C-CO was very usable in terms of its clarity and feasibility. The incidence of medication errors was significantly lower in the C-CO compared with the P-CO (10/3765 [0.26%] versus 134/5514 [2.4%]). There was also a reduction in dispensing time of chemotherapy protocols in the C-CO. The chemotherapy computerisation with clinical decision support system resulted in a significant decrease in the occurrence and severity of medication errors, improvements in chemotherapy dispensing and administration times, and reduction of chemotherapy cost.
Quality assurance of dynamic parameters in volumetric modulated arc therapy
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-01-01
Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... standards. The collection also requires airport operators to comply with a security directive by maintaining... airport operators maintain records of criminal history records checks and security threat assessments in... DEPARTMENT OF HOMELAND SECURITY Transportation Security Administration Extension of Agency...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez Quino, L; Huerta Hernandez, C; Morrow, A
2016-06-15
Purpose: To evaluate the use of MobiusFX as a pre-treatment verification IMRT QA tool and compare it with a commercial 4D detector array for VMAT plan QA. Methods: 15 VMAT plan QA of different treatment sites were delivered and measured by traditional means with the 4D detector array ArcCheck (Sun Nuclear corporation) and at the same time measurement in linac treatment logs (Varian Dynalogs files) were analyzed from the same delivery with MobiusFX software (Mobius Medical Systems). VMAT plan QAs created in Eclipse treatment planning system (Varian) in a TrueBeam linac machine (Varian) were delivered and analyzed with the gammamore » analysis routine from SNPA software (Sun Nuclear corporation). Results: Comparable results in terms of the gamma analysis with 99.06% average gamma passing with 3%,3mm passing rate is observed in the comparison among MobiusFX, ArcCheck measurements, and the Treatment Planning System dose calculated. When going to a stricter criterion (1%,1mm) larger discrepancies are observed in different regions of the measurements with an average gamma of 66.24% between MobiusFX and ArcCheck. Conclusion: This work indicates the potential for using MobiusFX as a routine pre-treatment patient specific IMRT method for quality assurance purposes and its advantages as a phantom-less method which reduce the time for IMRT QA measurement. MobiusFX is capable of produce similar results of those by traditional methods used for patient specific pre-treatment verification VMAT QA. Even the gamma results comparing to the TPS are similar the analysis of both methods show that the errors being identified by each method are found in different regions. Traditional methods like ArcCheck are sensitive to setup errors and dose difference errors coming from the linac output. On the other hand linac log files analysis record different errors in the VMAT QA associated with the MLCs and gantry motion that by traditional methods cannot be detected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S; Wu, Y; Chang, X
Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans ofmore » the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
Levels at streamflow gaging stations
Kennedy, E.J.
1988-01-01
This manual establishes the surveying procedures for setting gages at a streamflow gaging station to datum and for checking them periodically for errors caused by vertical movement of the gage-supporting structures. The surveying terms and concepts used are explained; and the details of testing, adjusting, and operating the instruments are outlined. Notekeeping, adjusting level circuits, checking gages, summarizing results, locating the nearest National Geodetic Vertical Datum of 1929 bench mark, and relating the gage datum to the national datum are described.
Quality Control of Meteorological Observations
NASA Technical Reports Server (NTRS)
Collins, William; Dee, Dick; Rukhovets, Leonid
1999-01-01
For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.
Full-chip level MEEF analysis using model based lithography verification
NASA Astrophysics Data System (ADS)
Kim, Juhwan; Wang, Lantian; Zhang, Daniel; Tang, Zongwu
2005-11-01
MEEF (Mask Error Enhancement Factor) has become a critical factor in CD uniformity control since optical lithography process moved to sub-resolution era. A lot of studies have been done by quantifying the impact of the mask CD (Critical Dimension) errors on the wafer CD errors1-2. However, the benefits from those studies were restricted only to small pattern areas of the full-chip data due to long simulation time. As fast turn around time can be achieved for the complicated verifications on very large data by linearly scalable distributed processing technology, model-based lithography verification becomes feasible for various types of applications such as post mask synthesis data sign off for mask tape out in production and lithography process development with full-chip data3,4,5. In this study, we introduced two useful methodologies for the full-chip level verification of mask error impact on wafer lithography patterning process. One methodology is to check MEEF distribution in addition to CD distribution through process window, which can be used for RET/OPC optimization at R&D stage. The other is to check mask error sensitivity on potential pinch and bridge hotspots through lithography process variation, where the outputs can be passed on to Mask CD metrology to add CD measurements on those hotspot locations. Two different OPC data were compared using the two methodologies in this study.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.
Revathy, M; Saravanan, R
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
SimCheck: An Expressive Type System for Simulink
NASA Technical Reports Server (NTRS)
Roy, Pritam; Shankar, Natarajan
2010-01-01
MATLAB Simulink is a member of a class of visual languages that are used for modeling and simulating physical and cyber-physical systems. A Simulink model consists of blocks with input and output ports connected using links that carry signals. We extend the type system of Simulink with annotations and dimensions/units associated with ports and links. These types can capture invariants on signals as well as relations between signals. We define a type-checker that checks the wellformedness of Simulink blocks with respect to these type annotations. The type checker generates proof obligations that are solved by SRI's Yices solver for satisfiability modulo theories (SMT). This translation can be used to detect type errors, demonstrate counterexamples, generate test cases, or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of MATLAB Simulink models.
Low delay and area efficient soft error correction in arbitration logic
Sugawara, Yutaka
2013-09-10
There is provided an arbitration logic device for controlling an access to a shared resource. The arbitration logic device comprises at least one storage element, a winner selection logic device, and an error detection logic device. The storage element stores a plurality of requestors' information. The winner selection logic device selects a winner requestor among the requestors based on the requestors' information received from a plurality of requestors. The winner selection logic device selects the winner requestor without checking whether there is the soft error in the winner requestor's information.
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Parallel pulse processing and data acquisition for high speed, low error flow cytometry
van den Engh, Gerrit J.; Stokdijk, Willem
1992-01-01
A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.
Ajemigbitse, Adetutu A.; Omole, Moses Kayode; Ezike, Nnamdi Chika; Erhun, Wilson O.
2013-01-01
Context: Junior doctors are reported to make most of the prescribing errors in the hospital setting. Aims: The aim of the following study is to determine the knowledge intern doctors have about prescribing errors and circumstances contributing to making them. Settings and Design: A structured questionnaire was distributed to intern doctors in National Hospital Abuja Nigeria. Subjects and Methods: Respondents gave information about their experience with prescribing medicines, the extent to which they agreed with the definition of a clinically meaningful prescribing error and events that constituted such. Their experience with prescribing certain categories of medicines was also sought. Statistical Analysis Used: Data was analyzed with Statistical Package for the Social Sciences (SPSS) software version 17 (SPSS Inc Chicago, Ill, USA). Chi-squared analysis contrasted differences in proportions; P < 0.05 was considered to be statistically significant. Results: The response rate was 90.9% and 27 (90%) had <1 year of prescribing experience. 17 (56.7%) respondents totally agreed with the definition of a clinically meaningful prescribing error. Most common reasons for prescribing mistakes were a failure to check prescriptions with a reference source (14, 25.5%) and failure to check for adverse drug interactions (14, 25.5%). Omitting some essential information such as duration of therapy (13, 20%), patient age (14, 21.5%) and dosage errors (14, 21.5%) were the most common types of prescribing errors made. Respondents considered workload (23, 76.7%), multitasking (19, 63.3%), rushing (18, 60.0%) and tiredness/stress (16, 53.3%) as important factors contributing to prescribing errors. Interns were least confident prescribing antibiotics (12, 25.5%), opioid analgesics (12, 25.5%) cytotoxics (10, 21.3%) and antipsychotics (9, 19.1%) unsupervised. Conclusions: Respondents seemed to have a low awareness of making prescribing errors. Principles of rational prescribing and events that constitute prescribing errors should be taught in the practice setting. PMID:24808682
Ajemigbitse, Adetutu A; Omole, Moses Kayode; Ezike, Nnamdi Chika; Erhun, Wilson O
2013-12-01
Junior doctors are reported to make most of the prescribing errors in the hospital setting. The aim of the following study is to determine the knowledge intern doctors have about prescribing errors and circumstances contributing to making them. A structured questionnaire was distributed to intern doctors in National Hospital Abuja Nigeria. Respondents gave information about their experience with prescribing medicines, the extent to which they agreed with the definition of a clinically meaningful prescribing error and events that constituted such. Their experience with prescribing certain categories of medicines was also sought. Data was analyzed with Statistical Package for the Social Sciences (SPSS) software version 17 (SPSS Inc Chicago, Ill, USA). Chi-squared analysis contrasted differences in proportions; P < 0.05 was considered to be statistically significant. The response rate was 90.9% and 27 (90%) had <1 year of prescribing experience. 17 (56.7%) respondents totally agreed with the definition of a clinically meaningful prescribing error. Most common reasons for prescribing mistakes were a failure to check prescriptions with a reference source (14, 25.5%) and failure to check for adverse drug interactions (14, 25.5%). Omitting some essential information such as duration of therapy (13, 20%), patient age (14, 21.5%) and dosage errors (14, 21.5%) were the most common types of prescribing errors made. Respondents considered workload (23, 76.7%), multitasking (19, 63.3%), rushing (18, 60.0%) and tiredness/stress (16, 53.3%) as important factors contributing to prescribing errors. Interns were least confident prescribing antibiotics (12, 25.5%), opioid analgesics (12, 25.5%) cytotoxics (10, 21.3%) and antipsychotics (9, 19.1%) unsupervised. Respondents seemed to have a low awareness of making prescribing errors. Principles of rational prescribing and events that constitute prescribing errors should be taught in the practice setting.
NASA Technical Reports Server (NTRS)
1987-01-01
In a complex computer environment there is ample opportunity for error, a mistake by a programmer, or a software-induced undesirable side effect. In insurance, errors can cost a company heavily, so protection against inadvertent change is a must for the efficient firm. The data processing center at Transport Life Insurance Company has taken a step to guard against accidental changes by adopting a software package called EQNINT (Equations Interpreter Program). EQNINT cross checks the basic formulas in a program against the formulas that make up the major production system. EQNINT assures that formulas are coded correctly and helps catch errors before they affect the customer service or its profitability.
The application of Aronson's taxonomy to medication errors in nursing.
Johnson, Maree; Young, Helen
2011-01-01
Medication administration is a frequent nursing activity that is prone to error. In this study of 318 self-reported medication incidents (including near misses), very few resulted in patient harm-7% required intervention or prolonged hospitalization or caused temporary harm. Aronson's classification system provided an excellent framework for analysis of the incidents with a close connection between the type of error and the change strategy to minimize medication incidents. Taking a behavioral approach to medication error classification has provided helpful strategies for nurses such as nurse-call cards on patient lockers when patients are absent and checking of medication sign-off by outgoing and incoming staff at handover.
Second generation experiments in fault tolerant software
NASA Technical Reports Server (NTRS)
Knight, J. C.
1987-01-01
The purpose of the Multi-Version Software (MVS) experiment is to obtain empirical measurements of the performance of multi-version systems. Twenty version of a program were prepared under reasonably realistic development conditions from the same specifications. The overall structure of the testing environment for the MVS experiment and its status are described. A preliminary version of the control system is described that was implemented for the MVS experiment to allow the experimenter to have control over the details of the testing. The results of an empirical study of error detection using self checks are also presented. The analysis of the checks revealed that there are great differences in the ability of individual programmers to design effective checks.
Ernst, Anja F; Albers, Casper J
2017-01-01
Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking.
Ernst, Anja F.
2017-01-01
Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking. PMID:28533971
Concrete Model Checking with Abstract Matching and Refinement
NASA Technical Reports Server (NTRS)
Pasareanu Corina S.; Peianek Radek; Visser, Willem
2005-01-01
We propose an abstraction-based model checking method which relies on refinement of an under-approximation of the feasible behaviors of the system under analysis. The method preserves errors to safety properties, since all analyzed behaviors are feasible by definition. The method does not require an abstract transition relation to he generated, but instead executes the concrete transitions while storing abstract versions of the concrete states, as specified by a set of abstraction predicates. For each explored transition. the method checks, with the help of a theorem prover, whether there is any loss of precision introduced by abstraction. The results of these checks are used to decide termination or to refine the abstraction, by generating new abstraction predicates. If the (possibly infinite) concrete system under analysis has a finite bisimulation quotient, then the method is guaranteed to eventually explore an equivalent finite bisimilar structure. We illustrate the application of the approach for checking concurrent programs. We also show how a lightweight variant can be used for efficient software testing.
Reopen parameter regions in two-Higgs doublet models
NASA Astrophysics Data System (ADS)
Staub, Florian
2018-01-01
The stability of the electroweak potential is a very important constraint for models of new physics. At the moment, it is standard for Two-Higgs doublet models (THDM), singlet or triplet extensions of the standard model to perform these checks at tree-level. However, these models are often studied in the presence of very large couplings. Therefore, it can be expected that radiative corrections to the potential are important. We study these effects at the example of the THDM type-II and find that loop corrections can revive more than 50% of the phenomenological viable points which are ruled out by the tree-level vacuum stability checks. Similar effects are expected for other extension of the standard model.
NASA Technical Reports Server (NTRS)
Turner, R. E.
1977-01-01
For 36 hours during April 1975, an atmospheric variability experiment was conducted. This research effort supported an observational program in which rawinsonde data, radar data, and satellite data were collected from a network of 42 stations east of the Rocky Mountains at intervals of 3 hours. This program presents data with a high degree of time resolution over a spatially and temporally extensive network. Reduction of the experiment data is intended primarily as a documentation of the checking and processing of the data and should be useful to prospective users. Various flow diagrams of the data processing procedures are described, and a complete summary of the formulas used in the data processing is provided. A wind computation scheme designed to extract as much detailed wind information as possible from the unique experiment data set is discussed. The accuracy of the thermodynamic and wind data were estimated. Errors in the thermodynamic and wind data are given.
Compact, Low-Overhead, MIL-STD-1553B Controller
NASA Technical Reports Server (NTRS)
Katz, Richard; Barto, Rod
2009-01-01
A compact and flexible controller has been developed to provide MIL-STD- 1553B Remote Terminal (RT) communications and supporting and related functions with minimal demand on the resources of the system in which the controller is to be installed. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD-1553B is commonly used in defense and space applications.) Many other MIL-STD-1553B RT controllers are complicated, and to enable them to function, it is necessary to provide software and to use such ancillary separate hardware devices as microprocessors and dual-port memories. The present controller functions without need for software and any ancillary hardware. In addition, it contains a flexible system interface and extensive support hardware while including on-chip error-checking and diagnostic support circuitry. This controller is implemented within part of a modern field-programmable gate array.
Tritium and tritons in cold fusion
NASA Astrophysics Data System (ADS)
Wolf, K. L.; Whitesell, L.; Jabs, H.; Shoemaker, J.
1991-05-01
An analysis is conducted on reports of tritium production and of charged-particle emission from deuterated palladium and titanium. Possible sources of error are outline and the lack of definitive experiments is discussed. Extensive sets of experiments are reported in which two previously reported results are checked in detail. A search for charged-particle emission was conducted on deuterated titanium and 6-6-2 titanium alloy that was subjected to cryogenic cycling. Two delta E-E silicon telescopes were used to count 42 samples for 3-4 cycles each from 84K to room temperature. No charge-one particles were detected and alpha particle yields of a few counters per day corresponded to background levels. A search for tritium production from 1 mm diameter palladium wire was conducted on 130 electrolytic cells in D2O and H2O, and in 250 metal samples. Several samples associated with one lot of palladium stock showed latent tritium levels well above background. No evidence was obtained for the occurrence of nuclear reactions in the electrolytic cells.
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.
Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-06-16
Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.
Using PAFEC as a preprocessor for COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Gray, W. H.; Baudry, T. V.
1983-01-01
Programs for Automatic Finite Element Calculations (PAFEC) is a general purpose, three dimensional linear and nonlinear finite element program (ref. 1). PAFEC's features include free format input utilizing engineering keywords, powerful mesh generating facilities, sophisticated data base management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for COSMIC/NASTRAN. This user friendly software, called PAFCOS, frees the stress analyst from the laborious and error prone procedure of creating and debugging a rigid format COSMIC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free format engineering keyword oriented data structure of PAFEC, the amount of time spent during model generation can be drastically reduced. The PAFCOS software will automatically convert a PAFEC data structure into a COSMIC/NASTRAN bulk data deck. The capabilities and limitations of the PAFCOS software are fully discussed in the following report.
NASA Technical Reports Server (NTRS)
Redinbo, Robert
1994-01-01
Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.
Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.
Djordjevic, Ivan B
2010-05-01
I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.
Levels at streamflow gaging stations
Kennedy, E.J.
1990-01-01
This manual establishes the surveying procedures for (1) setting gages at a streamflow gaging station to datum and (2) checking the gages periodically for errors caused by vertical movement of the structures that support them. Surveying terms and concepts are explained, and procedures for testing, adjusting, and operating the instruments are described in detail. Notekeeping, adjusting level circuits, checking gages, summarizing results, locating the nearest National Geodetic Vertical Datum of 1929 bench mark, and relating the gage datum to the national datum are also described.
Model Checking Degrees of Belief in a System of Agents
NASA Technical Reports Server (NTRS)
Raimondi, Franco; Primero, Giuseppe; Rungta, Neha
2014-01-01
Reasoning about degrees of belief has been investigated in the past by a number of authors and has a number of practical applications in real life. In this paper we present a unified framework to model and verify degrees of belief in a system of agents. In particular, we describe an extension of the temporal-epistemic logic CTLK and we introduce a semantics based on interpreted systems for this extension. In this way, degrees of beliefs do not need to be provided externally, but can be derived automatically from the possible executions of the system, thereby providing a computationally grounded formalism. We leverage the semantics to (a) construct a model checking algorithm, (b) investigate its complexity, (c) provide a Java implementation of the model checking algorithm, and (d) evaluate our approach using the standard benchmark of the dining cryptographers. Finally, we provide a detailed case study: using our framework and our implementation, we assess and verify the situational awareness of the pilot of Air France 447 flying in off-nominal conditions.
Building and evaluating an ontology-based tool for reasoning about consent permission
Grando, Adela; Schwab, Richard
2013-01-01
Given the lack of mechanisms for specifying, sharing and checking the compliance of consent permissions, we focus on building and testing novel approaches to address this gap. In our previous work, we introduced a “permission ontology” to capture in a precise, machine-interpretable form informed consent permissions in research studies. Here we explain how we built and evaluated a framework for specifying subject’s permissions and checking researcher’s resource request in compliance with those permissions. The framework is proposed as an extension of an existing policy engine based on the eXtensible Access Control Markup Language (XACML), incorporating ontology-based reasoning. The framework is evaluated in the context of the UCSD Moores Cancer Center biorepository, modeling permissions from an informed consent and a HIPAA form. The resulting permission ontology and mechanisms to check subject’s permission are implementation and institution independent, and therefore offer the potential to be reusable in other biorepositories and data warehouses. PMID:24551354
The effectiveness of pretreatment physics plan review for detecting errors in radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, Olga; Zeng, Jing; Novak, Avrey
Purpose: The pretreatment physics plan review is a standard tool for ensuring treatment quality. Studies have shown that the majority of errors in radiation oncology originate in treatment planning, which underscores the importance of the pretreatment physics plan review. This quality assurance measure is fundamentally important and central to the safety of patients and the quality of care that they receive. However, little is known about its effectiveness. The purpose of this study was to analyze reported incidents to quantify the effectiveness of the pretreatment physics plan review with the goal of improving it. Methods: This study analyzed 522 potentiallymore » severe or critical near-miss events within an institutional incident learning system collected over a three-year period. Of these 522 events, 356 originated at a workflow point that was prior to the pretreatment physics plan review. The remaining 166 events originated after the pretreatment physics plan review and were not considered in the study. The applicable 356 events were classified into one of the three categories: (1) events detected by the pretreatment physics plan review, (2) events not detected but “potentially detectable” by the physics review, and (3) events “not detectable” by the physics review. Potentially detectable events were further classified by which specific checks performed during the pretreatment physics plan review detected or could have detected the event. For these events, the associated specific check was also evaluated as to the possibility of automating that check given current data structures. For comparison, a similar analysis was carried out on 81 events from the international SAFRON radiation oncology incident learning system. Results: Of the 356 applicable events from the institutional database, 180/356 (51%) were detected or could have been detected by the pretreatment physics plan review. Of these events, 125 actually passed through the physics review; however, only 38% (47/125) were actually detected at the review. Of the 81 events from the SAFRON database, 66/81 (81%) were potentially detectable by the pretreatment physics plan review. From the institutional database, three specific physics checks were particularly effective at detecting events (combined effectiveness of 38%): verifying the isocenter (39/180), verifying DRRs (17/180), and verifying that the plan matched the prescription (12/180). The most effective checks from the SAFRON database were verifying that the plan matched the prescription (13/66) and verifying the field parameters in the record and verify system against those in the plan (23/66). Software-based plan checking systems, if available, would have potential effectiveness of 29% and 64% at detecting events from the institutional and SAFRON databases, respectively. Conclusions: Pretreatment physics plan review is a key safety measure and can detect a high percentage of errors. However, the majority of errors that potentially could have been detected were not detected in this study, indicating the need to improve the pretreatment physics plan review performance. Suggestions for improvement include the automation of specific physics checks performed during the pretreatment physics plan review and the standardization of the review process.« less
The effectiveness of pretreatment physics plan review for detecting errors in radiation therapy.
Gopan, Olga; Zeng, Jing; Novak, Avrey; Nyflot, Matthew; Ford, Eric
2016-09-01
The pretreatment physics plan review is a standard tool for ensuring treatment quality. Studies have shown that the majority of errors in radiation oncology originate in treatment planning, which underscores the importance of the pretreatment physics plan review. This quality assurance measure is fundamentally important and central to the safety of patients and the quality of care that they receive. However, little is known about its effectiveness. The purpose of this study was to analyze reported incidents to quantify the effectiveness of the pretreatment physics plan review with the goal of improving it. This study analyzed 522 potentially severe or critical near-miss events within an institutional incident learning system collected over a three-year period. Of these 522 events, 356 originated at a workflow point that was prior to the pretreatment physics plan review. The remaining 166 events originated after the pretreatment physics plan review and were not considered in the study. The applicable 356 events were classified into one of the three categories: (1) events detected by the pretreatment physics plan review, (2) events not detected but "potentially detectable" by the physics review, and (3) events "not detectable" by the physics review. Potentially detectable events were further classified by which specific checks performed during the pretreatment physics plan review detected or could have detected the event. For these events, the associated specific check was also evaluated as to the possibility of automating that check given current data structures. For comparison, a similar analysis was carried out on 81 events from the international SAFRON radiation oncology incident learning system. Of the 356 applicable events from the institutional database, 180/356 (51%) were detected or could have been detected by the pretreatment physics plan review. Of these events, 125 actually passed through the physics review; however, only 38% (47/125) were actually detected at the review. Of the 81 events from the SAFRON database, 66/81 (81%) were potentially detectable by the pretreatment physics plan review. From the institutional database, three specific physics checks were particularly effective at detecting events (combined effectiveness of 38%): verifying the isocenter (39/180), verifying DRRs (17/180), and verifying that the plan matched the prescription (12/180). The most effective checks from the SAFRON database were verifying that the plan matched the prescription (13/66) and verifying the field parameters in the record and verify system against those in the plan (23/66). Software-based plan checking systems, if available, would have potential effectiveness of 29% and 64% at detecting events from the institutional and SAFRON databases, respectively. Pretreatment physics plan review is a key safety measure and can detect a high percentage of errors. However, the majority of errors that potentially could have been detected were not detected in this study, indicating the need to improve the pretreatment physics plan review performance. Suggestions for improvement include the automation of specific physics checks performed during the pretreatment physics plan review and the standardization of the review process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladstone, D. J.; Li, S.; Jarvis, L. A.
2011-07-15
Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging,more » the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.« less
NASA Astrophysics Data System (ADS)
Zhang, Yunju; Chen, Zhongyi; Guo, Ming; Lin, Shunsheng; Yan, Yinyang
2018-01-01
With the large capacity of the power system, the development trend of the large unit and the high voltage, the scheduling operation is becoming more frequent and complicated, and the probability of operation error increases. This paper aims at the problem of the lack of anti-error function, single scheduling function and low working efficiency for technical support system in regional regulation and integration, the integrated construction of the error prevention of the integrated architecture of the system of dispatching anti - error of dispatching anti - error of power network based on cloud computing has been proposed. Integrated system of error prevention of Energy Management System, EMS, and Operation Management System, OMS have been constructed either. The system architecture has good scalability and adaptability, which can improve the computational efficiency, reduce the cost of system operation and maintenance, enhance the ability of regional regulation and anti-error checking with broad development prospects.
CAD Extensions and Other Refinements to the LOCATE Workplace Layout Tool
2000-05-01
25 - Scrolling and Nudging ........................................................................................ 25 System Checks...Motif’s default behaviour when creating or renaming items in pop-up menus. (0) Rotation • Provide a rotation mode to allow for multiple rotations. (0...EObs (and other objects) expand from the top left comer or the centre. (0) System Checks • Update (or close) all open windows when changes are made to
Statistical Quality Control of Moisture Data in GEOS DAS
NASA Technical Reports Server (NTRS)
Dee, D. P.; Rukhovets, L.; Todling, R.
1999-01-01
A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.
[The quality of medication orders--can it be improved?].
Vaknin, Ofra; Wingart-Emerel, Efrat; Stern, Zvi
2003-07-01
Medication errors are a common cause of morbidity and mortality among patients. Medication administration in hospitals is a complicated procedure with the possibility of error at each step. Errors are most commonly found at the prescription and transcription stages, although it is known that most errors can easily be avoided through strict adherence to standardized procedure guidelines. In examination of medication errors reported in the hospital in the year 2000, we found that 38% reported to have resulted from transcription errors. In the year 2001, the hospital initiated a program designed to identify faulty process of orders in an effort to improve the quality and effectiveness of the medication administration process. As part of this program, it was decided to check and evaluate the quality of the written doctor's orders and the transcription of those orders to the nursing cadre, in various hospital units. The study was conducted using a questionnaire which checked compliance to hospital standards with regard to the medication administration process, as applied to 6 units over the course of 8 weeks. Results of the survey showed poor compliance to guidelines on the part of doctors and nurses. Only 18% of doctors' orders in the study and 37% of the nurses' transcriptions were written according to standards. The Emergency Department showed an even lower compliance with only 3% of doctors' orders and 25% of nurses' transcriptions complying to standards. As a result of this study, it was decided to initiate an intensive in-service teaching course to refresh the staff's knowledge of medication administration guidelines. In the future it is recommended that hand-written orders be replaced by computerized orders in an effort to limit the chance of error.
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Cycle time reduction by Html report in mask checking flow
NASA Astrophysics Data System (ADS)
Chen, Jian-Cheng; Lu, Min-Ying; Fang, Xiang; Shen, Ming-Feng; Ma, Shou-Yuan; Yang, Chuen-Huei; Tsai, Joe; Lee, Rachel; Deng, Erwin; Lin, Ling-Chieh; Liao, Hung-Yueh; Tsai, Jenny; Bowhill, Amanda; Vu, Hien; Russell, Gordon
2017-07-01
The Mask Data Correctness Check (MDCC) is a reticle-level, multi-layer DRC-like check evolved from mask rule check (MRC). The MDCC uses extended job deck (EJB) to achieve mask composition and to perform a detailed check for positioning and integrity of each component of the reticle. Different design patterns on the mask will be mapped to different layers. Therefore, users may be able to review the whole reticle and check the interactions between different designs before the final mask pattern file is available. However, many types of MDCC check results, such as errors from overlapping patterns usually have very large and complex-shaped highlighted areas covering the boundary of the design. Users have to load the result OASIS file and overlap it to the original database that was assembled in MDCC process on a layout viewer, then search for the details of the check results. We introduce a quick result-reviewing method based on an html format report generated by Calibre® RVE. In the report generation process, we analyze and extract the essential part of result OASIS file to a result database (RDB) file by standard verification rule format (SVRF) commands. Calibre® RVE automatically loads the assembled reticle pattern and generates screen shots of these check results. All the processes are automatically triggered just after the MDCC process finishes. Users just have to open the html report to get the information they need: for example, check summary, captured images of results and their coordinates.
Goldmann tonometer calibration: a national survey.
Kumar, N; Hillier, R J
2009-02-01
Recent studies suggest that Goldmann tonometers can rapidly develop calibration errors (CEs) in clinical use and routine checks are necessary to ensure accuracy. To determine current practice regarding CE checks in the United Kingdom and assess the views of senior nursing staff in charge of running ophthalmology outpatient clinics as to whom they feel to be responsible for CE checks. Every ophthalmology unit with training recognition in England, Northern Ireland, Scotland, and Wales was contacted. Senior nurses responded to a structured telephone questionnaire regarding local tonometer calibration practice and their views regarding who is responsible for CE checks. A total of 155 eye units were identified and contacted. The response rate was 100%. CEs were checked for daily in 8 units (5.2%), weekly in 20 units (12.9%), fortnightly in 1 unit (0.6%), monthly in 12 units (7.7%), trimonthly in 5 units (3.2%), biannually in 27 units (17.4%), and annually in 21 units (13.5%). CEs were either never checked or checked in a very random manner (no identifiable pattern) in 61 units (39.4%). Sixty-three (40.6%) of the respondents felt CE checks were a departmental responsibility, 48 (31.0%) felt it to be the doctor's responsibility, and 44 (28.4%) felt CE checks should be performed by the nursing staff. Our national survey suggests that very few units check their tonometers for CEs at intervals which ensure their accuracy. Our previous survey of doctors suggests that they believe nurses should check for CE, whereas the nursing staff believe CE checks are not their responsibility. This lack of communication between health-care professionals may lead to inaccurate tonometers being used in clinical practice. We suggest that every eye unit should have a protocol, which clearly identifies individuals responsible for checking for CEs at least on a monthly basis.
SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Yang, D
2015-06-15
Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less
Evaluation of properties over phylogenetic trees using stochastic logics.
Requeno, José Ignacio; Colom, José Manuel
2016-06-14
Model checking has been recently introduced as an integrated framework for extracting information of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the phylogeny. In this paper, we repair the limitations of the previous framework for including and handling quantitative information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the computation of maximum likelihoods. We have shown that probabilistic model checking is a competitive framework for describing and analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the definition of models and specifications. Besides, the existence of model checking tools hides the underlying technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set of benchmarks justify the feasibility of our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua Daniel
2015-03-23
Coordinate Measuring Machines (CMM) are widely used in industry, throughout the Nuclear Weapons Complex and at Los Alamos National Laboratory (LANL) to verify part conformance to design definition. Calibration cycles for CMMs at LANL are predominantly one year in length. Unfortunately, several nonconformance reports have been generated to document the discovery of a certified machine found out of tolerance during a calibration closeout. In an effort to reduce risk to product quality two solutions were proposed – shorten the calibration cycle which could be costly, or perform an interim check to monitor the machine’s performance between cycles. The CMM interimmore » check discussed makes use of Renishaw’s Machine Checking Gauge. This off-the-shelf product simulates a large sphere within a CMM’s measurement volume and allows for error estimation. Data was gathered, analyzed, and simulated from seven machines in seventeen different configurations to create statistical process control run charts for on-the-floor monitoring.« less
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications
Revathy, M.; Saravanan, R.
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
NASA Astrophysics Data System (ADS)
Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo
2017-02-01
The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.
Royo Sánchez, Ana Cristina; Aguilar Martín, Juan José; Santolaria Mazo, Jorge
2014-12-01
Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.
Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More
NASA Technical Reports Server (NTRS)
Kou, Yu; Lin, Shu; Fossorier, Marc
1999-01-01
Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.
Spacecraft command verification: The AI solution
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Smith, Brian K.
1990-01-01
Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined.
Error-correcting codes on scale-free networks
NASA Astrophysics Data System (ADS)
Kim, Jung-Hoon; Ko, Young-Jo
2004-06-01
We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.
Incremental checking of Master Data Management model based on contextual graphs
NASA Astrophysics Data System (ADS)
Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan
2015-10-01
The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.
Automated Sequence Processor: Something Old, Something New
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Schrock, Mitchell; Fisher, Forest; Himes, Terry
2012-01-01
High productivity required for operations teams to meet schedules Risk must be minimized. Scripting used to automate processes. Scripts perform essential operations functions. Automated Sequence Processor (ASP) was a grass-roots task built to automate the command uplink process System engineering task for ASP revitalization organized. ASP is a set of approximately 200 scripts written in Perl, C Shell, AWK and other scripting languages.. ASP processes/checks/packages non-interactive commands automatically.. Non-interactive commands are guaranteed to be safe and have been checked by hardware or software simulators.. ASP checks that commands are non-interactive.. ASP processes the commands through a command. simulator and then packages them if there are no errors.. ASP must be active 24 hours/day, 7 days/week..
Parallel pulse processing and data acquisition for high speed, low error flow cytometry
Engh, G.J. van den; Stokdijk, W.
1992-09-22
A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.
Evidence for aversive withdrawal response to own errors.
Hochman, Eldad Yitzhak; Milman, Valery; Tal, Liron
2017-10-01
Recent model suggests that error detection gives rise to defensive motivation prompting protective behavior. Models of active avoidance behavior predict it should grow larger with threat imminence and avoidance. We hypothesized that in a task requiring left or right key strikes, error detection would drive an avoidance reflex manifested by rapid withdrawal of an erring finger growing larger with threat imminence and avoidance. In experiment 1, three groups differing by error-related threat imminence and avoidance performed a flanker task requiring left or right force sensitive-key strikes. As predicted, errors were followed by rapid force release growing faster with threat imminence and opportunity to evade threat. In experiment 2, we established a link between error key release time (KRT) and the subjective sense of inner-threat. In a simultaneous, multiple regression analysis of three error-related compensatory mechanisms (error KRT, flanker effect, error correction RT), only error KRT was significantly associated with increased compulsive checking tendencies. We propose that error response withdrawal reflects an error-withdrawal reflex. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Youngmi; Choi, Jae-Young; Choi, Kwangseon; Choi, Jung-Hoe; Lee, Sooryong
2011-04-01
As IC design complexity keeps increasing, it is more and more difficult to ensure the pattern transfer after optical proximity correction (OPC) due to the continuous reduction of layout dimensions and lithographic limitation by k1 factor. To guarantee the imaging fidelity, resolution enhancement technologies (RET) such as off-axis illumination (OAI), different types of phase shift masks and OPC technique have been developed. In case of model-based OPC, to cross-confirm the contour image versus target layout, post-OPC verification solutions continuously keep developed - contour generation method and matching it to target structure, method for filtering and sorting the patterns to eliminate false errors and duplicate patterns. The way to detect only real errors by excluding false errors is the most important thing for accurate and fast verification process - to save not only reviewing time and engineer resource, but also whole wafer process time and so on. In general case of post-OPC verification for metal-contact/via coverage (CC) check, verification solution outputs huge of errors due to borderless design, so it is too difficult to review and correct all points of them. It should make OPC engineer to miss the real defect, and may it cause the delay time to market, at least. In this paper, we studied method for increasing efficiency of post-OPC verification, especially for the case of CC check. For metal layers, final CD after etch process shows various CD bias, which depends on distance with neighbor patterns, so it is more reasonable that consider final metal shape to confirm the contact/via coverage. Through the optimization of biasing rule for different pitches and shapes of metal lines, we could get more accurate and efficient verification results and decrease the time for review to find real errors. In this paper, the suggestion in order to increase efficiency of OPC verification process by using simple biasing rule to metal layout instead of etch model application is presented.
NASA Technical Reports Server (NTRS)
Solloway, C. B.; Wakeland, W.
1976-01-01
First-order Markov model developed on digital computer for population with specific characteristics. System is user interactive, self-documenting, and does not require user to have complete understanding of underlying model details. Contains thorough error-checking algorithms on input and default capabilities.
SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Herzog, B; Sauer, O
2016-06-15
Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent highermore » doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.« less
CORRELATED ERRORS IN EARTH POINTING MISSIONS
NASA Technical Reports Server (NTRS)
Bilanow, Steve; Patt, Frederick S.
2005-01-01
Two different Earth-pointing missions dealing with attitude control and dynamics changes illustrate concerns with correlated error sources and coupled effects that can occur. On the OrbView-2 (OV-2) spacecraft, the assumption of a nearly-inertially-fixed momentum axis was called into question when a residual dipole bias apparently changed magnitude. The possibility that alignment adjustments and/or sensor calibration errors may compensate for actual motions of the spacecraft is discussed, and uncertainties in the dynamics are considered. Particular consideration is given to basic orbit frequency and twice orbit frequency effects and their high correlation over the short science observation data span. On the Tropical Rainfall Measuring Mission (TRMM) spacecraft, the switch to a contingency Kalman filter control mode created changes in the pointing error patterns. Results from independent checks on the TRMM attitude using science instrument data are reported, and bias shifts and error correlations are discussed. Various orbit frequency effects are common with the flight geometry for Earth pointing instruments. In both dual-spin momentum stabilized spacecraft (like OV-2) and three axis stabilized spacecraft with gyros (like TRMM under Kalman filter control), changes in the initial attitude state propagate into orbit frequency variations in attitude and some sensor measurements. At the same time, orbit frequency measurement effects can arise from dynamics assumptions, environment variations, attitude sensor calibrations, or ephemeris errors. Also, constant environment torques for dual spin spacecraft have similar effects to gyro biases on three axis stabilized spacecraft, effectively shifting the one-revolution-per-orbit (1-RPO) body rotation axis. Highly correlated effects can create a risk for estimation errors particularly when a mission switches an operating mode or changes its normal flight environment. Some error effects will not be obvious from attitude sensor measurement residuals, so some independent checks using imaging sensors are essential and derived science instrument attitude measurements can prove quite valuable in assessing the attitude accuracy.
Net Weight Issue LLNL DOE-STD-3013 Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilk, P
2008-01-16
The following position paper will describe DOE-STD-3013 container sets No.L000072 and No.L000076, and how they are compliant with DOE-STD-3013-2004. All masses of accountable nuclear materials are measured on LLNL certified balances maintained under an MC&A Program approved by DOE/NNSA LSO. All accountability balances are recalibrated annually and checked to be within calibration on each day that the balance is used for accountability purposes. A statistical analysis of the historical calibration checks from the last seven years indicates that the full-range Limit of Error (LoE, 95% confidence level) for the balance used to measure the mass of the contents of themore » above indicated 3013 containers is 0.185 g. If this error envelope, at the 95% confidence level, were to be used to generate an upper-limit to the measured weight of the containers No.L000072 and No.L000076, the error-envelope would extend beyond the 5.0 kg 3013-standard limit on the package contents by less than 0.3 g. However, this is still well within the intended safety bounds of DOE-STD-3013-2004.« less
Adherence to balance tolerance limits at the Upper Mississippi Science Center, La Crosse, Wisconsin.
Myers, C.T.; Kennedy, D.M.
1998-01-01
Verification of balance accuracy entails applying a series of standard masses to a balance prior to use and recording the measured values. The recorded values for each standard should have lower and upper weight limits or tolerances that are accepted as verification of balance accuracy under normal operating conditions. Balance logbooks for seven analytical balances at the Upper Mississippi Science Center were checked over a 3.5-year period to determine if the recorded weights were within the established tolerance limits. A total of 9435 measurements were checked. There were 14 instances in which the balance malfunctioned and operators recorded a rationale in the balance logbook. Sixty-three recording errors were found. Twenty-eight operators were responsible for two types of recording errors: Measurements of weights were recorded outside of the tolerance limit but not acknowledged as an error by the operator (n = 40); and measurements were recorded with the wrong number of decimal places (n = 23). The adherence rate for following tolerance limits was 99.3%. To ensure the continued adherence to tolerance limits, the quality-assurance unit revised standard operating procedures to require more frequent review of balance logbooks.
Methods developed to elucidate nursing related adverse events in Japan.
Yamagishi, Manaho; Kanda, Katsuya; Takemura, Yukie
2003-05-01
Financial resources for quality assurance in Japanese hospitals are limited and few hospitals have quality monitoring systems of nursing service systems. However, recently its necessity has been recognized. This study has cost effectively used adverse event occurrence rates as indicators of the quality of nursing service, and audited methods of collecting data on adverse events to elucidate their approximate true numbers. Data collection was conducted in July, August and November 2000 at a hospital in Tokyo that administered both primary and secondary health care services (281 beds, six wards, average length of stay 23 days). We collected adverse events through incident reports, logs, check-lists, nurse interviews, medication error questionnaires, urine leucocyte tests, patient interviews and medical records. Adverse events included the unplanned removals of invasive lines, medication errors, falls, pressure sores, skin deficiencies, physical restraints, and nosocomial infections. After evaluating the time and useful outcomes of each source, it soon became clear that we could elucidate adverse events most consistently and cost-effectively through incident reports, check lists, nurse interviews, urine leucocyte tests and medication error questionnaires. This study suggests that many hospitals in Japan could monitor the quality of the nursing service using these sources.
Optimum Cyclic Redundancy Codes for Noisy Channels
NASA Technical Reports Server (NTRS)
Posner, E. C.; Merkey, P.
1986-01-01
Capabilities and limitations of cyclic redundancy codes (CRC's) for detecting transmission errors in data sent over relatively noisy channels (e.g., voice-grade telephone lines or very-high-density storage media) discussed in 16-page report. Due to prevalent use of bytes in multiples of 8 bits data transmission, report primarily concerned with cases in which both block length and number of redundant bits (check bits for use in error detection) included in each block are multiples of 8 bits.
2018-01-31
Language for SeBBAS ............................................................... 23 2.4.3 Running SeBBAS Algorithm in MATLAB...Input File Error Checking ................................................................................................... 76 4.4.3 Running ...99 6.2 5- Blade Rotor System Investigation
NASA Astrophysics Data System (ADS)
Rodionov, A. K.; Karashchuk, S. A.
2013-07-01
Results from tests of pH meters carried out in ammonia media having low electric conductivity (less than 5.0 μS/cm) are presented. The check media for the tests were prepared in a special manner the use of which makes it possible to reproduce the pH value of solution with an error not exceeding ˜0.04pH in the range of electrical conductivities above 0.1 μS/cm. The instrument measurement error was determined at different electrical conductivities of medium. Different electrodes were tested, the majority of which were domestically produced ones intended for general industrial applications. Some results were also obtained for one dedicated electrode from a foreign manufacturer. The test results show that the instrument gives a biased pH value for such media. The bias has a random value, which nonetheless is stable in the majority of cases, depends on the electrical conductivity of medium being monitored, and may be quite essential for small electrical conductivities (0.5pH or more). A conclusion is drawn about the need to calibrate the instruments with respect to standard media having electrical conductivity close to that of the medium being monitored. Analytic relations characterizing the check media used fort tests (check solutions) are presented.
Mass Spectral Library Quality Assurance by Inter-Library Comparison
NASA Astrophysics Data System (ADS)
Wallace, William E.; Ji, Weihua; Tchekhovskoi, Dmitrii V.; Phinney, Karen W.; Stein, Stephen E.
2017-04-01
A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared, the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided.
Mass Spectral Library Quality Assurance by Inter-Library Comparison
Wallace, W.E.; Ji, W.; Tchekhovskoi, D.V.; Phinney, K.W.; Stein, S.E.
2017-01-01
A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided. PMID:28127680
An Arbitrary First Order Theory Can Be Represented by a Program: A Theorem
NASA Technical Reports Server (NTRS)
Hosheleva, Olga
1997-01-01
How can we represent knowledge inside a computer? For formalized knowledge, classical logic seems to be the most adequate tool. Classical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence. There is only one serious problem with classical logic: due to the famous Godel's theorem, classical logic is algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements, it is very difficult to check whether, based on this statement, a given query is true or not. To make knowledge representations more algorithmic, a special field of logic programming was invented. An important portion of logic programming is algorithmically decidable. To cover knowledge that cannot be represented in this portion, several extensions of the decidable fragments have been proposed. In the spirit of logic programming, these extensions are usually introduced in such a way that even if a general algorithm is not available, good heuristic methods exist. It is important to check whether the already proposed extensions are sufficient, or further extensions is necessary. In the present paper, we show that one particular extension, namely, logic programming with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable sense) an arbitrary first order logical theory.
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
How accurate are quotations and references in medical journals?
de Lacey, G; Record, C; Wade, J
1985-09-28
The accuracy of quotations and references in six medical journals published during January 1984 was assessed. The original author was misquoted in 15% of all references, and most of the errors would have misled readers. Errors in citation of references occurred in 24%, of which 8% were major errors--that is, they prevented immediate identification of the source of the reference. Inaccurate quotations and citations are displeasing for the original author, misleading for the reader, and mean that untruths become "accepted fact." Some suggestions for reducing these high levels of inaccuracy are that papers scheduled for publication with errors of citation should be returned to the author and checked completely and a permanent column specifically for misquotations could be inserted into the journal.
How accurate are quotations and references in medical journals?
de Lacey, G; Record, C; Wade, J
1985-01-01
The accuracy of quotations and references in six medical journals published during January 1984 was assessed. The original author was misquoted in 15% of all references, and most of the errors would have misled readers. Errors in citation of references occurred in 24%, of which 8% were major errors--that is, they prevented immediate identification of the source of the reference. Inaccurate quotations and citations are displeasing for the original author, misleading for the reader, and mean that untruths become "accepted fact." Some suggestions for reducing these high levels of inaccuracy are that papers scheduled for publication with errors of citation should be returned to the author and checked completely and a permanent column specifically for misquotations could be inserted into the journal. PMID:3931753
Software fault-tolerance by design diversity DEDIX: A tool for experiments
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Lyu, R. T.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described.
NASA Astrophysics Data System (ADS)
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.
1992-01-01
The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.
Software Model Checking of ARINC-653 Flight Code with MCP
NASA Technical Reports Server (NTRS)
Thompson, Sarah J.; Brat, Guillaume; Venet, Arnaud
2010-01-01
The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA) code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is analogous to POSIX threads, but with certain extensions and restrictions intended to support the implementation of high reliability flight code. MCP is a software model checker, developed at NASA Ames, that provides capabilities for model checking C and C++ source code. In this paper, we present recent work aimed at implementing extensions to MCP that support ARINC-653, and we discuss the challenges and opportunities that consequentially arise. Providing support for ARINC-653 s time and space partitioning is nontrivial, though there are implicit benefits for partial order reduction possible as a consequence of the API s strict interprocess communication policy.
The Development and Deployment of a Maintenance Operations Safety Survey.
Langer, Marie; Braithwaite, Graham R
2016-11-01
Based on the line operations safety audit (LOSA), two studies were conducted to develop and deploy an equivalent tool for aircraft maintenance: the maintenance operations safety survey (MOSS). Safety in aircraft maintenance is currently measured reactively, based on the number of audit findings, reportable events, incidents, or accidents. Proactive safety tools designed for monitoring routine operations, such as flight data monitoring and LOSA, have been developed predominantly for flight operations. In Study 1, development of MOSS, 12 test peer-to-peer observations were collected to investigate the practicalities of this approach. In Study 2, deployment of MOSS, seven expert observers collected 56 peer-to-peer observations of line maintenance checks at four stations. Narrative data were coded and analyzed according to the threat and error management (TEM) framework. In Study 1, a line check was identified as a suitable unit of observation. Communication and third-party data management were the key factors in gaining maintainer trust. Study 2 identified that on average, maintainers experienced 7.8 threats (operational complexities) and committed 2.5 errors per observation. The majority of threats and errors were inconsequential. Links between specific threats and errors leading to 36 undesired states were established. This research demonstrates that observations of routine maintenance operations are feasible. TEM-based results highlight successful management strategies that maintainers employ on a day-to-day basis. MOSS is a novel approach for safety data collection and analysis. It helps practitioners understand the nature of maintenance errors, promote an informed culture, and support safety management systems in the maintenance domain. © 2016, Human Factors and Ergonomics Society.
Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170
Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.
The Development and Deployment of a Maintenance Operations Safety Survey
Langer, Marie; Braithwaite, Graham R.
2016-01-01
Objective: Based on the line operations safety audit (LOSA), two studies were conducted to develop and deploy an equivalent tool for aircraft maintenance: the maintenance operations safety survey (MOSS). Background: Safety in aircraft maintenance is currently measured reactively, based on the number of audit findings, reportable events, incidents, or accidents. Proactive safety tools designed for monitoring routine operations, such as flight data monitoring and LOSA, have been developed predominantly for flight operations. Method: In Study 1, development of MOSS, 12 test peer-to-peer observations were collected to investigate the practicalities of this approach. In Study 2, deployment of MOSS, seven expert observers collected 56 peer-to-peer observations of line maintenance checks at four stations. Narrative data were coded and analyzed according to the threat and error management (TEM) framework. Results: In Study 1, a line check was identified as a suitable unit of observation. Communication and third-party data management were the key factors in gaining maintainer trust. Study 2 identified that on average, maintainers experienced 7.8 threats (operational complexities) and committed 2.5 errors per observation. The majority of threats and errors were inconsequential. Links between specific threats and errors leading to 36 undesired states were established. Conclusion: This research demonstrates that observations of routine maintenance operations are feasible. TEM-based results highlight successful management strategies that maintainers employ on a day-to-day basis. Application: MOSS is a novel approach for safety data collection and analysis. It helps practitioners understand the nature of maintenance errors, promote an informed culture, and support safety management systems in the maintenance domain. PMID:27411354
SU-E-T-88: Comprehensive Automated Daily QA for Hypo- Fractionated Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuinness, C; Morin, O
2014-06-01
Purpose: The trend towards more SBRT treatments with fewer high dose fractions places increased importance on daily QA. Patient plan specific QA with 3%/3mm gamma analysis and daily output constancy checks may not be enough to guarantee the level of accuracy required for SBRT treatments. But increasing the already extensive amount of QA procedures that are required is a daunting proposition. We performed a feasibility study for more comprehensive automated daily QA that could improve the diagnostic capabilities of QA without increasing workload. Methods: We performed the study on a Siemens Artiste linear accelerator using the integrated flat panel EPID.more » We included square fields, a picket fence, overlap and representative IMRT fields to measure output, flatness, symmetry, beam center, and percent difference from the standard. We also imposed a set of machine errors: MLC leaf position, machine output, and beam steering to compare with the standard. Results: Daily output was consistent within +/− 1%. Change in steering current by 1.4% and 2.4% resulted in a 3.2% and 6.3% change in flatness. 1 and 2mm MLC leaf offset errors were visibly obvious in difference plots, but passed a 3%/3mm gamma analysis. A simple test of transmission in a picket fence can catch a leaf offset error of a single leaf by 1mm. The entire morning QA sequence is performed in less than 30 minutes and images are automatically analyzed. Conclusion: Automated QA procedures could be used to provide more comprehensive information about the machine with less time and human involvement. We have also shown that other simple tests are better able to catch MLC leaf position errors than a 3%/3mm gamma analysis commonly used for IMRT and modulated arc treatments. Finally, this information could be used to watch trends of the machine and predict problems before they lead to costly machine downtime.« less
Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il
2014-08-15
Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.
Underestimation of length by subjects in motion.
Harte, D B
1975-10-01
To check a prior observation, in the present experiment, subjects made estimates of the lengths of both the guidelines and the spaces between guidelines on automotive highways so the magnitude of the illusion could be more accurately determined. Ten males and ten females were individually tested at 0 and 60 mph. At 60 mph, spaces were estimated with an error of 85%; lines were estimated with an error of 72%. Combining data for both stimuli, an error of 78% results, which corresponds to underestimation by a factor of 4.67. This illusory effect is considerably greater than that of the moon illusion, considered by many the most powerful of the classical illusions.
78 FR 45052 - Critical Parts for Airplane Propellers; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
..., early warning devices, maintenance checks, and other similar equipment or procedures. If items of the..., and maintenance processes for propeller critical parts. An unintentional error was introduced in Sec... transportation, Aircraft, Aviation safety, Safety. The Correcting Amendment In consideration of the foregoing...
An experimental evaluation of the REE SIFT environment for spaceborne applications
NASA Technical Reports Server (NTRS)
Whistnant, K.; Iyer, R. K.; Jones, P.; Some, R.; Rennels, D.
2002-01-01
This paper presents an experimental evaluation of a software-implemented fault tolerance environment built around a set of self-checking ARMOR proceses running on different machines that provide error detection and recovery services to themselves and to spaceborne scientific applications.
Lightweight Specifications for Parallel Correctness
2012-12-05
Galenson, Benjamin Hindman, Thibaud Hottelier, Pallavi Joshi, Ben- jamin Lipshitz, Leo Meyerovich, Mayur Naik, Chang-Seo Park, and Philip Reames — many...violating executions. We discuss some of these errors in detail in the CHAPTER 5. SPECIFYING AND CHECKING SEMANTIC ATOMICITY 84 Benchmark Approx. LoC
1988-09-01
analysis phase of the software life cycle (16:1-1). While editing a SADT diagram, the tool should be able to check whether or not structured analysis...diag-ams are valid for the SADT’s syntax, produce error messages, do error recovery, and perform editing suggestions. Thus, this tool must have the...directed editors are editors which use the syn- tax of the programming language while editing a program. While text editors treat programs as text, syntax
Compositional schedulability analysis of real-time actor-based systems.
Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan
2017-01-01
We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.
An Adaptive Buddy Check for Observational Quality Control
NASA Technical Reports Server (NTRS)
Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)
2000-01-01
An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.
Self-checking self-repairing computer nodes using the mirror processor
NASA Technical Reports Server (NTRS)
Tamir, Yuval
1992-01-01
Circuitry added to fault-tolerant systems for concurrent error deduction usually reduces performance. Using a technique called micro rollback, it is possible to eliminate most of the performance penalty of concurrent error detection. Error detection is performed in parallel with intermodule communication, and erroneous state changes are later undone. The author reports on the design and implementation of a VLSI RISC microprocessor, called the Mirror Processor (MP), which is capable of micro rollback. In order to achieve concurrent error detection, two MP chips operate in lockstep, comparing external signals and a signature of internal signals every clock cycle. If a mismatch is detected, both processors roll back to the beginning of the cycle when the error occurred. In some cases the erroneous state is corrected by copying a value from the fault-free processor to the faulty processor. The architecture, microarchitecture, and VLSI implementation of the MP, emphasizing its error-detection, error-recovery, and self-diagnosis capabilities, are described.
Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests.
Oosterhuis, Hannah E M; van der Ark, L Andries; Sijtsma, Klaas
2016-11-14
Norm statistics allow for the interpretation of scores on psychological and educational tests, by relating the test score of an individual test taker to the test scores of individuals belonging to the same gender, age, or education groups, et cetera. Given the uncertainty due to sampling error, one would expect researchers to report standard errors for norm statistics. In practice, standard errors are seldom reported; they are either unavailable or derived under strong distributional assumptions that may not be realistic for test scores. We derived standard errors for four norm statistics (standard deviation, percentile ranks, stanine boundaries and Z-scores) under the mild assumption that the test scores are multinomially distributed. A simulation study showed that the standard errors were unbiased and that corresponding Wald-based confidence intervals had good coverage. Finally, we discuss the possibilities for applying the standard errors in practical test use in education and psychology. The procedure is provided via the R function check.norms, which is available in the mokken package.
Franklin, Bryony Dean; O'Grady, Kara; Donyai, Parastou; Jacklin, Ann; Barber, Nick
2007-08-01
To assess the impact of a closed-loop electronic prescribing, automated dispensing, barcode patient identification and electronic medication administration record (EMAR) system on prescribing and administration errors, confirmation of patient identity before administration, and staff time. Before-and-after study in a surgical ward of a teaching hospital, involving patients and staff of that ward. Closed-loop electronic prescribing, automated dispensing, barcode patient identification and EMAR system. Percentage of new medication orders with a prescribing error, percentage of doses with medication administration errors (MAEs) and percentage given without checking patient identity. Time spent prescribing and providing a ward pharmacy service. Nursing time on medication tasks. Prescribing errors were identified in 3.8% of 2450 medication orders pre-intervention and 2.0% of 2353 orders afterwards (p<0.001; chi(2) test). MAEs occurred in 7.0% of 1473 non-intravenous doses pre-intervention and 4.3% of 1139 afterwards (p = 0.005; chi(2) test). Patient identity was not checked for 82.6% of 1344 doses pre-intervention and 18.9% of 1291 afterwards (p<0.001; chi(2) test). Medical staff required 15 s to prescribe a regular inpatient drug pre-intervention and 39 s afterwards (p = 0.03; t test). Time spent providing a ward pharmacy service increased from 68 min to 98 min each weekday (p = 0.001; t test); 22% of drug charts were unavailable pre-intervention. Time per drug administration round decreased from 50 min to 40 min (p = 0.006; t test); nursing time on medication tasks outside of drug rounds increased from 21.1% to 28.7% (p = 0.006; chi(2) test). A closed-loop electronic prescribing, dispensing and barcode patient identification system reduced prescribing errors and MAEs, and increased confirmation of patient identity before administration. Time spent on medication-related tasks increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, R; Kamima, T; Tachibana, H
2016-06-15
Purpose: To investigate the effect of the trajectory files from linear accelerator for Clarkson-based independent dose verification in IMRT and VMAT plans. Methods: A CT-based independent dose verification software (Simple MU Analysis: SMU, Triangle Products, Japan) with a Clarksonbased algorithm was modified to calculate dose using the trajectory log files. Eclipse with the three techniques of step and shoot (SS), sliding window (SW) and Rapid Arc (RA) was used as treatment planning system (TPS). In this study, clinically approved IMRT and VMAT plans for prostate and head and neck (HN) at two institutions were retrospectively analyzed to assess the dosemore » deviation between DICOM-RT plan (PL) and trajectory log file (TJ). An additional analysis was performed to evaluate MLC error detection capability of SMU when the trajectory log files was modified by adding systematic errors (0.2, 0.5, 1.0 mm) and random errors (5, 10, 30 mm) to actual MLC position. Results: The dose deviations for prostate and HN in the two sites were 0.0% and 0.0% in SS, 0.1±0.0%, 0.1±0.1% in SW and 0.6±0.5%, 0.7±0.9% in RA, respectively. The MLC error detection capability shows the plans for HN IMRT were the most sensitive and 0.2 mm of systematic error affected 0.7% dose deviation on average. Effect of the MLC random error did not affect dose error. Conclusion: The use of trajectory log files including actual information of MLC location, gantry angle, etc should be more effective for an independent verification. The tolerance level for the secondary check using the trajectory file may be similar to that of the verification using DICOM-RT plan file. From the view of the resolution of MLC positional error detection, the secondary check could detect the MLC position error corresponding to the treatment sites and techniques. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
Tucker, Neil; Reid, Duncan; McNair, Peter
2007-01-01
The slump test is a tool to assess the mechanosensitivity of the neuromeningeal structures within the vertebral canal. While some studies have investigated the reliability of aspects of this test within the same day, few have assessed the reliability across days. Therefore, the purpose of this pilot study was to investigate reliability when measuring active knee extension range of motion (AROM) in a modified slump test position within trials on a single day and across days. Ten male and ten female asymptomatic subjects, ages 20-49 (mean age 30.1, SD 6.4) participated in the study. Knee extension AROM in a modified slump position with the cervical spine in a flexed position and then in an extended position was measured via three trials on two separate days. Across three trials, knee extension AROM increased significantly with a mean magnitude of 2 degrees within days for both cervical spine positions (P>0.05). The findings showed that there was no statistically significant difference in knee extension AROM measurements across days (P>0.05). The intraclass correlation coefficients for the mean of the three trials across days were 0.96 (lower limit 95% CI: 0.90) with the cervical spine flexed and 0.93 (lower limit 95% CI: 0.83) with cervical extension. Measurement error was calculated by way of the typical error and 95% limits of agreement, and visually represented in Bland and Altman plots. The typical error for the cervical flexed and extended positions averaged across trials was 2.6 degrees and 3.3 degrees , respectively. The limits of agreement were narrow, and the Bland and Altman plots also showed minimal bias in the joint angles across days with a random distribution of errors across the range of measured angles. This study demonstrated that knee extension AROM could be reliably measured across days in subjects without pathology and that the measurement error was acceptable. Implications of variability over multiple trials are discussed. The modified set-up for the test using the Kincom dynamometer and elevated thigh position may be useful to clinical researchers in determining the mechanosensitivity of the nervous system.
Tucker, Neil; Reid, Duncan; McNair, Peter
2007-01-01
The slump test is a tool to assess the mechanosensitivity of the neuromeningeal structures within the vertebral canal. While some studies have investigated the reliability of aspects of this test within the same day, few have assessed the reliability across days. Therefore, the purpose of this pilot study was to investigate reliability when measuring active knee extension range of motion (AROM) in a modified slump test position within trials on a single day and across days. Ten male and ten female asymptomatic subjects, ages 20–49 (mean age 30.1, SD 6.4) participated in the study. Knee extension AROM in a modified slump position with the cervical spine in a flexed position and then in an extended position was measured via three trials on two separate days. Across three trials, knee extension AROM increased significantly with a mean magnitude of 2° within days for both cervical spine positions (P>0.05). The findings showed that there was no statistically significant difference in knee extension AROM measurements across days (P>0.05). The intraclass correlation coefficients for the mean of the three trials across days were 0.96 (lower limit 95% CI: 0.90) with the cervical spine flexed and 0.93 (lower limit 95% CI: 0.83) with cervical extension. Measurement error was calculated by way of the typical error and 95% limits of agreement, and visually represented in Bland and Altman plots. The typical error for the cervical flexed and extended positions averaged across trials was 2.6° and 3.3°, respectively. The limits of agreement were narrow, and the Bland and Altman plots also showed minimal bias in the joint angles across days with a random distribution of errors across the range of measured angles. This study demonstrated that knee extension AROM could be reliably measured across days in subjects without pathology and that the measurement error was acceptable. Implications of variability over multiple trials are discussed. The modified set-up for the test using the Kincom dynamometer and elevated thigh position may be useful to clinical researchers in determining the mechanosensitivity of the nervous system. PMID:19066666
Curves showing column strength of steel and duralumin tubing
NASA Technical Reports Server (NTRS)
Ross, Orrin E
1929-01-01
Given here are a set of column strength curves that are intended to simplify the method of determining the size of struts in an airplane structure when the load in the member is known. The curves will also simplify the checking of the strength of a strut if the size and length are known. With these curves, no computations are necessary, as in the case of the old-fashioned method of strut design. The process is so simple that draftsmen or others who are not entirely familiar with mechanics can check the strength of a strut without much danger of error.
Impact of dose calibrators quality control programme in Argentina
NASA Astrophysics Data System (ADS)
Furnari, J. C.; de Cabrejas, M. L.; del C. Rotta, M.; Iglicki, F. A.; Milá, M. I.; Magnavacca, C.; Dima, J. C.; Rodríguez Pasqués, R. H.
1992-02-01
The national Quality Control (QC) programme for radionuclide calibrators started 12 years ago. Accuracy and the implementation of a QC programme were evaluated over all these years at 95 nuclear medicine laboratories where dose calibrators were in use. During all that time, the Metrology Group of CNEA has distributed 137Cs sealed sources to check stability and has been performing periodic "checking rounds" and postal surveys using unknown samples (external quality control). An account of the results of both methods is presented. At present, more of 65% of the dose calibrators measure activities with an error less than 10%.
Pedigree reconstruction with genome-wide markers in potato
USDA-ARS?s Scientific Manuscript database
Reliable pedigree information facilitates a scientific approach to breeding, but errors can be introduced in many stages of a breeding program. Our objective was to use single nucleotide polymorphisms (SNPs) to check the pedigree records of elite North American potato germplasm. A population of 635 ...
Systematics for checking geometric errors in CNC lathes
NASA Astrophysics Data System (ADS)
Araújo, R. P.; Rolim, T. L.
2015-10-01
Non-idealities presented in machine tools compromise directly both the geometry and the dimensions of machined parts, generating distortions in the project. Given the competitive scenario among different companies, it is necessary to have knowledge of the geometric behavior of these machines in order to be able to establish their processing capability, avoiding waste of time and materials as well as satisfying customer requirements. But despite the fact that geometric tests are important and necessary to clarify the use of the machine correctly, therefore preventing future damage, most users do not apply such tests on their machines for lack of knowledge or lack of proper motivation, basically due to two factors: long period of time and high costs of testing. This work proposes a systematics for checking straightness and perpendicularity errors in CNC lathes demanding little time and cost with high metrological reliability, to be used on factory floors of small and medium-size businesses to ensure the quality of its products and make them competitive.
Schönherr, Sebastian; Neuner, Mathias; Forer, Lukas; Specht, Günther; Kloss-Brandstätter, Anita; Kronenberg, Florian; Coassin, Stefan
2013-01-01
Single nucleotide polymorphisms (SNPs) play a prominent role in modern genetics. Current genotyping technologies such as Sequenom iPLEX, ABI TaqMan and KBioscience KASPar made the genotyping of huge SNP sets in large populations straightforward and allow the generation of hundreds of thousands of genotypes even in medium sized labs. While data generation is straightforward, the subsequent data conversion, storage and quality control steps are time-consuming, error-prone and require extensive bioinformatic support. In order to ease this tedious process, we developed SNPflow. SNPflow is a lightweight, intuitive and easily deployable application, which processes genotype data from Sequenom MassARRAY (iPLEX) and ABI 7900HT (TaqMan, KASPar) systems and is extendible to other genotyping methods as well. SNPflow automatically converts the raw output files to ready-to-use genotype lists, calculates all standard quality control values such as call rate, expected and real amount of replicates, minor allele frequency, absolute number of discordant replicates, discordance rate and the p-value of the HWE test, checks the plausibility of the observed genotype frequencies by comparing them to HapMap/1000-Genomes, provides a module for the processing of SNPs, which allow sex determination for DNA quality control purposes and, finally, stores all data in a relational database. SNPflow runs on all common operating systems and comes as both stand-alone version and multi-user version for laboratory-wide use. The software, a user manual, screenshots and a screencast illustrating the main features are available at http://genepi-snpflow.i-med.ac.at. PMID:23527209
UPEML Version 3.0: A machine-portable CDC update emulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehlhorn, T.A.; Haill, T.A.
1992-04-01
UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less
UPEML Version 3. 0: A machine-portable CDC update emulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehlhorn, T.A.; Haill, T.A.
1992-04-01
UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... second generation On-board Diagnostics (OBD-II) equipped motor vehicles as part of its inspection and...-II checks (for 1996-and-newer OBD-II equipped vehicles) as an element of the Commonwealth's I/M...
76 FR 2152 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... Management and Budget for extension and approval. Rule 17a-4 requires exchange members, brokers and dealers.... These include, but are not limited to, bank statements, cancelled checks, bills receivable and payable...
Time series analysis of gold production in Malaysia
NASA Astrophysics Data System (ADS)
Muda, Nora; Hoon, Lee Yuen
2012-05-01
Gold is a soft, malleable, bright yellow metallic element and unaffected by air or most reagents. It is highly valued as an asset or investment commodity and is extensively used in jewellery, industrial application, dentistry and medical applications. In Malaysia, gold mining is limited in several areas such as Pahang, Kelantan, Terengganu, Johor and Sarawak. The main purpose of this case study is to obtain a suitable model for the production of gold in Malaysia. The model can also be used to predict the data of Malaysia's gold production in the future. Box-Jenkins time series method was used to perform time series analysis with the following steps: identification, estimation, diagnostic checking and forecasting. In addition, the accuracy of prediction is tested using mean absolute percentage error (MAPE). From the analysis, the ARIMA (3,1,1) model was found to be the best fitted model with MAPE equals to 3.704%, indicating the prediction is very accurate. Hence, this model can be used for forecasting. This study is expected to help the private and public sectors to understand the gold production scenario and later plan the gold mining activities in Malaysia.
Towards high-precision measurement of the Tritium - He-3 mass difference
NASA Astrophysics Data System (ADS)
Shi, Wei; Redshaw, Matthew; Victoria, Juliette; Myers, Edmund
2004-05-01
An independent measurement of the mass difference of ^3He-^3T provides an important check of systematic errors in tritium beta-decay experiments that set limits to the electron anti-neutrino mass [1]. Using the precision Penning trap system developed at MIT but recently relocated to Florida State University [2], and the simultaneous two-ion cyclotron frequency measurement technique recently developed at MIT [3], we aim to measure this mass difference to better than 30 meV/c^2, more than an order of magnitude improvement over previous measurements [4,5]. Problems being addressed include producing single T^+ ions in the trap without spoiling the vacuum with ^3He, and the extension of the MIT techniques to ions of lighter mass. [1] KATRIN: http://iklau1.fzk.de/tritium [2] See abstract by Redshaw et al. [3] S. Rainville, J.K. Thompson, and D.E. Pritchard, Science 303, 334 (2004). [4] R.S. Van Dyck, D.L. Farnham, and P.B. Schwinberg, PRL 70, 2888 (1993). [5] G. Audi, A.H. Wapstra, and C. Thibault, Nuclear Physics A729, 337 (2003).
NASA Technical Reports Server (NTRS)
Cardinali, Carla; Rukhovets, Leonid; Tenenbaum, Joel
2003-01-01
We have utilized an extensive set of independent British Airways flight data recording wind vector and temperature observations (the Global Aircraft Data Set [GADS] archive) in three ways: (a) as an independent check of operational analyses; (b) as an analysis observing system experiment (OSE) as if the GADS observations were available in real time; and (c) as the corresponding forecast simulation experiment applicable to future operational forecasts. Using a 31 day sample (0000 UTC 20 December 2000 through 0000 UTC 20 January 2000) from Winter 2000, we conclude that over the data-dense continental U. S. analyzed jet streaks are too weak by -2% to -5%. Over nearby data-sparse regions of Canada, analyzed jet streaks are too weak by -5% to -9%. The second range provides a limit on the accuracy of current jet streak analyses over the portions of the -85% of the earth's surface that are poorly covered by non-satellite observations. The -5% to -9% range is relevant for the pre-third generation satellite (AIRS, IASI, GIFTS) era.
NASA Technical Reports Server (NTRS)
Lindsey, Tony; Pecheur, Charles
2004-01-01
Livingstone PathFinder (LPF) is a simulation-based computer program for verifying autonomous diagnostic software. LPF is designed especially to be applied to NASA s Livingstone computer program, which implements a qualitative-model-based algorithm that diagnoses faults in a complex automated system (e.g., an exploratory robot, spacecraft, or aircraft). LPF forms a software test bed containing a Livingstone diagnosis engine, embedded in a simulated operating environment consisting of a simulator of the system to be diagnosed by Livingstone and a driver program that issues commands and faults according to a nondeterministic scenario provided by the user. LPF runs the test bed through all executions allowed by the scenario, checking for various selectable error conditions after each step. All components of the test bed are instrumented, so that execution can be single-stepped both backward and forward. The architecture of LPF is modular and includes generic interfaces to facilitate substitution of alternative versions of its different parts. Altogether, LPF provides a flexible, extensible framework for simulation-based analysis of diagnostic software; these characteristics also render it amenable to application to diagnostic programs other than Livingstone.
Preventive Maintenance Checks and Services (PMCS). Do We Check Too Much and Maintain Too Little
1990-03-26
to spend money to equip an army with additional vehicles which surely would nct be needed. Technology was growing so fast that each year brought better...manuals try to cover every conceivable detail a bureaucrat sitting in a comfortable office could ever hink of. Since the developer gets paid by the...revised. They are very bulky. Extensive cross-referencing between manuals for major systems often slows the work. Or the soldier tries to perform the
Monitoring Java Programs with Java PathExplorer
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2001-01-01
We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the execution of Java programs. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program's late code which will then omit events to an observer during its execution. The observer checks the events against user provided high level requirement specifications, for example temporal logic formulae, and against lower level error detection procedures, for example concurrency related such as deadlock and data race algorithms. High level requirement specifications together with their underlying logics are defined in the Maude rewriting logic, and then can either be directly checked using the Maude rewriting engine, or be first translated to efficient data structures and then checked in Java.
The (mis)reporting of statistical results in psychology journals.
Bakker, Marjan; Wicherts, Jelte M
2011-09-01
In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the generality of reporting errors in a random sample of recent psychological articles. Our results, on the basis of 281 articles, indicate that around 18% of statistical results in the psychological literature are incorrectly reported. Inconsistencies were more common in low-impact journals than in high-impact journals. Moreover, around 15% of the articles contained at least one statistical conclusion that proved, upon recalculation, to be incorrect; that is, recalculation rendered the previously significant result insignificant, or vice versa. These errors were often in line with researchers' expectations. We classified the most common errors and contacted authors to shed light on the origins of the errors.
[New possibilities screening of refractive errors among children].
Ondrejková, M; Kyselová, P
2013-06-01
To establish early detection of refractive errors among children in Slovakia. Different screening methods have been evaluated and compared in this work. we have been working on a prospective study. Pre-school children in kindergardens in Central Slovakia were checked up between years 2009-2011. Effectiveness of various screening methods was compared within 2 groups, using test-type and Plusoptix Vision Screener. Parentęs of children positive to refractive errors were recommended to consult a paediatrician ophthalmologist. 3982 children were examined. As a result, 13-14.1% of children who have not been examinated by the specialist, were positive. 53.3% of them went to see the doctor afterwards. establishment of early refractive errors screening is an important method how to prevent strabismus and amblyopia. It is very important to improve parentęs knowledge about the risk of refractive errors and also to improve screening methods with collaboration with kindergarten teachers.
A STUDY ON REASONS OF ERRORS OF OLD SURVEY MAPS IN CADASTRAL SYSTEM
NASA Astrophysics Data System (ADS)
Yanase, Norihiko
This paper explicates sources on survey map errors which were made in 19th century. The present cadastral system stands on registers and survey maps which were compiled to change the land taxation system in the Meiji era. Many Japanese may recognize the reasons why poor survey technique by farmers, too long measure to avoid heavy tax, careless official check and other deception made such errors of acreage from several to more than ten percent of area in survey maps. The author would like to maintain that such errors, called nawa-nobi, were lawful in accordance with the then survey regulation because of results to analyze old survey regulations, history of making maps and studies of cadastral system. In addition to, a kind of survey maps' errors should be pointed out a reason why the easy subdivision system which could approve without real survey and disposal of state property with inadequate survey.
Extraction and Analysis of Display Data
NASA Technical Reports Server (NTRS)
Land, Chris; Moye, Kathryn
2008-01-01
The Display Audit Suite is an integrated package of software tools that partly automates the detection of Portable Computer System (PCS) Display errors. [PCS is a lap top computer used onboard the International Space Station (ISS).] The need for automation stems from the large quantity of PCS displays (6,000+, with 1,000,000+ lines of command and telemetry data). The Display Audit Suite includes data-extraction tools, automatic error detection tools, and database tools for generating analysis spread sheets. These spread sheets allow engineers to more easily identify many different kinds of possible errors. The Suite supports over 40 independent analyses, 16 NASA Tech Briefs, November 2008 and complements formal testing by being comprehensive (all displays can be checked) and by revealing errors that are difficult to detect via test. In addition, the Suite can be run early in the development cycle to find and correct errors in advance of testing.
Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F
2010-06-01
Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.
Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona
Norman, Laura M.; Brinkerhoff, Fletcher C.; Gwilliam, Evan; Guertin, D. Phillip; Callegary, James B.; Goodrich, David C.; Nagler, Pamela L.; Gray, Floyd
2016-01-01
In this study, hydrological processes are evaluated to determine impacts of stream restoration in the West Turkey Creek, Chiricahua Mountains, southeast Arizona, during a summer-monsoon season (June–October of 2013). A paired-watershed approach was used to analyze the effectiveness of check dams to mitigate high flows and impact long-term maintenance of hydrologic function. One watershed had been extensively altered by the installation of numerous small check dams over the past 30 years, and the other was untreated (control). We modified and installed a new stream-gauging mechanism developed for remote areas, to compare the water balance and calculate rainfall–runoff ratios. Results show that even 30 years after installation, most of the check dams were still functional. The watershed treated with check dams has a lower runoff response to precipitation compared with the untreated, most notably in measurements of peak flow. Concerns that downstream flows would be reduced in the treated watershed, due to storage of water behind upstream check dams, were not realized; instead, flow volumes were actually higher overall in the treated stream, even though peak flows were dampened. We surmise that check dams are a useful management tool for reducing flow velocities associated with erosion and degradation and posit they can increase baseflow in aridlands.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-15
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
NASA Astrophysics Data System (ADS)
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
ERIC Educational Resources Information Center
Brown, Simon
2009-01-01
Many students have some difficulty with calculations. Simple dimensional analysis provides a systematic means of checking for errors and inconsistencies and for developing both new insight and new relationships between variables. Teaching dimensional analysis at even the most basic level strengthens the insight and confidence of students, and…
ERIC Educational Resources Information Center
Blinn, Charles R.; And Others
A project undertaken at the University of Minnesota evaluated two microcomputer teletraining systems (audiographic conferencing) to determine the effectiveness of this technology for point-to-point and multipoint distance education. System design requirements included broadcast keystrokes, error checking, master-slave linkages, simultaneous voice…
Reproducing Epidemiologic Research and Ensuring Transparency.
Coughlin, Steven S
2017-08-15
Measures for ensuring that epidemiologic studies are reproducible include making data sets and software available to other researchers so they can verify published findings, conduct alternative analyses of the data, and check for statistical errors or programming errors. Recent developments related to the reproducibility and transparency of epidemiologic studies include the creation of a global platform for sharing data from clinical trials and the anticipated future extension of the global platform to non-clinical trial data. Government agencies and departments such as the US Department of Veterans Affairs Cooperative Studies Program have also enhanced their data repositories and data sharing resources. The Institute of Medicine and the International Committee of Medical Journal Editors released guidance on sharing clinical trial data. The US National Institutes of Health has updated their data-sharing policies. In this issue of the Journal, Shepherd et al. (Am J Epidemiol. 2017;186:387-392) outline a pragmatic approach for reproducible research with sensitive data for studies for which data cannot be shared because of legal or ethical restrictions. Their proposed quasi-reproducible approach facilitates the dissemination of statistical methods and codes to independent researchers. Both reproducibility and quasi-reproducibility can increase transparency for critical evaluation, further dissemination of study methods, and expedite the exchange of ideas among researchers. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lost in Translation: the Case for Integrated Testing
NASA Technical Reports Server (NTRS)
Young, Aaron
2017-01-01
The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.
Garnerin, P; Arès, M; Huchet, A; Clergue, F
2008-12-01
The potential severity of wrong patient/procedure/site of surgery and the view that these events are avoidable, make the prevention of such errors a priority. An intervention was set up to develop a verification protocol for checking patient identity and the site of surgery with periodic audits to measure compliance while providing feedback. A nurse auditor performed the compliance audits in inpatients and outpatients during three consecutive 3-month periods and three 1-month follow-up periods; 11 audit criteria were recorded, as well as reasons for not performing a check. The nurse auditor provided feedback to the health professionals, including discussion of inadequate checks. 1,000 interactions between patients and their anaesthetist or nurse anaesthetist were observed. Between the first and second audit periods compliance with all audit criteria except "surgical site marked" noticeably improved, such as the proportion of patients whose identities were checked (62.6% to 81.4%); full compliance with protocol in patient identity checks (9.7% to 38.1%); proportion of site of surgery checks carried out (77.1% to 92.6%); and full compliance with protocol in site of surgery checks (32.2% to 52.0%). Thereafter, compliance was stable for most criteria. The reason for failure to perform checks of patient identity or site of surgery was mostly that the anaesthetist in charge had seen the patient at the preanaesthetic consultation. By combining the implementation of a verification protocol with periodic audits with feedback, the intervention changed practice and increased compliance with patient identity and site of surgery checks. The impact of the intervention was limited by communication problems between patients and professionals, and lack of collaboration with surgical services.
The Effects of Discrete-Trial Training Commission Errors on Learner Outcomes: An Extension
ERIC Educational Resources Information Center
Jenkins, Sarah R.; Hirst, Jason M.; DiGennaro Reed, Florence D.
2015-01-01
We conducted a parametric analysis of treatment integrity errors during discrete-trial training and investigated the effects of three integrity conditions (0, 50, or 100 % errors of commission) on performance in the presence and absence of programmed errors. The presence of commission errors impaired acquisition for three of four participants.…
Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S
2015-01-01
The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
What Information is Stored in DNA: Does it Contain Digital Error Correcting Codes?
NASA Astrophysics Data System (ADS)
Liebovitch, Larry
1998-03-01
The longest term correlations in living systems are the information stored in DNA which reflects the evolutionary history of an organism. The 4 bases (A,T,G,C) encode sequences of amino acids as well as locations of binding sites for proteins that regulate DNA. The fidelity of this important information is maintained by ANALOG error check mechanisms. When a single strand of DNA is replicated the complementary base is inserted in the new strand. Sometimes the wrong base is inserted that sticks out disrupting the phosphate backbone. The new base is not yet methylated, so repair enzymes, that slide along the DNA, can tear out the wrong base and replace it with the right one. The bases in DNA form a sequence of 4 different symbols and so the information is encoded in a DIGITAL form. All the digital codes in our society (ISBN book numbers, UPC product codes, bank account numbers, airline ticket numbers) use error checking code, where some digits are functions of other digits to maintain the fidelity of transmitted informaiton. Does DNA also utitlize a DIGITAL error chekcing code to maintain the fidelity of its information and increase the accuracy of replication? That is, are some bases in DNA functions of other bases upstream or downstream? This raises the interesting mathematical problem: How does one determine whether some symbols in a sequence of symbols are a function of other symbols. It also bears on the issue of determining algorithmic complexity: What is the function that generates the shortest algorithm for reproducing the symbol sequence. The error checking codes most used in our technology are linear block codes. We developed an efficient method to test for the presence of such codes in DNA. We coded the 4 bases as (0,1,2,3) and used Gaussian elimination, modified for modulus 4, to test if some bases are linear combinations of other bases. We used this method to analyze the base sequence in the genes from the lac operon and cytochrome C. We did not find evidence for such error correcting codes in these genes. However, we analyzed only a small amount of DNA and if digitial error correcting schemes are present in DNA, they may be more subtle than such simple linear block codes. The basic issue we raise here, is how information is stored in DNA and an appreciation that digital symbol sequences, such as DNA, admit of interesting schemes to store and protect the fidelity of their information content. Liebovitch, Tao, Todorov, Levine. 1996. Biophys. J. 71:1539-1544. Supported by NIH grant EY6234.
[Yes, we should keep ABO agglutination test within bedside transfusion checks].
Daurat, G
2008-11-01
ABO incompatible transfusions are still a frequent cause of serious adverse transfusion reactions. Bedside check is intended to detect patient errors and prevent ABO mismatch. France is one of the few countries that includes ABO agglutination test for red blood cells in bedside checks. Evaluation of this ABO agglutination test, performed with a special card, shows that, on the field, despite frequent users' mishandling, it can detect up to 93% of ABO incompatibilities. This is not enough to rely on this sole test for bedside checks. But, linking it with an another test, currently, checks that the right blood is given to the right patient, rises the sensitivity of the whole bedside procedure up to an estimated 99.65%, for detection of ABO incompatibilities. This linkage has been introduced in the French regulation in 2003. Since then, the incidence of ABO incompatible transfusions has decreased dramatically and faster than in any other country, so France has now, probably, the lowest rate of ABO incompatible transfusions. The investigation of the few ABO accidents that still occur, shows that professionals have always bypassed this linkage. On the other hand, introducing bedside recipient and blood products barcode or radio-chip checks in all the 1500 French hospitals, though technically possible, would provide very little enhancement and lead to major difficulties and expenses. Linkage of ABO agglutination test to patient and blood checks within the bedside procedure has proved to be efficient and should be kept.
Refractive Errors Affect the Vividness of Visual Mental Images
Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia
2013-01-01
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception. PMID:23755186
Refractive errors affect the vividness of visual mental images.
Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia
2013-01-01
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception.
Hospital prescribing errors: epidemiological assessment of predictors
Fijn, R; Van den Bemt, P M L A; Chow, M; De Blaey, C J; De Jong-Van den Berg, L T W; Brouwers, J R B J
2002-01-01
Aims To demonstrate an epidemiological method to assess predictors of prescribing errors. Methods A retrospective case-control study, comparing prescriptions with and without errors. Results Only prescriber and drug characteristics were associated with errors. Prescriber characteristics were medical specialty (e.g. orthopaedics: OR: 3.4, 95% CI 2.1, 5.4) and prescriber status (e.g. verbal orders transcribed by nursing staff: OR: 2.5, 95% CI 1.8, 3.6). Drug characteristics were dosage form (e.g. inhalation devices: OR: 4.1, 95% CI 2.6, 6.6), therapeutic area (e.g. gastrointestinal tract: OR: 1.7, 95% CI 1.2, 2.4) and continuation of preadmission treatment (Yes: OR: 1.7, 95% CI 1.3, 2.3). Conclusions Other hospitals could use our epidemiological framework to identify their own error predictors. Our findings suggest a focus on specific prescribers, dosage forms and therapeutic areas. We also found that prescriptions originating from general practitioners involved errors and therefore, these should be checked when patients are hospitalized. PMID:11874397
Stromgren photometry of A-stars - A test of physical parameter determination
NASA Astrophysics Data System (ADS)
Torra, J.; Figueras, F.; Jordi, C.; Rossello, G.
1990-08-01
By use of known published values for Teff, log g, and Mv, a check on a procedure (Figueras et al, 1990) for determining the physical parameters of A v-type stars from Stromgren photometry has been performed. External errors for the calculated physical parameters have been obtained.
On the Estimation of Standard Errors in Cognitive Diagnosis Models
ERIC Educational Resources Information Center
Philipp, Michel; Strobl, Carolin; de la Torre, Jimmy; Zeileis, Achim
2018-01-01
Cognitive diagnosis models (CDMs) are an increasingly popular method to assess mastery or nonmastery of a set of fine-grained abilities in educational or psychological assessments. Several inference techniques are available to quantify the uncertainty of model parameter estimates, to compare different versions of CDMs, or to check model…
Teaching Statistics with Minitab II.
ERIC Educational Resources Information Center
Ryan, T. A., Jr.; And Others
Minitab is a statistical computing system which uses simple language, produces clear output, and keeps track of bookkeeping automatically. Error checking with English diagnostics and inclusion of several default options help to facilitate use of the system by students. Minitab II is an improved and expanded version of the original Minitab which…
Resolving Ethical Disputes Through Arbitration: An Alternative to Code Penalties.
ERIC Educational Resources Information Center
Barwis, Gail Lund
Arbitration cases involving journalism ethics can be grouped into three major categories: outside activities that lead to conflicts of interest, acceptance of gifts that compromise journalistic objectivity, and writing false or misleading information or failing to check facts or correct errors. In most instances, failure to adhere to ethical…
Junior High Student Responsibilities for Basic Skills.
ERIC Educational Resources Information Center
Parker, Charles C.
This paper advances the thesis that students should be trained to recognize acceptable and unacceptable performances in basic skill areas and should assume responsibility for attaining proficiency in these areas. Among the topics discussed are the value of having junior high school students check their own assignments, discover their errors, and…
Wavefront error sensing for LDR
NASA Technical Reports Server (NTRS)
Tubbs, Eldred F.; Glavich, T. A.
1988-01-01
Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Green, Vanessa; Chiapparino, Claudia; Stasolla, Fabrizio; Oliva, Doretta
2009-01-01
The present study assessed the use of a voice-detecting sensor interfaced with a scanning keyboard emulator to allow two boys with extensive motor disabilities to write. Specifically, the study (a) compared the effects of the voice-detecting sensor with those of a familiar pressure sensor on the boys' writing time, (b) checked which of the sensors…
1982-02-01
FORMAT(1X,39NINVALID INPUTS TO CWIC. IERR-1 RETURNED) CWC01450 IERR=1 CWCO01460 RETURN CWC6OI470 20 TInE=RV 1) CWCOI4SO XO=RV( 2) CJC 01490 H3=RV( 3...ERROR CHECKS AGXO1910 IF (IT.LE.0) IT=I AGXO192o IF (IT.GT.JDIMCK(1)) CALL DIMER( ) AGX01930 IF(JDIMCKcI).LT.65) WRITE(IOUT, 1295 AGX0940 C CHECK FOR...Office System Planning Corporation ATTN: DACS -BMT (Colonel Harry F. Ennis) ATTN: COL Hank Shelton 5001 Eisenhower Avenue 1500 Wilson Boulevard
A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen
In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.
Quantum Kronecker sum-product low-density parity-check codes with finite rate
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Pryadko, Leonid P.
2013-07-01
We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.
Fault tolerance in an inner-outer solver: A GVR-enabled case study
Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita
2015-04-18
Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less
Computational technique for stepwise quantitative assessment of equation correctness
NASA Astrophysics Data System (ADS)
Othman, Nuru'l Izzah; Bakar, Zainab Abu
2017-04-01
Many of the computer-aided mathematics assessment systems that are available today possess the capability to implement stepwise correctness checking of a working scheme for solving equations. The computational technique for assessing the correctness of each response in the scheme mainly involves checking the mathematical equivalence and providing qualitative feedback. This paper presents a technique, known as the Stepwise Correctness Checking and Scoring (SCCS) technique that checks the correctness of each equation in terms of structural equivalence and provides quantitative feedback. The technique, which is based on the Multiset framework, adapts certain techniques from textual information retrieval involving tokenization, document modelling and similarity evaluation. The performance of the SCCS technique was tested using worked solutions on solving linear algebraic equations in one variable. 350 working schemes comprising of 1385 responses were collected using a marking engine prototype, which has been developed based on the technique. The results show that both the automated analytical scores and the automated overall scores generated by the marking engine exhibit high percent agreement, high correlation and high degree of agreement with manual scores with small average absolute and mixed errors.
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Doi, Takumi; Iritani, Takumi
2018-03-01
The sanity check is to rule out certain classes of obviously false results, not to catch every possible error. After reviewing such a sanity check for NN bound states with the Lüscher's finite volume formula [1-3], we give further evidences for the operator dependence of plateaux, a symptom of the fake plateau problem, against the claim [4]. We then present our critical comments on [5] by NPLQCD: (i) Operator dependences of plateaux in NPL2013 [6, 7] exist with the P value of 4-5%. (ii) The volume independence of plateaux in NPL2013 does not prove their correctness. (iii) Effective range expansions (EREs) in NPL2013 violate the physical pole condition. (iv) Their comment is partly based on new data and analysis different from the original ones. (v) Their new ERE does not satisfy the Lüscher's finite volume formula.
Error image aware content restoration
NASA Astrophysics Data System (ADS)
Choi, Sungwoo; Lee, Moonsik; Jung, Byunghee
2015-12-01
As the resolution of TV significantly increased, content consumers have become increasingly sensitive to the subtlest defect in TV contents. This rising standard in quality demanded by consumers has posed a new challenge in today's context where the tape-based process has transitioned to the file-based process: the transition necessitated digitalizing old archives, a process which inevitably produces errors such as disordered pixel blocks, scattered white noise, or totally missing pixels. Unsurprisingly, detecting and fixing such errors require a substantial amount of time and human labor to meet the standard demanded by today's consumers. In this paper, we introduce a novel, automated error restoration algorithm which can be applied to different types of classic errors by utilizing adjacent images while preserving the undamaged parts of an error image as much as possible. We tested our method to error images detected from our quality check system in KBS(Korean Broadcasting System) video archive. We are also implementing the algorithm as a plugin of well-known NLE(Non-linear editing system), which is a familiar tool for quality control agent.
NASA Astrophysics Data System (ADS)
Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing
2015-05-01
For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.
2001-01-17
Workers in the Payload Changeout Room check the U.S. Lab Destiny as its moves from Atlantis’ payload bay into the PCR. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis
2001-01-17
Workers in the Payload Changeout Room check the U.S. Lab Destiny as its moves from Atlantis’ payload bay into the PCR. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
Neck muscle activation and head postures in common high performance aerial combat maneuvers.
Netto, Kevin J; Burnett, Angus F
2006-10-01
Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device. Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes. High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.
NASA Astrophysics Data System (ADS)
Sousa, Andre R.; Schneider, Carlos A.
2001-09-01
A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.
Analytic barrage attack model. Final report, January 1986-January 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.
An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for themore » analytic model and for a numerical model used to check the analytic results.« less
Evaluating segmentation error without ground truth.
Kohlberger, Timo; Singh, Vivek; Alvino, Chris; Bahlmann, Claus; Grady, Leo
2012-01-01
The automatic delineation of the boundaries of organs and other anatomical structures is a key component of many medical image processing systems. In this paper we present a generic learning approach based on a novel space of segmentation features, which can be trained to predict the overlap error and Dice coefficient of an arbitrary organ segmentation without knowing the ground truth delineation. We show the regressor to be much stronger a predictor of these error metrics than the responses of probabilistic boosting classifiers trained on the segmentation boundary. The presented approach not only allows us to build reliable confidence measures and fidelity checks, but also to rank several segmentation hypotheses against each other during online usage of the segmentation algorithm in clinical practice.
Checking the Grammar Checker: Integrating Grammar Instruction with Writing.
ERIC Educational Resources Information Center
McAlexander, Patricia J.
2000-01-01
Notes Rei Noguchi's recommendation of integrating grammar instruction with writing instruction and teaching only the most vital terms and the most frequently made errors. Presents a project that provides a review of the grammar lessons, applies many grammar rules specifically to the students' writing, and teaches students the effective use of the…
40 CFR 75.59 - Certification, quality assurance, and quality control record provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and the run average); (B) The raw data and results for all required pre-test, post-test, pre-run and...-day calibration error tests, all daily system integrity checks (Hg monitors, only), and all off-line calibration demonstrations, including any follow-up tests after corrective action: (i) Component-system...
Improving NAVFAC's total quality management of construction drawings with CLIPS
NASA Technical Reports Server (NTRS)
Antelman, Albert
1991-01-01
A diagnostic expert system to improve the quality of Naval Facilities Engineering Command (NAVFAC) construction drawings and specification is described. C Language Integrated Production System (CLIPS) and computer aided design layering standards are used in an expert system to check and coordinate construction drawings and specifications to eliminate errors and omissions.
Checked Out: Ohioans' Views on Education 2009
ERIC Educational Resources Information Center
Thomas B. Fordham Institute, 2009
2009-01-01
In collaboration with the Thomas B. Fordham Institute and Catalyst Ohio, the FDR Group conducted a telephone survey of 1,002 randomly selected Ohio residents between April 1 and April 9, 2009 (margin of error +/- 3 percentage points). The survey--the third in a series--reports Ohioans' views on critical education issues, including school funding,…
The Relationship Between Repetition Priming and Skill Acquisition
1993-01-01
hours of cognitive testing. Given that most measures were of response latency, it neemed unacceptable to include subjects with high error rates indicative...U Leaf Crude Oil Paper Bug Spray Hair Sea Water Plastic Shampoo Rock Blood Cement Ink IF the word is Food, THEN check if its Solid or Liquid LF its
33 CFR 154.2181 - Alternative testing program-Test requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CE test must check the calibrated range of each analyzer using a lower (zero) and upper (span... instrument, R = reference value of zero or high-level calibration gas introduced into the monitoring system... Difference Zero Span 1-Zero 1-Span 2-Zero 2-Span 3-Zero 3-Span Mean Difference = Calibration Error = % % (3...
William M. Block
2007-01-01
Manuscripts contain a vast amount of information. Some of this information summarizes the state-of-knowledge and sets the stage for the paper. Other information presents data and summarizes analysis. Lastly, results are interpreted in the form of a discussion and management implications. Although a number of checks in the review and editorial processes catch errors...
Optimization of the bank's operating portfolio
NASA Astrophysics Data System (ADS)
Borodachev, S. M.; Medvedev, M. A.
2016-06-01
The theory of efficient portfolios developed by Markowitz is used to optimize the structure of the types of financial operations of a bank (bank portfolio) in order to increase the profit and reduce the risk. The focus of this paper is to check the stability of the model to errors in the original data.
Franklin, Bryony Dean; O'Grady, Kara; Donyai, Parastou; Jacklin, Ann; Barber, Nick
2007-01-01
Objectives To assess the impact of a closed‐loop electronic prescribing, automated dispensing, barcode patient identification and electronic medication administration record (EMAR) system on prescribing and administration errors, confirmation of patient identity before administration, and staff time. Design, setting and participants Before‐and‐after study in a surgical ward of a teaching hospital, involving patients and staff of that ward. Intervention Closed‐loop electronic prescribing, automated dispensing, barcode patient identification and EMAR system. Main outcome measures Percentage of new medication orders with a prescribing error, percentage of doses with medication administration errors (MAEs) and percentage given without checking patient identity. Time spent prescribing and providing a ward pharmacy service. Nursing time on medication tasks. Results Prescribing errors were identified in 3.8% of 2450 medication orders pre‐intervention and 2.0% of 2353 orders afterwards (p<0.001; χ2 test). MAEs occurred in 7.0% of 1473 non‐intravenous doses pre‐intervention and 4.3% of 1139 afterwards (p = 0.005; χ2 test). Patient identity was not checked for 82.6% of 1344 doses pre‐intervention and 18.9% of 1291 afterwards (p<0.001; χ2 test). Medical staff required 15 s to prescribe a regular inpatient drug pre‐intervention and 39 s afterwards (p = 0.03; t test). Time spent providing a ward pharmacy service increased from 68 min to 98 min each weekday (p = 0.001; t test); 22% of drug charts were unavailable pre‐intervention. Time per drug administration round decreased from 50 min to 40 min (p = 0.006; t test); nursing time on medication tasks outside of drug rounds increased from 21.1% to 28.7% (p = 0.006; χ2 test). Conclusions A closed‐loop electronic prescribing, dispensing and barcode patient identification system reduced prescribing errors and MAEs, and increased confirmation of patient identity before administration. Time spent on medication‐related tasks increased. PMID:17693676
Multi-bits error detection and fast recovery in RISC cores
NASA Astrophysics Data System (ADS)
Jing, Wang; Xing, Yang; Yuanfu, Zhao; Weigong, Zhang; Jiao, Shen; Keni, Qiu
2015-11-01
The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap.
Ensuring long-term reliability of the data storage on optical disc
NASA Astrophysics Data System (ADS)
Chen, Ken; Pan, Longfa; Xu, Bin; Liu, Wei
2008-12-01
"Quality requirements and handling regulation of archival optical disc for electronic records filing" is released by The State Archives Administration of the People's Republic of China (SAAC) on its network in March 2007. This document established a complete operative managing process for optical disc data storage in archives departments. The quality requirements of the optical disc used in archives departments are stipulated. Quality check of the recorded disc before filing is considered to be necessary and the threshold of the parameter of the qualified filing disc is set down. The handling regulations for the staffs in the archives departments are described. Recommended environment conditions of the disc preservation, recording, accessing and testing are presented. The block error rate of the disc is selected as main monitoring parameter of the lifetime of the filing disc and three classes pre-alarm lines are created for marking of different quality check intervals. The strategy of monitoring the variation of the error rate curve of the filing discs and moving the data to a new disc or a new media when the error rate of the disc reaches the third class pre-alarm line will effectively guarantee the data migration before permanent loss. Only when every step of the procedure is strictly implemented, it is believed that long-term reliability of the data storage on optical disc for archives departments can be effectively ensured.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-01
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
[Pharmaceutical care strategies to prevent medication errors].
Ucha-Samartín, Marisol; Martínez-López de Castro, Noemí; Troncoso-Mariño, Amelia; Campelo-Sánchez, Eva; Vázquez-López, Cristina; Inaraja-Bobo, María Teresa
2009-08-01
To evaluate the impact of implementing new programs to improve the quality of the pharmaceutical care and unit-dose distribution system for in-patients. An observational and prospective study was carried out in a general hospital during two different six-monthly period. Transcription and dispensation errors were evaluated in twelve wards during the first six months. Then, two new measures were introduced: the first- reference ward-pharmacist and the second-a new protocol for checking medication on the ward. Results were evaluated by SPSS v. 14 program. In the transcription evaluation, units without a ward pharmacist did not improve. Transcription errors significantly decreased in three units: gynaecology-urology (3.24% vs. 0.52%), orthopaedic (2% vs. 1.69%) and neurology-pneumology (2.81% vs. 2.02%). In dispensing, only units with the new protocol decreased their medication errors (1.77% vs. 1.24%). The participation of pharmacists in multidisciplinary teams and exhaustive protocols for dispensing medication were effective in detecting and decreasing medication errors in patients.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Correcting for particle counting bias error in turbulent flow
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Baratuci, W.
1985-01-01
An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.
Error correcting code with chip kill capability and power saving enhancement
Gara, Alan G [Mount Kisco, NY; Chen, Dong [Croton On Husdon, NY; Coteus, Paul W [Yorktown Heights, NY; Flynn, William T [Rochester, MN; Marcella, James A [Rochester, MN; Takken, Todd [Brewster, NY; Trager, Barry M [Yorktown Heights, NY; Winograd, Shmuel [Scarsdale, NY
2011-08-30
A method and system are disclosed for detecting memory chip failure in a computer memory system. The method comprises the steps of accessing user data from a set of user data chips, and testing the user data for errors using data from a set of system data chips. This testing is done by generating a sequence of check symbols from the user data, grouping the user data into a sequence of data symbols, and computing a specified sequence of syndromes. If all the syndromes are zero, the user data has no errors. If one of the syndromes is non-zero, then a set of discriminator expressions are computed, and used to determine whether a single or double symbol error has occurred. In the preferred embodiment, less than two full system data chips are used for testing and correcting the user data.
Numerical ‘health check’ for scientific codes: the CADNA approach
NASA Astrophysics Data System (ADS)
Scott, N. S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M.
2007-04-01
Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical 'health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.
Markov chain algorithms: a template for building future robust low-power systems
Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh
2014-01-01
Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030
Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, T.E.
1996-01-01
The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less
Error-Trellis Construction for Convolutional Codes Using Shifted Error/Syndrome-Subsequences
NASA Astrophysics Data System (ADS)
Tajima, Masato; Okino, Koji; Miyagoshi, Takashi
In this paper, we extend the conventional error-trellis construction for convolutional codes to the case where a given check matrix H(D) has a factor Dl in some column (row). In the first case, there is a possibility that the size of the state space can be reduced using shifted error-subsequences, whereas in the second case, the size of the state space can be reduced using shifted syndrome-subsequences. The construction presented in this paper is based on the adjoint-obvious realization of the corresponding syndrome former HT(D). In the case where all the columns and rows of H(D) are delay free, the proposed construction is reduced to the conventional one of Schalkwijk et al. We also show that the proposed construction can equally realize the state-space reduction shown by Ariel et al. Moreover, we clarify the difference between their construction and that of ours using examples.
Li, Chen; Nagasaki, Masao; Ueno, Kazuko; Miyano, Satoru
2009-04-27
Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules - Rule I and Rule II - to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested. The quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.
The application of LDPC code in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Numerical and analytical bounds on threshold error rates for hypergraph-product codes
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.
2018-06-01
We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .
NASA Astrophysics Data System (ADS)
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
NASA Technical Reports Server (NTRS)
Klein, V.; Schiess, J. R.
1977-01-01
An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.
Huckels-Baumgart, Saskia; Niederberger, Milena; Manser, Tanja; Meier, Christoph R; Meyer-Massetti, Carla
2017-10-01
The aim was to evaluate the impact of staff training and wearing safety vests as a combined intervention on interruptions during medication preparation and double-checking. Interruptions and errors during the medication process are common and an important issue for patient safety in the hospital setting. We performed a pre- and post-intervention pilot-study using direct structured observation of 26 nurses preparing and double-checking 431 medication doses (225 pre-intervention and 206 post-intervention) for 36 patients (21 pre-intervention and 15 post-intervention). With staff training and the introduction of safety vests, the interruption rate during medication preparation was reduced from 36.8 to 28.3 interruptions per hour and during double-checking from 27.5 to 15 interruptions per hour. This pilot-study showed that the frequency of interruptions decreased during the critical tasks of medication preparation and double-checking after the introduction of staff training and wearing safety vests as part of a quality improvement process. Nursing management should acknowledge interruptions as an important factor potentially influencing medication safety. Unnecessary interruptions can be successfully reduced by considering human and system factors and increasing both staff and nursing managers' awareness of 'interruptive communication practices' and implementing physical barriers. This is the first pilot-study specifically evaluating the impact of staff training and wearing safety vests on the reduction of interruptions during medication preparation and double-checking. © 2017 John Wiley & Sons Ltd.
User's manual for computer program BASEPLOT
Sanders, Curtis L.
2002-01-01
The checking and reviewing of daily records of streamflow within the U.S. Geological Survey is traditionally accomplished by hand-plotting and mentally collating tables of data. The process is time consuming, difficult to standardize, and subject to errors in computation, data entry, and logic. In addition, the presentation of flow data on the internet requires more timely and accurate computation of daily flow records. BASEPLOT was developed for checking and review of primary streamflow records within the U.S. Geological Survey. Use of BASEPLOT enables users to (1) provide efficiencies during the record checking and review process, (2) improve quality control, (3) achieve uniformity of checking and review techniques of simple stage-discharge relations, and (4) provide a tool for teaching streamflow computation techniques. The BASEPLOT program produces tables of quality control checks and produces plots of rating curves and discharge measurements; variable shift (V-shift) diagrams; and V-shifts converted to stage-discharge plots, using data stored in the U.S. Geological Survey Automatic Data Processing System database. In addition, the program plots unit-value hydrographs that show unit-value stages, shifts, and datum corrections; input shifts, datum corrections, and effective dates; discharge measurements; effective dates for rating tables; and numeric quality control checks. Checklist/tutorial forms are provided for reviewers to ensure completeness of review and standardize the review process. The program was written for the U.S. Geological Survey SUN computer using the Statistical Analysis System (SAS) software produced by SAS Institute, Incorporated.
Managing human fallibility in critical aerospace situations
NASA Astrophysics Data System (ADS)
Tew, Larry
2014-11-01
Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.
Compact disk error measurements
NASA Technical Reports Server (NTRS)
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
NASA Technical Reports Server (NTRS)
Deloach, Richard; Obara, Clifford J.; Goodman, Wesley L.
2012-01-01
This paper documents a check standard wind tunnel test conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3M TCT) that was designed and analyzed using the Modern Design of Experiments (MDOE). The test designed to partition the unexplained variance of typical wind tunnel data samples into two constituent components, one attributable to ordinary random error, and one attributable to systematic error induced by covariate effects. Covariate effects in wind tunnel testing are discussed, with examples. The impact of systematic (non-random) unexplained variance on the statistical independence of sequential measurements is reviewed. The corresponding correlation among experimental errors is discussed, as is the impact of such correlation on experimental results generally. The specific experiment documented herein was organized as a formal test for the presence of unexplained variance in representative samples of wind tunnel data, in order to quantify the frequency with which such systematic error was detected, and its magnitude relative to ordinary random error. Levels of systematic and random error reported here are representative of those quantified in other facilities, as cited in the references.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.
Trajectory Specification for High-Capacity Air Traffic Control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.
2004-01-01
In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.
NASA Technical Reports Server (NTRS)
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.
Tracking Debris Shed by a Space-Shuttle Launch Vehicle
NASA Technical Reports Server (NTRS)
Stuart, Phillip C.; Rogers, Stuart E.
2009-01-01
The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.
Russell, Solomon; Distefano, Joseph J
2006-07-01
W(3)MAMCAT is a new web-based and interactive system for building and quantifying the parameters or parameter ranges of n-compartment mammillary and catenary model structures, with input and output in the first compartment, from unstructured multiexponential (sum-of-n-exponentials) models. It handles unidentifiable as well as identifiable models and, as such, provides finite parameter interval solutions for unidentifiable models, whereas direct parameter search programs typically do not. It also tutorially develops the theory of model distinguishability for same order mammillary versus catenary models, as did its desktop application predecessor MAMCAT+. This includes expert system analysis for distinguishing mammillary from catenary structures, given input and output in similarly numbered compartments. W(3)MAMCAT provides for universal deployment via the internet and enhanced application error checking. It uses supported Microsoft technologies to form an extensible application framework for maintaining a stable and easily updatable application. Most important, anybody, anywhere, is welcome to access it using Internet Explorer 6.0 over the internet for their teaching or research needs. It is available on the Biocybernetics Laboratory website at UCLA: www.biocyb.cs.ucla.edu.
2001-01-17
Workers in the Payload Changeout Room check the Payload Ground Handling Mechanism that will move the U.S. Lab Destiny out of Atlantis’ payload bay and into the PCR. After the move, Atlantis will roll back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis
Artificial Intelligence in Space Platforms.
1984-12-01
technician would be resposible for filling the data base with DSCS particular information concerning thrusters, 90 b...fault conditions and performing predefined self -preserving (entering a safe-hold stat9) switching actions. Is capable of storing contingency or...on-board for syntactical errors (parity, sign, logic, time). Uses coding or other self -checking techniques to minimize the effects of Internally
40 CFR Appendix F to Part 60 - Quality Assurance Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the RM...-level) CD or the daily high-level CD exceeds two times the limits of the applicable PS's in appendix B... result exceeds four times the applicable drift specification in appendix B during any CD check, the CEMS...
40 CFR Appendix F to Part 60 - Quality Assurance Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
... plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the RM...-level) CD or the daily high-level CD exceeds two times the limits of the applicable PS's in appendix B... result exceeds four times the applicable drift specification in appendix B during any CD check, the CEMS...
40 CFR Appendix F to Part 60 - Quality Assurance Procedures
Code of Federal Regulations, 2011 CFR
2011-07-01
... plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the RM...-level) CD or the daily high-level CD exceeds two times the limits of the applicable PS's in appendix B... result exceeds four times the applicable drift specification in appendix B during any CD check, the CEMS...
Correcting Erroneous N+N Structures in the Productions of French Users of English
ERIC Educational Resources Information Center
Garnier, Marie
2012-01-01
This article presents the preliminary steps to the implementation of detection and correction strategies for the erroneous use of N+N structures in the written productions of French-speaking advanced users of English. This research is carried out as part of the grammar checking project "CorrecTools", in which errors are detected and corrected…
Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels
ERIC Educational Resources Information Center
Wang, Han
2010-01-01
Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…
Requeno, José Ignacio; Colom, José Manuel
2014-12-01
Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.
Requeno, José Ignacio; Colom, José Manuel
2014-10-23
Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.
Saline water in southeastern New Mexico
Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.
1969-01-01
Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.
DFACS - DATABASE, FORMS AND APPLICATIONS FOR CABLING AND SYSTEMS, VERSION 3.30
NASA Technical Reports Server (NTRS)
Billitti, J. W.
1994-01-01
DFACS is an interactive multi-user computer-aided engineering tool for system level electrical integration and cabling engineering. The purpose of the program is to provide the engineering community with a centralized database for entering and accessing system functional definitions, subsystem and instrument-end circuit pinout details, and harnessing data. The primary objective is to provide an instantaneous single point of information interchange, thus avoiding error-prone, time-consuming, and costly multiple-path data shuttling. The DFACS program, which is centered around a single database, has built-in menus that provide easy data input and access for all involved system, subsystem, and cabling personnel. The DFACS program allows parallel design of circuit data sheets and harness drawings. It also recombines raw information to automatically generate various project documents and drawings including the Circuit Data Sheet Index, the Electrical Interface Circuits List, Assembly and Equipment Lists, Electrical Ground Tree, Connector List, Cable Tree, Cabling Electrical Interface and Harness Drawings, Circuit Data Sheets, and ECR List of Affected Interfaces/Assemblies. Real time automatic production of harness drawings and circuit data sheets from the same data reservoir ensures instant system and cabling engineering design harmony. DFACS also contains automatic wire routing procedures and extensive error checking routines designed to minimize the possibility of engineering error. DFACS is designed to run on DEC VAX series computers under VMS using Version 6.3/01 of INGRES QUEL/OSL, a relational database system which is available through Relational Technology, Inc. The program is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard media) or a TK50 tape cartridge. DFACS was developed in 1987 and last updated in 1990. DFACS is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. INGRES QUEL/OSL is a trademark of Relational Technology, Inc.
Accuracy assessment in the Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Houston, A. G.; Pitts, D. E.; Feiveson, A. H.; Badhwar, G.; Ferguson, M.; Hsu, E.; Potter, J.; Chhikara, R.; Rader, M.; Ahlers, C.
1979-01-01
The Accuracy Assessment System (AAS) of the Large Area Crop Inventory Experiment (LACIE) was responsible for determining the accuracy and reliability of LACIE estimates of wheat production, area, and yield, made at regular intervals throughout the crop season, and for investigating the various LACIE error sources, quantifying these errors, and relating them to their causes. Some results of using the AAS during the three years of LACIE are reviewed. As the program culminated, AAS was able not only to meet the goal of obtaining accurate statistical estimates of sampling and classification accuracy, but also the goal of evaluating component labeling errors. Furthermore, the ground-truth data processing matured from collecting data for one crop (small grains) to collecting, quality-checking, and archiving data for all crops in a LACIE small segment.
Factors that influence the generation of autobiographical memory conjunction errors
Devitt, Aleea L.; Monk-Fromont, Edwin; Schacter, Daniel L.; Addis, Donna Rose
2015-01-01
The constructive nature of memory is generally adaptive, allowing us to efficiently store, process and learn from life events, and simulate future scenarios to prepare ourselves for what may come. However, the cost of a flexibly constructive memory system is the occasional conjunction error, whereby the components of an event are authentic, but the combination of those components is false. Using a novel recombination paradigm, it was demonstrated that details from one autobiographical memory may be incorrectly incorporated into another, forming autobiographical memory conjunction errors that elude typical reality monitoring checks. The factors that contribute to the creation of these conjunction errors were examined across two experiments. Conjunction errors were more likely to occur when the corresponding details were partially rather than fully recombined, likely due to increased plausibility and ease of simulation of partially recombined scenarios. Brief periods of imagination increased conjunction error rates, in line with the imagination inflation effect. Subjective ratings suggest that this inflation is due to similarity of phenomenological experience between conjunction and authentic memories, consistent with a source monitoring perspective. Moreover, objective scoring of memory content indicates that increased perceptual detail may be particularly important for the formation of autobiographical memory conjunction errors. PMID:25611492
Factors that influence the generation of autobiographical memory conjunction errors.
Devitt, Aleea L; Monk-Fromont, Edwin; Schacter, Daniel L; Addis, Donna Rose
2016-01-01
The constructive nature of memory is generally adaptive, allowing us to efficiently store, process and learn from life events, and simulate future scenarios to prepare ourselves for what may come. However, the cost of a flexibly constructive memory system is the occasional conjunction error, whereby the components of an event are authentic, but the combination of those components is false. Using a novel recombination paradigm, it was demonstrated that details from one autobiographical memory (AM) may be incorrectly incorporated into another, forming AM conjunction errors that elude typical reality monitoring checks. The factors that contribute to the creation of these conjunction errors were examined across two experiments. Conjunction errors were more likely to occur when the corresponding details were partially rather than fully recombined, likely due to increased plausibility and ease of simulation of partially recombined scenarios. Brief periods of imagination increased conjunction error rates, in line with the imagination inflation effect. Subjective ratings suggest that this inflation is due to similarity of phenomenological experience between conjunction and authentic memories, consistent with a source monitoring perspective. Moreover, objective scoring of memory content indicates that increased perceptual detail may be particularly important for the formation of AM conjunction errors.
NASA Technical Reports Server (NTRS)
Ni, Jianjun David
2011-01-01
This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.
SU-E-T-257: Output Constancy: Reducing Measurement Variations in a Large Practice Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, K; Fitzgerald, T; Miller, R
2014-06-01
Purpose: To standardize output constancy check procedures in a large medical physics practice group covering multiple sites, in order to identify and reduce small systematic errors caused by differences in equipment and the procedures of multiple physicists. Methods: A standardized machine output constancy check for both photons and electrons was instituted within the practice group in 2010. After conducting annual TG-51 measurements in water and adjusting the linac to deliver 1.00 cGy/MU at Dmax, an acrylic phantom (comparable at all sites) and PTW farmer ion chamber are used to obtain monthly output constancy reference readings. From the collected charge reading,more » measurements of air pressure and temperature, and chamber Ndw and Pelec, a value we call the Kacrylic factor is determined, relating the chamber reading in acrylic to the dose in water with standard set-up conditions. This procedure easily allows for multiple equipment combinations to be used at any site. The Kacrylic factors and output results from all sites and machines are logged monthly in a central database and used to monitor trends in calibration and output. Results: The practice group consists of 19 sites, currently with 34 Varian and 8 Elekta linacs (24 Varian and 5 Elekta linacs in 2010). Over the past three years, the standard deviation of Kacrylic factors measured on all machines decreased by 20% for photons and high energy electrons as systematic errors were found and reduced. Low energy electrons showed very little change in the distribution of Kacrylic values. Small errors in linac beam data were found by investigating outlier Kacrylic values. Conclusion: While the use of acrylic phantoms introduces an additional source of error through small differences in depth and effective depth, the new standardized procedure eliminates potential sources of error from using many different phantoms and results in more consistent output constancy measurements.« less
Brown, Julie; Elkington, Jane; Hall, Alexandra; Keay, Lisa; Charlton, Judith L; Hunter, Kate; Koppel, Sjaan; Hayen, Andrew; Bilston, Lynne E
2018-03-07
With long-standing and widespread high rates of errors in child restraint use, there is a need to identify effective methods to address this problem. Information supplied with products at the point of sale may be a potentially efficient delivery point for such a countermeasure. The aim of this study is to establish whether product materials developed using a consumer-driven approach reduce errors in restraint use among purchasers of new child restraint systems. A cluster randomised controlled trial (cRCT) will be conducted. Retail stores (n=22) in the greater Sydney area will be randomised into intervention sites (n=11) and control sites (n=11), stratified by geographical and socioeconomic indicators. Participants (n=836) will enter the study on purchase of a restraint. Outcome measures are errors in installation of the restraint as observed by a trained researcher during a 6-month follow-up home assessment, and adjustment checks made by the parent when the child is placed into the restraint (observed using naturalistic methods). Process evaluation measures will also be collected during the home visit. An intention-to-treat approach will be used for all analyses. Correct use and adjustment checks made by the parent will be compared between control and intervention groups using a logistic regression model. The number of installation errors between groups will be compared using Poisson regression. This cRCT will determine the effectiveness of targeted, consumer-driven information on actual error rates in use of restraints. More broadly, it may provide a best practice model for developing safety product information. ACTRN12617001252303p; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lau, Billy T; Ji, Hanlee P
2017-09-21
RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H; Yi, B; Prado, K
2015-06-15
Purpose: This work is to investigate the feasibility of a standardized monthly quality check (QC) of LINAC output determination in a multi-site, multi-LINAC institution. The QC was developed to determine individual LINAC output using the same optimized measurement setup and a constant calibration factor for all machines across the institution. Methods: The QA data over 4 years of 7 Varian machines over four sites, were analyzed. The monthly output constancy checks were performed using a fixed source-to-chamber-distance (SCD), with no couch position adjustment throughout the measurement cycle for all the photon energies: 6 and 18MV, and electron energies: 6, 9,more » 12, 16 and 20 MeV. The constant monthly output calibration factor (Nconst) was determined by averaging the machines’ output data, acquired with the same monthly ion chamber. If a different monthly ion chamber was used, Nconst was then re-normalized to consider its different NDW,Co-60. Here, the possible changes of Nconst over 4 years have been tracked, and the precision of output results based on this standardized monthly QA program relative to the TG-51 calibration for each machine was calculated. Any outlier of the group was investigated. Results: The possible changes of Nconst varied between 0–0.9% over 4 years. The normalization of absorbed-dose-to-water calibration factors corrects for up to 3.3% variations of different monthly QA chambers. The LINAC output precision based on this standardized monthly QC relative to the TG-51 output calibration is within 1% for 6MV photon energy and 2% for 18MV and all the electron energies. A human error in one TG-51 report was found through a close scrutiny of outlier data. Conclusion: This standardized QC allows for a reasonably simplified, precise and robust monthly LINAC output constancy check, with the increased sensitivity needed to detect possible human errors and machine problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chengqiang, L; Yin, Y; Chen, L
Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans.more » Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.« less
A Unified Approach to Measurement Error and Missing Data: Details and Extensions
ERIC Educational Resources Information Center
Blackwell, Matthew; Honaker, James; King, Gary
2017-01-01
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Extensions to the visual predictive check to facilitate model performance evaluation.
Post, Teun M; Freijer, Jan I; Ploeger, Bart A; Danhof, Meindert
2008-04-01
The Visual Predictive Check (VPC) is a valuable and supportive instrument for evaluating model performance. However in its most commonly applied form, the method largely depends on a subjective comparison of the distribution of the simulated data with the observed data, without explicitly quantifying and relating the information in both. In recent adaptations to the VPC this drawback is taken into consideration by presenting the observed and predicted data as percentiles. In addition, in some of these adaptations the uncertainty in the predictions is represented visually. However, it is not assessed whether the expected random distribution of the observations around the predicted median trend is realised in relation to the number of observations. Moreover the influence of and the information residing in missing data at each time point is not taken into consideration. Therefore, in this investigation the VPC is extended with two methods to support a less subjective and thereby more adequate evaluation of model performance: (i) the Quantified Visual Predictive Check (QVPC) and (ii) the Bootstrap Visual Predictive Check (BVPC). The QVPC presents the distribution of the observations as a percentage, thus regardless the density of the data, above and below the predicted median at each time point, while also visualising the percentage of unavailable data. The BVPC weighs the predicted median against the 5th, 50th and 95th percentiles resulting from a bootstrap of the observed data median at each time point, while accounting for the number and the theoretical position of unavailable data. The proposed extensions to the VPC are illustrated by a pharmacokinetic simulation example and applied to a pharmacodynamic disease progression example.
Open Label Extension of ISIS 301012 (Mipomersen) to Treat Familial Hypercholesterolemia
2016-08-01
Lipid Metabolism, Inborn Errors; Hypercholesterolemia, Autosomal Dominant; Hyperlipidemias; Metabolic Diseases; Hyperlipoproteinemia Type II; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Infant, Newborn, Diseases; Metabolic Disorder; Congenital Abnormalities; Hypercholesterolemia; Hyperlipoproteinemias; Dyslipidemias; Lipid Metabolism Disorders
Scalable video transmission over Rayleigh fading channels using LDPC codes
NASA Astrophysics Data System (ADS)
Bansal, Manu; Kondi, Lisimachos P.
2005-03-01
In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.
Model Checking - My 27-Year Quest to Overcome the State Explosion Problem
NASA Technical Reports Server (NTRS)
Clarke, Ed
2009-01-01
Model Checking is an automatic verification technique for state-transition systems that are finite=state or that have finite-state abstractions. In the early 1980 s in a series of joint papers with my graduate students E.A. Emerson and A.P. Sistla, we proposed that Model Checking could be used for verifying concurrent systems and gave algorithms for this purpose. At roughly the same time, Joseph Sifakis and his student J.P. Queille at the University of Grenoble independently developed a similar technique. Model Checking has been used successfully to reason about computer hardware and communication protocols and is beginning to be used for verifying computer software. Specifications are written in temporal logic, which is particularly valuable for expressing concurrency properties. An intelligent, exhaustive search is used to determine if the specification is true or not. If the specification is not true, the Model Checker will produce a counterexample execution trace that shows why the specification does not hold. This feature is extremely useful for finding obscure errors in complex systems. The main disadvantage of Model Checking is the state-explosion problem, which can occur if the system under verification has many processes or complex data structures. Although the state-explosion problem is inevitable in worst case, over the past 27 years considerable progress has been made on the problem for certain classes of state-transition systems that occur often in practice. In this talk, I will describe what Model Checking is, how it works, and the main techniques that have been developed for combating the state explosion problem.
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission
NASA Technical Reports Server (NTRS)
Dichmann, Donald
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.
Local rollback for fault-tolerance in parallel computing systems
Blumrich, Matthias A [Yorktown Heights, NY; Chen, Dong [Yorktown Heights, NY; Gara, Alan [Yorktown Heights, NY; Giampapa, Mark E [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugavanam, Krishnan [Yorktown Heights, NY
2012-01-24
A control logic device performs a local rollback in a parallel super computing system. The super computing system includes at least one cache memory device. The control logic device determines a local rollback interval. The control logic device runs at least one instruction in the local rollback interval. The control logic device evaluates whether an unrecoverable condition occurs while running the at least one instruction during the local rollback interval. The control logic device checks whether an error occurs during the local rollback. The control logic device restarts the local rollback interval if the error occurs and the unrecoverable condition does not occur during the local rollback interval.
NASA Technical Reports Server (NTRS)
Byrne, F. (Inventor)
1981-01-01
A high speed common data buffer system is described for providing an interface and communications medium between a plurality of computers utilized in a distributed computer complex forming part of a checkout, command and control system for space vehicles and associated ground support equipment. The system includes the capability for temporarily storing data to be transferred between computers, for transferring a plurality of interrupts between computers, for monitoring and recording these transfers, and for correcting errors incurred in these transfers. Validity checks are made on each transfer and appropriate error notification is given to the computer associated with that transfer.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
...] Agency Information Collection Activities: Proposed Collection; Comments Requested: Appeals of Background... Information Collection (1) Type of Information Collection: Extension of a currently approved collection. (2) Title of the Form/Collection: Appeals of Background Checks. (3) Agency form number, if any, and the...
Aging Aircraft Subsystems. Equipment Life Extension within the Tornado Program
2000-10-01
establish whether of trained personal. an equipment is already life expired or not. Maintenance documentation Repairs and concessions Existing...to be replaced equipment will lead over time to a degradation of the functional check seals. This means that the older the equipment stays inservice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... activities, the RD/RA Consent Decree requires the Defendants to reimburse EPA for its oversight of work... Decree Library, U.S. DOJ--ENRD, P.O. Box 7611, Washington, DC 20044-7611. Please enclose a check or money...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... DEPARTMENT OF JUSTICE Federal Bureau of Investigation [OMB Number 1110-0039] Agency Information... under review. The Department of Justice, Federal Bureau of Investigation, Criminal Justice Information... Background Check System (NICS) Strategy and Systems Unit, Federal Bureau of Investigation, Criminal Justice...
Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea
NASA Technical Reports Server (NTRS)
Niiler, Pearn P.
2002-01-01
The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.
Signature-based store checking buffer
Sridharan, Vilas; Gurumurthi, Sudhanva
2015-06-02
A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.
Student Beliefs towards Written Corrective Feedback: The Case of Filipino High School Students
ERIC Educational Resources Information Center
Balanga, Roselle A.; Fidel, Irish Van B.; Gumapac, Mone Virma Ginry P.; Ho, Howell T.; Tullo, Riza Mae C.; Villaraza, Patricia Monette L.; Vizconde, Camilla J.
2016-01-01
The study identified the beliefs of high school students toward Written Corrective Feedback (WCF), based on the framework of Anderson (2010). It also investigated the most common errors that students commit in writing stories and the type of WCF students receive from teachers. Data in the form of stories which were checked by teachers were…
ERIC Educational Resources Information Center
Saperstein, Aliya
2006-01-01
Social constructivist theories of race suggest no two measures of race will capture the same information, but the degree of "error" this creates for quantitative research on inequality is unclear. Using unique data from the General Social Survey, I find observed and self-reported measures of race yield substantively different results when used to…
The Role of Human Error in Design, Construction, and Reliability of Marine Structures.
1994-10-01
The 1979 Three Mile Island nuclear plant accident was largely a result of a failure to properly sort out and recognize critically important information...determinating the goals and objectives of the program and by evaluating and interpreting the results in terms of structural design, construction, and...67 Checking Models in Structural Design ....................................... 69 Nuclear Power Plants
An interactive review system for NASTRAN
NASA Technical Reports Server (NTRS)
Durocher, L. L.; Gasper, A. F.
1982-01-01
An interactive review system that addresses the problems of model display, model error checking, and postprocessing is described. The menu driven system consists of four programs whose advantages and limitations are detailed. The interface between NASTRAN and MOVIE-BYU, the modifications required to make MOVIE usable in a finite element context, and the resulting capabilities of MOVIE as a graphics postprocessor for NASTRAN are illustrated.
-redshifted), Observed Flux, Statistical Error (Based on the optimal extraction algorithm of the IRAF packages were acquired using different instrumental settings for the blue and red parts of the spectrum to avoid extracted for systematics checks of the wavelength calibration. Wavelength and flux calibration were applied
Performance Analysis of AeroRP with Ground Station Advertisements
2012-03-12
results showed that AeroRP outperforms the traditional MANET routing protocols in terms of throughput and packet delivery ra - tio (PDR) [5, 6]. AeroRP...and waiting for the source to re- send the packet increases the end-to-end delay. The AeroNP corruption indicator and HEC -CRC (header error check...Dev ID | NP HEC CRC-16 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \\ \\ / AeroTP Payload
ERIC Educational Resources Information Center
Lin, Po-Han; Liu, Tzu-Chien; Paas, Fred
2017-01-01
Computer-based spell checkers help to correct misspells instantly. Almost all the word processing devices are now equipped with a spell-check function that either automatically corrects errors or provides a list of intended words. However, it is not clear on how the reliance on this convenient technological solution affects spelling learning.…
Prototype data terminal: Multiplexer/demultiplexer
NASA Technical Reports Server (NTRS)
Leck, D. E.; Goodwin, J. E.
1972-01-01
The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) design are described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology. The waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel, if not unique. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light couplers and integrated circuit amplifiers.
Data Quality Control and Maintenance for the Qweak Experiment
NASA Astrophysics Data System (ADS)
Heiner, Nicholas; Spayde, Damon
2014-03-01
The Qweak collaboration seeks to quantify the weak charge of a proton through the analysis of the parity-violating electron asymmetry in elastic electron-proton scattering. The asymmetry is calculated by measuring how many electrons deflect from a hydrogen target at the chosen scattering angle for aligned and anti-aligned electron spins, then evaluating the difference between the numbers of deflections that occurred for both polarization states. The weak charge can then be extracted from this data. Knowing the weak charge will allow us to calculate the electroweak mixing angle for the particular Q2 value of the chosen electrons, which the Standard Model makes a firm prediction for. Any significant deviation from this prediction would be a prime indicator of the existence of physics beyond what the Standard Model describes. After the experiment was conducted at Jefferson Lab, collected data was stored within a MySQL database for further analysis. I will present an overview of the database and its functions as well as a demonstration of the quality checks and maintenance performed on the data itself. These checks include an analysis of errors occurring throughout the experiment, specifically data acquisition errors within the main detector array, and an analysis of data cuts.
Improved CLARAty Functional-Layer/Decision-Layer Interface
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang
2008-01-01
Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.
Tully, Mary P; Buchan, Iain E
2009-12-01
To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.
The theory precision analyse of RFM localization of satellite remote sensing imagery
NASA Astrophysics Data System (ADS)
Zhang, Jianqing; Xv, Biao
2009-11-01
The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.
STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the U.S. Lab Destiny as its moves from Atlantis''' payload bay into the PCR. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.
Kaplan, H S
2005-11-01
Safety and reliability in blood transfusion are not static, but are dynamic non-events. Since performance deviations continually occur in complex systems, their detection and correction must be accomplished over and over again. Non-conformance must be detected early enough to allow for recovery or mitigation. Near-miss events afford early detection of possible system weaknesses and provide an early chance at correction. National event reporting systems, both voluntary and involuntary, have begun to include near-miss reporting in their classification schemes, raising awareness for their detection. MERS-TM is a voluntary safety reporting initiative in transfusion. Currently 22 hospitals submit reports anonymously to a central database which supports analysis of a hospital's own data and that of an aggregate database. The system encourages reporting of near-miss events, where the patient is protected from receiving an unsuitable or incorrect blood component due to a planned or unplanned recovery step. MERS-TM data suggest approximately 90% of events are near-misses, with 10% caught after issue but before transfusion. Near-miss reporting may increase total reports ten-fold. The ratio of near-misses to events with harm is 339:1, consistent with other industries' ratio of 300:1, which has been proposed as a measure of reporting in event reporting systems. Use of a risk matrix and an event's relation to protective barriers allow prioritization of these events. Near-misses recovered by planned barriers occur ten times more frequently then unplanned recoveries. A bedside check of the patient's identity with that on the blood component is an essential, final barrier. How the typical two person check is performed, is critical. Even properly done, this check is ineffective against sampling and testing errors. Blood testing at bedside just prior to transfusion minimizes the risk of such upstream events. However, even with simple and well designed devices, training may be a critical issue. Sample errors account for more than half of reported events. The most dangerous miscollection is a blood sample passing acceptance with no previous patient results for comparison. Bar code labels or collection of a second sample may counter this upstream vulnerability. Further upstream barriers have been proposed to counter the precariousness of urgent blood sample collection in a changing unstable situation. One, a linking device, allows safer labeling of tubes away from the bedside, the second, a forcing function, prevents omission of critical patient identification steps. Errors in the blood bank itself account for 15% of errors with a high potential severity. In one such event, a component incorrectly issued, but safely detected prior to transfusion, focused attention on multitasking's contribution to laboratory error. In sum, use of near-miss information, by enhancing barriers supporting error prevention and mitigation, increases our capacity to get the right blood to the right patient.
How do speakers resist distraction? Evidence from a taboo picture-word interference task.
Dhooge, Elisah; Hartsuiker, Robert J
2011-07-01
Even in the presence of irrelevant stimuli, word production is a highly accurate and fluent process. But how do speakers prevent themselves from naming the wrong things? One possibility is that an attentional system inhibits task-irrelevant representations. Alternatively, a verbal self-monitoring system might check speech for accuracy and remove errors stemming from irrelevant information. Because self-monitoring is sensitive to social appropriateness, taboo errors should be intercepted more than neutral errors are. To prevent embarrassment, speakers might also speak more slowly when confronted with taboo distractors. Our results from two experiments are consistent with the self-monitoring account: Examining picture-naming speed (Experiment 1) and accuracy (Experiment 2), we found fewer naming errors but longer picture-naming latencies for pictures presented with taboo distractors than for pictures presented with neutral distractors. These results suggest that when intrusions of irrelevant words are highly undesirable, speakers do not simply inhibit these words: Rather, the language-production system adjusts itself to the context and filters out the undesirable words.
Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series and the SSBUV Instruments
NASA Technical Reports Server (NTRS)
Cebula, Richard P.; DeLand, Matthew T.; Hilsenrath, Ernest
1997-01-01
During this period of performance, 1 March 1997 - 31 August 1997, the NOAA-11 SBUV/2 solar spectral irradiance data set was validated using both internal and external assessments. Initial quality checking revealed minor problems with the data (e.g. residual goniometric errors, that were manifest as differences between the two scans acquired each day). The sources of these errors were determined and the errors were corrected. Time series were constructed for selected wavelengths and the solar irradiance changes measured by the instrument were compared to a Mg II proxy-based model of short- and long-term solar irradiance variations. This analysis suggested that errors due to residual, uncorrected long-term instrument drift have been reduced to less than 1-2% over the entire 5.5 year NOAA-11 data record. Detailed statistical analysis was performed. This analysis, which will be documented in a manuscript now in preparation, conclusively demonstrates the evolution of solar rotation periodicity and strength during solar cycle 22.
Use of autocorrelation scanning in DNA copy number analysis.
Zhang, Liangcai; Zhang, Li
2013-11-01
Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.
Temporal Specification and Verification of Real-Time Systems.
1991-08-30
of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... Act (PRA) Officer, Office of Information Technology (OIT), TSA-11, Transportation Security..., electronic, mechanical, or other technological collection techniques or other forms of information technology... criminal history records check (CHRC). As part of the CHRC process, the individual must provide identifying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
... charge regarding the employment history of, and the publicly adjudicated disciplinary and enforcement... for a State and national criminal background check; and (2) personal history and experience, including... criminal history background reports and actions taken with respect thereto. Type of Review: Extension of a...
Designing Measurement Studies under Budget Constraints: Controlling Error of Measurement and Power.
ERIC Educational Resources Information Center
Marcoulides, George A.
1995-01-01
A methodology is presented for minimizing the mean error variance-covariance component in studies with resource constraints. The method is illustrated using a one-facet multivariate design. Extensions to other designs are discussed. (SLD)
Non-Gaussian Distribution of DNA Barcode Extension In Nanochannels Using High-throughput Imaging
NASA Astrophysics Data System (ADS)
Sheats, Julian; Reinhart, Wesley; Reifenberger, Jeff; Gupta, Damini; Muralidhar, Abhiram; Cao, Han; Dorfman, Kevin
2015-03-01
We present experimental data for the extension of internal segments of highly confined DNA using a high-throughput experimental setup. Barcode-labeled E. coli genomic DNA molecules were imaged at a high areal density in square nanochannels with sizes ranging from 40 nm to 51 nm in width. Over 25,000 molecules were used to obtain more than 1,000,000 measurements for genomic distances between 2,500 bp and 100,000 bp. The distribution of extensions has positive excess kurtosis and is skew left due to weak backfolding in the channel. As a result, the two Odijk theories for the chain extension and variance bracket the experimental data. We compared to predictions of a harmonic approximation for the confinement free energy and show that it produces a substantial error in the variance. These results suggest an inherent error associated with any statistical analysis of barcoded DNA that relies on harmonic models for chain extension. Present address: Department of Chemical and Biological Engineering, Princeton University.
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.
1974-01-01
A theoretical formulation of differential and composite OMEGA error is presented to establish hypotheses about the functional relationships between various parameters and OMEGA navigational errors. Computer software developed to provide for extensive statistical analysis of the phase data is described. Results from the regression analysis used to conduct parameter sensitivity studies on differential OMEGA error tend to validate the theoretically based hypothesis concerning the relationship between uncorrected differential OMEGA error and receiver separation range and azimuth. Limited results of measurement of receiver repeatability error and line of position measurement error are also presented.
DNA Barcoding through Quaternary LDPC Codes
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348
DNA Barcoding through Quaternary LDPC Codes.
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).
State background checks for gun purchase and firearm deaths: an exploratory study.
Sen, Bisakha; Panjamapirom, Anantachai
2012-10-01
This study examines the relationship between the types of background-information check required by states prior to firearm purchases, and firearm homicide and suicide deaths. Negative binomial models are used to analyze state-level data for homicides and suicides in the U.S. from 1996 to 2005. Data on types of background information are retrieved from the Surveys of State Procedures Related to Firearm Sales, and the violent death data are from the WISQARS. Several other state level factors were controlled for. More background checks are associated with fewer homicide (IRR:0.93, 95% CI:0.91-0.96) and suicide (IRR:0.98, 95% CI:0.96-1.00) deaths. Firearm homicide deaths are lower when states have checks for restraining orders (IRR:0.87, 95% CI:0.79-0.95) and fugitive status (IRR:0.79, 95% CI:0.72-0.88). Firearm suicide deaths are lower when states have background checks for mental illness (IRR:0.96, 95% CI:0.92-0.99), fugitive status (IRR:0.95, 95% CI:0.90-0.99) and misdemeanors (IRR:0.95, 95% CI:0.92-1.00). It does not appear that reductions in firearm deaths are offset by increases in non-firearm violent deaths. More extensive background checks prior to gun purchase are mostly associated with reductions in firearm homicide and suicide deaths. Several study limitations are acknowledged, and further research is called for to ascertain causality. Copyright © 2012 Elsevier Inc. All rights reserved.
Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong
2015-01-01
Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.
Kiuchi, T; Kaihara, S
1997-02-01
The World Wide Web-based form is a promising method for the construction of an on-line data collection system for clinical and epidemiological research. It is, however, laborious to prepare a common gateway interface (CGI) program for each project, which the World Wide Web server needs to handle the submitted data. In medicine, it is even more laborious because the CGI program must check deficits, type, ranges, and logical errors (bad combination of data) of entered data for quality assurance as well as data length and meta-characters of the entered data to enhance the security of the server. We have extended the specification of the hypertext markup language (HTML) form to accommodate information necessary for such data checking and we have developed software named AUTOFORM for this purpose. The software automatically analyzes the extended HTML form and generates the corresponding ordinary HTML form, 'Makefile', and C source of CGI programs. The resultant CGI program checks the entered data through the HTML form, records them in a computer, and returns them to the end-user. AUTOFORM drastically reduces the burden of development of the World Wide Web-based data entry system and allows the CGI programs to be more securely and reliably prepared than had they been written from scratch.
Errors in finite-difference computations on curvilinear coordinate systems
NASA Technical Reports Server (NTRS)
Mastin, C. W.; Thompson, J. F.
1980-01-01
Curvilinear coordinate systems were used extensively to solve partial differential equations on arbitrary regions. An analysis of truncation error in the computation of derivatives revealed why numerical results may be erroneous. A more accurate method of computing derivatives is presented.
FORTRAN multitasking library for use on the ELXSI 6400 and the CRAY XMP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montry, G.R.
1985-07-16
A library of FORTRAN-based multitasking routines has been written for the ELXSI 6400 and the CRAY XMP. This library is designed to make multitasking codes easily transportable between machines with different hardware configurations. The library provides enhanced error checking and diagnostics over vendor-supplied multitasking intrinsics. The library also contains multitasking control structures not normally supplied by the vendor.
Co-operation of digital nonlinear equalizers and soft-decision LDPC FEC in nonlinear transmission.
Tanimura, Takahito; Oda, Shoichiro; Hoshida, Takeshi; Aoki, Yasuhiko; Tao, Zhenning; Rasmussen, Jens C
2013-12-30
We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.
An Empirical Methodology for Engineering Human Systems Integration
2009-12-01
scanning critical information and selectively skipping what is not important for the immediate task. This learned skill is called a proper “cross check...ability to recover from errors. Efficiency: the level of productivity that can be achieved once learning has occurred. 162 Learnability: the...use, to legacy systems. Knowing what design issues have plagued past operators can guide the generation of requirements to address the identified
2001-11-01
that there were· no· target misses. The Hellfire missile does not have a depleted uranium head . . -,, 2.2.2.3 Tank movement During the test, the...guide otber users through the use of this. complicated program. The_input data files for NOISEMAP consist of a root file name with several extensions...SOURCES subdirectory. This file will have the root file name followed by an accession number, then the .bps extension. The user must check the *.log
Outcomes of a Failure Mode and Effects Analysis for medication errors in pediatric anesthesia.
Martin, Lizabeth D; Grigg, Eliot B; Verma, Shilpa; Latham, Gregory J; Rampersad, Sally E; Martin, Lynn D
2017-06-01
The Institute of Medicine has called for development of strategies to prevent medication errors, which are one important cause of preventable harm. Although the field of anesthesiology is considered a leader in patient safety, recent data suggest high medication error rates in anesthesia practice. Unfortunately, few error prevention strategies for anesthesia providers have been implemented. Using Toyota Production System quality improvement methodology, a multidisciplinary team observed 133 h of medication practice in the operating room at a tertiary care freestanding children's hospital. A failure mode and effects analysis was conducted to systematically deconstruct and evaluate each medication handling process step and score possible failure modes to quantify areas of risk. A bundle of five targeted countermeasures were identified and implemented over 12 months. Improvements in syringe labeling (73 to 96%), standardization of medication organization in the anesthesia workspace (0 to 100%), and two-provider infusion checks (23 to 59%) were observed. Medication error reporting improved during the project and was subsequently maintained. After intervention, the median medication error rate decreased from 1.56 to 0.95 per 1000 anesthetics. The frequency of medication error harm events reaching the patient also decreased. Systematic evaluation and standardization of medication handling processes by anesthesia providers in the operating room can decrease medication errors and improve patient safety. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheu, R; Ghafar, R; Powers, A
Purpose: Demonstrate the effectiveness of in-house software in ensuring EMR workflow efficiency and safety. Methods: A web-based dashboard system (WBDS) was developed to monitor clinical workflow in real time using web technology (WAMP) through ODBC (Open Database Connectivity). Within Mosaiq (Elekta Inc), operational workflow is driven and indicated by Quality Check Lists (QCLs), which is triggered by automation software IQ Scripts (Elekta Inc); QCLs rely on user completion to propagate. The WBDS retrieves data directly from the Mosaig SQL database and tracks clinical events in real time. For example, the necessity of a physics initial chart check can be determinedmore » by screening all patients on treatment who have received their first fraction and who have not yet had their first chart check. Monitoring similar “real” events with our in-house software creates a safety net as its propagation does not rely on individual users input. Results: The WBDS monitors the following: patient care workflow (initial consult to end of treatment), daily treatment consistency (scheduling, technique, charges), physics chart checks (initial, EOT, weekly), new starts, missing treatments (>3 warning/>5 fractions, action required), and machine overrides. The WBDS can be launched from any web browser which allows the end user complete transparency and timely information. Since the creation of the dashboards, workflow interruptions due to accidental deletion or completion of QCLs were eliminated. Additionally, all physics chart checks were completed timely. Prompt notifications of treatment record inconsistency and machine overrides have decreased the amount of time between occurrence and execution of corrective action. Conclusion: Our clinical workflow relies primarily on QCLs and IQ Scripts; however, this functionality is not the panacea of safety and efficiency. The WBDS creates a more thorough system of checks to provide a safer and near error-less working environment.« less
NASA Technical Reports Server (NTRS)
Donner, Kimberly A.; Holden, Kritina L.; Manahan, Meera K.
1991-01-01
Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
Interdisciplinary Coordination Reviews: A Process to Reduce Construction Costs.
ERIC Educational Resources Information Center
Fewell, Dennis A.
1998-01-01
Interdisciplinary Coordination design review is instrumental in detecting coordination errors and omissions in construction documents. Cleansing construction documents of interdisciplinary coordination errors reduces time extensions, the largest source of change orders, and limits exposure to liability claims. Improving the quality of design…
Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)
NASA Technical Reports Server (NTRS)
Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.
Symmetric Blind Information Reconciliation for Quantum Key Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less
Symmetric Blind Information Reconciliation for Quantum Key Distribution
Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen; ...
2017-10-27
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less
Accumulate-Repeat-Accumulate-Accumulate Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy
2007-01-01
Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.
ERROR REDUCTION IN DUCT LEAKAGE TESTING THROUGH DATA CROSS-CHECKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDREWS, J.W.
1998-12-31
One way to reduce uncertainty in scientific measurement is to devise a protocol in which more quantities are measured than are absolutely required, so that the result is over constrained. This report develops a method for so combining data from two different tests for air leakage in residential duct systems. An algorithm, which depends on the uncertainty estimates for the measured quantities, optimizes the use of the excess data. In many cases it can significantly reduce the error bar on at least one of the two measured duct leakage rates (supply or return), and it provides a rational method ofmore » reconciling any conflicting results from the two leakage tests.« less
Logic design for dynamic and interactive recovery.
NASA Technical Reports Server (NTRS)
Carter, W. C.; Jessep, D. C.; Wadia, A. B.; Schneider, P. R.; Bouricius, W. G.
1971-01-01
Recovery in a fault-tolerant computer means the continuation of system operation with data integrity after an error occurs. This paper delineates two parallel concepts embodied in the hardware and software functions required for recovery; detection, diagnosis, and reconfiguration for hardware, data integrity, checkpointing, and restart for the software. The hardware relies on the recovery variable set, checking circuits, and diagnostics, and the software relies on the recovery information set, audit, and reconstruct routines, to characterize the system state and assist in recovery when required. Of particular utility is a handware unit, the recovery control unit, which serves as an interface between error detection and software recovery programs in the supervisor and provides dynamic interactive recovery.
Symmetric Blind Information Reconciliation for Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Kiktenko, E. O.; Trushechkin, A. S.; Lim, C. C. W.; Kurochkin, Y. V.; Fedorov, A. K.
2017-10-01
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. The proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.
Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds
NASA Astrophysics Data System (ADS)
Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.
2012-12-01
Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.
Data Quality Control of the French Permanent Broadband Network in the RESIF Framework.
NASA Astrophysics Data System (ADS)
Grunberg, M.; Lambotte, S.; Engels, F.
2014-12-01
In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, a new information system is setting up, allowing the improvement of the management and the distribution of high quality data from the different elements of RESIF. Within this information system, EOST (in Strasbourg) is in charge of collecting real-time permanent broadband seismic waveform, and performing Quality Control on these data. The real-time and validated data set are pushed to the French National Distribution Center (Isterre/Grenoble) to make them publicly available. Furthermore EOST hosts the BCSF-ReNaSS, in charge of the French metropolitan seismic bulletin. This allows to benefit from some high-end quality control based on the national and world-wide seismicity. Here we present the real-time seismic data flow from the stations of the French National Broad Band Network to EOST, and then, the data Quality Control procedures that were recently installed, including some new developments.The data Quality Control consists in applying a variety of processes to check the consistency of the whole system from the stations to the data center. This allows us to verify that instruments and data transmission are operating correctly. Moreover, time quality is critical for most of the scientific data applications. To face this challenge and check the consistency of polarities and amplitudes, we deployed several high-end processes including a noise correlation procedure to check for timing accuracy (intrumental time errors result in a time-shift of the whole cross-correlation, clearly distinct from those due to change in medium physical properties), and a systematic comparison of synthetic and real data for teleseismic earthquakes of magnitude larger than 6.5 to detect timing errors as well as polarity and amplitude problems.
McDonald, Catherine C; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas; Lee, Yi-Ching; Bonfiglio, Dana; Fisher, Donald L; Winston, Flaura K
Collisions at left turn intersections are among the most prevalent types of teen driver serious crashes, with inadequate surveillance as a key factor. Risk awareness perception training (RAPT) has shown effectiveness in improving hazard anticipation for latent hazards. The goal of this study was to determine if RAPT version 3 (RAPT-3) improved intersection turning behaviors among novice teen drivers when the hazards were not latent and frequent glancing to multiple locations at the intersection was needed. Teens aged 16-18 with ≤180 days of licensure were randomly assigned to: 1) an intervention group (n=18) that received RAPT-3 (Trained); or 2) a control group (n=19) that received no training (Untrained). Both groups completed RAPT-3 Baseline Assessment and the Trained group completed RAPT-3 Training and RAPT-3 Post Assessment. Training effects were evaluated on a driving simulator. Simulator ( gap selection errors and collisions ) and eye tracker ( traffic check errors) metrics from six left-turn stop sign controlled intersections in the Simulated Driving Assessment (SDA) were analyzed. The Trained group scored significantly higher in RAPT-3 Post Assessment than RAPT-3 Baseline Assessment (p< 0.0001). There were no significant differences in either traffic check and gap selection errors or collisions among Trained and Untrained teens in the SDA. Though Trained teens learned about hazard anticipation related to latent hazards, learning did not translate to performance differences in left-turn stop sign controlled intersections where the hazards were not latent. Our findings point to further research to better understand the challenges teens have with left turn intersections.
Towards component-based validation of GATE: aspects of the coincidence processor
Moraes, Eder R.; Poon, Jonathan K.; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D.
2014-01-01
GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to “ground truth” obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the “multiple window method”), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the “single window method”). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. PMID:25240897
ERIC Educational Resources Information Center
Micceri, Theodore; Parasher, Pradnya; Waugh, Gordon W.; Herreid, Charlene
2009-01-01
An extensive review of the research literature and a study comparing over 36,000 survey responses with archival true scores indicated that one should expect a minimum of at least three percent random error for the least ambiguous of self-report measures. The Gulliver Effect occurs when a small proportion of error in a sizable subpopulation exerts…
Attitude Error Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2002-01-01
The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.
Strategic planning to reduce medical errors: Part I--diagnosis.
Waldman, J Deane; Smith, Howard L
2012-01-01
Despite extensive dialogue and a continuing stream of proposed medical practice revisions, medical errors and adverse impacts persist. Connectivity of vital elements is often underestimated or not fully understood. This paper analyzes medical errors from a systems dynamics viewpoint (Part I). Our analysis suggests in Part II that the most fruitful strategies for dissolving medical errors include facilitating physician learning, educating patients about appropriate expectations surrounding treatment regimens, and creating "systematic" patient protections rather than depending on (nonexistent) perfect providers.
Automation Bias: Decision Making and Performance in High-Tech Cockpits
NASA Technical Reports Server (NTRS)
Mosier, Kathleen L.; Skitka, Linda J.; Heers, Susan; Burdick, Mark; Rosekind, Mark R. (Technical Monitor)
1997-01-01
Automated aids and decision support tools are rapidly becoming indispensible tools in high-technology cockpits, and are assuming increasing control of "cognitive" flight tasks, such as calculating fuel-efficient routes, navigating, or detecting and diagnosing system malfunctions and abnormalities. This study was designed to investigate "automation bias," a recently documented factor in the use of automated aids and decision support systems. The term refers to omission and commission errors resulting from the use of automated cues as a heuristic replacement for vigilant information seeking and processing. Glass-cockpit pilots flew flight scenarios involving automation "events," or opportunities for automation-related omission and commission errors. Pilots who perceived themselves as "accountable" for their performance and strategies of interaction with the automation were more likely to double-check automated functioning against other cues, and less likely to commit errors. Pilots were also likely to erroneously "remember" the presence of expected cues when describing their decision-making processes.
A selective-update affine projection algorithm with selective input vectors
NASA Astrophysics Data System (ADS)
Kong, NamWoong; Shin, JaeWook; Park, PooGyeon
2011-10-01
This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.
Coil motion effects in watt balances: a theoretical check
NASA Astrophysics Data System (ADS)
Li, Shisong; Schlamminger, Stephan; Haddad, Darine; Seifert, Frank; Chao, Leon; Pratt, Jon R.
2016-04-01
A watt balance is a precision apparatus for the measurement of the Planck constant that has been proposed as a primary method for realizing the unit of mass in a revised International System of Units. In contrast to an ampere balance, which was historically used to realize the unit of current in terms of the kilogram, the watt balance relates electrical and mechanical units through a virtual power measurement and has far greater precision. However, because the virtual power measurement requires the execution of a prescribed motion of a coil in a fixed magnetic field, systematic errors introduced by horizontal and rotational deviations of the coil from its prescribed path will compromise the accuracy. We model these potential errors using an analysis that accounts for the fringing field in the magnet, creating a framework for assessing the impact of this class of errors on the uncertainty of watt balance results.
Utilizing LANDSAT imagery to monitor land-use change - A case study in Ohio
NASA Technical Reports Server (NTRS)
Gordon, S. I.
1980-01-01
A study, performed in Ohio, of the nature and extent of interpretation errors in the application of Landsat imagery to land-use planning and modeling is reported. Potential errors associated with the misalignment of pixels after geometric correction and with misclassification of land cover or land use due to spectral similarities were identified on interpreted computer-compatible tapes of a portion of Franklin County for two adjacent days of 1975 and one day of 1973, and the extents of these errors were quantified by comparison with a ground-checked set of aerial-photograph interpretations. The open-space and agricultural categories are found to be the most consistently classified, while the more urban areas were classified correctly only from about 43 to 8% of the time. It is thus recommended that the direct application of Landsat data to land-use planning must await improvements in classification techniques and accuracy.
Misadministration of radiation therapy in veterinary medicine: a case report and literature review.
Arkans, M M; Gieger, T L; Nolan, M W
2017-03-01
Recent technical advancements in radiation therapy have allowed for improved targeting of tumours and sparing nearby normal tissues, while simultaneously decreasing the risk for medical errors by incorporating additional safety checks into electronic medical record keeping systems. The benefits of these new technologies, however, depends on their proper integration and use in the oncology clinic. Despite the advancement of technology for treatment delivery and medical record keeping, misadministration errors have a significant impact on patient care in veterinary oncology. The first part of this manuscript describes a medical incident that occurred at an academic veterinary referral hospital, in a dog receiving a combination of stereotactic radiation therapy and full-course intensity-modulated, image-guided radiation therapy. The second part of the report is a literature review, which explores misadministration errors and novel challenges which arise with the implementation of advancing technologies in veterinary radiation oncology. © 2015 John Wiley & Sons Ltd.
XMI2USE: A Tool for Transforming XMI to USE Specifications
NASA Astrophysics Data System (ADS)
Sun, Wuliang; Song, Eunjee; Grabow, Paul C.; Simmonds, Devon M.
The UML-based Specification Environment (USE) tool supports syntactic analysis, type checking, consistency checking, and dynamic validation of invariants and pre-/post conditions specified in the Object Constraint Language (OCL). Due to its animation and analysis power, it is useful when checking critical non-functional properties such as security policies. However, the USE tool requires one to specify (i.e., "write") a model using its own textual language and does not allow one to import any model specification files created by other UML modeling tools. Hence, to make the best use of existing UML tools, we often create a model with OCL constraints using a modeling tool such as the IBM Rational Software Architect (RSA) and then use the USE tool for model validation. This approach, however, requires a manual transformation between the specifications of two different tool formats, which is error-prone and diminishes the benefit of automated model-level validations. In this paper, we describe our own implementation of a specification transformation engine that is based on the Model Driven Architecture (MDA) framework and currently supports automatic tool-level transformations from RSA to USE.
Increasing Understanding of Public Problems and Policies, 1997.
ERIC Educational Resources Information Center
Ernstes, David P., Ed.; Hicks, Dawne M., Ed.
This document contains 21 papers: "Land Grant University and Extension in the 21st Century" (Jon Wefald); "A Reality Check" (Bud Webb); "Land Grant Colleges and Universities of the Future" (Michael J. Phillips); "Vulnerability of the Land Grant Colleges of Agriculture: A Public Affairs Perspective" (Allen Rosenfeld); "The Future of Land Grant…
Reality Check: OK Extension Helps Teachers Meet Financial Education Requirements
ERIC Educational Resources Information Center
St. Pierre, Eileen; Simpson, Mickey; Moffat, Susan; Cothren, Phillis
2011-01-01
According to the Jump$tart Coalition, Oklahoma is one of 24 states to adopt financial education requirements for students (Jump$tart Coalition, 2010). The Passport to Financial Literacy Act of 2007, Oklahoma House Bill 1476, requires Oklahoma students in grades 7 through 12 to fulfill established financial literacy requirements to graduate with a…
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2011 CFR
2011-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2014 CFR
2014-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2012 CFR
2012-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2013 CFR
2013-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
Partnering with the Local Livestock Market in Educational Programs.
ERIC Educational Resources Information Center
Jenkins, Jamie H.; Newman, Michael E.; Castellaw, Jimmy C.; Lane, Clyde D., Jr.
2000-01-01
Survey responses from 62 of 96 cattle producers evaluated educational methods of the extension service and the livestock market. Methods included tips distributed with the sale check, monthly and sale day programs, and Second Saturday cattle working program. The combination of programs offered influenced them to make changes in their production…
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock.
The purpose of the project described in this report was to investigate the feasibility of interactive microcomputer/videotape software for use in Texas vocational agriculture programs. An extensive literature review was conducted to determine the value of videotaped and interactive videotaped lessons and to check what equipment and programs were…
78 FR 59621 - Extension of the Current Fees for the Accredited Laboratory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
... regulatory samples of raw or processed meat and poultry products, and through which a check sample program... Laboratory Program. Such accreditation allows laboratories to conduct analyses of official meat and poultry... employer. List of Subjects in 9 CFR Part 391 Fees and charges, Government employees, Meat inspection...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaks, D; Fletcher, R; Salamon, S
Purpose: To develop an online framework that tracks a patient’s plan from initial simulation to treatment and that helps automate elements of the physics plan checks usually performed in the record and verify (RV) system and treatment planning system. Methods: We have developed PlanTracker, an online plan tracking system that automatically imports new patients tasks and follows it through treatment planning, physics checks, therapy check, and chart rounds. A survey was designed to collect information about the amount of time spent by medical physicists in non-physics related tasks. We then assessed these non-physics tasks for automation. Using these surveys, wemore » directed our PlanTracker software development towards the automation of intra-plan physics review. We then conducted a systematic evaluation of PlanTracker’s accuracy by generating test plans in the RV system software designed to mimic real plans, in order to test its efficacy in catching errors both real and theoretical. Results: PlanTracker has proven to be an effective improvement to the clinical workflow in a radiotherapy clinic. We present data indicating that roughly 1/3 of the physics plan check can be automated, and the workflow optimized, and show the functionality of PlanTracker. When the full system is in clinical use we will present data on improvement of time use in comparison to survey data prior to PlanTracker implementation. Conclusion: We have developed a framework for plan tracking and automatic checks in radiation therapy. We anticipate using PlanTracker as a basis for further development in clinical/research software. We hope that by eliminating the most simple and time consuming checks, medical physicists may be able to spend their time on plan quality and other physics tasks rather than in arithmetic and logic checks. We see this development as part of a broader initiative to advance the clinical/research informatics infrastructure surrounding the radiotherapy clinic. This research project has been financially supported by Varian Medical Systems, Palo Alto, CA, through a Varian MRA.« less
STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the Payload Ground Handling Mechanism that will move the U.S. Lab Destiny out of Atlantis''' payload bay and into the PCR. After the move, Atlantis will roll back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.
Outage maintenance checks on large generator windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nindra, B.; Jeney, S.I.; Slobodinsky, Y.
In the present days of austerity, more constraints and pressures are being brought on the maintenance engineers to certify the generators for their reliability and life extension. The outages are shorter and intervals between the outages are becoming longer. The annual outages were very common when utilities had no regulatory constraints and also had standby capacities. Furthermore, due to lean and mean budgets, outage maintenance programs are being pursued more aggressively, so that longer interval outages can be achieved to ensure peak generator performance. This paper will discuss various visual checks, electrical tests and recommended fixes to achieve the abovemore » mentioned objectives, in case any deficiencies are found.« less
Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project
NASA Technical Reports Server (NTRS)
Owens, Donald B.; Cox, David E.; Morelli, Eugene A.
2006-01-01
An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai
2013-05-01
Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.
NASA Astrophysics Data System (ADS)
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Ceppi, Marcello; Gallo, Fabio; Bonassi, Stefano
2011-01-01
The most common study design performed in population studies based on the micronucleus (MN) assay, is the cross-sectional study, which is largely performed to evaluate the DNA damaging effects of exposure to genotoxic agents in the workplace, in the environment, as well as from diet or lifestyle factors. Sample size is still a critical issue in the design of MN studies since most recent studies considering gene-environment interaction, often require a sample size of several hundred subjects, which is in many cases difficult to achieve. The control of confounding is another major threat to the validity of causal inference. The most popular confounders considered in population studies using MN are age, gender and smoking habit. Extensive attention is given to the assessment of effect modification, given the increasing inclusion of biomarkers of genetic susceptibility in the study design. Selected issues concerning the statistical treatment of data have been addressed in this mini-review, starting from data description, which is a critical step of statistical analysis, since it allows to detect possible errors in the dataset to be analysed and to check the validity of assumptions required for more complex analyses. Basic issues dealing with statistical analysis of biomarkers are extensively evaluated, including methods to explore the dose-response relationship among two continuous variables and inferential analysis. A critical approach to the use of parametric and non-parametric methods is presented, before addressing the issue of most suitable multivariate models to fit MN data. In the last decade, the quality of statistical analysis of MN data has certainly evolved, although even nowadays only a small number of studies apply the Poisson model, which is the most suitable method for the analysis of MN data.
ERIC Educational Resources Information Center
Goldman, Charles I.
The manual is part of a series to assist in planning procedures for local and State vocational agencies. It details steps required to process a local education agency's data after the data have been coded onto keypunch forms. Program, course, and overhead data are input into a computer data base and error checks are performed. A computer model is…
ERIC Educational Resources Information Center
Osborne, Jason W.
2013-01-01
Osborne and Waters (2002) focused on checking some of the assumptions of multiple linear regression. In a critique of that paper, Williams, Grajales, and Kurkiewicz correctly clarify that regression models estimated using ordinary least squares require the assumption of normally distributed errors, but not the assumption of normally distributed…
U.S. Navy Fault-Tolerant Microcomputer.
1982-07-01
105 8929 SEPULVEDA BLVD. LOS ANGELES, CALIFORNIA 90045 To: DEFENSE TECHNICAL INFORMATION CENTER Fal-ae Technoog Corporation MILITARY STANDARD FAULT...maintainability. Com- puter errors at any significant level can be disastrous in terms of human injury, aborted missions, loss of critical information and...employed to resolve the question "who checks the checker?" The IOC votes on information received from the bus and outputs the maiority decision. Thus no
Improving Software Quality and Management Through Use of Service Level Agreements
2005-03-01
many who believe that the quality of the development process is the best predictor of software product quality. ( Fenton ) Repeatable software processes...reduced errors per KLOC for small projects ( Fenton ), and the quality management metric (QMM) (Machniak, Osmundson). There are also numerous IEEE 14...attention to cosmetic user interface issues and any problems that may arise with the prototype. (Sawyer) The validation process is also another check
Fall 2014 SEI Research Review Probabilistic Analysis of Time Sensitive Systems
2014-10-28
Osmosis SMC Tool Osmosis is a tool for Statistical Model Checking (SMC) with Semantic Importance Sampling. • Input model is written in subset of C...ASSERT() statements in model indicate conditions that must hold. • Input probability distributions defined by the user. • Osmosis returns the...on: – Target relative error, or – Set number of simulations Osmosis Main Algorithm 1 http://dreal.cs.cmu.edu/ (?⃑?): Indicator
The Problem of Modeling the Elastomechanics in Engineering
1990-02-01
element method by the code PROBE (McNeil Schwendler- Noetic ) and STRIPE (Aeronautical Institute of Sweden). These codes have various error checks so that...Mindlin solutions converge to the Kirchhoff solution as d--O, see eg. [12), [19]. For a detailed study of the asymptotic behavior of Reissner...of study and research for foreign students in numerical mathematics who are supported by foreign govern- ments or exchange agencies (Fulbright, etc
A Revised Earthquake Catalogue for South Iceland
NASA Astrophysics Data System (ADS)
Panzera, Francesco; Zechar, J. Douglas; Vogfjörd, Kristín S.; Eberhard, David A. J.
2016-01-01
In 1991, a new seismic monitoring network named SIL was started in Iceland with a digital seismic system and automatic operation. The system is equipped with software that reports the automatic location and magnitude of earthquakes, usually within 1-2 min of their occurrence. Normally, automatic locations are manually checked and re-estimated with corrected phase picks, but locations are subject to random errors and systematic biases. In this article, we consider the quality of the catalogue and produce a revised catalogue for South Iceland, the area with the highest seismic risk in Iceland. We explore the effects of filtering events using some common recommendations based on network geometry and station spacing and, as an alternative, filtering based on a multivariate analysis that identifies outliers in the hypocentre error distribution. We identify and remove quarry blasts, and we re-estimate the magnitude of many events. This revised catalogue which we consider to be filtered, cleaned, and corrected should be valuable for building future seismicity models and for assessing seismic hazard and risk. We present a comparative seismicity analysis using the original and revised catalogues: we report characteristics of South Iceland seismicity in terms of b value and magnitude of completeness. Our work demonstrates the importance of carefully checking an earthquake catalogue before proceeding with seismicity analysis.
Wu, Hua'an; Zeng, Bo; Zhou, Meng
2017-11-15
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.
SU-E-J-199: A Software Tool for Quality Assurance of Online Replanning with MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Ahunbay, E; Li, X
2015-06-15
Purpose: To develop a quality assurance software tool, ArtQA, capable of automatically checking radiation treatment plan parameters, verifying plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary MU calculation considering the effect of magnetic field from MR-Linac, and verifying the delivery and plan consistency, for online replanning. Methods: ArtQA was developed by creating interfaces to TPS (e.g., Monaco, Elekta), R&V system (Mosaiq, Elekta), and secondary MU calculation system. The tool obtains plan parameters from the TPS via direct file reading, and retrieves plan data both transferred from TPS and recorded during themore » actual delivery in the R&V system database via open database connectivity and structured query language. By comparing beam/plan datasets in different systems, ArtQA detects and outputs discrepancies between TPS, R&V system and secondary MU calculation system, and delivery. To consider the effect of 1.5T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA is capable of automatically checking plan integrity and logic consistency, detecting plan data transfer errors, performing secondary MU calculations with or without a transverse magnetic field, and verifying treatment delivery. The tool is efficient and effective for pre- and post-treatment QA checks of all available treatment parameters that may be impractical with the commonly-used visual inspection. Conclusion: The software tool ArtQA can be used for quick and automatic pre- and post-treatment QA check, eliminating human error associated with visual inspection. While this tool is developed for online replanning to be used on MR-Linac, where the QA needs to be performed rapidly as the patient is lying on the table waiting for the treatment, ArtQA can be used as a general QA tool in radiation oncology practice. This work is partially supported by Elekta Inc.« less
Using medication list--problem list mismatches as markers of potential error.
Carpenter, James D.; Gorman, Paul N.
2002-01-01
The goal of this project was to specify and develop an algorithm that will check for drug and problem list mismatches in an electronic medical record (EMR). The algorithm is based on the premise that a patient's problem list and medication list should agree, and a mismatch may indicate medication error. Successful development of this algorithm could mean detection of some errors, such as medication orders entered into a wrong patient record, or drug therapy omissions, that are not otherwise detected via automated means. Additionally, mismatches may identify opportunities to improve problem list integrity. To assess the concept's feasibility, this study compared medications listed in a pharmacy information system with findings in an online nursing adult admission assessment, serving as a proxy for the problem list. Where drug and problem list mismatches were discovered, examination of the patient record confirmed the mismatch, and identified any potential causes. Evaluation of the algorithm in diabetes treatment indicates that it successfully detects both potential medication error and opportunities to improve problem list completeness. This algorithm, once fully developed and deployed, could prove a valuable way to improve the patient problem list, and could decrease the risk of medication error. PMID:12463796
Aylor, K.; Hou, Z.; Knox, L.; ...
2017-11-20
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less