Laboratory or field tests for evaluating firefighters' work capacity?
Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer
2014-01-01
Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = -0.81) and barbell shoulder press (rs = -0.77), for Pulling: IE shoulder extension (rs = -0.82) and bench press (rs = -0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = -0.83) and bench press (rs = -0.82), and for the Terrain work task: IE trunk flexion (rs = -0.58) and upright barbell row (rs = -0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.
Water Quality: A Field-Based Quality Testing Program for Middle Schools and High Schools.
ERIC Educational Resources Information Center
Massachusetts State Water Resources Authority, Boston.
This manual contains background information, lesson ideas, procedures, data collection and reporting forms, suggestions for interpreting results, and extension activities to complement a water quality field testing program. Information on testing water temperature, water pH, dissolved oxygen content, biochemical oxygen demand, nitrates, total…
ERIC Educational Resources Information Center
Bajaj, Dev Raj
This study assessed the personality traits of Oklahoma field extension personnel as related to certain professional and social attributes and to job involvement. A special background questionnaire, a job involvement inventory, and a true false test called the California Psychological Inventory (CPI) were administered to 77 county extension…
Laboratory or Field Tests for Evaluating Firefighters' Work Capacity?
Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer
2014-01-01
Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity. PMID:24614596
Extending fields in a level set method by solving a biharmonic equation
NASA Astrophysics Data System (ADS)
Moroney, Timothy J.; Lusmore, Dylan R.; McCue, Scott W.; McElwain, D. L. Sean
2017-08-01
We present an approach for computing extensions of velocities or other fields in level set methods by solving a biharmonic equation. The approach differs from other commonly used approaches to velocity extension because it deals with the interface fully implicitly through the level set function. No explicit properties of the interface, such as its location or the velocity on the interface, are required in computing the extension. These features lead to a particularly simple implementation using either a sparse direct solver or a matrix-free conjugate gradient solver. Furthermore, we propose a fast Poisson preconditioner that can be used to accelerate the convergence of the latter. We demonstrate the biharmonic extension on a number of test problems that serve to illustrate its effectiveness at producing smooth and accurate extensions near interfaces. A further feature of the method is the natural way in which it deals with symmetry and periodicity, ensuring through its construction that the extension field also respects these symmetries.
Bias extension test on a bi-axial non-crimp fabric powdered with a non-reactive binder system
NASA Astrophysics Data System (ADS)
Pourtier, Jean; Duchamp, Boris; Kowalski, Maxime; Legrand, Xavier; Wang, Peng; Soulat, Damien
2018-05-01
In this communication, we investigated the effects of a chemical non-reactive binder system (powder) on the formability of NCF. Those influences are evaluated for two different of bi-axial NCF structures tested in a range of temperature [20°C - 140°] during bias extension tests (Fig. 1). This analyze is based on the study of force in function of deformation modes (slipping effects and shear angle field).
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
NASA Technical Reports Server (NTRS)
Trout, Dawn; Burford, Janessa
2012-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite . a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Burford, Janessa
2013-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
Mayorga-Vega, Daniel; Merino-Marban, Rafael; Viciana, Jesús
2014-01-01
The main purpose of the present meta-analysis was to examine the scientific literature on the criterion-related validity of sit-and-reach tests for estimating hamstring and lumbar extensibility. For this purpose relevant studies were searched from seven electronic databases dated up through December 2012. Primary outcomes of criterion-related validity were Pearson´s zero-order correlation coefficients (r) between sit-and-reach tests and hamstrings and/or lumbar extensibility criterion measures. Then, from the included studies, the Hunter- Schmidt´s psychometric meta-analysis approach was conducted to estimate population criterion- related validity of sit-and-reach tests. Firstly, the corrected correlation mean (rp), unaffected by statistical artefacts (i.e., sampling error and measurement error), was calculated separately for each sit-and-reach test. Subsequently, the three potential moderator variables (sex of participants, age of participants, and level of hamstring extensibility) were examined by a partially hierarchical analysis. Of the 34 studies included in the present meta-analysis, 99 correlations values across eight sit-and-reach tests and 51 across seven sit-and-reach tests were retrieved for hamstring and lumbar extensibility, respectively. The overall results showed that all sit-and-reach tests had a moderate mean criterion-related validity for estimating hamstring extensibility (rp = 0.46-0.67), but they had a low mean for estimating lumbar extensibility (rp = 0. 16-0.35). Generally, females, adults and participants with high levels of hamstring extensibility tended to have greater mean values of criterion-related validity for estimating hamstring extensibility. When the use of angular tests is limited such as in a school setting or in large scale studies, scientists and practitioners could use the sit-and-reach tests as a useful alternative for hamstring extensibility estimation, but not for estimating lumbar extensibility. Key Points Overall sit-and-reach tests have a moderate mean criterion-related validity for estimating hamstring extensibility, but they have a low mean validity for estimating lumbar extensibility. Among all the sit-and-reach test protocols, the Classic sit-and-reach test seems to be the best option to estimate hamstring extensibility. End scores (e.g., the Classic sit-and-reach test) are a better indicator of hamstring extensibility than the modifications that incorporate fingers-to-box distance (e.g., the Modified sit-and-reach test). When angular tests such as straight leg raise or knee extension tests cannot be used, sit-and-reach tests seem to be a useful field test alternative to estimate hamstring extensibility, but not to estimate lumbar extensibility. PMID:24570599
Repeatability of testing procedures for resilient modulus and fatigue.
DOT National Transportation Integrated Search
1989-04-01
Extensive use of diametral resilient modulus and fatigue testing is made by the Oregon State Highway Division to evaluate asphaltic concrete materials. Test results on similar materials (e.g., adjacent field cores), however, often indicate a poor lev...
UIUC concrete tie and fastener field testing at TTC.
DOT National Transportation Integrated Search
2014-07-01
In July 2012, the University of Illinois at Urbana-Champaign (UIUC) began an extensive : experimental program at the Transportation : Technology Center (TTC) in Pueblo, CO. The : field experimentation program was part of a : larger research program f...
UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION
Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
- Extensive high quality microcosm testing followed by small-scale, thoroughly observed field pilot tests (i.e., RABITT Protocol, Morse 1998)
- More limited ...
ERIC Educational Resources Information Center
Lam, Tony C. N.; And Others
This report describes an extensive field test of the Bilingual Education Evaluation System (BEES) used to evaluate local level bilingual education projects. Because such projects will usually not be able to implement a traditional true or quasi-experimental design, BEES employs a "gap-reduction" evaluation design that is easily…
UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION (Battelle)
Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
Extensive high quality microcosm testing followed by small-scale, thoroughly observed, induced flow field pilot tests (i.e. RABITT Protocol, Morse 1998)
More...
Adding Test Generation to the Teaching Machine
ERIC Educational Resources Information Center
Bruce-Lockhart, Michael; Norvell, Theodore; Crescenzi, Pierluigi
2009-01-01
We propose an extension of the Teaching Machine project, called Quiz Generator, that allows instructors to produce assessment quizzes in the field of algorithm and data structures quite easily. This extension makes use of visualization techniques and is based on new features of the Teaching Machine that allow third-party visualizers to be added as…
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
Control of Wheel/Rail Noise and Vibration
DOT National Transportation Integrated Search
1982-04-01
An analytical model of the generation of wheel/rail noise has been developed and validated through an extensive series of field tests carried out at the Transportation Test Center using the State of the Art Car. A sensitivity analysis has been perfor...
MM&T: Testing of Electro-Optic Components.
1981-02-01
electro - optic components with special emphasis on diamond-turned optics. The primary purpose of that study was to determine where new government initiatives could be most effective in moving this area forward. Besides an ordered list of recommended government actions, this study has resulted in+ an extensive survey of experts (the most extensive yet made), the largest annotated bibliography in the field, an improved form of Ronchi testing giving quantitative results, a general approach to nonconjugate interferometry, a high accuracy form of multiple-wavelength absolute
[Features associated with retinal thickness extension in diabetic macular oedema].
Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila
2015-01-01
Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity <0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Analytical condition inspection and extension of time between overhaul of F3-30 engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakao, M.; Ikeyama, M.; Abe, S.
1992-04-01
F3-30 is the low-bypass-ratio turbofan engine developed to power the T-4 intermediate trainer for the Japan Air Self Defense Force (JASDF). The actual field service was started in Sept., 1988. This paper reports on the program to extend time between overhaul (TBO) of the F3-30 which has been running. Analytical condition inspection (ACI) and accelerated mission testing (AMT) were conducted to confirm sufficient durability to extend TBO. Most deteriorations of parts and performance due to AMT were also found by ACI after field operation with approximately the same deterioration rate. On the other hand, some deteriorations were found by ACImore » only. These results show that ACI after field operation is also necessary to confirm the TBO extension, although AMT simulates the deterioration in field operations very well. The deteriorations that would be caused by the field operation during one extended-TBO were estimated with the results of ACI and AMT, and it was concluded that the F3-30 has sufficient durability for TBO extension to the next step.« less
Collateral Damage: How High-Stakes Testing Corrupts America's Schools
ERIC Educational Resources Information Center
Nichols, Sharon L.; Berliner, David C.
2007-01-01
Drawing on their extensive research, Nichols and Berliner document and categorize the ways that high-stakes testing threatens the purposes and ideals of the American education system. For more than a decade, the debate over high-stakes testing has dominated the field of education. This passionate and provocative book provides a fresh perspective…
An assessment of laser velocimetry in hypersonic flow
NASA Technical Reports Server (NTRS)
1992-01-01
Although extensive progress has been made in computational fluid mechanics, reliable flight vehicle designs and modifications still cannot be made without recourse to extensive wind tunnel testing. Future progress in the computation of hypersonic flow fields is restricted by the need for a reliable mean flow and turbulence modeling data base which could be used to aid in the development of improved empirical models for use in numerical codes. Currently, there are few compressible flow measurements which could be used for this purpose. In this report, the results of experiments designed to assess the potential for laser velocimeter measurements of mean flow and turbulent fluctuations in hypersonic flow fields are presented. Details of a new laser velocimeter system which was designed and built for this test program are described.
Van Campenhout, Bjorn; Vandevelde, Senne; Walukano, Wilberforce; Van Asten, Piet
2017-01-01
To feed a growing population, agricultural productivity needs to increase dramatically. Agricultural extension information, with its public, non-rival nature, is generally undersupplied, and public provision remains challenging. In this study, simple agricultural extension video messages, delivered through Android tablets, were tested in the field to determine if they increased farmers’ knowledge of recommended practices on (i) potato seed selection and (ii) seed storage and handling among a sample of potato farmers in southwestern Uganda. Using a field experiment with ex ante matching in a factorial design, it was established that showing agricultural extension videos significantly increased farmers’ knowledge. However, results suggested impact pathways that went beyond simply replicating what was shown in the video. Video messages may have triggered a process of abstraction, whereby farmers applied insights gained in one context to a different context. PMID:28122005
Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Holditch; A. Daniel Hill; D. Zhu
2007-06-19
The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of thismore » project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.« less
Uses of infrared thermography in the low-cost solar array program
NASA Technical Reports Server (NTRS)
Glazer, S. D.
1982-01-01
The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.
Note: The full function test explosive generator.
Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B
2010-03-01
We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained.
Photo stratification improves northwest timber volume estimates.
Colin D. MacLean
1972-01-01
Data from extensive timber inventories of 12 counties in western and central Washington were analyzed to test the relative efficiency of double sampling for stratification as a means of estimating total volume. Photo and field plots, when combined in a stratified sampling design, proved about twice as efficient as simple field sampling. Although some gains were made by...
Comparison of Field Methods and Models to Estimate Mean Crown Diameter
William A. Bechtold; Manfred E. Mielke; Stanley J. Zarnoch
2002-01-01
The direct measurement of crown diameters with logger's tapes adds significantly to the cost of extensive forest inventories. We undertook a study of 100 trees to compare this measurement method to four alternatives-two field instruments, ocular estimates, and regression models. Using the taping method as the standard of comparison, accuracy of the tested...
ERIC Educational Resources Information Center
Hafdahl, Adam R.; Williams, Michelle A.
2009-01-01
In 2 Monte Carlo studies of fixed- and random-effects meta-analysis for correlations, A. P. Field (2001) ostensibly evaluated Hedges-Olkin-Vevea Fisher-[zeta] and Schmidt-Hunter Pearson-r estimators and tests in 120 conditions. Some authors have cited those results as evidence not to meta-analyze Fisher-[zeta] correlations, especially with…
The Evolution of US Army Tactical Doctrine, 1946-76 (Leavenworth Papers, Number 1)
1979-08-01
different from those usedin the past. As for the offense, rhe manual noted that chemical, biological and radiological agents could be used “to...The official Army study was entitled “Atomic Field Army-l 1956 (,ATFA-I).” The formal field tests began in 1954with the 1st Armored Division at...Fort Hood, Texas, and the 47th Infantry Division at Fort Ben ning, Georgia. The extensive tests were designed to determine what changes in
Cognitive Complexity in the Remote Association Test--Chinese Version
ERIC Educational Resources Information Center
Hung, Su-Pin; Huang, Po-Sheng; Chen, Hsueh-Chih
2016-01-01
The remote association test (RAT) has been applied in various fields; however, evidence of construct validity for the original version and subsequent extensions of the RAT remains limited. This study aimed to elucidate the dimensionality and the relationship between item features and item difficulties for the RAT--Chinese Version (RAT-C) using the…
Structural Validity of the Movement ABC-2 Test: Factor Structure Comparisons across Three Age Groups
ERIC Educational Resources Information Center
Schulz, Joerg; Henderson, Sheila E.; Sugden, David A.; Barnett, Anna L.
2011-01-01
Background: The Movement ABC test is one of the most widely used assessments in the field of Developmental Coordination Disorder (DCD). Improvements to the 2nd edition of the test (M-ABC-2) include an extension of the age range and reduction in the number of age bands as well as revision of tasks. The total test score provides a measure of motor…
Radiation Effects on Current Field Programmable Technologies
NASA Technical Reports Server (NTRS)
Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.
1997-01-01
Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.
HPV Testing of Head and Neck Cancer in Clinical Practice.
Robinson, Max
The pathology laboratory has a central role in providing human papillomavirus (HPV) tests for patients with head and neck cancer. There is an extensive literature around HPV testing and a large number of proprietary HPV tests, which makes the field difficult to navigate. This review provides a concise contemporary overview of the evidence around HPV testing in head and neck cancer and signposts key publications, guideline documents and the most commonly used methods in clinical practice.
Antenna Near-Field Probe Station Scanner
NASA Technical Reports Server (NTRS)
Darby, William G. (Inventor); Miranda, Felix A. (Inventor); Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor)
2011-01-01
A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.
The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank
NASA Astrophysics Data System (ADS)
Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing
2018-03-01
In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.
Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers
NASA Technical Reports Server (NTRS)
Adams, James H.; Christl, Mark J.; Young, Roy M.
2011-01-01
The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.
Richard M. DeGraaf; Thomas J. Maier; Todd K. Fuller
1999-01-01
After photographtc observations in the field and laboratory tests indicated that small rodents might be significant predators on small eggs, we conducted a field study in central Massachusetts to compare predation of House Sparrow (Passer domesticus) eggs in artificial nests near to (5-15 m) and far from (100-120 m) forest edges and between ground...
Preliminary Report on Oak Ridge National Laboratory Testing of Drake/ACSS/MA2/E3X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irminger, Philip; King, Daniel J.; Herron, Andrew N.
2016-01-01
A key to industry acceptance of a new technology is extensive validation in field trials. The Powerline Conductor Accelerated Test facility (PCAT) at Oak Ridge National Laboratory (ORNL) is specifically designed to evaluate the performance and reliability of a new conductor technology under real world conditions. The facility is set up to capture large amounts of data during testing. General Cable used the ORNL PCAT facility to validate the performance of TransPowr with E3X Technology a standard overhead conductor with an inorganic high emissivity, low absorptivity surface coating. Extensive testing has demonstrated a significant improvement in conductor performance across amore » wide range of operating temperatures, indicating that E3X Technology can provide a reduction in temperature, a reduction in sag, and an increase in ampacity when applied to the surface of any overhead conductor. This report provides initial results of that testing.« less
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement
NASA Astrophysics Data System (ADS)
Van Winkle, Clinton Isaac
Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.
Surface accuracy measurement sensor test on a 50-meter antenna surface model
NASA Technical Reports Server (NTRS)
Spiers, R. B.; Burcher, E. E.; Stump, C. W.; Saunders, C. G.; Brooks, G. F.
1984-01-01
The Surface Accuracy Measurement Sensor (SAMS) is a telescope with a focal plane photo electric detector that senses the lateral position of light source targets in its field of view. After extensive laboratory testing the engineering breadboard sensor system was installed and tested on a 30 degree segment of a 50-meter diameter, mesh surface, antenna model. Test results correlated well with the laboratory tests and indicated accuracies of approximately 0.59 arc seconds at 21 meters range. Test results are presented and recommendations given for sensor improvements.
Identification and modification of dominant noise sources in diesel engines
NASA Astrophysics Data System (ADS)
Hayward, Michael D.
Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.
Application of Statistics in Engineering Technology Programs
ERIC Educational Resources Information Center
Zhan, Wei; Fink, Rainer; Fang, Alex
2010-01-01
Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…
Aggregate freeze-thaw testing and d-cracking field performance : 30 years later : [summary].
DOT National Transportation Integrated Search
2014-09-01
Premature deterioration of concrete pavement due to D-cracking has been a problem in : Kansas since the 1930s. The Kansas Department of Transportation (KDOT) has made : significant efforts, including five extensive studies into the phenomenon of D-Cr...
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES (SLIDES)
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
Systematic Validation of Protein Force Fields against Experimental Data
Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.
2012-01-01
Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field—the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins—one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins. PMID:22384157
NASA Astrophysics Data System (ADS)
Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata
2016-09-01
Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.
SIGI: An Interactive Aid to Career Decision Making.
ERIC Educational Resources Information Center
Katz, Martin R.
1980-01-01
The System of Interactive Guidance and Information (SIGI) helps students make informed and rational career decisions. Interacting with a computer, students examine values, identify and explore options, gain and interpret relevant information, master strategies for decision making, and formulate plans of action. Extensively field-tested, SIGI has…
Early Development and the Brain: Teaching Resources for Educators
ERIC Educational Resources Information Center
Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.
2008-01-01
This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…
Curve numbers for no-till: field data versus standard tables
USDA-ARS?s Scientific Manuscript database
The Curve Number procedure developed by Soil Conservation Service (Now Natural Resources Conservation Service) in the mid-1950s for estimating direct runoff from rainstorms has not been extensively tested in cropping systems under no-till. Analysis of CNs using the frequency matching and asymptotic ...
Whitaker, Briana K; Bauer, Jonathan T; Bever, James D; Clay, Keith
2017-08-01
Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions. © 2017 John Wiley & Sons Ltd/CNRS.
Hiptmair, F; Major, Z; Haßlacher, R; Hild, S
2015-08-01
Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.
Study made of pneumatic high pressure piping materials /10,000 psi/
NASA Technical Reports Server (NTRS)
Loeb, M. B.; Smith, J. C.
1967-01-01
Evaluations of five types of steel for use in high pressure pneumatic piping systems include tests for impact strength, tensile and yield strengths, elongation and reduction in area, field weldability, and cost. One type, AISI 4615, was selected as most advantageous for extensive use in future flight vehicles.
Durability of building joint sealants
Christopher C. White; Kar Tean Tan; Donald L. Hunston; R. Sam Williams
2009-01-01
Predicting the service life of building joint sealants exposed to service environments in less than real time has been a need of the sealant community for many decades. Despite extensive research efforts to design laboratory accelerated tests to duplicate the failure modes occurring in field exposures, little success has been achieved using conventional durability...
Can Blindsight Be Superior to "Sighted-Sight"?
ERIC Educational Resources Information Center
Trevethan, Ceri T.; Sahraie, Arash; Weiskrantz, Larry
2007-01-01
DB, the first blindsight case to be tested extensively (Weiskrantz, 1986) has demonstrated the ability to detect and discriminate a range of visual stimuli presented within his perimetrically blind visual field defect. In a temporal two alternative forced choice (2AFC) detection experiment we have investigated the limits of DB's detection ability…
75 FR 27736 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... Affairs, Attention: Education Desk Officer, Office of Management and Budget, 725 17th Street, NW., Room..., grouped by office, contains the following: (1) Type of review requested, e.g. new, revision, extension... (NPSAS:12) Field Test. Frequency: Annually. Affected Public: Business or other for-profit; Individuals or...
DOT National Transportation Integrated Search
2017-06-13
MnDOT has already deployed an extensive infrastructure for Active Traffic Management (ATM) on I-35W and I-94 with plans to expand on other segments of the Twin Cities freeway network. The ATM system includes intelligent lane control signals (ILCS) sp...
A test of the Suits vegetative-canopy reflectance model with LARS soybean-canopy reflectance data
NASA Technical Reports Server (NTRS)
Chance, J. E.; Lemaster, E. W.
1985-01-01
The Suits vegetative-canopy reflectance model is tested with an extensive set of field reflectance measurements made by the Laboratory for Application of Remote Sensing (LARS) for soybean canopies. The model is tested for the full hemisphere of observer directions as well as the nadir direction. The results show moderate agreement for the visible channels of the Landsat MSS and poor agreement in the near-infrared channel of Landsat MSS. An analysis of errors is given.
Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.
Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S
2005-07-29
We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.
Spring 2013 Graduate Engineering Internship Summary
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua
2013-01-01
In the spring of 2013, I participated in the National Aeronautics and Space Administration (NASA) Pathways Intern Employment Program at the Kennedy Space Center (KSC) in Florida. This was my final internship opportunity with NASA, a third consecutive extension from a summer 2012 internship. Since the start of my tenure here at KSC, I have gained an invaluable depth of engineering knowledge and extensive hands-on experience. These opportunities have granted me the ability to enhance my systems engineering approach in the field of payload design and testing as well as develop a strong foundation in the area of composite fabrication and testing for repair design on space vehicle structures. As a systems engineer, I supported the systems engineering and integration team with final acceptance testing of the Vegetable Production System, commonly referred to as Veggie. Verification and validation (V and V) of Veggie was carried out prior to qualification testing of the payload, which incorporated the process of confirming the system's design requirements dependent on one or more validation methods: inspection, analysis, demonstration, and testing.
Hierarchical atom type definitions and extensible all-atom force fields.
Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai
2016-03-15
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
Anselm, D; Danner, M; Kirmaier, N; König, H L; Müller-Limmroth, W; Reis, A; Schauerte, W
1977-06-10
In the relevant frequency range of about 10 Hertz cars can be considered very largely as Faraday cages and consequently as screens against air-electric fields. This may have a negative influence on driving and reaction patterns as a result. In an extensive investigation 48 subjects in a driving simulator were exposed to definite artificially produced air-electric fields. The self-rating of the performance and concentration of the subjects, reaction times and driving errors were determined. While the reaction times remained practically constant, the driving behavior of the subjects improved.
Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.
1981-01-01
Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.
Second central extension in Galilean covariant field theory
NASA Astrophysics Data System (ADS)
Hagen, C. R.
2002-07-01
The possibility of a connection between the second central extension of the planar Galilei group and the spin variable is considered. This idea is explored within the framework of local Galilean covariant field theory for free fields of arbitrary spin. It is shown that such systems generally display only a trivial realization of the second central extension. While it is possible to realize any desired value of the extension parameter by suitable redefinition of the boost operator, such an approach has no necessary connection to the spin of the basic underlying field.
Competency Based Curriculum Guide for Practical Nursing Education in Virginia. Final Report.
ERIC Educational Resources Information Center
Old Dominion Univ., Norfolk, VA. Dept. of Industrial Arts Education.
This final report contains a three-page narrative and extensive appendixes, including correspondence, surveys, field test evaluation and guide, and the Competency-Based Curriculum Guide for Practical Nursing Education in Virginia developed by the project. The over 200-page curriculum guide presents a suggested master curriculum for a twelve or…
Discovery Curriculum: For Use with Middle Grade Students in or out of the Classroom.
ERIC Educational Resources Information Center
Wickless, Mimi
This teaching guide contains the Discovery Curriculum which was extensively field tested at The National Arbor Day Foundation's Discovery Camp. The Discovery Curriculum is designed to promote wise environmental stewardship through relevant, active learning opportunities. Goals for each participant include: (1) be aware of and able to cite examples…
Field testing existence values for riparian ecosystems
John W. Duffield; Chris J. Neher; David A. Patterson; Patricia A. Champ
2007-01-01
This paper presents preliminary findings on a cash and contingent valuation (cv) experiment. The study replicates major elements of an earlier (1990) experiment, which solicited hypothetical and actual donations to benefit instream flows for Montana fisheries. Extensions of the earlier work include: repeat contacts to increase response rate, follow-up of the contingent...
Lyons, Eugene T; Tolliver, Sharon C; Collins, Sandra S; Ionita, Mariana; Kuzmina, Tetiana A; Rossano, Mary
2011-02-01
Efficacy of ivermectin (IVM) and moxidectin (MOX) against small strongyles was evaluated in horses (n=363) in field tests on 14 farms in Central Kentucky between 2007 and 2009. Most of the horses were yearlings but a few were weanlings and mares. The number of horses treated with IVM was 255 and those treated with MOX was 108. Horses on six farms were allotted into two groups. One group was treated with each of the two drugs, whereas horses on the other eight farms were treated with only one of the two drugs--IVM on six farms and MOX on two farms. Strongyle eggs per gram of feces (EPGs) compared to initial use of IVM and MOX returned almost twice as quickly after treatment of horses on all of the farms. IVM has been used much more extensively in this geographical area than MOX. Reduced activity of MOX was evident even on farms with rare or no apparent previous use of MOX but with probable extensive use of IVM.
1991-11-19
economy with a primary emphasis on the exploitation of now extinct megafauna (Gardner 1974, Goodyear et al. 1979, Martin and Klein 1984). Evidence...associated with the rapidly changing Early Holocene environments and animal populations. While exploitation of megafauna during the Early Paleoindian Period...cash- crop economy resulted in the abandonment of old fields once they were depleted of their nutrients and the clearing of new fields. Eventually
Supersymmetric Casimir energy and the anomaly polynomial
NASA Astrophysics Data System (ADS)
Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol
2015-09-01
We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.
Asteroids as Calibration Standards in the Thermal Infrared -- Applications and Results from ISO
NASA Astrophysics Data System (ADS)
Müller, T. G.; Lagerros, J. S. V.
Asteroids have been used extensively as calibration sources for ISO. We summarise the asteroid observational parameters in the thermal infrared and explain the important modelling aspects. Ten selected asteroids were extensively used for the absolute photometric calibration of ISOPHOT in the far-IR. Additionally, the point-like and bright asteroids turned out to be of great interest for many technical tests and calibration aspects. They have been used for testing the calibration for SWS and LWS, the validation of relative spectral response functions of different bands, for colour correction and filter leak tests. Currently, there is a strong emphasis on ISO cross-calibration, where the asteroids contribute in many fields. Well known asteroids have also been seen serendipitously in the CAM Parallel Mode and the PHT Serendipity Mode, allowing for validation and improvement of the photometric calibration of these special observing modes.
Remote Attitude Measurement Sensor (RAMS)
NASA Technical Reports Server (NTRS)
Davis, H. W.
1989-01-01
Remote attitude measurement sensor (RAMS) offers a low-cost, low-risk, proven design concept that is based on mature, demonstrated space sensor technology. The electronic design concepts and interpolation algorithms were tested and proven in space hardware like th Retroreflector Field Tracker and various star trackers. The RAMS concept is versatile and has broad applicability to both ground testing and spacecraft needs. It is ideal for use as a precision laboratory sensor for structural dynamics testing. It requires very little set-up or preparation time and the output data is immediately usable without integration or extensive analysis efforts. For on-orbit use, RAMS rivals any other type of dynamic structural sensor (accelerometer, lidar, photogrammetric techniques, etc.) for overall performance, reliability, suitability, and cost. Widespread acceptance and extensive usage of RAMS will occur only after some interested agency, such as OAST, adopts the RAMS concept and provides the funding support necessary for further development and implementation of RAMS for a specific program.
Wood, Joanne M; Owsley, Cynthia
2014-01-01
The useful field of view test was developed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view test (UFOV) is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers; these measure the speed of visual processing for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher-order cognitive abilities, but performance also relies on visual sensory function because in order for targets to be attended to, they must be visible. The format of the UFOV has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest version measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and can have a positive impact on health and functional well-being, with the potential to increase the mobility and hence the independence of older adults. © 2014 S. Karger AG, Basel
JPL Contamination Control Engineering
NASA Technical Reports Server (NTRS)
Blakkolb, Brian
2013-01-01
JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.
Supersymmetric extensions of K field theories
NASA Astrophysics Data System (ADS)
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierre, John W.; Wies, Richard; Trudnowski, Daniel
Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacificmore » Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a half of a second. For the mid and low-level probing, the Celilo terminal of the PDCI is modulated with a known probing signal. Similar but less extensive tests were conducted in June of 2000. The low-level probing signals were designed at the University of Wyoming. A number of important design factors are considered. The designed low-level probing signal used in the tests is a multi-sine signal. Its frequency content is focused in the range of the inter-area electromechanical modes. The most frequently used of these low-level multi-sine signals had a period of over two minutes, a root-mean-square (rms) value of 14 MW, and a peak magnitude of 20 MW. Up to 15 cycles of this probing signal were injected into the system resulting in a processing gain of 15. The resulting measured response at points throughout the system was not much larger than the ambient noise present in the measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Troy
Le Norman Energy Company conducted research on field application of alkaline-surfactant-polymer (ASP) flooding as a part of the U.S. Department of Energy's plan to maximize the production of our domestic oil resources. In addition to having substantial technical merit, the process uses chemicals that are environmentally acceptable. Le Norman's field project is located in the Sho-Vel-Tum (OK) oil field, which was a major producer of crude oil in past years, but has since been extensively waterflooded. This reservoir in this portion of the field is typical of many shallow reservoirs in the Oklahoma-Kansas area and is a good demonstration sitemore » for that area. The pay zones are located approximately 700 ft. deep, and this project is the shallowest field test for ASP flooding.« less
NASA Astrophysics Data System (ADS)
Chibunichev, A. G.; Kurkov, V. M.; Smirnov, A. V.; Govorov, A. V.; Mikhalin, V. A.
2016-10-01
Nowadays, aerial survey technology using aerial systems based on unmanned aerial vehicles (UAVs) becomes more popular. UAVs physically can not carry professional aerocameras. Consumer digital cameras are used instead. Such cameras usually have rolling, lamellar or global shutter. Quite often manufacturers and users of such aerial systems do not use camera calibration. In this case self-calibration techniques are used. However such approach is not confirmed by extensive theoretical and practical research. In this paper we compare results of phototriangulation based on laboratory, test-field or self-calibration. For investigations we use Zaoksky test area as an experimental field provided dense network of target and natural control points. Racurs PHOTOMOD and Agisoft PhotoScan software were used in evaluation. The results of investigations, conclusions and practical recommendations are presented in this article.
AOF: standalone test results of GALACSI
NASA Astrophysics Data System (ADS)
La Penna, P.; Aller Carpentier, E.; Argomedo, J.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Donaldson, R.; Gago, F.; Gutierrez-Cheetam, P.; Hubin, N.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J.-L.; Madec, P.-Y.; Manescau, A.; Mehrgan, L.; Oberti, S.; Quentin, J.; Sedghi, B.; Ströbele, S.; Suárez Valles, M.; Soenke, C.; Tordo, S.; Vernet, J.
2016-07-01
GALACSI is the Adaptive Optics (AO) module that will serve the MUSE Integral Field Spectrograph. In Wide Field Mode it will enhance the collected energy in a 0.2"×0.2" pixel by a factor 2 at 750 nm over a Field of View (FoV) of 1'×1' using the Ground Layer AO (GLAO) technique. In Narrow Field Mode, it will provide a Strehl Ratio of 5% (goal 10%) at 650 nm, but in a smaller FoV (7.5"×7.5" FoV), using Laser Tomography AO (LTAO). Before being ready for shipping to Paranal, the system has gone through an extensive testing phase in Europe, first in standalone mode and then in closed loop with the DSM in Europe. After outlining the technical features of the system, we describe here the first part of that testing phase and the integration with the AOF ASSIST (Adaptive Secondary Setup and Instrument Stimulator) testbench, including a specific adapter for the IRLOS truth sensor. The procedures for the standalone verification of the main system performances are outlined, and the results of the internal functional tests of GALACSI after full integration and alignment on ASSIST are presented.
ERIC Educational Resources Information Center
Research for Better Schools, Inc., Philadelphia, PA.
Between 1977 and 1981, the Basic Skills Component of Research for Better Schools worked with education agencies to develop a research-based approach to improving basic skills instruction and student achievement. Called Achievement Directed Leadership (ADL), the approach was field tested extensively in three school districts during the 1981-82…
Sectional Aluminum Poles Improve Length Measurements in Standing Trees
Joe P. McClure
1968-01-01
The use of sectional aluminum poles to measure lengths in standing trees can reduce bias and improve measurement precision. The method has been tested extensively under a variety of field conditions by Forest Survey crews in the Southeast. Over 16,000 trees with lengths up to 120 feet have been measured over the past 5 years.
Safety characteristics of the lithium SO2 system
NASA Technical Reports Server (NTRS)
Watson, T.
1978-01-01
Extensive tests were conducted to quantitatively define the safety characteristics of high-rate SO2 multicell batteries under various discharge and temperature profiles, which closely simulated actual field-use conditions. The resulting behavior patters of the multicell batteries and the corrective action which can be implemented to minimize or prevent hazardous battery performance are briefly summarized.
Strength loss in southern pine poles damaged by woodpeckers
R.W. Rumsey; G.E. Woodson
1973-01-01
Woodpecker damage caused extensive reductions in strength of 50-foot, class-2 utility poles, the amount depending on the cross-sectional area of wood removed and its distance from the apex. Two methods for estimating when damaged poles should be replaced proved to be conservative when applied to results of field tests. Such conservative predictions of falling loads...
Aircraft Electrical Systems Specialist (AFSC 42350), Volumes 1-3, and Change Supplement, Volume 3.
ERIC Educational Resources Information Center
Savage, Leslie R.
This three-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft electrical systems specialists. Covered in the individual volumes are career field fundamentals, electrical systems and test equipment, and aircraft control and warning systems. Each volume in the set contains a series…
Emailing Drones: From Design to Test Range to ARS Offices and into the Field
NASA Astrophysics Data System (ADS)
Fuka, D. R.; Singer, S.; Rodriguez, R., III; Collick, A.; Cunningham, A.; Kleinman, P. J. A.; Manoukis, N. C.; Matthews, B.; Ralston, T.; Easton, Z. M.
2017-12-01
Unmanned aerial vehicles (UAVs or `drones') are one of the newest tools available for collecting geo- and biological-science data in the field, though today's commercial drones only come in a small range of options. While scientific research has benefitted from the enhanced topographic and surface characterization data that UAVs can provide through traditional image based remote sensing techniques, drones have significantly greater mission-specific potential than are currently utilized. The reasons for this under-utilization are twofold, 1) because with their broad capabilities comes the need to be careful in implementation, and as such, FAA and other regulatory agencies around the world have blanket regulations that can inhibit new designs from being implemented, and 2) current multi-mission-multi-payload commercial drones have to be over-designed to compensate for the fact that they are very difficult to stabilize for multiple payloads, leading to a much higher cost than necessary. For this project, we explore and demonstrate a workflow to optimize the design, testing, approval, and implementation of embarrassingly inexpensive mission specific drones, with two use cases. The first will follow the process from design (at VTech and UH Hilo) to field implementation (by USDA-ARS in PA and Extension in VA) of several custom water quality monitoring drones, printed on demand at ARS and Extension offices after testing at the Pan-Pacific UAS Test Range Complex (PPUTRC). This type of customized drone can allow for an increased understanding in the transition from non-point source to point source agri-chemical and pollutant transport in watershed systems. The second use case will follow the same process, resulting in customized drones with pest specific traps built into the design. This class of customized drone can facilitate IPM pest monitoring programs nationwide, decreasing the intensive and costly quarantine and population elimination measures that currently exist. This multi-institutional project works toward an optimized workflow where scientists can quickly 1) customize drones to meet specific purposes, 2) have them tested in FAA Test Ranges, and 3) get them certified and working in the field, while 4) cutting their cost to significantly less than what is currently available.
Hack, B J; Ramon, S G; Hagen, Z A; Theran, M E; Burkhardt, J D; Gillies, G T
2015-01-01
This study investigated the use of direct visualization to enhance minimally invasive epicardial procedures. A commercially available miniature camera was placed in a prototype subxiphoid introducer needle and bench top, in vitro and in vivo tests of system performance were made during simulated and actual attempts at pericardial access and cardio-endoscopy. This system had an unshielded field of view of 100° and a resolution of 220 × 224 pixels. When a sleeve used to maintain depth of field was slid past the distal tip of the camera probe, the field of view would decrease by ≈15° per millimetre of sleeve extension, but without loss of image quality. While tests during in vivo subxiphoid access in a porcine model revealed that the pericardial membrane was difficult to localize, the results also showed excellent resolution of the coronary arteries on the epicardial surface. These findings and potential improvements are discussed in detail.
Subsynchronous instability of a geared centrifugal compressor of overhung design
NASA Technical Reports Server (NTRS)
Hudson, J. H.; Wittman, L. J.
1980-01-01
The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability.
Experimental studies of rock fracture behavior related to hydraulic fracture
NASA Astrophysics Data System (ADS)
Ma, Zifeng
The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, N.M.; Vanta, E.B.
Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more thanmore » 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.« less
Surface energy fluxes in complex terrain
NASA Technical Reports Server (NTRS)
Reiter, E. R.; Sheaffer, J. D.; Bossert, J. E.
1986-01-01
The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented.
Analysis of advanced solid rocket motor ignition phenomena
NASA Technical Reports Server (NTRS)
Foster, Winfred A., Jr.; Jenkins, Rhonald M.
1995-01-01
This report presents the results obtained from an experimental analysis of the flow field in the slots of the star grain section in the head-end of the advanced solid rocket motor during the ignition transient. This work represents an extension of the previous tests and analysis to include the effects of using a center port in conjunction with multiple canted igniter ports. The flow field measurements include oil smear data on the star slot walls, pressure and heat transfer coefficient measurements on the star slot walls and velocity measurements in the star slot.
Gurska, Jolanta; Wang, Wenxi; Gerhardt, Karen E; Khalid, Aaron M; Isherwood, David M; Huang, Xiao-Dong; Glick, Bernard R; Greenberg, Bruce M
2009-06-15
Phytoremediation of total petroleum hydrocarbons (TPH) has the potential to be a sustainable waste management technology if it can be proven to be effective in the field. Over the past decade, our laboratory has developed a system which utilizes plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation (PEP) that, following extensive greenhouse testing, was shown to be effective at remediating TPH from soils. This system consists of physical soil manipulation and plant growth following seed inoculation with PGPR. PGPR elicit biomass increases, particularly in roots, by minimizing plant stress in highly contaminated soils. Extensive development of the root system enhances degradation of contaminants by the plants and supports an active rhizosphere that effectively promotes TPH degradation by a broad microbial consortium. Following promising greenhouse trials, field tests of PEP were performed over a period of three years at a Southern Ontario site (approximately 130 g kg(-1) TPH) used for land farming of refinery hydrocarbon waste for many years. The low molecular weight fractions (the Canadian Council of Ministers of the Environment (CCME) fractions 1 and 2) were removed through land farming and bioremediation; the high molecular weight, recalcitrant fractions (CCME fractions 3 and 4) remained at high levels in the soil. Using PEP, we substantially remediated fractions 3 and 4, and lowered TPH from 130 g kg(-1) to approximately 50 g kg(-1) over a three year period. The amount of plant growth and extent of oil remediation were consistently enhanced by PGPR.
Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.
2007-01-01
This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than adequate for the majority of sedimentological applications, especially considering that the autocorrelation technique is estimated to be at least 100 times faster than traditional methods.
Semi-physical simulation test for micro CMOS star sensor
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun
2008-03-01
A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.
Deep Borehole Field Test Research Activities at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy
The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less
The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.
1980-01-01
A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.
The Development of a Pediatric Inpatient Experience of Care Measure: Child HCAHPS®
Toomey, Sara L.; Zaslavsky, Alan M.; Elliott, Marc N.; Gallagher, Patricia M.; Fowler, Floyd J.; Klein, David J.; Shulman, Shanna; Ratner, Jessica; McGovern, Caitriona; LeBlanc, Jessica L.; Schuster, Mark A.
2016-01-01
CMS uses Adult HCAHPS® scores for public reporting and pay-for-performance for most U.S. hospitals, but no publicly available standardized survey of inpatient experience of care exists for pediatrics. To fill the gap, CMS/AHRQ commissioned the development of the Consumer Assessment of Healthcare Providers and Systems Hospital Survey – Child Version (Child HCAHPS), a survey of parents/guardians of pediatric patients (<18 years old) who were recently hospitalized. This Special Article describes the development of Child HCAHPS, which included an extensive review of the literature and quality measures, expert interviews, focus groups, cognitive testing, pilot testing of the draft survey, a national field test with 69 hospitals in 34 states, psychometric analysis, and end-user testing of the final survey. We conducted extensive validity and reliability testing to determine which items would be included in the final survey instrument and to develop composite measures. We analyzed national field test data from 17,727 surveys collected from 11/12-1/14 from parents of recently hospitalized children. The final Child HCAHPS instrument has 62 items, including 39 patient experience items, 10 screeners, 12 demographic/descriptive items, and 1 open-ended item. The 39 experience items are categorized based on testing into 18 composite and single-item measures. Our composite and single-item measures demonstrated good to excellent hospital-level reliability at 300 responses per hospital. Child HCAHPS was developed to be a publicly available standardized survey of pediatric inpatient experience of care. It can be used to benchmark pediatric inpatient experience across hospitals and assist in efforts to improve the quality of inpatient care. PMID:26195542
ERIC Educational Resources Information Center
Hope,Trina L.; Whiteford, Scott W.
2005-01-01
Research indicates that parenting has important effects on adolescent substance use. However, the indirect effect of parenting on adolescent substance use via self-control is less understood. Gottfredson and Hirschi's General Theory of Crime has been extensively tested by researchers in the field of criminology, but the theory rarely has been used…
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of General Education Curriculum Development.
The learning module is the third in a series which examines American history in light of industrial development and expansion. Presented in field test condition to allow for feedback from students and teachers, the booklet explores the welfare state and minority employment through presentation of an extensive teacher background section and 10…
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of General Education Curriculum Development.
The learning module is the first in a three part series which examines American history in light of industrial development and expansion. Presented in field test condition to allow for feedback from students and teachers, the booklet explores the American work ethic through presentation of an extensive teacher background section, eight class…
Extending the Fellegi-Sunter probabilistic record linkage method for approximate field comparators.
DuVall, Scott L; Kerber, Richard A; Thomas, Alun
2010-02-01
Probabilistic record linkage is a method commonly used to determine whether demographic records refer to the same person. The Fellegi-Sunter method is a probabilistic approach that uses field weights based on log likelihood ratios to determine record similarity. This paper introduces an extension of the Fellegi-Sunter method that incorporates approximate field comparators in the calculation of field weights. The data warehouse of a large academic medical center was used as a case study. The approximate comparator extension was compared with the Fellegi-Sunter method in its ability to find duplicate records previously identified in the data warehouse using different demographic fields and matching cutoffs. The approximate comparator extension misclassified 25% fewer pairs and had a larger Welch's T statistic than the Fellegi-Sunter method for all field sets and matching cutoffs. The accuracy gain provided by the approximate comparator extension grew as less information was provided and as the matching cutoff increased. Given the ubiquity of linkage in both clinical and research settings, the incremental improvement of the extension has the potential to make a considerable impact.
Field studies in pesticide registration: questioning the answers.
Montforts, Mark H M M; de Jong, Frank M W
2007-01-01
The principal conclusion of a workshop in October 2005 at RIVM (Bilthoven, The Netherlands) on the assessment of field studies with pesticides for authorization is that the lack of a definition of acceptability of effects is recognized as a problem by all stakeholders: Industry, risk assessors, and regulators. Because of this lack of definition in the legislation, it is unclear what critical effect values should be assessed in field studies. Despite the extensive documentation on field study performance, the decision making is not based on justifiable scientific opinions or publicly shared values but on technical limitations of the test design instead. In the workshop, research was identified that should result in a scientific basis for value judgments applied in decision making.
Potential, velocity, and density fields from sparse and noisy redshift-distance samples - Method
NASA Technical Reports Server (NTRS)
Dekel, Avishai; Bertschinger, Edmund; Faber, Sandra M.
1990-01-01
A method for recovering the three-dimensional potential, velocity, and density fields from large-scale redshift-distance samples is described. Galaxies are taken as tracers of the velocity field, not of the mass. The density field and the initial conditions are calculated using an iterative procedure that applies the no-vorticity assumption at an initial time and uses the Zel'dovich approximation to relate initial and final positions of particles on a grid. The method is tested using a cosmological N-body simulation 'observed' at the positions of real galaxies in a redshift-distance sample, taking into account their distance measurement errors. Malmquist bias and other systematic and statistical errors are extensively explored using both analytical techniques and Monte Carlo simulations.
Plan for the Characterization of HIRF Effects on a Fault-Tolerant Computer Communication System
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; Koppen, Sandra V.
2008-01-01
This report presents the plan for the characterization of the effects of high intensity radiated fields on a prototype implementation of a fault-tolerant data communication system. Various configurations of the communication system will be tested. The prototype system is implemented using off-the-shelf devices. The system will be tested in a closed-loop configuration with extensive real-time monitoring. This test is intended to generate data suitable for the design of avionics health management systems, as well as redundancy management mechanisms and policies for robust distributed processing architectures.
On the design of innovative heterogeneous tests using a shape optimization approach
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
The development of full-field measurement methods enabled a new trend of mechanical tests. By providing the inhomogeneous strain field from the tests, these techniques are being widely used in sheet metal identification strategies, through heterogeneous mechanical tests. In this work, a heterogeneous mechanical test with an innovative tool/specimen shape, capable of producing rich heterogeneous strain paths providing extensive information on material behavior, is aimed. The specimen is found using a shape optimization process where a dedicated indicator that evaluates the richness of strain information is used. The methodology and results here presented are extended to non-specimen geometry dependence and to the non-dependence of the geometry parametrization through the use of the Ritz method for boundary value problems. Different curve models, such as Splines, B-Splines and NURBS, are used and C1 continuity throughout the specimen is guaranteed. Moreover, various optimization methods are used, deterministic and stochastic, in order to find the method or a combination of methods able to effectively minimize the cost function.
Wood, Joseph P; Blair Martin, G
2009-05-30
The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO(2)) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO(2) introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO(2) was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO(2) levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO(2) emissions below the limit. Numerous lessons were learned in the field trials of this ClO(2) decontamination technology.
Interdisciplinary Professional Development Needs of Cooperative Extension Field Educators
ERIC Educational Resources Information Center
Sondgerath, Travis
2016-01-01
The study discussed in this article sought to identify cross-program professional development needs of county-based Extension professionals (field educators). The study instrument was completed by 105 county-based Extension professionals. Interdisciplinary topics, such as program evaluation and volunteer management, were identified as subjects of…
Structural aspects of Lorentz-violating quantum field theory
NASA Astrophysics Data System (ADS)
Cambiaso, M.; Lehnert, R.; Potting, R.
2018-01-01
In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.
NASA Technical Reports Server (NTRS)
Maynard, J. D.
1983-01-01
This project involves the development of the Nearfield Acoustic Holography (NAH) technique (in particular its extension from single frequency to wideband noise measurement) and its application in a detailed study of the noise radiation characteristics of several samples of aircraft sidewall panels. With the extensive amount of information provided by the NAH technique, the properties of the sound field radiated by the panels may be correlated with their structure, mounting, and excitation (single frequency or wideband, spatially correlated or uncorrelated, structure-borne). The work accomplished at the beginning of this grant period included: (1) Calibration of the 256 microphone array and test of its accuracy. (2) extension of the facility to permit measurements on wideband noise sources. The extensions incuded the addition of high-speed data acquisition hardware and an array processor, and the development of new software. (3) Installation of motion picture graphics for correlating panel motion with structure, mounting, radiation, etc. (4) Development of new holographic data processing techniques.
NASA Astrophysics Data System (ADS)
Engel, Christian; Goolaup, Sarjoosing; Luo, Feilong; Lew, Wen Siang
2017-08-01
Substantial understanding of spin-orbit interactions in heavy-metal (HM)/ferromagnet (FM) heterostructures is crucial in developing spin-orbit torque (SOT) spintronics devices utilizing spin Hall and Rashba effects. Though the study of SOT effective field dependence on the out-of-plane magnetization angle has been relatively extensive, the understanding of in-plane magnetization angle dependence remains unknown. Here, we analytically propose a method to compute the SOT effective fields as a function of the in-plane magnetization angle using the harmonic Hall technique in perpendicular magnetic anisotropy (PMA) structures. Two different samples with PMA, a Pt /Co /Pt /Co /Ta /BaTi O3 (BTO) test sample and a Pt/Co/Pt/Co/Ta reference sample, are studied using the derived formula. Our measurements reveal that only the dampinglike field of the test sample with a BTO capping layer exhibits an in-plane magnetization angle dependence, while no angular dependence is found in the reference sample. The presence of the BTO layer in the test sample, which gives rise to a Rashba effect at the interface, is ascribed as the source of the angular dependence of the dampinglike field.
Farmers Extension Program Effects on Yield Gap in North China Plain
NASA Astrophysics Data System (ADS)
Sum, N.; Zhao, Y.
2015-12-01
Improving crop yield of the lowest yielding smallholder farmers in developing countries is essential to both food security of the country and the farmers' livelihood. Although wheat and maize production in most developed countries have reached 80% or greater of yield potential determined by simulated models, yield gap remains high in the developing world. One of these cases is the yield gap of maize in the North China Plain (NCP), where the average farmer's yield is 41% of his or her potential yield. This large yield gap indicates opportunity to raise yields substantially by improving agronomy, especially in nutrition management, irrigation facility, and mechanization issues such as technical services. Farmers' agronomic knowledge is essential to yield performance. In order to propagate such knowledge to farmers, agricultural extension programs, especially in-the-field guidance with training programs at targeted demonstration fields, have become prevalent in China. Although traditional analyses of the effects of the extension program are done through surveys, they are limited to only one to two years and to a small area. However, the spatial analysis tool Google Earth Engine (GEE) and its extensive satellite imagery data allow for unprecedented spatial temporal analysis of yield variation. We used GEE to analyze maize yield in Quzhou county in the North China Plain from 2007 to 2013. We based our analysis on the distance from a demonstration farm plot, the source of the farmers' agronomic knowledge. Our hypothesis was that the farther the farmers' fields were from the demonstration plot, the less access they would have to the knowledge, and the less increase in yield over time. Testing this hypothesis using GEE helps us determine the effectiveness of the demonstration plot in disseminating optimal agronomic practices in addition to evaluating yield performance of the demonstration field itself. Furthermore, we can easily extend this methodology to analyze the whole NCP and any other parts of the world for any type of crop.
Mujagic, Samir; Erber, Joachim
2009-04-01
Laboratory studies in honey bees have shown positive correlations between sucrose responsiveness, division of labour and learning. We tested the relationships between sucrose acceptance and discrimination in the field and responsiveness in the laboratory. Based on acceptance in the field three groups of bees were differentiated: (1) bees that accept sucrose concentrations >10%, (2) bees that accept some but not all of the sucrose concentrations <10% and water, and (3) bees that accept water and all offered sucrose concentrations. Sucrose acceptance can be described in a model in which sucrose- and water-dependent responses interact additively. Responsiveness to sucrose was tested in the same bees in the laboratory by measuring the proboscis extension response (PER). The experiments demonstrated that PER responsiveness is lower than acceptance in the field and that it is not possible to infer from the PER measurements in the laboratory those concentrations the respective bees accepted in the field. Discrimination between sucrose concentrations was tested in three groups of free-flying bees collecting low, intermediate or high concentrations of sucrose. The experiments demonstrated that bees can discriminate between concentrations differences down to 0.2 relative log units. There exist only partial correlations between discrimination, acceptance and PER responsiveness.
NASA Technical Reports Server (NTRS)
Beutner, Thomas John
1993-01-01
Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally inexpensive, and did not require extensive or intrusive measurements of the boundary conditions during the wind tunnel test. It may be applied to both solid and porous wall wind tunnel tests.
Why is CDMA the solution for mobile satellite communication
NASA Technical Reports Server (NTRS)
Gilhousen, Klein S.; Jacobs, Irwin M.; Padovani, Roberto; Weaver, Lindsay A.
1989-01-01
It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented.
Experimental investigation of hypersonic aerodynamics
NASA Technical Reports Server (NTRS)
Heinemann, K.; Intrieri, Peter F.
1987-01-01
An extensive series of ballistic range tests are currently being conducted at the Ames Research Center. These tests are intended to investigate the hypersonic aerodynamic characteristics of two basic configurations, which are: the blunt-cone Galileo probe which is scheduled to be launched in late 1989 and will enter the atmosphere of Jupiter in 1994, and a generic slender cone configuration to provide experimental aerodynamic data including good flow-field definition which computational aerodynamicists could use to validate their computer codes. Some of the results obtained thus far are presented and work for the near future is discussed.
NASA Astrophysics Data System (ADS)
Neidhardt, Alexander; Kirschbauer, Katharina; Plötz, Christian; Schönberger, Matthias; Böer, Armin; Wettzell VLBI Team
2016-12-01
The first test implementation of an auxiliary data archive is tested at the Geodetic Observatory Wetttzell. It is software which follows on the Wettzell SysMon, extending the database and data sensors with the functionalities of a professional monitoring environment, named Zabbix. Some extensions to the remote control server on the NASA Field System PC enable the inclusion of data from external antennas. The presentation demonstrates the implementation and discusses the current possibilities to encourage other antennas to join the auxiliary archive.
Types and Role Performance of the Extension Field Staff in a Midwestern University.
ERIC Educational Resources Information Center
Lionberger, Herbert F.; Pope, LaVern A.
To identify and describe extension role types, all educational assistants in the Small Farm Program, agricultural specialists, and community development and local government specialists in Missouri were asked to fill out questionnaires asking how frequently they performed 56 activities broadly representing what extension field staff might do.…
Focal ratio degradation and transmission in VIRUS-P optical fibers
NASA Astrophysics Data System (ADS)
Murphy, Jeremy D.; MacQueen, Phillip J.; Hill, Gary J.; Grupp, Frank; Kelz, Andreas; Palunas, Povilas; Roth, Martin; Fry, Alexander
2008-07-01
We have conducted extensive tests of both transmission and focal ratio degradation (FRD) on two integral field units currently in use on the VIRUS-P integral field spectrograph. VIRUS-P is a prototype for the VIRUS instrument proposed for the Hobby-Eberly Telescope at McDonald Observatory. All tests have been conducted at an input f-ratio of F/3.65 and with an 18% central obscuration in order to simulate optical conditions on the HET. Transmission measurements were conducted with narrow-band interference filters (FWHM: 10 nm) at 10 discrete wavelengths (337 to 600 nm), while FRD tests were made at 365 nm, 400 nm and 600 nm. The influence of wavelength, end immersion, fiber type and length on both FRD and transmission is explored. Most notably, we find no wavelength dependence on FRD down to 365 nm. All fibers tested are within the VIRUS instrument specifications for both FRD and transmission. We present the details of our differential FRD testing method and explain a simple and robust technique of aligning the test bench and optical fiber axes to within +/-0.1 degrees.
MMS Observatory TV Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese
2014-01-01
The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.
NASA Astrophysics Data System (ADS)
LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.
2015-12-01
Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the field.
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Steven, P. M.; Burch, J. L.; Giles, B. L.
2017-12-01
Magnetic reconnection at Earth's dayside magnetopause is an essential process in magnetospheric physics. Under southward IMF conditions, reconnection occurs along a thin ribbon across the dayside magnetopause. The location of this ribbon has been studied extensively in terms of global optimization of quantities like reconnecting field energy or magnetic shear, but with expected errors of 1-2 Earth radii these global models give limited context for cases where an observation is near the reconnection line. Building on previous results, which established the cutoff contour method for locating reconnection using in-situ velocity measurements, we examine the effects of MHD-scale waves on reconnection exhaust distributions. We use a test particle exhaust distribution propagated through a globamagnetohydrodynamics model fields and compare with Magnetospheric Multiscale observations of reconnection exhaust.
Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng
2016-09-01
Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.
The Mobile Agents Integrated Field Test: Mars Desert Research Station April 2003
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ron
2003-01-01
The Mobile Agents model-based, distributed architecture, which integrates diverse components in a system for lunar and planetary surface operations, was extensively tested in a two-week field "technology retreat" at the Mars Society s Desert Research Station (MDRS) during April 2003. More than twenty scientists and engineers from three NASA centers and two universities refined and tested the system through a series of incremental scenarios. Agent software, implemented in runtime Brahms, processed GPS, health data, and voice commands-monitoring, controlling and logging science data throughout simulated EVAs with two geologists. Predefined EVA plans, modified on the fly by voice command, enabled the Mobile Agents system to provide navigation and timing advice. Communications were maintained over five wireless nodes distributed over hills and into canyons for 5 km; data, including photographs and status was transmitted automatically to the desktop at mission control in Houston. This paper describes the system configurations, communication protocols, scenarios, and test results.
An experimental limit on the charge of antihydrogen
Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Vendeiro, Z.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.
2014-01-01
The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm−1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(−1.3±1.1±0.4) × 10−8. Here, e is the unit charge, and the errors are from statistics and systematic effects. PMID:24892800
Bannon, Amber E; Klug, Lillian R; Corless, Christopher L; Heinrich, Michael C
2017-05-01
The diagnosis and treatment of gastrointestinal stromal tumor (GIST) has emerged as a paradigm for modern cancer treatment ('precision medicine'), as it highlights the importance of matching molecular defects with specific therapies. Over the past two decades, the molecular classification and diagnostic work up of GIST has been radically transformed, accompanied by the development of molecular therapies for specific subgroups of GIST. This review summarizes the developments in the field of molecular diagnosis of GIST, particularly as they relate to optimizing medical therapy. Areas covered: Based on an extensive literature search of the molecular and clinical aspects of GIST, the authors review the most important developments in this field with an emphasis on the differential diagnosis of GIST including mutation testing, therapeutic implications of each molecular subtype, and emerging technologies relevant to the field. Expert commentary: The use of molecular diagnostics to classify GIST has been shown to be successful in optimizing patient treatment, but these methods remain under-utilized. In order to facilitate efficient and comprehensive molecular testing, the authors have developed a decision tree to aid clinicians.
van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; ...
2015-04-17
This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, D V
We prove noncommutative reciprocity laws on an algebraic surface defined over a perfect field. These reciprocity laws establish that some central extensions of globally constructed groups split over certain subgroups constructed by points or projective curves on a surface. For a two-dimensional local field with a last finite residue field, the local central extension which is constructed is isomorphic to the central extension which comes from the case of tame ramification of the Abelian two-dimensional local Langlands correspondence suggested by Kapranov. Bibliography: 9 titles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOWLES NA
2010-10-06
The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end ofmore » the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in the barrier extension wells, particularly those in the Ringold formation. The downstream portion of the original barrier, shown on Figure 1, is characterized by generally higher well specific capacity and a larger hydraulic conductivity contrast between the Hanford formation and Ringold Formation. Hydraulic conductivity rates for the Hanford formation and Ringold Formation over the downstream portion of the barrier were estimated at 29 and 9 m/day (95 and 29 ft/day), respectively (with the Hanford formation hydraulic conductivity being greater in the downstream portion than the upstream portion). Once again, it should be noted that the actual conductivities may vary significantly, and the values state above should only be used as a rough initial estimates. Optimum apatite emplacement has been shown to occur when injections targeting the Hanford formation and the Ringold Formation are performed separately. The remainder of this test instruction provides details for conducting these formation-targeted injections.« less
ERIC Educational Resources Information Center
Fabusoro, E.; Awotunde, J. A.; Sodiya, C. I.; Alarima, C. I.
2008-01-01
The field level extension agents (FLEAs) are the lifeline of the agricultural extension system in Nigeria. Their motivation and job performance are therefore important to achieving faster agricultural development in Nigeria. The study identified the factors motivating the FLEAs working with Ogun State Agricultural development programme (OGADEP)…
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Radke, Tara; Chuhta, Jesse; Hughes, Michael
2014-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics model and to verify no recontact. NASA Orion Multi-Purpose Crew Vehicle (MPCV) teams examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the Forward Bay Cover (FBC) separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute parameters, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1, but more testing is required to support human certification, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust but affordable human spacecraft capability.
Economic Concepts Guiding Minnesota Extension's New Regional and County Delivery Model
ERIC Educational Resources Information Center
Morse, George W.; Klein, Thomas K.
2006-01-01
In response to a state budget deficit, the University of Minnesota Extension restructured its field staff, establishing a new regional and county delivery system, shifting all supervision of field staff to campus faculty, and encouraging greater field staff specialization, program focus, and entrepreneurial efforts. Nine economic concepts and…
Stream interfaces and energetic ions 2: Ulysses test of Pioneer results
NASA Technical Reports Server (NTRS)
Intriligator, Devrie S.; Siscoe, George L.; Wibberez, Gerd; Kunow, Horst; Gosling, John T.
1995-01-01
Ulysses measurements of energetic and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating energetic ion population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding noteworthy since the stream interface is not magnetically connected to the reverse shock but lies 12-17 corotation hours from it. Thus, the finding to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines Eliminating the inconsistency probably entails an extension of the standard model. We consider two possible extensions cross-field diffusion and energetic particles generation closer to the sun in the gap between the stream interface and the reverse shock.
NASA Technical Reports Server (NTRS)
1971-01-01
The results of a solid polymer electrolyte fuel cell development program are summarized. A base line design was defined, and materials and components of the base line configuration were fabricated and tested. Concepts representing base line capability extensions in the areas of life, power, specific weight and volume, versatility of operation, field maintenance, and thermal control were identified and evaluated. Liaison and coordination with space shuttle contractors resulted in the exchange of engineering data.
Crush testing, characterizing, and modeling the crashworthiness of composite laminates
NASA Astrophysics Data System (ADS)
Garner, David Michael, Jr.
Research in the field of crashworthiness of composite materials is presented. A new crush test method was produced to characterize the crush behavior of composite laminates. In addition, a model of the crush behavior and a method for rank ordering the energy absorption capability of various laminates were developed. The new crush test method was used for evaluating the crush behavior of flat carbon/epoxy composite specimens at quasi-static and dynamic rates. The University of Utah crush test fixture was designed to support the flat specimen against catastrophic buckling. A gap, where the specimen is unsupported, allowed unhindered crushing of the specimen. In addition, the specimen's failure modes could be clearly observed during crush testing. Extensive crush testing was conducted wherein the crush force and displacement data were collected to calculate the energy absorption, and high speed video was captured during dynamic testing. Crush tests were also performed over a range of fixture gap heights. The basic failure modes were buckling, crack growth, and fracture. Gap height variations resulted in poorly, properly, and overly constrained specimens. In addition, guidelines for designing a composite laminate for crashworthiness were developed. Modeling of the crush behavior consisted of the delamination and fracture of a single ply or group of like plies during crushing. Delamination crack extension was modeled using the mode I energy release rate, G lc, where an elastica approach was used to obtain the strain energy. Variations in Glc were briefly explored with double cantilever beam tests wherein crack extension occurred along a multidirectional ply interface. The model correctly predicted the failure modes for most of the test cases, and offered insight into how the input parameters affect the model. The ranking method related coefficients of the laminate and sublaminate stiffness matrices, the ply locations within the laminate, and the laminate thickness. The ranking method correctly ordered the laminates tested in this study with respect to their energy absorption.
A glacier runoff extension to the Precipitation Runoff Modeling System
Van Beusekom, Ashley E.; Viger, Roland
2016-01-01
A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.
Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx
Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.
2017-01-01
In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584
Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.
Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T
2017-01-01
In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.
NASA Astrophysics Data System (ADS)
Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.
2014-07-01
The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.
van der Laan, Jan Willem; Brightwell, John; McAnulty, Peter; Ratky, Joszef; Stark, Claudia
2010-01-01
As part of the RETHINK European FP6 Project an overview of the acceptability and usefulness of minipigs has been carried out in the regulatory arenas of human and veterinary pharmaceuticals, food additives, cosmetics, biocides and agrochemicals, chemicals and medical devices. The safety of new pharmaceuticals for human use should be tested in non-rodents, but the regulatory world is not too prescriptive regarding the choice of species. The choice is most often dogs through long tradition. When dogs are not appropriate, in many cases non-human primates are chosen as an alternative. From information in the public domain as well as literature from the EMA and FDA, it is clear that minipigs have already been identified as suitable to take the role of non-rodent species in toxicity testing of pharmaceutical products. In the field of foodstuffs, the pig is used more extensively because of the apparent similarity in the omnivorous food pattern and digestive tract between humans and pigs. The extensive use of pigs in this field provides historical data. In the field of medical devices the ISO Guidelines indicate that the pig is regarded as a suitable animal model because of its haematological and cardiovascular similarities to man. The pig is also mentioned as suitable for testing local effects after implantation. Political and societal support for using nonhuman primates is decreasing, and it is an appropriate time to consider the role of the minipig. We have reviewed the costs of testing in minipigs, and these are not significantly higher than the costs for a study in dogs. Economical reasons should therefore not be used to argue against the use of minipigs instead of dogs or monkeys. For most purposes, minipigs may be considered an acceptable choice as non-rodent species, provided adequate justification for this choice is made. Copyright © 2010 Elsevier Inc. All rights reserved.
Experimental validation of a new heterogeneous mechanical test design
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.
Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Molina, C.; Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo
2010-06-01
Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.
Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.
1990-01-01
Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.
Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, C.; Pani, Paolo; Cardoso, Vitor
2010-06-15
Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun formore » Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.« less
Avionics system design for high energy fields: A guide for the designer and airworthiness specialist
NASA Technical Reports Server (NTRS)
Mcconnell, Roger A.
1987-01-01
Because of the significant differences in transient susceptibility, the use of digital electronics in flight critical systems, and the reduced shielding effects of composite materials, there is a definite need to define pracitices which will minimize electromagnetic susceptibility, to investigate the operational environment, and to develop appropriate testing methods for flight critical systems. The design practices which will lead to reduced electromagnetic susceptibility of avionics systems in high energy fields is described. The levels of emission that can be anticipated from generic digital devices. It is assumed that as data processing equipment becomes an ever larger part of the avionics package, the construction methods of the data processing industry will increasingly carry over into aircraft. In Appendix 1 tentative revisions to RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment, are presented. These revisions are intended to safeguard flight critical systems from the effects of high energy electromagnetic fields. A very extensive and useful bibliography on both electromagnetic compatibility and avionics issues is included.
High speed digital holographic interferometry for hypersonic flow visualization
NASA Astrophysics Data System (ADS)
Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.
2013-06-01
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
Cattoli, Giovanni; Milani, Adelaide; Bettini, Francesca; Serena Beato, Maria; Mancin, Marzia; Terregino, Calogero; Capua, Ilaria
2006-04-01
Avian influenza (AI) infections have become of growing importance both for animal and human health. Vaccination has become a recommended tool to support eradication efforts and limit the economic losses caused by this disease. The "DIVA" system, using a vaccine containing a heterologous neuraminidase to the field virus, has been shown to be an effective tool in increasing the resistance of birds to field challenge, preventing clinical signs and reducing viral shedding in the environment. The companion diagnostic test to the vaccine, however, has been only partially validated in the field against one subtype of neuraminidase (N1). The present paper presents the results of a full laboratory and field validation of the diagnostic test developed to detect antibodies to the N3 subtype of AI in vaccinated and unvaccinated chickens and turkeys. Antibody kinetic studies conducted in the laboratory have shown that antibodies to the N protein may be detected earlier than antibodies to the haemagglutinin. The data derived from this extensive validation trial indicate the excellent capability of this assay in detecting the presence of active AI infection at an early stage in both unvaccinated and vaccinated birds and the lack of interference with vaccine-induced antibodies.
Hafdahl, Adam R; Williams, Michelle A
2009-03-01
In 2 Monte Carlo studies of fixed- and random-effects meta-analysis for correlations, A. P. Field (2001) ostensibly evaluated Hedges-Olkin-Vevea Fisher-z and Schmidt-Hunter Pearson-r estimators and tests in 120 conditions. Some authors have cited those results as evidence not to meta-analyze Fisher-z correlations, especially with heterogeneous correlation parameters. The present attempt to replicate Field's simulations included comparisons with analytic values as well as results for efficiency and confidence-interval coverage. Field's results under homogeneity were mostly replicable, but those under heterogeneity were not: The latter exhibited up to over .17 more bias than ours and, for tests of the mean correlation and homogeneity, respectively, nonnull rejection rates up to .60 lower and .65 higher. Changes to Field's observations and conclusions are recommended, and practical guidance is offered regarding simulation evidence and choices among methods. Most cautions about poor performance of Fisher-z methods are largely unfounded, especially with a more appropriate z-to-r transformation. The Appendix gives a computer program for obtaining Pearson-r moments from a normal Fisher-z distribution, which is used to demonstrate distortion due to direct z-to-r transformation of a mean Fisher-z correlation.
NASA Technical Reports Server (NTRS)
Little, B. H.; Poland, D. T.; Bartel, H. W.; Withers, C. C.; Brown, P. C.
1989-01-01
The objectives of the Propfan Test Assessment (PTA) Program were to validate in flight the structural integrity of large-scale propfan blades and to measure noise characteristics of the propfan in both near and far fields. All program objectives were met or exceeded, on schedule and under budget. A Gulfstream Aerospace Corporation GII aircraft was modified to provide a testbed for the 2.74m (9 ft) diameter Hamilton Standard SR-7 propfan which was driven by a 4475 kw (600 shp) turboshaft engine mounted on the left-hand wing of the aircraft. Flight research tests were performed for 20 combinations of speed and altitude within a flight envelope that extended to Mach numbers of 0.85 and altitudes of 12,192m (40,000 ft). Propfan blade stress, near-field noise on aircraft surfaces, and cabin noise were recorded. Primary variables were propfan power and tip speed, and the nacelle tilt angle. Extensive low altitude far-field noise tests were made to measure flyover and sideline noise and the lateral attenuation of noise. In coopertion with the FAA, tests were also made of flyover noise for the aircraft at 6100m (20,000 ft) and 10,668m (35,000 ft). A final series of tests were flown to evaluate an advanced cabin wall noise treatment that was produced under a separate program by NASA-Langley Research Center.
The STROBE extensions: protocol for a qualitative assessment of content and a survey of endorsement.
Sharp, Melissa K; Utrobičić, Ana; Gómez, Guadalupe; Cobo, Erik; Wager, Elizabeth; Hren, Darko
2017-10-22
The STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) Statement was developed in response to inadequate reporting of observational studies. In recent years, several extensions to STROBE have been created to provide more nuanced field-specific guidance for authors. The content and the prevalence of extension endorsement have not yet been assessed. Accordingly, there are two aims: (1) to classify changes made in the extensions to identify strengths and weaknesses of the original STROBE checklist and (2) to determine the prevalence and typology of endorsement by journals in fields related to extensions. Two independent researchers will assess additions in each extension. Additions will be coded as 'field specific' (FS) or 'not field specific' (NFS). FS is defined as particularly relevant information for a single field and guidance provided generally cannot be extrapolated beyond that field. NFS is defined as information that reflects epidemiological or methodological tenets and can be generalised to most, if not all, types of observational research studies. Intraclass correlation will be calculated to measure reviewers' concordance. On disagreement, consensus will be sought. Individual additions will be grouped by STROBE checklist items to identify the frequency and distribution of changes.Journals in fields related to extensions will be identified through National Library of Medicine PubMed Broad Subject Terms, screened for eligibility and further distilled via Ovid MEDLINE® search strategies for observational studies. Text describing endorsement will be extracted from each journal's website. A classification scheme will be created for endorsement types and the prevalence of endorsement will be estimated. Analyses will use NVivo V.11 and SAS University Edition. This study does not require ethical approval as it does not involve human participants. This study has been preregistered on Open Science Framework. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Estimation of electric fields and current from ground-based magnetometer data
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.
1984-01-01
Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.
NASA Astrophysics Data System (ADS)
Bailey, Quentin G.
2007-08-01
This work explores the theoretical and experimental aspects of Lorentz violation in gravity. A set of modified Einstein field equations is derived from the general Lorentz-violating Standard-Model Extension (SME). Some general theoretical implications of these results are discussed. The experimental consequences for weak-field gravitating systems are explored in the Earth- laboratory setting, the solar system, and beyond. The role of spontaneous Lorentz-symmetry breaking is discussed in the context of the pure-gravity sector of the SME. To establish the low-energy effective Einstein field equations, it is necessary to take into account the dynamics of 20 coefficients for Lorentz violation. As an example, the results are compared with bumblebee models, which are general theories of vector fields with spontaneous Lorentz violation. The field equations are evaluated in the post- newtonian limit using a perfect fluid description of matter. The post-newtonian metric of the SME is derived and compared with some standard test models of gravity. The possible signals for Lorentz violation due to gravity-sector coefficients are studied. Several new effects are identified that have experimental implications for current and future tests. Among the unconventional effects are a new type of spin precession for a gyroscope in orbit and a modification to the local gravitational acceleration on the Earth's surface. These and other tests are expected to yield interesting sensitivities to dimensionless gravity- sector coefficients.
Advanced Capabilities for Wind Tunnel Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.
2010-01-01
Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.
Data-driven battery product development: Turn battery performance into a competitive advantage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sholklapper, Tal
Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.
Lubin-Tate extensions, an elementary approach
NASA Astrophysics Data System (ADS)
Ershov, Yu L.
2007-12-01
We give an elementary proof of the assertion that the Lubin-Tate extension L\\ge K is an Abelian extension whose Galois group is isomorphic to U_K/N_{L/K}(U_L) for arbitrary fields K that have Henselian discrete valuation rings with finite residue fields. The term `elementary' only means that the proofs are algebraic (that is, no transcedental methods are used [1], pp. 327, 332).
Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens
NASA Technical Reports Server (NTRS)
Krause, David L.
2000-01-01
A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.
Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian J.; Boswell, Ray; Collett, Tim S.
The Ignik Sikumi Gas Hydrate Exchange Field Trial was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas, and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope (ANS) during 2011 and 2012. The 2011 field program included drilling the vertical test well and performing extensive wireline logging through a thick section of gas-hydrate-bearing sand reservoirs that provided substantial new insight into the nature of ANS gas hydrate occurrences. The 2012 field program involved an extended, scientific field trial conducted within a single vertical wellmore » (“huff-and-puff” design) through three primary operational phases: 1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; 2) flowback conducted at down-hole pressures above the stability threshold for native CH4-hydrate, and 3) extended (30-days) flowback at pressures below the stability threshold of native CH4-hydrate. Ignik Sikumi represents the first field investigation of gas hydrate response to chemical injection, and the longest-duration field reservoir response experiment yet conducted. Full descriptions of the operations and data collected have been fully reported by ConocoPhillips and are available to the science community. The 2011 field program indicated the presence of free water within the gas hydrate reservoir, a finding with significant implications to the design of the exchange trial – most notably the use of a mixed gas injectant. While this decision resulted in a complex chemical environment within the reservoir that greatly tests current experimental and modeling capabilities – without such a mixture, it is apparent that injection could not have been achieved. While interpretation of the field data are continuing, the primary scientific findings and implications of the program are: 1) gas hydrate destabilizing is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; 2) wells must be carefully designed to enable rapid remediation of well-bore blockages that will occur during any cessation in operations; 3) appropriate gas mixes can be successfully injected into hydrate-bearing reservoirs; 4) sand production can be well-managed through standard engineering controls; 5) reservoir heat exchange during depressurization was much more favorable than expected – mitigating concerns for near-well-bore freezing and enabling consideration of more aggressive pressure reduction and; 6) CO2-CH4 exchange can be accomplished in natural reservoirs. The next steps in evaluation of exchange technology should feature multiple well applications; however such field programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization.« less
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Méot, F.; Tsoupas, N.; Brooks, S.; Trbojevic, D.
2018-07-01
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. This approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbach cell.
How accurately do force fields represent protein side chain ensembles?
Petrović, Dušan; Wang, Xue; Strodel, Birgit
2018-05-23
Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Incorporating Spatial Data into Enterprise Applications
NASA Astrophysics Data System (ADS)
Akiki, Pierre; Maalouf, Hoda
The main goal of this chapter is to discuss the usage of spatial data within enterprise as well as smaller line-of-business applications. In particular, this chapter proposes new methodologies for storing and manipulating vague spatial data and provides methods for visualizing both crisp and vague spatial data. It also provides a comparison between different types of spatial data, mainly 2D crisp and vague spatial data, and their respective fields of application. Additionally, it compares existing commercial relational database management systems, which are the most widely used with enterprise applications, and discusses their deficiencies in terms of spatial data support. A new spatial extension package called Spatial Extensions (SPEX) is provided in this chapter and is tested on a software prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D
2014-01-01
Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less
Information Management for Installation Restoration with Focus on Aberdeen Proving Ground, Maryland
1993-08-01
savings. Edgewood Area Project Background EA has been the site of extensive military munitions testing and disposal for over 70 years. Onsite burial of...titled "Installation Restoration Data Manage- ment Information System" (IRDMIS). This program, begun in 1975, has undergone several updates as technology ...collocated with AEC on EA, Maryland. Data from geotechnical chemical analysis and field survey results are supplied by AEC-authorized contractors and
Effect of flame-tube head structure on combustion chamber performance
NASA Technical Reports Server (NTRS)
Gu, Minqqi
1986-01-01
The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.
2015-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.
NASA Astrophysics Data System (ADS)
Oregui, M.; Li, Z.; Dollevoet, R.
2015-03-01
In this paper, the feasibility of the Frequency Response Function (FRF)-based statistical method to identify the characteristic frequencies of railway track defects is studied. The method compares a damaged track state to a healthy state based on non-destructive field hammer test measurements. First, a study is carried out to investigate the repeatability of hammer tests in railway tracks. By changing the excitation and measurement locations it is shown that the variability introduced by the test process is negligible. Second, following the concepts of control charts employed in process monitoring, a method to define an approximate healthy state is introduced by using hammer test measurements at locations without visual damage. Then, the feasibility study includes an investigation into squats (i.e. a major type of rail surface defect) of varying severity. The identified frequency ranges related to squats agree with those found in an extensively validated vehicle-borne detection system. Therefore, the FRF-based statistical method in combination with the non-destructive hammer test measurements has the potential to be employed to identify the characteristic frequencies of damaged conditions in railway tracks in the frequency range of 300-3000 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, B.E.; Bryan, W.E.; Goranson, P.L.
1985-01-01
The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mmmore » copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1984-01-01
Validation data from the Transonic Self-Streamlining Wind Tunnel has proved the feasibility of streamlining two dimensional flexible walls at low speeds and up to transonic speeds, the upper limit being the speed where the flexible walls are just supercritical. At this condition, breakdown of the wall setting strategy is evident in that convergence is neither as rapid nor as stable as for lower speeds, and wall streamlining criteria are not always completely satisfied. The only major step necessary to permit the extension of two dimensional testing into higher transonic speeds is the provision of a rapid algorithm to solve for mixed flow in the imagery flow fields. The status of two dimensional high transonic testing in the Transonic Self-Streamlining Wind Tunnel is outlined and, in particular, the progress of adapting an algorithm, which solves the Transonic Small Perturbation Equation, for predicting the imagery flow fields is detailed.
Evaluation of acoustic testing techniques for spacecraft systems
NASA Technical Reports Server (NTRS)
Cockburn, J. A.
1971-01-01
External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.
Bioindicators of contaminant exposure and effect in aquatic and terrestrial monitoring
Melancon, Mark J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
2003-01-01
Bioindicators of contaminant exposure presently used in environmental monitoring arc discussed. Some have been extensively field-validated and arc already in routine application. Included are (1) inhibition of brain or blood cholinesterase by anticholinesterase pesticides, (2) induction of hepatic microsomal cytochromes P450 by chemicals such as PAHs and PCBs, (3) reproductive problems such as terata and eggshell thinning, and (4) aberrations of hemoglobin synthesis, including the effects of lead and of certain chlorinated hydrocarbons. Many studies on DNA damage and of histopathological effects, particularly in the form of tumors, have already been completed. There are presently numerous other opportunities for field validation. Bile metabolites of contaminants in fish reveal exposure to contaminants that might otherwise be difficult to detect or quantify. Bile analysis is beginning to be extended to species other than fishes. Assessment of oxidative damage and immune competence appear to be valuable biomarkers. needing only additional field validation for wider use. The use of metallothioneins as biomarkers depends on the development of convenient, inexpensive methodology that provides information not available from measurements of metal ions. The use of stress proteins as biomarkers depends on development of convenient, inexpensive methodology and field validation. Gene arrays and proteomics hold promise as bioindicators for contaminant exposure or effect, particularly because of the large amount of data that could be generated, but they still need extensive development and testing.
Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution
NASA Astrophysics Data System (ADS)
Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.
2015-12-01
Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.
High power experimental studies of hybrid photonic band gap accelerator structures
Zhang, JieXi; Munroe, Brian J.; Xu, Haoran; ...
2016-08-31
This paper reports the first high power tests of hybrid photonic band gap (PBG) accelerator structures. Three hybrid PBG (HPBG) structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM 02 mode, with suppression of both lower order modes, such as the TM 11 mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion ofmore » the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV/m, corresponding to a surface electric field of 78 MV/m, with a breakdown probability of 5×10 –1 per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. As a result, this research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.« less
Frempong, Samuel N; Sutton, Andrew J; Davenport, Clare; Barton, Pelham
2018-02-01
There is little specific guidance on the implementation of cost-effectiveness modelling at the early stage of test development. The aim of this study was to review the literature in this field to examine the methodologies and tools that have been employed to date. Areas Covered: A systematic review to identify relevant studies in established literature databases. Five studies were identified and included for narrative synthesis. These studies revealed that there is no consistent approach in this growing field. The perspective of patients and the potential for value of information (VOI) to provide information on the value of future research is often overlooked. Test accuracy is an essential consideration, with most studies having described and included all possible test results in their analysis, and conducted extensive sensitivity analyses on important parameters. Headroom analysis was considered in some instances but at the early development stage (not the concept stage). Expert commentary: The techniques available to modellers that can demonstrate the value of conducting further research and product development (i.e. VOI analysis, headroom analysis) should be better utilized. There is the need for concerted efforts to develop rigorous methodology in this growing field to maximize the value and quality of such analysis.
Baron, Kelly Glazer; Duffecy, Jennifer; Reid, Kathryn; Begale, Mark; Caccamo, Lauren
2018-01-10
Despite the high prevalence of short sleep duration (29.2% of adults sleep <6 hours on weekdays), there are no existing theory-based behavioral interventions to extend sleep duration. The popularity of wearable sleep trackers provides an opportunity to engage users in interventions. The objective of this study was to outline the theoretical foundation and iterative process of designing the "Sleep Bunny," a technology-assisted sleep extension intervention including a mobile phone app, wearable sleep tracker, and brief telephone coaching. We conducted a two-step process in the development of this intervention, which was as follows: (1) user testing of the app and (2) a field trial that was completed by 2 participants with short sleep duration and a cardiovascular disease risk factor linked to short sleep duration (body mass index [BMI] >25). All participants had habitual sleep duration <6.5 hours verified by 7 days of actigraphy. A total of 6 individuals completed initial user testing in the development phase, and 2 participants completed field testing. Participants in the user testing and field testing responded to open-ended surveys about the design and utility of the app. Participants in the field testing completed the Epworth Sleepiness Scale and also wore an actigraph for a 1-week baseline period and during the 4-week intervention period. The feedback suggests that users enjoyed the wearable sleep tracker and found the app visually pleasing, but they suggested improvements to the notification and reminder features of the app. The 2 participants who completed the field test demonstrated significant improvements in sleep duration and daytime sleepiness. Further testing is needed to determine effects of this intervention in populations at risk for the mental and physical consequences of sleep loss. ©Kelly Glazer Baron, Jennifer Duffecy, Kathryn Reid, Mark Begale, Lauren Caccamo. Originally published in JMIR Mental Health (http://mental.jmir.org), 10.01.2018.
Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland
de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.
2012-01-01
Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages between plants and microbes and reducing N availability. PMID:23227252
The Making of a Self-Neglect Severity Scale
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Dyer, C. B.; Pavlik, V. N.; Kelly, P. A.; Lee, J.; Doody, R. S.; Regev, C.; Pickens, C.; Burnett, J.
2006-01-01
Research in elder self-neglect has lagged behind that of other forms of mistreatment, despite the fact that self-neglect is the most common allegation reported to Adult Protective Service agencies throughout the US. The lack of a gold-standard to measure self-neglect has hampered efforts to study this phenomenon. Researchers designed the Self-neglect Severity Scale (SSS) based on interviews with Adult Protective Service workers and a national expert panel. The SSS is based on observation and interview and is administered in the home to include an environmental assessment. It was piloted, extensively field tested and then revised. The CREST SSS was developed using survey data and consultation with experts in the field. This instrument utilizes observer ratings, interview responses, and assesses subjects physical and environmental domains. It also assesses functional status as it relates to health and safety issues. After field and pilot testing the SSS was finalized and is currently undergoing reliability and validity testing. The CREST SSS was developed as a state scale to provide a common language for describing cases of self-neglect. It is the first self-neglect severity scale available to researchers. If found to be both reliable and valid it can be used in future intervention studies.
The making of a self-neglect severity scale.
Dyer, Carmel Bitondo; Kelly, P Adam; Pavlik, Valory N; Lee, Jessica; Doody, Rachelle S; Regev, Tziona; Pickens, Sabrina; Burnett, Jason; Smith, Scott M
2006-01-01
Research in elder self-neglect has lagged behind that of other forms of mistreatment, despite the fact that self-neglect is the most common allegation reported to Adult Protective Service agencies throughout the US. The lack of a gold standard to measure self-neglect has hampered efforts to study this phenomenon. Researchers designed the Self-Neglect Severity Scale (SSS) based on interviews with Adult Protective Service workers and a national expert panel. The SSS is based on observation and interview and is administered in the home to include an environmental assessment. It was piloted, extensively field tested and then revised. The CREST SSS was developed using survey data and consultation with experts in the field. This instrument utilizes observer ratings, interview responses, and assesses subjects' physical and environmental domains. It also assesses functional status as it relates to health and safety issues. After field and pilot testing, the SSS was finalized and is currently undergoing reliability and validity testing. The CREST SSS was developed as a state scale to provide a common language for describing cases of self-neglect. It is the first self-neglect severity scale available to researchers. If found to be both reliable and valid, it may be used in future intervention studies.
Noncoplanar component of the magnetic field at low Mach number shocks
NASA Technical Reports Server (NTRS)
Friedman, M. A.; Russell, C. T.; Gosling, J. T.; Thomsen, M. F.
1990-01-01
The component of the magnetic field that deviates from the plane defined by the shock normal and the upstream magnetic field is examined for low Mach number bow shocks. The integrated value of this noncoplanar component is compared to the predictions of Jones and Ellison (1987). A test of this relationship was first reported by Gosling et al. (1988) who found good agreement only at the two low Mach number shocks that were included in their study. Analysis of a more extensive collection of low Mach number shocks confirms the Jones and Ellison relationship at very low Mach numbers as well as its deterioration for higher Mach numbers. However, there also is an indication that the relationship may break down for shocks that are nearly perpendicular.
Overdiagnosis across medical disciplines: a scoping review
de Groot, Joris A H; Reitsma, Johannes B; Moons, Karel G M; Hooft, Lotty; Naaktgeboren, Christiana A
2017-01-01
Objective To provide insight into how and in what clinical fields overdiagnosis is studied and give directions for further applied and methodological research. Design Scoping review. Data sources Medline up to August 2017. Study selection All English studies on humans, in which overdiagnosis was discussed as a dominant theme. Data extraction Studies were assessed on clinical field, study aim (ie, methodological or non-methodological), article type (eg, primary study, review), the type and role of diagnostic test(s) studied and the context in which these studies discussed overdiagnosis. Results From 4896 studies, 1851 were included for analysis. Half of all studies on overdiagnosis were performed in the field of oncology (50%). Other prevalent clinical fields included mental disorders, infectious diseases and cardiovascular diseases accounting for 9%, 8% and 6% of studies, respectively. Overdiagnosis was addressed from a methodological perspective in 20% of studies. Primary studies were the most common article type (58%). The type of diagnostic tests most commonly studied were imaging tests (32%), although these were predominantly seen in oncology and cardiovascular disease (84%). Diagnostic tests were studied in a screening setting in 43% of all studies, but as high as 75% of all oncological studies. The context in which studies addressed overdiagnosis related most frequently to its estimation, accounting for 53%. Methodology on overdiagnosis estimation and definition provided a source for extensive discussion. Other contexts of discussion included definition of disease, overdiagnosis communication, trends in increasing disease prevalence, drivers and consequences of overdiagnosis, incidental findings and genomics. Conclusions Overdiagnosis is discussed across virtually all clinical fields and in different contexts. The variability in characteristics between studies and lack of consensus on overdiagnosis definition indicate the need for a uniform typology to improve coherence and comparability of studies on overdiagnosis. PMID:29284720
Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground
NASA Astrophysics Data System (ADS)
Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.
2011-11-01
U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.
Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground
NASA Astrophysics Data System (ADS)
Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.
2012-05-01
U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.
NASA Astrophysics Data System (ADS)
Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay
2013-07-01
Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
Qi, Sen; Mitchell, Ross E
2012-01-01
The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the validity and reliability of using the Stanford for this special student population still require extensive scrutiny. Recent shifts in educational policy environment, which require that schools enable all children to achieve proficiency through accountability testing, warrants a close examination of the adequacy and relevance of the current large-scale testing of deaf and hard-of-hearing students. This study has three objectives: (a) it will summarize the historical data over the last three decades to indicate trends in academic achievement for this special population, (b) it will analyze the current federal laws and regulations related to educational testing and special education, thereby identifying gaps between policy and practice in the field, especially identifying the limitations of current testing programs in assessing what deaf and hard-of-hearing students know, and (c) it will offer some insights and suggestions for future testing programs for deaf and hard-of-hearing students.
NASA Astrophysics Data System (ADS)
Roberts, Gerald P.; Ganas, Athanassios
2000-10-01
Fault-slip directions recorded by outcropping striated and corrugated fault planes in central and southern Greece have been measured for comparison with extension directions derived from focal mechanism and Global Positioning System (GPS) data for the last ˜100 years to test how far back in time velocity fields and deformation dynamics derived from the latter data sets can be extrapolated. The fault-slip data have been collected from the basin-bounding faults to Plio-Pleistocene to recent extensional basins and include data from arrays of footwall faults formed during the early stages of fault growth. We show that the orientation of the inferred stress field varies along faults and earthquake ruptures, so we use only slip-directions from the centers of faults, where dip-slip motion occurs, to constrain regionally significant extension directions. The fault-slip directions for the Peloponnese and Gulfs of Evia and Corinth are statistically different at the 99% confidence level but statistically the same as those implied by earthquake focal mechanisms for each region at the 99% confidence level; they are also qualitatively similar to the principal strain axes derived from GPS studies. Extension directions derived from fault-slip data are 043-047° for the southern Peloponnese, 353° for the Gulf of Corinth, and 015-014° for the Gulf of Evia. Extension on active normal faults in the two latter areas appears to grade into strike-slip along the North Anatolian Fault through a gradual change in fault-slip directions and fault strikes. To reconcile the above with 5° Myr-1 clockwise rotations suggested for the area, we suggest that the faults considered formed during a single phase of extension. The deformation and formation of the normal fault systems examined must have been sufficiently rapid and recent for rotations about vertical axes to have been unable to disperse the fault-slip directions from the extension directions implied by focal mechanisms and GPS data. Thus, in central and southern Greece the velocity fields derived from focal mechanism and GPS data may help explain the dynamics of the deformation over longer time periods than the ˜100 years over which they were measured; this may include the entire deformation history of the fault systems considered, a time period that may exceed 1-2 Myr.
Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain.
Saikhedkar, Nidhi; Bhatnagar, Maheep; Jain, Ayushi; Sukhwal, Pooja; Sharma, Chhavi; Jaiswal, Neha
2014-12-01
The goals of this study were: (1) to obtain basic information about the effects of long-term use of mobile phones on cytological makeup of the hippocampus in rat brains (2) to evaluate the effects on antioxidant status, and (3) to evaluate the effects on cognitive behavior particularly on learning and memory. Rats (age 30 days, 120 ± 5 g) were exposed to 900 MHz radio waves by means of a mobile hand set for 4 hours per day for 15 days. Effects on anxiety, spatial learning, and memory were studied using the open field test, the elevated plus maze, the Morris water maze (MWM), and the classic maze test. Effects on brain antioxidant status were also studied. Cresyl violet staining was done to assess the neuronal damage. A significant change in behavior, i.e., more anxiety and poor learning was shown by test animals as compared to controls and sham group. A significant change in the level of antioxidant enzymes and non-enzymatic antioxidants, and an increase in lipid peroxidation were observed in the test rats. Histological examination showed neurodegenerative cells in hippocampal sub regions and the cerebral cortex. Thus our findings indicate extensive neurodegeneration on exposure to radio waves. Increased production of reactive oxygen species due to exhaustion of enzymatic and non-enzymatic antioxidants and increased lipid peroxidation indicate extensive neurodegeneration in selective areas of CA1, CA3, DG, and the cerebral cortex. This extensive neuronal damage results in alterations in behavior related to memory and learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.R.; Smith, H.D.; Orr, J.L.
Experiments conducted with laboratory rodents indicate that exposure to 60 Hz electric fields or magnetic fields can suppress nocturnal melatonin concentrations in pineal gland and blood. In three experiments employing three field-exposed and three sham-exposed nonhuman primates, each implanted with an indwelling venous cannula to allow repeated blood sampling, the authors studied the effects of either 6 kV/m and 50 {micro}T (0.5 G) or 30 kV/m and 100 {micro}T (1.0 G) on serum melatonin patterns. The fields were ramped on and off slowly, so that no transients occurred. Extensive quality control for the melatonin assay, computerized control and monitoring ofmore » field intensities, and consistent exposure protocols were used. No changes in nocturnal serum melatonin concentration resulted from 6 weeks of day-time exposure with slow field onset/offset and a highly regular exposure protocol. These results indicate that, under the conditions tested, day-time exposure to 60 Hz electric and magnetic fields in combination does not result in melatonin suppression in primates.« less
Numerical simulation of turbulent jet noise, part 2
NASA Technical Reports Server (NTRS)
Metcalfe, R. W.; Orszag, S. A.
1976-01-01
Results on the numerical simulation of jet flow fields were used to study the radiated sound field, and in addition, to extend and test the capabilities of the turbulent jet simulation codes. The principal result of the investigation was the computation of the radiated sound field from a turbulent jet. In addition, the computer codes were extended to account for the effects of compressibility and eddy viscosity, and the treatment of the nonlinear terms of the Navier-Stokes equations was modified so that they can be computed in a semi-implicit way. A summary of the flow model and a description of the numerical methods used for its solution are presented. Calculations of the radiated sound field are reported. In addition, the extensions that were made to the fundamental dynamical codes are described. Finally, the current state-of-the-art for computer simulation of turbulent jet noise is summarized.
2014-12-01
Historically, MRT found its most extensive application in the inspection of critical high-strength steel components of the F-111 aircraft to...Steve Burke is Group Leader Acoustic Material Systems within Maritime Division and Task Leader for AIR 07/101 Assessment and Control of Aircraft ...Maritime Division. He has previously led research programs in advanced electromagnetic and ultrasonic NDE for aircraft applications. Geoff has BSc and BE
The Advanced Noise Control Fan Baseline Measurements
NASA Technical Reports Server (NTRS)
McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.
2009-01-01
The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
E-Control: First Public Release of Remote Control Software for VLBI Telescopes
NASA Technical Reports Server (NTRS)
Neidhardt, Alexander; Ettl, Martin; Rottmann, Helge; Ploetz, Christian; Muehlbauer, Matthias; Hase, Hayo; Alef, Walter; Sobarzo, Sergio; Herrera, Cristian; Himwich, Ed
2010-01-01
Automating and remotely controlling observations are important for future operations in a Global Geodetic Observing System (GGOS). At the Geodetic Observatory Wettzell, in cooperation with the Max-Planck-Institute for Radio Astronomy in Bonn, a software extension to the existing NASA Field System has been developed for remote control. It uses the principle of a remotely accessible, autonomous process cell as a server extension for the Field System. The communication is realized for low transfer rates using Remote Procedure Calls (RPC). It uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. The user interacts with this system over a modern graphical user interface created with wxWidgets. For security reasons the communication is automatically tunneled through a Secure Shell (SSH) session to the telescope. There are already successful test observations with the telescopes at O Higgins, Concepcion, and Wettzell. At Wettzell the software is already used routinely for weekend observations. Therefore the first public release of the software is now available, which will also be useful for other telescopes.
A control-oriented dynamic wind farm flow model: “WFSim”
NASA Astrophysics Data System (ADS)
Boersma, S.; Gebraad, P. M. O.; Vali, M.; Doekemeijer, B. M.; van Wingerden, J. W.
2016-09-01
In this paper, we present and extend the dynamic medium fidelity control-oriented Wind Farm Simulator (WFSim) model. WFSim resolves flow fields in wind farms in a horizontal, two dimensional plane. It is based on the spatially and temporally discretised two dimensional Navier-Stokes equations and the continuity equation and solves for a predefined grid and wind farm topology. The force on the flow field generated by turbines is modelled using actuator disk theory. Sparsity in system matrices is exploited in WFSim, which enables a relatively fast flow field computation. The extensions to WFSim we present in this paper are the inclusion of a wake redirection model, a turbulence model and a linearisation of the nonlinear WFSim model equations. The first is important because it allows us to carry out wake redirection control and simulate situations with an inflow that is misaligned with the rotor plane. The wake redirection model is validated against a theoretical wake centreline known from literature. The second extension makes WFSim more realistic because it accounts for wake recovery. The amount of recovery is validated using a high fidelity simulation model Simulator fOr Wind Farm Applications (SOWFA) for a two turbine test case. Finally, a linearisation is important since it allows the application of more standard analysis, observer and control techniques.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sumita; Volk, Trudi; Lumpe, Andrew
2009-06-01
This study examined the effects of an extensive inquiry-based field experience on pre service elementary teachers’ personal agency beliefs, a composite measure of context beliefs and capability beliefs related to teaching science. The research combined quantitative and qualitative approaches and included an experimental group that utilized the inquiry method and a control group that used traditional teaching methods. Pre- and post-test scores for the experimental and control groups were compared. The context beliefs of both groups showed no significant change as a result of the experience. However, the control group’s capability belief scores, lower than those of the experimental group to start with, declined significantly; the experimental group’s scores remained unchanged. Thus, the inquiry-based field experience led to an increase in personal agency beliefs. The qualitative data suggested a new hypothesis that there is a spiral relationship among teachers’ ability to establish communicative relationships with students, desire for personal growth and improvement, ability to implement multiple instructional strategies, and possession of substantive content knowledge. The study concludes that inquiry-based student teaching should be encouraged in the training of elementary school science teachers. However, the meaning and practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom.
Briers, G E; Lindner, J R; Shinn, G C; Wingenbach, G W; Baker, M T
2010-01-01
Agricultural and extension education--or some derivative name--is a field of study leading to the doctoral degree in universities around the world. Is there are body of knowledge or a taxonomy of the knowledge--e.g., a knowledge domain--that one should possess with a doctorate in agricultural and extension education? The purpose of this paper was to synthesize the work of researchers who attempted to define the field of study, with a taxonomy comprising the knowledge domains (standards) and knowledge objects--structured interrelated sets of data, knowledge, and wisdom--of the field of study. Doctoral study in agricultural and extension education needs a document that provides for rules and guidelines--rules and guidelines that in turn provide for common and repeated use--all leading to achievement of an optimum degree of order in the context of academic, scholarly, and professional practice in agricultural and extension education. Thus, one would know in broad categories the knowledge, skills, and abilities possessed by one who holds a doctoral degree in agricultural and extension education. That is, there would exist a standard for doctoral degrees in agricultural and extension education. A content analysis of three previous attempts to categorize knowledge in agricultural and extension education served as the primary technique to create a new taxonomy--or to confirm an existing taxonomy--for doctoral study in agricultural and extension education. The following coalesced as nine essential knowledge domains for a doctorate in agricultural and extension education: (1) history, philosophy, ethics, and policy; (2) agricultural/rural development; (3) organizational development and change management; (4) planning, needs assessment, and evaluation; (5) learning theory; (6) curriculum development and instructional design; (7) teaching methods and delivery strategies; (8) research methods and tools; and, (9) scholarship and communications.
NASA Technical Reports Server (NTRS)
Kao, David
1999-01-01
The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.
Use of cytokinins as agrochemicals.
Koprna, Radoslav; De Diego, Nuria; Dundálková, Lucie; Spíchal, Lukáš
2016-02-01
Plant hormones cytokinins regulate various aspects of plant growth and development. For their positive effects on branching, delaying of senescence, nutrient remobilisation, flower and seed set control they became interesting substances in search for potential agrochemicals. From the 1970' of the last century exogenous application of cytokinins have been tested in field conditions to improve yield traits of world-wide important crops such as wheat, rice, maize, barley, and soybean. Despite the extensive testing summarized in this work, so far cytokinins haven't found their stable place among commercialized plant growth regulators, mainly due to the complexity of their effects. Here we bring an overview of the outcomes obtained in pot and field experiments using cytokinin exogenous treatments, summarize the ways of application and point to the affected traits in various field crops, vegetables, cotton and fruit trees. Further, we present here outcomes of field trials performed with a derivative of N(6)-benzyladenine, 2-chloro-6-(3-methoxybenzyl)aminopurine, in spring barley and winter wheat. The effect on yield forming traits such as number of tillers, grains per ear, number of ears and the final yield was evaluated and compared after spraying of the both crops in different phenological stages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Progress and achievements of R&D activities for the ITER vacuum vessel
NASA Astrophysics Data System (ADS)
Nakahira, M.; Takahashi, H.; Koizumi, K.; Onozuka, M.; Ioki, K.
2001-04-01
The Full Scale Sector Model Project, which was initiated in 1995 as one of the Seven Large Projects for ITER R&D, has been continued with the joint effort of the ITER Joint Central Team and the Japanese, Russian Federation and United States Home Teams. The fabrication of a full scale 18° toroidal sector, which is composed of two 9° sectors spliced at the port centre, was successfully completed in September 1997 with a dimensional accuracy of +/-3 mm for the total height and total width. Both sectors were shipped to the test site at the Japan Atomic Energy Research Institute and the integration test of the sectors was begun in October 1997. The integration test involves the adjustment of field joints, automatic narrow gap tungsten inert gas welding of field joints with splice plates and inspection of the joints by ultrasonic testing, as required for the initial assembly of the ITER vacuum vessel. This first demonstration of field joint welding and the performance test of the mechanical characteristics were completed in May 1998, and all the results obtained have satisfied the ITER design. In addition to these tests, integration with the midplane port extension fabricated by the Russian Home Team by using a fully remotized welding and cutting system developed by the US Home Team was completed in March 2000. The article describes the progress, achievements and latest status of the R&D activities for the ITER vacuum vessel.
Improving the quality of parameter estimates obtained from slug tests
Butler, J.J.; McElwee, C.D.; Liu, W.
1996-01-01
The slug test is one of the most commonly used field methods for obtaining in situ estimates of hydraulic conductivity. Despite its prevalence, this method has received criticism from many quarters in the ground-water community. This criticism emphasizes the poor quality of the estimated parameters, a condition that is primarily a product of the somewhat casual approach that is often employed in slug tests. Recently, the Kansas Geological Survey (KGS) has pursued research directed it improving methods for the performance and analysis of slug tests. Based on extensive theoretical and field research, a series of guidelines have been proposed that should enable the quality of parameter estimates to be improved. The most significant of these guidelines are: (1) three or more slug tests should be performed at each well during a given test period; (2) two or more different initial displacements (Ho) should be used at each well during a test period; (3) the method used to initiate a test should enable the slug to be introduced in a near-instantaneous manner and should allow a good estimate of Ho to be obtained; (4) data-acquisition equipment that enables a large quantity of high quality data to be collected should be employed; (5) if an estimate of the storage parameter is needed, an observation well other than the test well should be employed; (6) the method chosen for analysis of the slug-test data should be appropriate for site conditions; (7) use of pre- and post-analysis plots should be an integral component of the analysis procedure, and (8) appropriate well construction parameters should be employed. Data from slug tests performed at a number of KGS field sites demonstrate the importance of these guidelines.
An Elementary Proof of a Criterion for Linear Disjointness
ERIC Educational Resources Information Center
Dobbs, David E.
2013-01-01
An elementary proof using matrix theory is given for the following criterion: if "F"/"K" and "L"/"K" are field extensions, with "F" and "L" both contained in a common extension field, then "F" and "L" are linearly disjoint over "K" if (and only if) some…
Schmidt, Kerstin; Schmidtke, Jörg; Mast, Yvonne; Waldvogel, Eva; Wohlleben, Wolfgang; Klemke, Friederike; Lockau, Wolfgang; Hausmann, Tina; Hühns, Maja; Broer, Inge
2017-08-01
Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.
Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S.; Fingersh, L.; Siegel, K.
2013-01-01
Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observedmore » in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.« less
Gypsy Field project in reservoir characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castagna, John P.; Jr., O'Meara, Daniel J.
The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowedmore » the authors to leverage DOE contributions and focus more on geophysical characterization.« less
NASA Technical Reports Server (NTRS)
Verosub, Kenneth L.; Brady, Roland H., III; Abrams, Michael
1989-01-01
Kinematic relationships at the intersection of the southern Death Valley and Garlock fault zones were examined to identify and delineate the eastern structural boundary between the Mojave and the Basin and Range geologic terrains, and to construct a model for the evolution of this boundary through time. In order to accomplish this, satellite imagery was combined with field investigations to study six areas in the vicinity of the intersection, or possible extensions, of the fault zones. The information gathered from these areas allows the test of various hypotheses that were proposed to explain the interaction between the Death Valley and Garlock fault zones.
Exact relativistic models of conformastatic charged dust thick disks
NASA Astrophysics Data System (ADS)
García-Reyes, Gonzalo
2018-04-01
We construct relativistic models of charged dust thick disks for a particular conformastatic spacetime through a Miyamoto-Nagai transformation used in Newtonian gravity to model disk like galaxies. Two simple families of thick disk models and a family of thick annular disks based on the field of an extreme Reissner-Nordström black hole and a Morgan-Morgan-like metric are considered. The electrogeodesic motion of test particles around the structures are analyzed. Also the stability of the particles against radial perturbation is studied using an extension of the Rayleigh criteria of stability of a fluid in rest in a gravitational field. The models built satisfy all the energy conditions.
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, Francois; Tsoupas, N.; Brooks, S.
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
Meot, Francois; Tsoupas, N.; Brooks, S.; ...
2018-04-16
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less
A three-dimensional turbulent separated flow and related mesurements
NASA Technical Reports Server (NTRS)
Pierce, F. J.
1985-01-01
The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.
Extension of Ostwald Ripening Theory
NASA Technical Reports Server (NTRS)
Baird, J.; Naumann, R.
1985-01-01
The objective is to develop models based on the mean field approximation of Ostwald ripening to describe the growth of second phase droplets or crystallites. The models will include time variations in nucleation rate, control of saturation through addition of solute, precipitating agents, changes in temperature, and various surface kinetic effects. Numerical integration schemes have been developed and tested against the asymptotic solution of Liftshitz, Slyozov and Wagner (LSW). A second attractor (in addition to the LSW distribution) has been found and, contrary to the LSW theory, the final distribution is dependent on the initial distribution. A series of microgravity experiments is being planned to test this and other results from this work.
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Chang, Jy-Tai
1988-01-01
Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene-Donnelly, K; Ogden, K
Purpose: To evaluate the impact of commercially available extension plates on Hounsfield Unit (HU) values in the ACR CT accreditation phantom (Model 464, Gammex Inc., Middleton, Wi). The extension plates are intended to improve water HU values in scanners where the traditional solution involves scanning the phantom with an adjacent water or CTDI phantom. Methods: The Model 464 phantom was scanned on 9 different CT scanners at 8 separate sites representing 16 and 64 slice MDCT technology from four CT manufacturers. The phantom was scanned with and without the extension plates (Gammex 464 EXTPLT-KIT) in helical and axial modes. Amore » water phantom was also scanned to verify water HU calibration. Technique was 120 kV tube potential, 350 mAs, and 210 mm display field of view. Slice thickness and reconstruction algorithm were based on site clinical protocols. The widest available beam collimation was used. Regions of interest were drawn on the HU test objects in Module 1 of the phantom and mean values recorded. Results: For all axial mode scans, water HU values were within limits with or without the extension plates. For two scanners (both Lightspeed VCT, GE Medical Systems, Waukesha WI), axial mode bone HU values were above the specified range both with and without the extension plates though they were closer to the specified range with the plates installed. In helical scan mode, two scanners (both GE Lightspeed VCT) had water HU values above the specified range without the plates installed. With the plates installed, the water HU values were within range for all scanners in all scan modes. Conclusion: Using the plates, the Lightspeed VCT scanners passed the water HU test when scanning in helical mode. The benefit of the extension plates was evident in helical mode scanning with GE scanners using a nominal 4 cm beam. Disclosure: The extension plates evaluated in this work were provided free of charge to the authors. The authors have no other financial interest in Gammex Inc.« less
Comparison of Three Methods of Assessing Muscle Strength and Imbalance Ratios of the Knee
Moss, Crayton L.; Wright, P. Thomas
1993-01-01
Three strength measurement methods for determining muscle strength and imbalance ratios of the knee were compared in 41 (23 female, 18 male) NCAA Division I track and field athletes. Peak quadriceps extensions and hamstring flexions were measured isotonically, isometrically, and isokinetically. Isokinetic measurements were performed on a Cybex II at 60°/s. Isometric extension and flexion measurements were performed using the Nicholas Manual Muscle Tester (Lafayette Instruments; Lafayette, Ind). Isotonic measurements were done on both Universal and Nautilus apparatuses. Testing order was randomized to avoid a treatment order effect. A repeated measures ANOVA and a post hoc Tukey test were used to compare the three methods of assessing strength and imbalance ratios of the knee. Absolute strength values were significantly different according to gender and mode of testing. Bilateral strength imbalance ratios for knee flexion were significantly lower for the Nautilus leg curl machine. Ipsilateral strength imbalance ratios were significantly greater for the Cybex II. Our results indicated that absolute strength values cannot be interchanged between testing modes. Except for Cybex II (ipsilateral) and Nautilus (bilateral knee flexion), strength imbalance ratios could be interchanged. ImagesFig 1.Fig 2.Fig 3.Fig 4.Fig 5.Fig 6.Fig 7.INGING PMID:16558207
Izsó, Lajos; Székely, Ildikó; Dános, László
2015-01-01
The aim of this paper - based on the extensive experiences of the authors gained by using one particular work simulator - is to present some promising possibilities of the application of this (and any other similar) work simulator in the field of skill assessment, skill development and vocational aptitude tests of physically disabled persons. During skill assessment and development, as parts of the therapy, the focus is on the disabled functions. During vocational aptitude tests, however, the focus is already on the functions that remained intact and therefore can be the basis of returning to work. Some factual examples are provided to realize the proposed possibilities in practice.
Design of a cusped field thruster for drag-free flight
NASA Astrophysics Data System (ADS)
Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.
2016-09-01
Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.
Plasma Studies in the SPECTOR Experiment as Target Development for MTF
NASA Astrophysics Data System (ADS)
Ivanov, Russ; Young, William; the Fusion Team, General
2016-10-01
General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.
NASA Astrophysics Data System (ADS)
Bunn, M. I.; Jones, J.; Endres, A. L.
2009-05-01
Unconfined aquifers are in direct contact with the earth's surface; hence, they are an important focus in groundwater recharge and contaminant transport studies. While pumping tests have long been used to quantify aquifer properties, the contribution of drainage from the vadose zone during pumping has been the subject of debate for decades. In 2001, a highly detailed data set was collected during a seven-day pumping test in the unconfined aquifer at CFB Borden, Ontario (Bevan et al., 2005). The frequent observation of moisture content profiles during the test has initiated a closer examination of the vadose zone response to pumping. The moisture profiles collected during the test were obtained using a neutron probe. The neutron data depicts a capillary fringe thickness that increases with both proximity to the pumping well and duration of pumping. This capillary fringe extension results in delayed drainage that persists to the end of the seven-day test with the shape of the transition zone remaining constant (Bevan et al., 2005). Simulations of the pumping test were conducted using Hydrogeosphere (Therrien et al., 2006). Initial simulations were completed based on the conceptual model of a homogeneous and slightly anisotropic aquifer. The simulation results replicated the observed piezometric response, but were unable to produce any change in the thickness of the capillary fringe. It was hypothesized that the discrepancy between observations and simulation results may be the result of assumptions such as the homogeneity of the hydraulic conductivity field. In an effort to replicate this potential mechanism for the observed extension, the conceptual model was updated to better reflect the mildly heterogeneous hydraulic conductivity field of the Borden aquifer. Conductivity fields were generated using the statistical description of the Borden aquifer given by Sudicky (1986) with an adjusted mean log conductivity to better approximate the observed piezometric response. The inclusion of heterogeneity appears to have little effect on the hydraulic head drawdown, or the thickness of the capillary fringe. Heterogeneity does lead to delayed drainage in the drier portion of the vadose zone, where volumetric water content is less than 0.13 m3/m3. This effect is more pronounced with proximity to the pumping well, and is negligible at 15 m from the well. The amount of excess moisture in the vadose zone does not appear to be a function of pumping duration.
A study of the structural-acoustic response and interior noise levels of fuselage structures
NASA Technical Reports Server (NTRS)
Koval, L. R.
1978-01-01
Models of both flat and curved fuselage panels were tested for their sound transmission characteristics. The effect of external air flow on transmission loss was simulated in a subsonic wind-tunnel. By numerically evaluating the known equations for field-incidence transmission loss of single-walled panels in a computer program, a comparison of the theory with the test results was made. As a further extension to aircraft fuselage simulation, equations for the field-incidence transmission loss of a double-walled panel were derived. Flow is shown to provide a small increase in transmission loss for a flat panel. Curvature is shown to increase transmission loss for low frequencies, while also providing a sharp decrease in transmission loss at the ring frequency of the cylindrical panel. The field-incidence transmission loss of a double-walled panel was found to be approximately twice that for a single-walled panel, with the addition of dips in the transmission loss at the air gap resonances and at the critical frequency of the internal panel.
Bertram, S. M.; Bowen, M.; Kyle, M.; Schade, J. D.
2008-01-01
Heterotrophic organisms must obtain essential elements in sufficient quantities from their food. Because plants naturally exhibit extensive variation in their elemental content, it is important to quantify the within-species stoichiometric variation of consumers. If extensive stoichiometric variation exists, it may help explain consumer variation in life-history strategy and fitness. To date, however, research on stoichiometric variation has focused on interspecific differences and assumed minimal intraspecific differences. Here this assumption is tested. Natural variation is quantified in body stoichiometry of two terrestrial insects: the generalist field cricket, Gryllus texensis Cade and Otte (Orthoptera: Gryllidae) and a specialist curculionid weevil, Sabinia setosa (Le Conte) (Coleoptera: Curculionidae). Both species exhibited extensive intraspecific stoichiometric variation. Cricket body nitrogen content ranged from 8–12% and there was a four-fold difference in body phosphorus content, ranging from 0.32–1.27%. Body size explained half this stoichiometric variation, with larger individuals containing less nitrogen and phosphorus. Weevils exhibited an almost three-fold difference in body phosphorus content, ranging from 0.38–0.97%. Overall, the variation observed within each of these species is comparable to the variation previously observed across almost all terrestrial insect species. PMID:20298114
NASA Astrophysics Data System (ADS)
Pavlos, George; Malandraki, Olga; Pavlos, Evgenios; Iliopoulos, Aggelos; Karakatsanis, Leonidas
2017-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing non-equilibrium statistical mechanics. In this study, we present the highlights of Tsallis non-extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at solar wind phenomena and magnetosphere. In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of SEPs time series observed at the interplanetary space and magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For the magnetic field, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as "quiet", "shock" and "aftershock", while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the SEPs profile in time, and magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014, 2015, 2016; Karakatsanis et al. 2013). Tsallis q-entropy principle can explain the emergence of a series of new and significant physical characteristics in distributed systems as well as in space plasmas. Such characteristics are: non-Gaussian statistics and anomalous diffusion processes, strange and fractional dynamics, multifractal, percolating and intermittent turbulence structures, multiscale and long spatio-temporal correlations, fractional acceleration and Non-Equilibrium Stationary States (NESS) or non-equilibrium self-organization process and non-equilibrium phase transition and topological phase transition processes according to Zelenyi and Milovanov (2004). In this direction, our results reveal clearly strong self-organization and development of macroscopic ordering of plasma system related to strengthen of non-extensivity, multifractality and intermittency everywhere in the space plasmas region during the CME event. Acknowledgements: This project has received funding form the European Union's Horizon 2020 research and innovation program under grant agreement No 637324.
Comprehensive Glossary of Nuclear Science
NASA Astrophysics Data System (ADS)
Langlands, Tracy; Stone, Craig; Meyer, Richard
2001-10-01
We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.
The new MSFC Solar vector magnetograph. Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; West, E. A.; Cumings, N. P.
1984-01-01
The unique MSFC solar vector magnetograph allows measurements of all three components of the Sun's photospheric magnetic field over a wide field-of-view with spatial resolution determined by a 2.7 x 2.7 arc second pixel size. This system underwent extensive modifications to improve its sensitivity and temporal response. The modifications included replacing an SEC vidicon detector with a solid-state CCD camera; replacing the original digital logic circuitry with an electronic controller and a computer to provide complete, programmable control over the entire operation of the magnetograph; and installing a new polarimeter which consists of a single electro-optical modulator coupled with interchangeable waveplates mounted on a rotating assembly. The system is described and results of calibrations and tests are presented. Initial observations of solar magnetic fields with the new magnetograph are presented.
Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project
NASA Technical Reports Server (NTRS)
Vernier, Robert; Bonalksy, Todd; Slavin, James
2004-01-01
The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.
NASA Technical Reports Server (NTRS)
Bell, R. M.; Cuzner, G.; Eugeni, C.; Hutchison, S. B.; Merrick, A. J.; Robins, G. C.; Bailey, S. H.; Ceurden, B.; Hagen, J.; Kenagy, K.;
2008-01-01
The Large Optical Test and Integration Site (LOTIS) at the Lockheed Martin Space Systems Company in Sunnyvale, CA is designed for the verification and testing of optical systems. The facility consists of an 88 foot temperature stabilized vacuum chamber that also functions as a class 10k vertical flow cleanroom. Many problems were encountered in the design and construction phases. The industry capability to build large chambers is very weak. Through many delays and extra engineering efforts, the final product is very good. With 11 Thermal Conditioning Units and precision RTD s, temperature is uniform and stable within 1oF, providing an ideal environment for precision optical testing. Within this chamber and atop an advanced micro-g vibration-isolation bench is the 6.5 meter diameter LOTIS Collimator and Scene Generator, LOTIS alignment and support equipment. The optical payloads are also placed on the vibration bench in the chamber for testing. This optical system is designed to operate in both air and vacuum, providing test imagery in an adaptable suite of visible/near infrared (VNIR) and midwave infrared (MWIR) point sources, and combined bandwidth visible-through-MWIR point sources, for testing of large aperture optical payloads. The heart of the system is the LOTIS Collimator, a 6.5m f/15 telescope, which projects scenes with wavefront errors <85 nm rms out to a 0.75 mrad field of view (FOV). Using field lenses, performance can be extended to a maximum field of view of 3.2 mrad. The LOTIS Collimator incorporates an extensive integrated wavefront sensing and control system to verify the performance of the system.
Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project
NASA Technical Reports Server (NTRS)
Vernier, Robert; Bonalosky, Todd; Slavin, James
2004-01-01
The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.
Physics teaching and time management
NASA Astrophysics Data System (ADS)
Di Stefano, Rosanne
1998-09-01
Extensive field tests of four new introductory physics courses, in which the new models were compared with more traditional courses, have yielded many results. The most interesting of these are not directly related to how the new models fared, but instead to general features shared in common by many physics courses. The theme is simply that it is important to set concrete and well-defined goals, and to design every in- and out-of-class activity so that the students' time is devoted to achieving those goals.
NASA Technical Reports Server (NTRS)
Henderson, R. G.; Thomas, G. S.; Nalepka, R. F.
1975-01-01
Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken.
Facilitating the exploitation of ERTS imagery using snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Sheffield, C.; Russell, O.; Amato, R. V.
1973-01-01
The author has identified the following significant results. EarthSat has established an effective mail-based method for obtaining timely ground truth (snow depth) information over an extensive area. The method is both efficient and inexpensive compared with the cost of a similarly scaled direct field checking effort. Additional geological information has been acquired which is not shown in geological maps in the area. Excellent quality snow-free ERTS-1 transparencies of the test areas have been received and are being analyzed.
Upper Stage Engine Composite Nozzle Extensions
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Gradl, Paul R.; Greene, Sandra E.; Sullivan, Brian J.; Weller, Leslie J.; Koenig, John R.; Cuneo, Jacques C.; Thompson, James; Brown, Aaron;
2015-01-01
Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and United States Air Force (USAF) requirements, as well as broader industry needs. Recent and on-going efforts at the Marshall Space Flight Center (MSFC) are aimed at both (a) further developing the technology and databases for nozzle extensions fabricated from specific CC materials, and (b) developing and demonstrating low-cost capabilities for testing composite nozzle extensions. At present, materials development work is concentrating on developing a database for lyocell-based C-C that can be used for upper stage engine nozzle extension design, modeling, and analysis efforts. Lyocell-based C-C behaves in a manner similar to rayon-based CC, but does not have the environmental issues associated with the use of rayon. Future work will also further investigate technology and database gaps and needs for more-established polyacrylonitrile- (PAN-) based C-C's. As a low-cost means of being able to rapidly test and screen nozzle extension materials and structures, MSFC has recently established and demonstrated a test rig at MSFC's Test Stand (TS) 115 for testing subscale nozzle extensions with 3.5-inch inside diameters at the attachment plane. Test durations of up to 120 seconds have been demonstrated using oxygen/hydrogen propellants. Other propellant combinations, including the use of hydrocarbon fuels, can be used if desired. Another test capability being developed will allow the testing of larger nozzle extensions (13.5- inch inside diameters at the attachment plane) in environments more similar to those of actual oxygen/hydrogen upper stage engines. Two C-C nozzle extensions (one lyocell-based, one PAN-based) have been fabricated for testing with the larger-scale facility.
Peripheral defocus does not necessarily affect central refractive development.
Schippert, Ruth; Schaeffel, Frank
2006-10-01
Recent experiments in monkeys suggest that deprivation, imposed only in the periphery of the visual field, can induce foveal myopia. This raises the hypothesis that peripheral refractive errors imposed by the spectacle lens correction could influence foveal refractive development also in humans. We have tested this hypothesis in chicks. Chicks wore either full field spectacle lenses (+6.9 D/-7 D), or lenses with central holes of 4, 6, or 8mm diameter, for 4 days (n=6 for each group). Refractions were measured in the central visual field, and at -45 degrees (temporal) and +45 degrees (nasal), and axial lengths were measured by A-scan ultrasonography. As previously described, full field lenses were largely compensated within 4 days (refraction changes with positive lenses: +4.69+/-1.73 D, negative lenses: -5.98+/-1.78 D, both p<0.001, Dunnett's test, to untreated controls). With holes in the center of the lenses, the central refraction remained emmetropic and there was not even a trend of a shift in refraction (all groups: p>0.5, Dunnetts test). At +/-45 degrees , the lenses were partially compensated despite the 4/6/8mm central holes; positive lenses: +2.63 / +1.44 / +0.43 D, negative lenses: -2.57 / -1.06 / +0.06 D. There is extensive local compensation of imposed refractive errors in chickens. For the tested hole sizes, peripherally imposed defocus did not influence central refractive development. To alter central refractive development, the unobstructed part in the central visual field may have to be quite small (hole sizes smaller than 4mm, with the lenses at a vertex distance of 2-3mm).
Hunting oil between elephants in Block 34/7 on the Norwegian shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvsborg, A.; Nybakken, S.; Solli, T.
Block 34/7 is located east of the Statfjord field producing since 1979, and north of Gullfaks field, producing since 1986. Snorre field in the block should begin production in 1992. These three fields have more than 11 billion bbl in place and 5 billion bbl recoverable reserves. A heavy exploration program is done parallel to field development studies. The exploration activity is due to approaching relinquishment and securing tie-in to existing infrastructure. Because of extensive production facilities, small reserves can be used and all traps are now mapped and risk evaluated. So far, four discoveries have been made outside themore » Snorre field: Statfjord Oest Snorre Vest, C, and B. Estimated recoverable reserves are 400 million bbl. However, additional prospects could more than double these reserves. Exploration started with conventional structural traps. The two latest discoveries are pinch-out traps, and the next to be tested by wells are sealing fault traps. The East flank is a separate province downfaulted 2 km with several structures depending on sealing faults. New stratigraphy will be tested by the next well which is deviated to penetrate possible Lower Cretaceous and Upper Jurassic reservoir before reaching the main goal, which is the Brent reservoir. The result of this well could be very important for the opening of possible new play concepts in the northern North Sea. A sealing fault trap with Brent reservoir on the Tampen Spur will be tested by a well in 1990. Exploration is, however, in progress at several other stratigraphic levels within Tertiary, Upper and Lower Cretaceous, and other Upper Jurassic reservoirs where the possibilities for stratigraphic traps exist. These will be tested during next year's exploration program to secure potential reserves for field development at low production cost. Today, the minimum economic recoverable reserves in a prospect are 5-10 million bbl.« less
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.
USDA-ARS?s Scientific Manuscript database
To answer the increasing number of questions received regarding the use of foliar fungicide on alfalfa, a group of Extension and USDA Agricultural Research Station staff in southeastern Minnesota and Wisconsin worked together to conduct field research trials to examine the benefit of using a foliar ...
Administrative Problems of Technical Assistance to Community Development and Agricultural Extension.
ERIC Educational Resources Information Center
Safa-Isfahani, Manouchehr
An attempt was made to analyze the administrative problems of United States technical assistance to community development and agricultural extension programs in the Philippines, Pakistan, Iran, Thailand, and Nigeria, with emphasis on field problems and on the point of view of local administrators, field technicians, and local people. The concept…
Monitoring crack extension in fracture toughness tests by ultrasonics
NASA Technical Reports Server (NTRS)
Klima, S. J.; Fisher, D. M.; Buzzard, R. J.
1975-01-01
An ultrasonic method was used to observe the onset of crack extension and to monitor continued crack growth in fracture toughness specimens during three point bend tests. A 20 MHz transducer was used with commercially available equipment to detect average crack extension less than 0.09 mm. The material tested was a 300-grade maraging steel in the annealed condition. A crack extension resistance curve was developed to demonstrate the usefulness of the ultrasonic method for minimizing the number of tests required to generate such curves.
Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M; De Seta, Graciela E; Reina, Fernando D; Panigatti, Cecilia; Litter, Marta I; Harms, Hauke
2015-05-21
Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron.
Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M.; De Seta, Graciela E.; Reina, Fernando D.; Panigatti, Cecilia; Litter, Marta I.; Harms, Hauke
2015-01-01
Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron. PMID:26006123
NASA Astrophysics Data System (ADS)
Bijl, Piet; Hogervorst, Maarten A.; Toet, Alexander
2017-05-01
The Triangle Orientation Discrimination (TOD) methodology includes i) a widely applicable, accurate end-to-end EO/IR sensor test, ii) an image-based sensor system model and iii) a Target Acquisition (TA) range model. The method has been extensively validated against TA field performance for a wide variety of well- and under-sampled imagers, systems with advanced image processing techniques such as dynamic super resolution and local adaptive contrast enhancement, and sensors showing smear or noise drift, for both static and dynamic test stimuli and as a function of target contrast. Recently, significant progress has been made in various directions. Dedicated visual and NIR test charts for lab and field testing are available and thermal test benches are on the market. Automated sensor testing using an objective synthetic human observer is within reach. Both an analytical and an image-based TOD model have recently been developed and are being implemented in the European Target Acquisition model ECOMOS and in the EOSTAR TDA. Further, the methodology is being applied for design optimization of high-end security camera systems. Finally, results from a recent perception study suggest that DRI ranges for real targets can be predicted by replacing the relevant distinctive target features by TOD test patterns of the same characteristic size and contrast, enabling a new TA modeling approach. This paper provides an overview.
Europe, James R.; Tettelbach, Christian R. H.; Havelin, Jason; Rodgers, Brooke S.; Furman, Bradley T.; Velasquez, Marissa
2017-01-01
Locomotion of infaunal bivalve mollusks primarily consists of vertical movements related to burrowing; horizontal movements have only been reported for a few species. Here, we characterize hard clam walking: active horizontal locomotion of adults (up to 118 mm shell length, SL) of the commercially important species, Mercenaria mercenaria, at the sediment surface—a behavior only briefly noted in the literature. We opportunistically observed walking over a 10-yr period, at 9 different sites in the Peconic Bays, New York, USA, and tested several hypotheses for the underlying cause of this behavior through quantitative field sampling and reproductive analyses. Hard clam walking was exhibited by males and females at equal frequency, predominantly during June/July and October, when clams were in peak spawning condition. Extensive walking behavior appears to be cued by a minimum population density; we suggest it may be mediated by unidentified pheromone(s), infaunal pressure waves and/or other unidentified factors. There was no directionality exhibited by walking clams, but individuals in an area of extensive walking were highly aggregated and walking clams were significantly more likely to move toward a member of the opposite sex. Thus, we conclude that hard clam walking serves to aggregate mature individuals prior to spawning, thereby facilitating greater fertilization success. In the process of investigating this behavior, however, we apparently oversampled one population and reduced clam densities below the estimated minimum threshold density and, in so doing, suppressed extensive walking for a period of >3 years running. This not only reinforces the importance of detailed field investigations of species biology and ecology, even for those that are considered to be well studied, but also highlights the need for greater awareness of the potential for research activities to affect focal species behavior. PMID:28278288
Temporal variations in the potential hydrological performance of extensive green roof systems
NASA Astrophysics Data System (ADS)
De-Ville, Simon; Menon, Manoj; Stovin, Virginia
2018-03-01
Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.
Propfan test assessment propfan propulsion system static test report
NASA Technical Reports Server (NTRS)
Orourke, D. M.
1987-01-01
The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
Aspect-Oriented Monitoring of C Programs
NASA Technical Reports Server (NTRS)
Havelund, Klaus; VanWyk, Eric
2008-01-01
The paper presents current work on extending ASPECTC with state machines, resulting in a framework for aspect-oriented monitoring of C programs. Such a framework can be used for testing purposes, or it can be part of a fault protection strategy. The long term goal is to explore the synergy between the fields of runtime verification, focused on program monitoring, and aspect-oriented programming, focused on more general program development issues. The work is inspired by the observation that most work in this direction has been done for JAVA, partly due to the lack of easily accessible extensible compiler frameworks for C. The work is performed using the SILVER extensible attribute grammar compiler framework, in which C has been defined as a host language. Our work consists of extending C with ASPECTC, and subsequently to extend ASPECTC with state machines.
The Brera Multiscale Wavelet ROSAT HRI Source Catalog. II. Application to the HRI and First Results
NASA Astrophysics Data System (ADS)
Campana, Sergio; Lazzati, Davide; Panzera, Maria Rosa; Tagliaferri, Gianpiero
1999-10-01
The wavelet detection algorithm (WDA) described in the accompanying paper by Lazzati et al. is suited to a fast and efficient analysis of images taken with the High-Resolution Imager (HRI) instrument on board the ROSAT satellite. An extensive testing is carried out on the detection pipeline: HRI fields with different exposure times are simulated and analyzed in the same fashion as the real data. Positions are recovered with errors of a few arcseconds, whereas fluxes are within a factor of 2 from their input values in more than 90% of the cases in the deepest images. Unlike the ``sliding-box'' detection algorithms, the WDA also provides a reliable description of the source extension, allowing for a complete search of, e.g., supernova remnants or clusters of galaxies in the HRI fields. A completeness analysis on simulated fields shows that for the deepest exposures considered (~120 ks) a limiting flux of ~3×10-15 ergs s-1 cm-2 can be reached over the entire field of view. We test the algorithm on real HRI fields selected for their crowding and/or the presence of extended or bright sources (e.g., clusters of galaxies and stars, supernova remnants). We show that our algorithm compares favorably with other X-ray detection algorithms, such as XIMAGE and EXSAS. Analysis with the WDA of the large set of HRI data will allow us to survey ~400 deg2 down to a limiting flux of ~10-13 ergs s-1 cm-2, and ~0.3 deg2 down to ~3×10-15 ergs s-1 cm-2. A complete catalog will result from our analysis, consisting of the Brera Multiscale Wavelet Bright Source Catalog (BMW-BSC), with sources detected with a significance of >~4.5 σ, and the Faint Source Catalog (BMW-FSC), with sources at >~3.5 σ. A conservative estimate based on the extragalactic log N-log S indicates that at least 16,000 sources will be revealed in the complete analysis of the entire HRI data set.
SOME DUALITY THEOREMS FOR CYCLOTOMIC \\Gamma-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS OF CM TYPE
NASA Astrophysics Data System (ADS)
Kuz'min, L. V.
1980-06-01
For an odd prime l and a cyclotomic \\Gamma{-}l-extension k_\\infty/k of a field k of CM type, a compact periodic \\Gamma-module A_l(k), analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module A_l(k). The properties of this scalar product are examined, and certain other duality relations are determined on A_l(k). It is proved that, in a finite l-extension k'/k of CM type, the \\mathbf{Z}_l-ranks of A_l(k) and A_l(k') are connected by a relation similar to the Hurwitz formula for the genus of a curve.Bibliography: 7 titles.
Real gas CFD simulations of hydrogen/oxygen supercritical combustion
NASA Astrophysics Data System (ADS)
Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.
2013-03-01
A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelnikov, N.; Vasserman, I.; Xu, J.
As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Some previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. Furthermore, the resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operationalmore » gaps, as well as the reproducibility and accuracy of the gap settings.« less
Further Developments of the Fringe-Imaging Skin Friction Technique
NASA Technical Reports Server (NTRS)
Zilliac, Gregory C.
1996-01-01
Various aspects and extensions of the Fringe-Imaging Skin Friction technique (FISF) have been explored through the use of several benchtop experiments and modeling. The technique has been extended to handle three-dimensional flow fields with mild shear gradients. The optical and imaging system has been refined and a PC-based application has been written that has made it possible to obtain high resolution skin friction field measurements in a reasonable period of time. The improved method was tested on a wingtip and compared with Navier-Stokes computations. Additionally, a general approach to interferogram-fringe spacing analysis has been developed that should have applications in other areas of interferometry. A detailed error analysis of the FISF technique is also included.
Commercial Aircraft Maintenance Experience Relating to Engine External Hardware
NASA Technical Reports Server (NTRS)
Soditus, Sharon M.
2006-01-01
Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.
Neuner, Matthias; Gamnitzer, Peter; Hofstetter, Günter
2017-01-01
The aims of the present paper are (i) to briefly review single-field and multi-field shotcrete models proposed in the literature; (ii) to propose the extension of a damage-plasticity model for concrete to shotcrete; and (iii) to evaluate the capabilities of the proposed extended damage-plasticity model for shotcrete by comparing the predicted response with experimental data for shotcrete and with the response predicted by shotcrete models, available in the literature. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated shotcrete models and they will serve as a basis for the design of a new lab test program, complementing the existing ones. PMID:28772445
NASA Astrophysics Data System (ADS)
Bunn, M. I.; Jones, J.; Endres, A. L.
2008-12-01
Hydrogeologists quantify the properties of unconfined aquifers by analyzing the data from pumping tests. The most appropriate method of incorporating flow contributions from the vadose zone into these analyses has been the subject of debate for decades. Recently, a highly detailed data set was collected during a seven- day pumping test at CFB Borden, Ontario (Bevan et al., 2005) which has allowed a close examination of the vadose zone response to pumping. Water table drawdown was monitored using pressure transducers in 11 monitoring wells, while moisture profiles were collected 19 times during the 7-day test using neutron logging. The Borden aquifer system is quite homogeneous, and numerical simulations using the variably saturated model InHM resulted in excellent reproduction of the observed hydraulic head drawdowns. Conversely, the simulated moisture profiles correlated poorly with neutron-logging-derived observed profiles. Specifically, the field results show delayed drawdown in the vadose zone, resulting in a persistent and significant extension of the capillary fringe, with the shape of the moisture profile remaining constant through the transition zone. Numerical simulations using various forms of the capillary pressure-saturation relationship with reasonable parameter sets were unable produce the extension. Neutron moisture profiles were selected from three locations (3, 5, and 15 m radial distance from the pumping well) at which an adjacent shallow deep piezometer pair could be used to accurately estimate water table location. Using this data in conjunction with the inverse modeling tool PEST, a set of van Genuchten capillary pressure-saturation parameters was generated to match each observed moisture profile. Horizontal and vertical hydraulic gradients and flow rates at the water table were generated using model output and compared to the fitted parameters. The van Genuchten parameter n was found to have significant scatter in both profile location and observation time when compared to any of the modeled results. The van Genuchten parameter alpha was found to vary linearly as a function of horizontal hydraulic gradient; further the results from all observation locations and times were found to follow the same linear relationship. The likely effects of consolidation, entrapped air, heterogeneity, and hydraulic gradients on the observed moisture profile were also evaluated. Results indicate a need for further investigation into the applicability of laboratory derived steady-state water retention curves for field scale simulations.
NASA Technical Reports Server (NTRS)
Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam
2016-01-01
Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.
Geometric validation of a mobile laser scanning system for urban applications
NASA Astrophysics Data System (ADS)
Guan, Haiyan; Li, Jonathan; Yu, Yongtao; Liu, Yan
2016-03-01
Mobile laser scanning (MLS) technologies have been actively studied and implemented over the past decade, as their application fields are rapidly expanding and extending beyond conventional topographic mapping. Trimble's MX-8, as one of the MLS systems in the current market, generates rich survey-grade laser and image data for urban surveying. The objective of this study is to evaluate whether Trimble MX-8 MLS data satisfies the accuracy requirements of urban surveying. According to the formula of geo-referencing, accuracies of navigation solution and laser scanner determines the accuracy of the collected LiDAR point clouds. Two test sites were selected to test the performance of Trimble MX-8. Those extensive tests confirm that Trimble MX-8 offers a very promising tool to survey complex urban areas.
NASA Technical Reports Server (NTRS)
Sullivan, J. L.
1975-01-01
The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.
X-33 Integrated Test Facility Extended Range Simulation
NASA Technical Reports Server (NTRS)
Sharma, Ashley
1998-01-01
In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air
2008-01-01
With their significant features, the applications of complementary metal-oxide semiconductor (CMOS) image sensors covers a very extensive range, from industrial automation to traffic applications such as aiming systems, blind guidance, active/passive range finders, etc. In this paper CMOS image sensor-based active and passive range finders are presented. The measurement scheme of the proposed active/passive range finders is based on a simple triangulation method. The designed range finders chiefly consist of a CMOS image sensor and some light sources such as lasers or LEDs. The implementation cost of our range finders is quite low. Image processing software to adjust the exposure time (ET) of the CMOS image sensor to enhance the performance of triangulation-based range finders was also developed. An extensive series of experiments were conducted to evaluate the performance of the designed range finders. From the experimental results, the distance measurement resolutions achieved by the active range finder and the passive range finder can be better than 0.6% and 0.25% within the measurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests on applications of the developed CMOS image sensor-based range finders to the automotive field were also conducted. The experimental results demonstrated that our range finders are well-suited for distance measurements in this field. PMID:27879789
Applications of GPS technologies to field sports.
Aughey, Robert J
2011-09-01
Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.
Flow Visualization Techniques in Wind Tunnel Tests of a Full-Scale F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Bennett, Mark; Crowder, James P.; Cooper, Don; Olson, Lawrence (Technical Monitor)
1994-01-01
The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. The purpose of the flow-visualization experiments was to document the forebody and leading edge extension (LEX) vortex interaction along with the wing flow patterns at high angles of attack and low speed high Reynolds number conditions. This investigation used surface pressures in addition to both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, LEXS, and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system for three-dimension vortex tracking. The flow visualization experiments were conducted over an angle of attack range from 20 deg to 45 deg and over a sideslip range from -10 deg to 10 deg. The various visualization techniques as well as the pressure distributions were used to understand the flow field structure. The results show regions of attached and separated flow on the forebody, canopy, and wings as well as the vortical flow over the leading-edge extensions. This paper will also present flow visualization comparisons with the F-18 HARV flight vehicle and small-scale oil flows on the F-18.
An elementary proof of a criterion for linear disjointness
NASA Astrophysics Data System (ADS)
Dobbs, David E.
2013-06-01
An elementary proof using matrix theory is given for the following criterion: if F/K and L/K are field extensions, with F and L both contained in a common extension field, then F and L are linearly disjoint over K if (and only if) some K-vector space basis of F is linearly independent over L. The material in this note could serve as enrichment material for the unit on fields in a first course on abstract algebra.
He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A
2009-10-01
We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.
Explosively driven air blast in a conical shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil
2015-03-15
Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R.
The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less
Blunt-Body Aerothermodynamic Database from High-Enthalpy CO2 Testing in an Expansion Tunnel
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Prabhu, Dinesh K.; Maclean, Matthew; Dufrene, Aaron
2016-01-01
An extensive database of heating, pressure, and flow field measurements on a 70-deg sphere-cone blunt body geometry in high-enthalpy, CO2 flow has been generated through testing in an expansion tunnel. This database is intended to support development and validation of computational tools and methods to be employed in the design of future Mars missions. The test was conducted in an expansion tunnel in order to avoid uncertainties in the definition of free stream conditions noted in previous studies performed in reflected shock tunnels. Data were obtained across a wide range of test velocity/density conditions that produced various physical phenomena of interest, including laminar and transitional/turbulent boundary layers, non-reacting to completely dissociated post-shock gas composition and shock-layer radiation. Flow field computations were performed at the test conditions and comparisons were made with the experimental data. Based on these comparisons, it is recommended that computational uncertainties on surface heating and pressure, for laminar, reacting-gas environments can be reduced to +/-10% and +/-5%, respectively. However, for flows with turbulence and shock-layer radiation, there were not sufficient validation-quality data obtained in this study to make any conclusions with respect to uncertainties, which highlights the need for further research in these areas.
Hole-doped cuprate high temperature superconductors
NASA Astrophysics Data System (ADS)
Chu, C. W.; Deng, L. Z.; Lv, B.
2015-07-01
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
Analysis of cold worked holes for structural life extension
NASA Technical Reports Server (NTRS)
Wieland, David H.; Cutshall, Jon T.; Burnside, O. Hal; Cardinal, Joseph W.
1994-01-01
Cold working holes for improved fatigue life of fastener holes are widely used on aircraft. This paper presents methods used by the authors to determine the percent of cold working to be applied and to analyze fatigue crack growth of cold worked fastener holes. An elastic, perfectly-plastic analysis of a thick-walled tube is used to determine the stress field during the cold working process and the residual stress field after the process is completed. The results of the elastic/plastic analysis are used to determine the amount of cold working to apply to a hole. The residual stress field is then used to perform damage tolerance analysis of a crack growing out of a cold worked fastener hole. This analysis method is easily implemented in existing crack growth computer codes so that the cold worked holes can be used to extend the structural life of aircraft. Analytical results are compared to test data where appropriate.
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.
Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo
2016-01-11
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields
NASA Astrophysics Data System (ADS)
Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo
2016-01-01
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Additional extensions to the NASCAP computer code, volume 2
NASA Technical Reports Server (NTRS)
Stannard, P. R.; Katz, I.; Mandell, M. J.
1982-01-01
Particular attention is given to comparison of the actural response of the SCATHA (Spacecraft Charging AT High Altitudes) P78-2 satellite with theoretical (NASCAP) predictions. Extensive comparisons for a variety of environmental conditions confirm the validity of the NASCAP model. A summary of the capabilities and range of validity of NASCAP is presented, with extensive reference to previously published applications. It is shown that NASCAP is capable of providing quantitatively accurate results when the object and environment are adequately represented and fall within the range of conditions for which NASCAP was intended. Three dimensional electric field affects play an important role in determining the potential of dielectric surfaces and electrically isolated conducting surfaces, particularly in the presence of artificially imposed high voltages. A theory for such phenomena is presented and applied to the active control experiments carried out in SCATHA, as well as other space and laboratory experiments. Finally, some preliminary work toward modeling large spacecraft in polar Earth orbit is presented. An initial physical model is presented including charge emission. A simple code based upon the model is described along with code test results.
Overdiagnosis across medical disciplines: a scoping review.
Jenniskens, Kevin; de Groot, Joris A H; Reitsma, Johannes B; Moons, Karel G M; Hooft, Lotty; Naaktgeboren, Christiana A
2017-12-27
To provide insight into how and in what clinical fields overdiagnosis is studied and give directions for further applied and methodological research. Scoping review. Medline up to August 2017. All English studies on humans, in which overdiagnosis was discussed as a dominant theme. Studies were assessed on clinical field, study aim (ie, methodological or non-methodological), article type (eg, primary study, review), the type and role of diagnostic test(s) studied and the context in which these studies discussed overdiagnosis. From 4896 studies, 1851 were included for analysis. Half of all studies on overdiagnosis were performed in the field of oncology (50%). Other prevalent clinical fields included mental disorders, infectious diseases and cardiovascular diseases accounting for 9%, 8% and 6% of studies, respectively. Overdiagnosis was addressed from a methodological perspective in 20% of studies. Primary studies were the most common article type (58%). The type of diagnostic tests most commonly studied were imaging tests (32%), although these were predominantly seen in oncology and cardiovascular disease (84%). Diagnostic tests were studied in a screening setting in 43% of all studies, but as high as 75% of all oncological studies. The context in which studies addressed overdiagnosis related most frequently to its estimation, accounting for 53%. Methodology on overdiagnosis estimation and definition provided a source for extensive discussion. Other contexts of discussion included definition of disease, overdiagnosis communication, trends in increasing disease prevalence, drivers and consequences of overdiagnosis, incidental findings and genomics. Overdiagnosis is discussed across virtually all clinical fields and in different contexts. The variability in characteristics between studies and lack of consensus on overdiagnosis definition indicate the need for a uniform typology to improve coherence and comparability of studies on overdiagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Fabrication and Testing of Low Cost 2D Carbon-Carbon Nozzle Extensions at NASA/MSFC
NASA Technical Reports Server (NTRS)
Greene, Sandra Elam; Shigley, John K.; George, Russ; Roberts, Robert
2015-01-01
Subscale liquid engine tests were conducted at NASA/MSFC using a 1.2 Klbf engine with liquid oxygen (LOX) and gaseous hydrogen. Testing was performed for main-stage durations ranging from 10 to 160 seconds at a chamber pressure of 550 psia and a mixture ratio of 5.7. Operating the engine in this manner demonstrated a new and affordable test capability for evaluating subscale nozzles by exposing them to long duration tests. A series of 2D C-C nozzle extensions were manufactured, oxidation protection applied and then tested on a liquid engine test facility at NASA/MSFC. The C-C nozzle extensions had oxidation protection applied using three very distinct methods with a wide range of costs and process times: SiC via Polymer Impregnation & Pyrolysis (PIP), Air Plasma Spray (APS) and Melt Infiltration. The tested extensions were about 6" long with an exit plane ID of about 6.6". The test results, material properties and performance of the 2D C-C extensions and attachment features will be discussed.
Crop Diversity for Yield Increase
Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong
2009-01-01
Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624
Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doose, C.; Dejus, R.; Jaski, M.
2017-06-01
Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less
Cowley, Patrick M; Fitzgerald, Sharon; Sottung, Kyle; Swensen, Thomas
2009-05-01
First we tested the reliability of two new field tests of core stability (plank to fatigue test [PFT] and front abdominal power test [FAPT]), as well as established measures of core stability (isokinetic trunk extension and flexion strength [TES and TFS] and work [TEW and TFW]) over 3 days in 8 young men and women (24.0 +/- 3.1 years). The TES, TFS, TFW, and FAPT were highly reliable, TEW was moderately reliable, and PFT were unreliable for use during a single testing session. Next, we determined if age, weight, and the data from the reliable field test (FAPT) were predictive of TES, TEW, TFS, and TFW in 50 young men and women (19.0 +/- 1.2 years). The FAPT was the only significant predictor of TES and TEW in young women, explaining 16 and 15% of the variance in trunk performance, respectively. Weight was the only significant predictor of TFS and TFW in young women, explaining 28 and 14% of the variance in trunk performance, respectively. In young men, weight was the only significant predictor of TES, TEW, TFS, and TFW, and explained 27, 35, 42, and 33%, respectively, of the variance in trunk performance. In conclusion, the ability of weight and the FAPT to predict TES, TEW, TFS, and TFW was more frequent in young men than women. Additionally, because the FAPT requires few pieces of equipment, is fast to administer, and predicts isokinetic TES and TEW in young women, it can be used to provide a field-based estimate of isokinetic TES and TEW in women without history of back or lower-extremity injury.
NASA Astrophysics Data System (ADS)
Rea, B.; Evans, D. J. A.; Benn, D. I.; Brennan, A. J.
2012-04-01
Networks of crevasse squeeze ridges (CSRs) preserved on the forelands of many surging glaciers attest to extensive full-depth crevassing. Full-depth connections have been inferred from turbid water up-welling in crevasses and the formation of concertina eskers however, it has not been clearly established if the crevasses formed from the top-down or the bottom-up. A Linear Elastic Fracture Mechanics (LEFM) approach is used to determine the likely propagation direction for Mode I crevasses on seven surging glaciers. Results indicate that, the high extensional surface strain rates are insufficient to promote top-down full-depth crevasses but have sufficient magnitude to penetrate to depths of 4-12 m, explaining the extensive surface breakup accompanying glacier surges. Top-down, full-depth crevassing is only possible when water depth approaches 97% of the crevasse depth. However, the provision of sufficient meltwater is problematic due to the aforementioned extensive shallow surface crevassing. Full-depth, bottom-up crevassing can occur provided basal water pressures are in excess of 80-90% of flotation which is the default for surging and on occasion water pressures may even become artesian. Therefore CSRs, found across many surging glacier forelands and ice margins most likely result from the infilling of basal crevasses formed, for the most part, by bottom-up hydrofracturing. Despite the importance of crevassing for meltwater routing and calving dynamics physically testing numerical crevassing models remains problematic due to technological limitations, changing stress regimes and difficulties associated with working in crevasse zones on glaciers. Mapping of CSR spacing and matching to surface crevasse patterns can facilitate quantitative comparison between the LEFM model and observed basal crevasses provided ice dynamics are known. However, assessing full-depth top-down crevasse propagation is much harder to monitor in the field and no geomorphological record is preserved. An alternative approach is provided by geotechnical centrifuge modelling. By testing scaled models in an enhanced 'gravity' field real-world (prototype) stress conditions can be reproduced which is crucial for problems governed by self-weight stresses, of which glacier crevassing is one. Scaling relationships have been established for stress intensity factors - KI which are key to determining crevasse penetration such that KIp = √N KIm (p = prototype and m = model). Operating specifications of the University of Dundee geotechnical centrifuge (100g) will allow the testing of scaled models equivalent to prototype glaciers of 50 m thickness in order to provide a physical test of the LEFM top-down crevassing model.
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
NASA Astrophysics Data System (ADS)
Kazantsev, Daniil; Pickalov, Valery; Nagella, Srikanth; Pasca, Edoardo; Withers, Philip J.
2018-01-01
In the field of computerized tomographic imaging, many novel reconstruction techniques are routinely tested using simplistic numerical phantoms, e.g. the well-known Shepp-Logan phantom. These phantoms cannot sufficiently cover the broad spectrum of applications in CT imaging where, for instance, smooth or piecewise-smooth 3D objects are common. TomoPhantom provides quick access to an external library of modular analytical 2D/3D phantoms with temporal extensions. In TomoPhantom, quite complex phantoms can be built using additive combinations of geometrical objects, such as, Gaussians, parabolas, cones, ellipses, rectangles and volumetric extensions of them. Newly designed phantoms are better suited for benchmarking and testing of different image processing techniques. Specifically, tomographic reconstruction algorithms which employ 2D and 3D scanning geometries, can be rigorously analyzed using the software. TomoPhantom also provides a capability of obtaining analytical tomographic projections which further extends the applicability of software towards more realistic, free from the "inverse crime" testing. All core modules of the package are written in the C-OpenMP language and wrappers for Python and MATLAB are provided to enable easy access. Due to C-based multi-threaded implementation, volumetric phantoms of high spatial resolution can be obtained with computational efficiency.
A model-reduction approach to the micromechanical analysis of polycrystalline materials
NASA Astrophysics Data System (ADS)
Michel, Jean-Claude; Suquet, Pierre
2016-03-01
The present study is devoted to the extension to polycrystals of a model-reduction technique introduced by the authors, called the nonuniform transformation field analysis (NTFA). This new reduced model is obtained in two steps. First the local fields of internal variables are decomposed on a reduced basis of modes as in the NTFA. Second the dissipation potential of the phases is replaced by its tangent second-order (TSO) expansion. The reduced evolution equations of the model can be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations on two specific applications, creep of polycrystalline ice and response of polycrystalline copper to a cyclic tension-compression test. The new reduced evolution equations is faster than the full-field computations by two orders of magnitude in the two examples.
Testing the Proterozoic GAD Hypothesis with Reconstructed Tomography Dynamo Models
NASA Astrophysics Data System (ADS)
Panzik, J. E.; Driscoll, P. E.; Rudolph, M. L.
2014-12-01
Pre-Mesozoic continental reconstructions and paleoclimatic inferences from paleomagnetism rely critically upon the assumption of a time-averaged geocentric axial dipole (GAD) magnetic field. Though the geomagnetic field of the past 5 myr has been extensively studied and small geometric variations are being refined (e.g., Johnson et al., 2008, GGG 9), the pre-Mesozoic geomagnetic field geometry remains unresolved and is suggested to have large, non-dipolar contributions (e.g. Kent and Smethurst, 1998, EPSL 160, 391-402). We address the paleo-morphology by looking at inclination versus paleolatitude histograms derived from numerical geodynamo simulations with spatially variable CMB heat flux, similar to the method used by Bloxham (2000, Nature 405, 63-65). We will be using homogeneous heat flux simulations as a standard and compare the results to those of a present day tomography and a reconstracted 200 Ma tomography CMB heat flux. By comparing the relative contribution of non-dipolar components to the dipole field, we find that strong CMB heat flux heterogeneity is necessary to create the large non-dipolar contributions inferred for the paleomagnetic field.
Hobby-Eberly Telescope Dark Energy Experiment Fiber Optic Testing System
NASA Astrophysics Data System (ADS)
Fuller, Lindsay
2011-01-01
The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a spectroscopic survey that will collect data from nearly one million Lyman-α emitting galaxies at a redshift of 1.8 < z < 3.8 in order to characterize dark energy. To accomplish this, over 33,000 optical fibers will feed light from these galaxies into 150 Visible Integral-Field Replicable Unit Spectrographs (VIRUS), an order of magnitude greater than has been done before. A fiber optic test bench has been constructed at the University of Texas at Austin in order to test the transmission and focal ratio degradation (FRD) of individual fibers at several wavelengths ranging from 350-600nm. Furthermore, the fiber optic bundles are undergoing extensive lifetime tests at the Center for Electromechanics on the university’s research campus which will simulate 10 years of motion on the Hobby-Eberly Telescope.
NASA Astrophysics Data System (ADS)
Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai
2018-01-01
The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.
MMS Observatory Thermal Vacuum Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos
2014-01-01
The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.
Test of LOX compatibility for asphalt and concrete runway materials
NASA Technical Reports Server (NTRS)
Moyers, C. V.; Bryan, C. J.; Lockhart, B. J.
1973-01-01
A literature survey and a telephone canvass of producers and users of LOX is reported which yielded one report of an accident resulting from a LOX spill on asphalt, one discussion of hazardous conditions, and an unreferenced mention of an incident. Laboratory tests using standard LOX impact apparatus yielded reactions with both old and new alphalt, but none with concrete. In the final test, using a larger sample of asphalt, the reaction caused extensive damage to equipment. Initial field experiments using 2-meter square asphalt slabs covered with LOX, conducted during rainy weather, achieved no reaction with plummets, and limited reaction with a blasting cap as a reaction initiator. In a final plummet-initiated test on a dry slab, a violent reaction, which appeared to have propagated over the entire slab surface, destroyed the plummet fixture and threw fragments as far as 48 meters.
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Salgado, D.; Zemánková, K.; Noya, E. G.
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less
Space infrared telescope facility wide field and diffraction limited array camera (IRAC)
NASA Technical Reports Server (NTRS)
Fazio, Giovanni G.
1988-01-01
The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.
Vegetation canopy discrimination and biomass assessment using multipolarized airborne SAR
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Dobson, M. C.; Held, D. N.
1985-01-01
Multipolarized airborne Synthetic Aperture Radar (SAR) data were acquired over a largely agricultural test site near Macomb, Illinois, in conjunction with the Shuttle Imaging Radar (SIR-B) experiment in October 1984. The NASA/JPL L-band SAR operating at 1.225 GHz made a series of daily overflights with azimuth view angles both parallel and orthogonal to those of SIR-B. The SAR data was digitally recorded in the quadpolarization configuration. An extensive set of ground measurements were obtained throughout the test site and include biophysical and soil measurements of approximately 400 agricultural fields. Preliminary evaluation of some of the airborne SAR imagery indicates a great potential for crop discrimination and assessment of canopy condition. False color composites constructed from the combination of three linear polarizations (HH, VV, and HV) were found to be clearly superior to any single polarization for purposes of crop classification. In addition, an image constructed using the HH return to modulate intensity and the phase difference between HH and VV returns to modulate chroma indicates a clear capability for assessment of canopy height and/or biomass. In particular, corn fields heavily damaged by infestations of corn borer are readily distinguished from noninfested fields.
Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Lee, Won Suk
A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapidmore » exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate guest molecules, for up to three gas hydrate guest molecules: CH4, CO2, and N2. The independent tracking of mobile fluid and hydrate guest molecules allows for the kinetic exchange of guest molecules between the mobile fluids and hydrate. The particular interest of this numerical investigation is to determine whether kinetic exchange parameters, determined from laboratory-scale experiments, are directly applicable to interpreting the Ignik Sikumi #1 data.« less
Phase 2 of the Array Automated Assembly Task for the Low Cost Solar Array Project
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Rai-Choundhury, P.; Seman, E. J.; Rohatgi, A.; Davis, J. R.; Ostroski, J. W.; Stapleton, R. E.
1979-01-01
Two process specifications supplied by contractors were tested. The aluminum silk screening process resulted in cells comparable to those from sputtered Al. The electroless plating of contacts specification could be used only with extensive modification. Several experiments suggest that there is some degradation of the front junction during the Al back surface field (BSF) fabrication. A revised process sequence was defined which incorporates Al BSF formation. A cost analysis of this process yielded a selling price of $0.75/watt peak in 1980.
Enzyme Mini-Test for Field Identification of Leishmania isolates from U.S. Military Personnel.
1984-08-15
was noted that L. m. peruviana has an extensive distribution which includes Venezuela, Dominican Republic, Peru , Panama, Belize and possibly 10 Costa...isolates from human hosts (6 from Dominican Republic, 5 from Venezuela, 3 from Belize, 1 each from Peru , 14 Panama, Costa Rica and Mexico). These isolates...L147, LV24 547 OWC LMJ Man R. Beach Kenya LRC-L137 551 OWC LMJ Rodent R. Beach Kenya NLB095 552 OWC LMJ Sandfly R. Beach Kenya NLB144 558 OWC LMJ Man
Helmer, R; Koschorek, F; Terwey, B; Frauen, T
1986-01-01
Nuclear spin tomography since its beginnings in the seventies has steadily gained in importance as a method of examination in medical diagnostics as it produces a picture. In the field of forensic medicine the NMR technique as used for anatomic-anthropologic issues attempting to identify skulls this is a valuable supplement to an extension of the existing methods of investigation. The results of a measurement of the thickness of soft facial tissue in a live test person is shown as compared to measures obtained by sonography.
Frembgen-Kesner, Tamara; Andrews, Casey T; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A; Jain, Aakash; Olayiwola, Oluwatoni J; Weishaar, Mitch R; Elcock, Adrian H
2015-05-12
Recently, we reported the parametrization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral, and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral, and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downward in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multidomain proteins connected by flexible linkers.
The artist's advantage: Better integration of object information across eye movements
Perdreau, Florian; Cavanagh, Patrick
2013-01-01
Over their careers, figurative artists spend thousands of hours analyzing objects and scene layout. We examined what impact this extensive training has on the ability to encode complex scenes, comparing participants with a wide range of training and drawing skills on a possible versus impossible objects task. We used a gaze-contingent display to control the amount of information the participants could sample on each fixation either from central or peripheral visual field. Test objects were displayed and participants reported, as quickly as possible, whether the object was structurally possible or not. Our results show that when viewing the image through a small central window, performance improved with the years of training, and to a lesser extent with the level of skill. This suggests that the extensive training itself confers an advantage for integrating object structure into more robust object descriptions. PMID:24349697
Flexible Rover Architecture for Science Instrument Integration and Testing
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric
2006-01-01
At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.
,
2006-01-01
GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.
Leading-order classical Lagrangians for the nonminimal standard-model extension
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2018-03-01
In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.
Speech training alters consonant and vowel responses in multiple auditory cortex fields
Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.
2015-01-01
Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927
Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models
Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela; ...
2018-01-17
Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less
Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela
Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas
2015-12-01
Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.
Hung, Le Chi; Goggins, Jamie; Fuente, Marta; Foley, Mark
2018-05-14
Design of bearing layers (granular fill material layers) is important for a house with a soil depressurisation (SD) system for indoor radon mitigation. These layers should not only satisfy the bearing capacity and serviceability criteria but should also provide a sufficient degree of the air permeability for the system. Previous studies have shown that a critical parameter for a SD system is the sub-slab pressure field extension in the bearing layers, but this issue has not been systematically investigated. A series of two-dimensional computational fluid dynamic simulations that investigate the behaviour of the sub-slab pressure field extension developed in a SD system is presented in this paper. The SD system considered in this paper consists of a granular fill material layer and a radon sump. The granular fill materials are 'T1 Struc' and 'T2 Perm', which are standard materials for building in the Republic of Ireland. Different conditions, which might be encountered in a practical situation, were examined. The results show that the air permeability and thickness of the granular fill materials are the two key factors which affect the sub slab pressure field extension (SPFE) significantly. Furthermore, the air permeability of native soil is found to be a fundamental factor for the SPFE so that it should be well understood when designing a SD system. Therefore, these factors should be considered sufficiently in each practical situation. Finally, a significant improvement of the pressure field extension can be achieved by ensuring air tightness of the SD system. Copyright © 2018 Elsevier B.V. All rights reserved.
State of the art in medical applications using non-thermal atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru
2017-12-01
Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.
Vertically polarizing undulator with dynamic compensation of magnetic forces
Strelnikov, N.; Vasserman, I.; Xu, J.; ...
2017-01-20
As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Some previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. Furthermore, the resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operationalmore » gaps, as well as the reproducibility and accuracy of the gap settings.« less
DOT National Transportation Integrated Search
1998-03-01
This report presents the development and verification of a testing protocol and protocol equipment for confined extension testing and confined creep testing for geosynthetic reinforcement materials. The developed data indicate that confined response ...
Properties of soil in the San Fernando hydraulic fill dams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.L.
1975-08-01
Results are presented of extensive field and laboratory tests on soils from two old hydraulic fill dams that were damaged during the Feb. 9, 1971, San Fernando earthquake. The data include standard penetration, absolute and relative compaction, relative density, static strength, and cyclic triaxial test results for both the hydraulic fill silty sand and the natural silty and gravelly sand alluvium. The relative densities of the hydraulic fills ranged from about 51 to 58 percent and the relative compaction ranged from about 85 to 92 percent of Modified AASHO maximum density. The relative density of the alluvium was about 65more » to 70 percent. Other properties were consistent with previously published data from other similar soils at similar densities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2002-10-01
This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2002 through September 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Smith International agreed to participate in the DOE Mud Hammer program. (2) Smith International chromed collars for upcoming benchmark tests at TerraTek, now scheduled for 4Q 2002. (3) ConocoPhillips had a field trial of the Smith fluid hammer offshore Vietnam. The hammer functioned properly, though themore » well encountered hole conditions and reaming problems. ConocoPhillips plan another field trial as a result. (4) DOE/NETL extended the contract for the fluid hammer program to allow Novatek to ''optimize'' their much delayed tool to 2003 and to allow Smith International to add ''benchmarking'' tests in light of SDS Digger Tools' current financial inability to participate. (5) ConocoPhillips joined the Industry Advisors for the mud hammer program. (6) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to complete the optimizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, P.F.; Wang, J.S.; Chao, Y.J.
The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao
2010-10-01
We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.
NASA Astrophysics Data System (ADS)
Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador
2012-01-01
A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator and the image processing operations synchronously. The spatial light modulator is used to implement the phase mask with flexibility given the trade-off between depth-of-field extension and image quality achieved. The action of the program is to evaluate the depth-of-field requirements of the specific scene and subsequently control the coding established by the spatial light modulator, in real time.
Comparative A/B testing a mobile data acquisition app for hydrogeochemistry
NASA Astrophysics Data System (ADS)
Klump, Jens; Golodoniuc, Pavel; Reid, Nathan; Gray, David; Ross, Shawn
2015-04-01
In the context of a larger study on the Capricorn Orogen of Western Australia, the CSIRO Mineral Discovery Program is conducting a regional study of the hydrogeochemistry on water from agricultural and other bores. Over time, the sampling process was standardised and a form for capturing metadata and data from initial measurements was developed. In 2014 an extensive technology review was conducted with an aim to automate field data acquisition process. A prototype hydrogeochemistry data capture form was implemented as a mobile application for Windows Mobile devices. This version of the software was a standalone application with an interface to export data as CSV files. A second candidate version of the hydrogeochemistry data capture form was implemented as an Android mobile application in the FAIMS framework. FAIMS is a framework for mobile field data capture, originally developed by at the University of New South Wales for archaeological field data collection. A benefit of the FAIMS application was the ability to associate photographs taken with the device's embedded camera with the captured data. FAIMS also allows networked collaboration within a field team, using the mobile applications as asynchronous rich clients. The network infrastructure can be installed in the field ("FAIMS in a Box") to supply data synchronisation, backup and transfer. This aspect will be tested in the next field season. A benefit of the FAIMS application was the ability to associate photographs taken with the device's embedded camera with the captured data. Having two data capture applications available allowed us to conduct an A/B test, comparing two different implementations for the same task. Both applications were trialled in the field by different field crews and user feedback will be used to improve the usability of the app for the next field season. A key learning was that the ergonomics of the app is at paramount importance to gain the user acceptance. This extends from general fit with the standard procedures used in the field during data acquisition to self-descriptive and intuitive user interface features well aligned with the workflows and sequence of actions performed by a user that ultimately contributes to the implementation of a Collect-As-You-Go approach. In the Australian outback, issues such as absence of network connectivity, heat and sun glare may challenge the utility of tablet based applications in the field. Due to limitations of tablet use in the field we also consider the use of smart pens for data capture. A smart pen application based on Anoto forms and software by Formidable will be tested in the next field season.
NASA Astrophysics Data System (ADS)
Yoon, Jun-Sik; Rim, Taiuk; Kim, Jungsik; Kim, Kihyun; Baek, Chang-Ki; Jeong, Yoon-Ha
2015-03-01
Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents.
NASA Technical Reports Server (NTRS)
1985-01-01
Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.
Crawshaw, Timothy R; Chanter, Jeremy I; McGoldrick, Adrian; Line, Kirsty
2014-02-07
Cases of Mycobacterium bovis infection South American camelids have been increasing in Great Britain. Current antemortem immunological tests have some limitations. Cases at post mortem examination frequently show extensive pathology. The feasibility of detecting Mycobacterium bovis DNA in clinical samples was investigated. A sensitive extraction methodology was developed and used on nasal swabs and faeces taken post-mortem to assess the potential for a PCR test to detect Mycobacterium bovis in clinical samples. The gross pathology of the studied South American camelids was scored and a significantly greater proportion of South American camelids with more severe pathology were positive in both the nasal swab and faecal PCR tests. A combination of the nasal swab and faecal PCR tests detected 63.9% of all the South American camelids with pathology that were tested. The results suggest that antemortem diagnosis of Mycobacterium bovis in South American camelids may be possible using a PCR test on clinical samples, however more work is required to determine sensitivity and specificity, and the practicalities of applying the test in the field.
Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice.
Wang, Yu; Zhao, Shanshan; Liu, Xu; Fu, Qunying
2014-01-01
Though social anxiety and social recognition have been studied extensively, the roles of the medial or basolateral amygdala in the control of social anxiety and social recognition remain to be determined. This study investigated the effects of excitotoxic bilateral medial or basolateral amygdala lesions upon social anxiety and social recognition in-mice. Animals at 9 weeks of age were given bilateral medial or basolateral amygdala lesions via infusion of N-methyl- D-aspartate and then were used for behavioral tests: anxiety-related tests (including open-field test, light-dark test, and elevated-plus maze test), social behavior test in a novel environment, social recognition test, and flavor recognition test. Medial or basolateral amygdala-lesioned mice showed lower levels of anxiety and increased social behaviors in a novel environment. Destruction of the medial or basolateral amygdala neurons impaired social recognition but not flavor recognition. The medial or basolateral amygdala is involved in the control of anxiety-related behavior (social anxiety and social behaviors) in mice. Moreover, both the medial and the basolateral amygdala are essential for social recognition but not flavor recognition in mice.
A Flexible Annular-Array Imaging Platform for Micro-Ultrasound
Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei
2013-01-01
Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923
NASA Astrophysics Data System (ADS)
Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas
2018-05-01
In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.
Modelling of Longwall Mining-Induced Strata Permeability Change
NASA Astrophysics Data System (ADS)
Adhikary, D. P.; Guo, H.
2015-01-01
The field measurement of permeability within the strata affected by mining is a challenging and expensive task, thus such tests may not be carried out in large numbers to cover all the overburden strata and coal seams being affected by mining. However, numerical modelling in conjunction with a limited number of targeted field measurements can be used efficiently in assessing the impact of mining on a regional scale. This paper presents the results of underground packer testing undertaken at a mine site in New South Wales in Australia and numerical simulations conducted to assess the mining-induced strata permeability change. The underground packer test results indicated that the drivage of main headings (roadways) had induced a significant change in permeability into the solid coal barrier. Permeability increased by more than 50 times at a distance of 11.2-11.5 m from the roadway rib into the solid coal barrier. The tests conducted in the roof strata above the longwall goaf indicated more than 1,000-fold increase in permeability. The measured permeability values varied widely and strangely on a number of occasions; for example the test conducted from the main headings at the 8.2-8.5 m test section in the solid coal barrier showed a decline in permeability value as compared to that at the 11.2-11.5 m section contrary to the expectations. It is envisaged that a number of factors during the tests might have had affected the measured values of permeability: (a) swelling and smearing of the borehole, possibly lowering the permeability values; (b) packer bypass by larger fractures; (c) test section lying in small but intact (without fractures) rock segment, possibly resulting in lower permeability values; and (d) test section lying right at the extensive fractures, possibly measuring higher permeability values. Once the anomalous measurement data were discarded, the numerical model results could be seen to match the remaining field permeability measurement data reasonably well.
STS-133/ET-137 Tanking Test Photogrammetry Assessment
NASA Technical Reports Server (NTRS)
Oliver, Stanley T.
2012-01-01
Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.
Development of automotive battery systems capable of surviving modern underhood environments
NASA Astrophysics Data System (ADS)
Pierson, John R.; Johnson, Richard T.
The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Gorrick, S.
2010-12-01
We present results of a riparian revegetation project on an oversized sand stream in eastern Australia. The Widden Brook in New South Wales has undergone extensive widening due to extraordinary floods in the 1950’s and is currently showing some signs of recovery. These include emergence of pool-riffle structure and stabilization of stream width, which are the result of upstream sediment control, riparian revegetation and livestock exclusion. Revegetation of a mild bend was carried out in 2004 using native plants in an arrangement that consisted of three vegetation patches. The same arrangement was tested in a reduced scale model in the laboratory, where extensive measurements of flow, sediment and bed changes provided insight into the links between hydrology, vegetation and geomorphology. Laboratory tests also included runs without vegetation and with a continuous vegetation cover. In terms of bank stability, the patches provided as much protection as the continuous vegetation. Based on the experiments, a series of analytical relationships were developed to help guide the design of vegetation patches focusing on the geomorphic stability of the whole reach instead of concentrating only on the near bank effects.
Update on MTTF figures for linear and rotary coolers of Thales Cryogenics
NASA Astrophysics Data System (ADS)
van de Groep, W.; van der Weijden, H.; van Leeuwen, R.; Benschop, T.; Cauquil, J. M.; Griot, R.
2012-06-01
Thales Cryogenics has an extensive background in delivering linear and rotary coolers for military, civil and space programs. During the last years several technical improvements have increased the lifetime of all Thales coolers resulting in significantly higher Mean Time To Failure (MTTF) figures. In this paper not only updated MTTF values for most of the products in our portfolio will be presented but also the methodology used to come to these reliability figures will be explained. The differences between rotary and linear coolers will be highlighted including the different failure modes influencing the lifetime under operational conditions. These updated reliability figures are based on extensive test results for both rotary and linear coolers as well as Weibull analysis, failure mode identifications, various types of lifetime testing and field results of operational coolers. The impact of the cooler selection for typical applications will be outlined. This updated reliability approach will enable an improved tradeoff for cooler selection in applications where MTTF and a correct reliability assessment is key. Improbing on cooler selection and an increased insight in cooler reliability will result in a higher uptime and operability of equipment, less risk on unexpected failures and lower costs of ownership.
Transonic blade-vortex interactions - The far field
NASA Astrophysics Data System (ADS)
Lyrintzis, A. S.; George, A. R.
Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.
NASA Astrophysics Data System (ADS)
Balland, C.; Morel, J.
2010-12-01
The mining of galleries in geological claystones formation induces a stress redistribution that can cause a microfissuration of the rock around the works which, by coalescence, may generate macro field fractures. In this area called EDZ (Excavation Damaged Zone), permeability is expected to increase drastically. Those induced cracking along with increased permeability, shall be taken into account in safety assessment of deep geological disposal. Ultrasonic survey and monitoring experiments have been performed in the Underground Research Laboratory of Meuse/Haute-Marne to contribute to the understanding of the extension and evolution of this damage. Ultrasonic devices have been deployed around shaft, gallery, slot and borehole to characterize the initiation, the extension and the level of the EDZ, P-wave velocity being very sensitive to the mechanical rock perturbations. The analysis of spatial and temporal velocity field changes gave reliable information on the cracks characteristics of the especially about their opening or their preferential orientation. The results provided by an ultrasonic device around shaft mine by test highlighted the initialization and extension of the damage as the shaft front proceeded. They also showed a polarisation of the velocity field and an oscillation of the transversal isotropy with a preferential orientation of the stress release and the microcracking. Otherwise, with a new automatic and ultrasonic probe, we have found around a borehole that the damage zone extends up to 0.175 diameter of depth with an anisotropic damage pattern oriented according to the regional stress field (Figure 1). Nevertheless, the evolution of this damaged zone is still not well known at longer term, particularly under the influence of parameters such as the reconfining rock in contact with a rigid concrete surface. Is it possible that cracks close up significantly toward their seal? Induced mechanical perturbations are in this case much weaker than those generated by the excavation itself. A new ultrasonic experiment has been designed to be more sensitive to the frequency modulation of the P and S-wave sources. The purpose is to determine on site the dynamic elastic stiffness and the corresponding crack density tensors change before and during the resaturation and reconfining of the damaged and undamaged excavation vicinity. P-wave velocity field around a vertical borehole
Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions.
Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya
2017-05-23
BACKGROUND The GuideLiner catheter extension device is a monorail-type "Child" support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). CASE REPORT We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guidewires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. CONCLUSIONS The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion.
Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation
NASA Astrophysics Data System (ADS)
Lim, Tae W.
2015-06-01
A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... Hydrostatic Testing Provision of the Portable Fire Extinguishers Standard; Extension of the Office of... the information collection requirements contained in the Hydrostatic Testing provision of the Portable... 48729
Dynamic diagnostics of the error fields in tokamaks
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.
2007-07-01
The error field diagnostics based on magnetic measurements outside the plasma is discussed. The analysed methods rely on measuring the plasma dynamic response to the finite-amplitude external magnetic perturbations, which are the error fields and the pre-programmed probing pulses. Such pulses can be created by the coils designed for static error field correction and for stabilization of the resistive wall modes, the technique developed and applied in several tokamaks, including DIII-D and JET. Here analysis is based on the theory predictions for the resonant field amplification (RFA). To achieve the desired level of the error field correction in tokamaks, the diagnostics must be sensitive to signals of several Gauss. Therefore, part of the measurements should be performed near the plasma stability boundary, where the RFA effect is stronger. While the proximity to the marginal stability is important, the absolute values of plasma parameters are not. This means that the necessary measurements can be done in the diagnostic discharges with parameters below the nominal operating regimes, with the stability boundary intentionally lowered. The estimates for ITER are presented. The discussed diagnostics can be tested in dedicated experiments in existing tokamaks. The diagnostics can be considered as an extension of the 'active MHD spectroscopy' used recently in the DIII-D tokamak and the EXTRAP T2R reversed field pinch.
Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.
2017-01-01
Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.
Deep electrical investigations in the Long Valley geothermal area, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, W.D.; Jackson, D.B.; Zohdy, A.A.R.
1976-02-10
Direct current resistivity and time domain electromagnetic techniques were used to study the electrical structure of the Long Valley geothermal area. A resistivity map was compiled from 375 total field resistivity measurements. Two significant zones of low resistivity were detected, one near Casa Diablo Hot Springs and one surrounding the Cashbaugh Ranch-Whitmore Hot Springs area. These anomalies and other parts of the caldera were investigated in detail with 49 Schlumberger dc soundings and 13 transient electromagnetic soundings. An extensive conductive zone of 1- to 10-..cap omega..m resistivity was found to be the cause of the total field resistivity lows. Drillmore » hole information indicates that the shallow parts of the conductive zone in the eastern part of the caldera contain water of only 73/sup 0/C and consist of highly zeolitized tuffs and ashes in the places that were tested. A deeper zone near Whitmore Hot Springs is somewhat more promising in potential for hot water, but owing to the extensive alteration prevalent in the caldera the presence of hot water cannot be definitely assumed. The resistivity results indicate that most of the past hydrothermal activity, and probably most of the present activity, is controlled by fracture systems related to regional Sierran faulting.« less
Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air
2008-03-13
With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS) image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET) of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.
2005-09-19
This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from possible CO2 leakage. The approach is based on the assumption that HSE risk due to CO2 leakage is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails.more » The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or general information available from published materials along with estimates of uncertainty to evaluate the three basic characteristics in order to screen and rank candidate sites. Application of the framework to the Rio Visa Gas Field, Ventura Oil Field, and Mammoth Mountain demonstrates the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies. Revisions and extensions to improve the approach are anticipated in the near future as it is used and tested by colleagues and collaborators.« less
A resistive magnetohydrodynamics solver using modern C++ and the Boost library
NASA Astrophysics Data System (ADS)
Einkemmer, Lukas
2016-09-01
In this paper we describe the implementation of our C++ resistive magnetohydrodynamics solver. The framework developed facilitates the separation of the code implementing the specific numerical method and the physical model from the handling of boundary conditions and the management of the computational domain. In particular, this will allow us to use finite difference stencils which are only defined in the interior of the domain (the boundary conditions are handled automatically). We will discuss this and other design considerations and their impact on performance in some detail. In addition, we provide a documentation of the code developed and demonstrate that a performance comparable to Fortran can be achieved, while still maintaining a maximum of code readability and extensibility. Catalogue identifier: AFAH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 592774 No. of bytes in distributed program, including test data, etc.: 43771395 Distribution format: tar.gz Programming language: C++03. Computer: PC, HPC systems. Operating system: POSIX compatible (extensively tested on various Linux systems). In fact only the timing class requires POSIX routines; all other parts of the program can be run on any system where a C++ compiler, Boost, CVODE, and an implementation of BLAS are available. RAM: Hundredths of Kilobytes to Gigabytes (depending on the problem size) Classification: 19.10, 4.3. External routines: Boost, CVODE, either a BLAS library or Intel MKL Nature of problem: An approximate solution to the equations of resistive magnetohydrodynamics for a given initial value and given boundary conditions is computed. Solution method: The discretization is performed using a finite difference approximation in space and the CVODE library in time (which employs a scheme based on the backward differentiation formulas). Restrictions: We consider the 2.5 dimensional case; that is, the magnetic field and the velocity field are three dimensional but all quantities depend only on x and y (but not z). Unusual features: We provide an implementation in C++ using the Boost library that combines high level techniques (which greatly increases code maintainability and extensibility) with performance that is comparable to Fortran implementations. Running time: From seconds to weeks (depending on the problem size).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, Eugeny; UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris; Marzola, Luca
2016-09-12
We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Mattermore » searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.« less
Microlayered flow structure around an acoustically levitated droplet under a phase-change process.
Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi
2016-01-01
The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.
VizieR Online Data Catalog: OGLE: Gaia South Ecliptic Pole Field (Soszynski+, 2012)
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Poleski, R.; Kozlowski, S.; Wyrzykowski, L.; Pietrukowicz, P.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Ulaczyk, K.; Skowron, J.
2013-03-01
We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. (9 data files).
Frembgen-Kesner, Tamara; Andrews, Casey T.; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A.; Jain, Aakash; Olayiwola, Oluwatoni; Weishaar, Mitch R.; Elcock, Adrian H.
2015-01-01
Recently, we reported the parameterization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs, and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downwards in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multi-domain proteins connected by flexible linkers. PMID:26574429
ERIC Educational Resources Information Center
Farm Foundation, Chicago, IL.
Sixteen essays pertaining to agricultural extension education were the basis of the 18th National Agricultural Policy Conference, held September 10-18, 1968, at Sequoyah State Park, Wagoner, Oklahoma. Individual topics of papers include leadership training, Iowa State welfare, low income area community development, an urban extension pilot…
ERIC Educational Resources Information Center
Loizzo, Jamie; Lillard, Patrick
2015-01-01
Undergraduate students at land-grant institutions across the country are often unaware of the depth and breadth of Extension services and careers. Agricultural communication students collaborated with an Extension programmatic team in a blended and project-based course at Purdue University to develop online videos about small farm agricultural…
Heidelberg edge perimeter employment in glaucoma diagnosis--preliminary report.
Mulak, Małgorzata; Szumny, Dorota; Sieja-Bujewska, Anna; Kubrak, Magdalena
2012-01-01
In recent years, the authors have seen huge progress in the diagnosis of eye diseases. One of the new diagnostic devices is HEP (Heidelberg Edge Perimeter) - for early diagnosis of glaucoma and its progression. It combines visual field test and HRT (Heidelberg Retina Tomograph), which allows authors to obtain the image of the mutual relation between the structure and the function of the sight organ. It could be also used to assess patients with impaired retina, optic nerve and neurological deficits. The SAP function is more suitable for the detection and monitoring of neurological deficits, moderately advanced and advanced glaucoma as well as other diseases associated with extensive or deep visual field deficits, such as ischemic optic neuropathy. FDF stimulus was designed specifically to detect early glaucoma-related changes in the visual field. For about a year, the Ophthalmology Clinic in Wrocław has owned a new, unique HEP perimeter. The authors present examples of patients diagnosed and treated at the Clinic, with respect to whom the perimeter results obtained using Octopus type perimeter and HEP contour perimeter have been compared. This method has its advantages: it is non-invasive, objective, provides the opportunity to repeat and compare results obtained from subsequent tests. The disadvantages are the difficulty in adapting to a new stimulus, which is not a circular light stimulus, but an outline that is hard to notice for some patients. Although according to the manufacturer the testing time should not exceed 4-5 minutes, it takes 14-15 minutes in many patients. The test is not suitable for patients showing lower manual skills and less attention and those who tire out easily. The HEP perimeter is an innovative method for diagnosing the earliest changes in ganglion cells, that is pre-perimetric glaucoma, or when changes in the visual field are undetectable in a standard test.
Lee, Preston V; Dinu, Valentin
2015-11-04
Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by the general public, wherein a small portion of each user's local disk may be used for archival of scientific data. We have implementated the server-side announcement and control portions of this BitTorrent extension into v3.0.0 of the BitTorious portal, upon which compatible clients may be built. Automated test cases for the BitTorious Volunteer extensions have been added to the portal's v3.0.0 release, supporting validation of the "peer affinity" concept and announcement protocol introduced by this specification. Additionally, a separate reference implementation of affinity calculation has been provided in C++ for informaticians wishing to integrate into libtorrent-based projects. The BitTorrent "affinity" extensions as provided in the BitTorious portal reference implementation allow data publishers to crowdsource the extreme storage prerequisites for research in "big data" fields. With sufficient awareness and adoption of BitTorious Volunteer-based clients by the general public, the BitTorious portal may be able to provide peta-scale storage resources to the scientific community at relatively insignificant financial cost.
Recent Transmission of Tuberculosis - United States, 2011-2014.
Yuen, Courtney M; Kammerer, J Steve; Marks, Kala; Navin, Thomas R; France, Anne Marie
2016-01-01
Tuberculosis is an infectious disease that may result from recent transmission or from an infection acquired many years in the past; there is no diagnostic test to distinguish the two causes. Cases resulting from recent transmission are particularly concerning from a public health standpoint. To describe recent tuberculosis transmission in the United States, we used a field-validated plausible source-case method to estimate cases likely resulting from recent transmission during January 2011-September 2014. We classified cases as resulting from either limited or extensive recent transmission based on transmission cluster size. We used logistic regression to analyze patient characteristics associated with recent transmission. Of 26,586 genotyped cases, 14% were attributable to recent transmission, 39% of which were attributable to extensive recent transmission. The burden of cases attributed to recent transmission was geographically heterogeneous and poorly predicted by tuberculosis incidence. Extensive recent transmission was positively associated with American Indian/Alaska Native (adjusted prevalence ratio [aPR] = 3.6 (95% confidence interval [CI] 2.9-4.4), Native Hawaiian/Pacific Islander (aPR = 3.2, 95% CI 2.3-4.5), and black (aPR = 3.0, 95% CI 2.6-3.5) race, and homelessness (aPR = 2.3, 95% CI 2.0-2.5). Extensive recent transmission was negatively associated with foreign birth (aPR = 0.2, 95% CI 0.2-0.2). Tuberculosis control efforts should prioritize reducing transmission among higher-risk populations.
Capturing field-scale variability in crop performance across a regional-scale climosequence
NASA Astrophysics Data System (ADS)
Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.
2014-12-01
With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, I.
Various authors have previously studied the theory and practice of cavity testing, notably an extensive treatment by Powers [1] and Padamsee [2]. The advent of the digital Low Level RF (LLRF) electronics based on Field Programmable Logic Arrays (FPGA) provides various improvements over the rather complex systems used in the past as well as enabling new measurement techniques.In this document we reintroduce a technique that seems to have fallen out of practice in recent times, that is obtaining the coupling constant β through measurements from just one port, the reflected power port, of the directional coupler placed in front ofmore » the cavity.« less
Selected bibliography of terrestrial freshwater, and marine radiation ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, V.; Whicker, F.W.
1975-01-01
An extensive bibliography is presented of publications related to field or laboratory studies of wild species of plants and animals with respect to radiation effects or metabolic studies involving radionuclides. The references are listed under the following headings: status and needs of radiation ecology; environmental radioactivity; radionuclide concentration; ionizing radiation effects; techniques utilizing radionuclides and ionizing radiation in ecology; measurement of ionizing radiation; peaceful uses of atomic energy; waste disposal; nuclear testing and ecological consequences of a nuclear war; glossaries, standards, and licensing procedures; reviews of radionuclides in the environment; and sources of information. (HLW)
User's and test case manual for FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, Arindam; Volakis, John; Nurnberger, Mike; Natzke, John
1995-01-01
The FEMATS program incorporates first-order edge-based finite elements and vector absorbing boundary conditions into the scattered field formulation for computation of the scattering from three-dimensional geometries. The code has been validated extensively for a large class of geometries containing inhomogeneities and satisfying transition conditions. For geometries that are too large for the workstation environment, the FEMATS code has been optimized to run on various supercomputers. Currently, FEMATS has been configured to run on the HP 9000 workstation, vectorized for the Cray Y-MP, and parallelized to run on the Kendall Square Research (KSR) architecture and the Intel Paragon.
Abundance anomalies in RGB stars as probes of galactic chemical evolution
NASA Astrophysics Data System (ADS)
Charbonnel, C.; Palacios, A.
During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.
Five-centimeter diameter ion thruster development
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1972-01-01
All system components were tested for endurance and steady state and cyclic operation. The following results were obtained: acceleration system (electrostatic type), 3100 hours continuous running; acceleration system (translation type), 2026 hours continuous running; cathode-isolator-vaporizer assembly, 5000 hours continuous operation and 190 restart cycles with 1750 hours operation; mercury expulsion system, 5000 hours continuous running; and neutralizer, 5100 hours continuous operation. The results of component optimization studies such as neutralizer position, neutralizer keeper hole, and screen grid geometry are included. Extensive mapping of the magnet field within and immediately outside the thruster are shown. A technique of electroplating the molybdenum accelerator grid with copper to study erosion patterns is described. Results of tests being conducted to more fully understand the operation of the hollow cathode are also given. This type of 5-cm thruster will be space tested on the Communication Technology Satellite in 1975.
Three-axis attitude determination via Kalman filtering of magnetometer data
NASA Technical Reports Server (NTRS)
Martel, Francois; Pal, Parimal K.; Psiaki, Mark L.
1988-01-01
A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system.
Tracking Electromagnetic Energy With SQUIDs
NASA Technical Reports Server (NTRS)
2005-01-01
A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.
Development of a virtual lab for practical eLearning in eHealth.
Herzog, Juliane; Forjan, Mathias; Sauermann, Stefan; Mense, Alexander; Urbauer, Philipp
2015-01-01
In recent years an ongoing development in educational offers for professionals working in the field of eHealth has been observed. This education is increasingly offered in the form of eLearning courses. Furthermore, it can be seen that simulations are a valuable part to support the knowledge transfer. Based on the knowledge profiles defined for eHealth courses a virtual lab should be developed. For this purpose, a subset of skills and a use case is determined. After searching and evaluating appropriate simulating and testing tools six tools were chosen to implement the use case practically. Within an UML use case diagram the interaction between the tools and the user is represented. Initially tests have shown good results of the tools' feasibility. After an extensive testing phase the tools should be integrated in the eHealth eLearning courses.
NASA Astrophysics Data System (ADS)
Bates, E.
1992-12-01
The STC demonstration was conducted under EPA's Superfund Innovative Technology Evaluation (SITE) Program in November, 1990, at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated with both organics, predominantly pentachlorophenol (PCP), inorganics, mainly arsenic, chromium, and copper. Extensive sampling and analyses were performed on the waste both before and after treatment to compare physical, chemical, and leaching characteristics of raw and treated wastes. STC's contaminated soil treatment process was evaluated based on contaminant mobility measured by numerous leaching tests, structural integrity of the solidified material, measured by physical and engineering tests and morphological examinations; and economic analysis, using cost information supplied by STC and the results of the SITE demonstration, the vendor's design and test data, and other laboratory and field applications of the technology. It discusses the advantages, disadvantages, and limitations, as well as estimated costs of the technology.
NASA Astrophysics Data System (ADS)
Pasztor, G.; Bruzzone, P.
2004-06-01
The dc performance of a recently produced internal tin route Nb3Sn strand with enhanced specification is studied extensively and compared with predecessor wires manufactured by the suppliers for the ITER Model Coils in 1996. The wire has been selected for use in a full size, developmental cable-in-conduit conductor sample, which is being tested in the SULTAN Test Facility. The critical current, Ic, and the index of the current/voltage characteristic, n, are measured over a broad range of field and temperature, using ITER standard sample holders, made of TiAlV grooved cylinders. The behavior of Ic versus applied tensile strain is also investigated at 4.2 K and 12 T, on straight specimens. Scaling law parameters are drawn from the fit of the experimental results. The implications of the test results to the design of the fusion conductors are discussed.
Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications
Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2012-01-01
Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments. PMID:28348300
Silk fibroin in tissue engineering.
Kasoju, Naresh; Bora, Utpal
2012-07-01
Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baker, Joanne; McCarthy, James; Gatton, Michelle; Kyle, Dennis E; Belizario, Vicente; Luchavez, Jennifer; Bell, David; Cheng, Qin
2005-09-01
Rising costs of antimalarial agents are increasing the demand for accurate diagnosis of malaria. Rapid diagnostic tests (RDTs) offer great potential to improve the diagnosis of malaria, particularly in remote areas. Many RDTs are based on the detection of Plasmodium falciparum histidine-rich protein (PfHRP) 2, but reports from field tests have questioned their sensitivity and reliability. We hypothesize that the variability in the results of PfHRP2-based RDTs is related to the variability in the target antigen. We tested this hypothesis by examining the genetic diversity of PfHRP2, which includes numerous amino acid repeats, in 75 P. falciparum lines and isolates originating from 19 countries and testing a subset of parasites by use of 2 PfHRP2-based RDTs. We observed extensive diversity in PfHRP2 sequences, both within and between countries. Logistic regression analysis indicated that 2 types of repeats were predictive of RDT detection sensitivity (87.5% accuracy), with predictions suggesting that only 84% of P. falciparum parasites in the Asia-Pacific region are likely to be detected at densities < or = 250 parasites/microL. Our data also indicated that PfHRP3 may play a role in the performance of PfHRP2-based RDTs. These findings provide an alternative explanation for the variable sensitivity in field tests of malaria RDTs that is not due to the quality of the RDTs.
Hess Tower field study: sonic measurements at a former building-integrated wind farm site
NASA Astrophysics Data System (ADS)
Araya, Daniel
2017-11-01
Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.
TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.
Li, Min; Liu, Fengjiao; Zhang, John Z H
2016-12-13
Coarse-grained (CG) models are desirable for studying large and complex biological systems. In this paper, we propose a new two-bead multipole force field (TMFF) in which electric multipoles up to the quadrupole are included in the CG force field. The inclusion of electric multipoles in the proposed CG force field enables a more realistic description of the anisotropic electrostatic interactions in the protein system and, thus, provides an improvement over the standard isotropic two-bead CG models. In order to test the accuracy of the new CG force field model, extensive molecular dynamics simulations were carried out for a series of benchmark protein systems. These simulation studies showed that the TMFF model can realistically reproduce the structural and dynamical properties of proteins, as demonstrated by the close agreement of the CG results with those from the corresponding all-atom simulations in terms of root-mean-square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the protein backbones. The current two-bead model is highly coarse-grained and is 50-fold more efficient than all-atom method in MD simulation of proteins in explicit water.
Visibility graphs of random scalar fields and spatial data
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Iacovacci, Jacopo
2017-07-01
We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the analysis of spatially extended data structures as networks. We introduce several possible extensions and provide analytical results on the topological properties of the graphs associated to different types of real-valued matrices, which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic dimension. This result holds independently of the field's marginal distribution and it directly yields a statistical randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this combinatorial framework includes image processing in engineering, the description of surface growth in material science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered systems, and high energy physics. An illustration on the applicability of this method for the classification of the different stages involved in carcinogenesis is briefly discussed.
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2013-04-01
A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.
Physical employment standards for U.K. fire and rescue service personnel.
Blacker, S D; Rayson, M P; Wilkinson, D M; Carter, J M; Nevill, A M; Richmond, V L
2016-01-01
Evidence-based physical employment standards are vital for recruiting, training and maintaining the operational effectiveness of personnel in physically demanding occupations. (i) Develop criterion tests for in-service physical assessment, which simulate the role-related physical demands of UK fire and rescue service (UK FRS) personnel. (ii) Develop practical physical selection tests for FRS applicants. (iii) Evaluate the validity of the selection tests to predict criterion test performance. Stage 1: we conducted a physical demands analysis involving seven workshops and an expert panel to document the key physical tasks required of UK FRS personnel and to develop 'criterion' and 'selection' tests. Stage 2: we measured the performance of 137 trainee and 50 trained UK FRS personnel on selection, criterion and 'field' measures of aerobic power, strength and body size. Statistical models were developed to predict criterion test performance. Stage 3: matter experts derived minimum performance standards. We developed single person simulations of the key physical tasks required of UK FRS personnel as criterion and selection tests (rural fire, domestic fire, ladder lift, ladder extension, ladder climb, pump assembly, enclosed space search). Selection tests were marginally stronger predictors of criterion test performance (r = 0.88-0.94, 95% Limits of Agreement [LoA] 7.6-14.0%) than field test scores (r = 0.84-0.94, 95% LoA 8.0-19.8%) and offered greater face and content validity and more practical implementation. This study outlines the development of role-related, gender-free physical employment tests for the UK FRS, which conform to equal opportunities law. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Movable Combined Water Treatment Facility for Rainwater Harvesting
NASA Astrophysics Data System (ADS)
Zhang, L.; Liao, L.
2003-12-01
Alarming water shortage and increased water scarcity world wide has led to increased interests in alternative water sources. Rainwater harvesting is one of them which is getting more and more attention. There is a huge potential for generalization and extension of rainwater harvesting system as an alternative water supply. This is especially important for arid and semi-arid regions where the water shortage blocks further social, economical development. Earlier laboratory experiments and field study showed that harvested rainwater requires treatments of different degrees in order to meet the WHO drinking water standards. The main focus of this study is to ascertain the quality of stored rainwater for drinking purposes with emphasis on water disinfection and pollutants removal. A movable, low-cost, fully functional small scale treatment facility is proposed and tested under simulated field condition. A number of actual and potential hazardous pollutants were identified in the collected water samples together with laboratory test. The corresponding water purification procedure and fresh-keeping methods are discussed. The final proposal of this movable facility needs to be further examined to achieve optimal combined treatment efficiency.
Finite element model for MOI applications using A-V formulation
NASA Astrophysics Data System (ADS)
Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.
2001-04-01
Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.
Detilleux, J
2017-06-08
In most infectious diseases, among which bovine mastitis, promptness of the recruitment of inflammatory cells (mainly neutrophils) in inflamed tissues has been shown to be of prime importance in the resolution of the infection. Although this information should aid in designing efficient control strategies, it has never been quantified in field studies. Here, a system of ordinary differential equations is proposed that describes the dynamic process of the inflammatory response to mammary pathogens. The system was tested, by principal differential analysis, on 1947 test-day somatic cell counts collected on 756 infected cows, from 50 days before to 50 days after the diagnosis of clinical mastitis. Cell counts were log-transformed before estimating recruitment rates. Daily rates of cellular recruitment was estimated at 0.052 (st. err. = 0.005) during health. During disease, an additional cellular rate of recruitment was estimated at 0.004 (st. err. = 0.001) per day and per bacteria. These estimates are in agreement with analogous measurements of in vitro neutrophil functions. Results suggest the method is adequate to estimate one of the components of innate resistance to mammary pathogens at the individual level and in field studies. Extension of the method to estimate components of innate tolerance and limits of the study are discussed.
Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.
Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko
2017-06-01
Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.
The Experiential Learning Initiative: A Student-Scientist Partnership for Urban Youth
NASA Astrophysics Data System (ADS)
Marshall, B. J.; Birdin, V. E.; Butler, J.
2001-05-01
The Experiential Learning Initiative is a student-scientist partnership initiated during the doctoral program of the author. Essential to the partnership were the cooperative relationships between the teaching and administrative staffs of Bellwood, IL School District 88 and the Michigan State University Department of Entomology. The use of insects, geophysical visualization activities, and extensive fieldwork by the students served as the foundation for non-traditional learning experiences. The university science partner worked with students in an after-school program several days each month. During these sessions, students were given opportunities to experience science as an on-going process based on personal curiosity and creativity. Through their personal investigations in laboratory, field, and field station situations, the students constructed knowledge of Earth processes and ecological interactions. Each academic year of the partnership was brought to closure with a capstone event that included travel to a major university or working field station for a week of on-site investigation, expanded exposure to practicing scientists, and residential living in a scientific community. All students presented posters about a topic of their own areas of interest at the end of the week and again upon return to their schools. The results of this partnership have included strong gains in both personal confidence among the students and in test scores from standardized state tests.
Laboratory measurements of reservoir rock from the Geysers geothermal field, California
Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.
1982-01-01
Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Sakurai, Takashi
1990-01-01
This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.
Design of a composite wing extension for a general aviation aircraft
NASA Technical Reports Server (NTRS)
Adney, P. S.; Horn, W. J.
1984-01-01
A composite wing extension was designed for a typical general aviation aircraft to improve lift curve slope, dihedral effect, and lift to drag ratio. Advanced composite materials were used in the design to evaluate their use as primary structural components in general aviation aircraft. Extensive wind tunnel tests were used to evaluate six extension shapes. The extension shape chosen as the best choice was 28 inches long with a total area of 17 square feet. Subsequent flight tests showed the wing extension's predicted aerodynamic improvements to be correct. The structural design of the wing extension consisted of a hybrid laminate carbon core with outer layers of Kevlar - layed up over a foam interior which acted as an internal support. The laminate skin of the wing extension was designed from strength requirements, and the foam core was included to prevent buckling. A joint lap was recommended to attach the wing extension to the main wing structure.
Jung, Hungu; Yamasaki, Masahiro
2016-12-08
Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.
Screen printing technology applied to silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Thornhill, J. W.; Sipperly, W. E.
1980-01-01
The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.
Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark
2005-06-22
In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less
Effect of wake structure on blade-vortex interaction phenomena: Acoustic prediction and validation
NASA Technical Reports Server (NTRS)
Gallman, Judith M.; Tung, Chee; Schultz, Klaus J.; Splettstoesser, Wolf; Buchholz, Heino
1995-01-01
During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.
1990-01-01
Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.
Thermal barrier coatings for aircraft engines: History and directions
NASA Technical Reports Server (NTRS)
Miller, R. A.
1995-01-01
Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.
ERIC Educational Resources Information Center
Österle, Nina; Koutsouris, Alex; Livieratos, Yannis; Kabourakis, Emmanuil
2016-01-01
Purpose: The aim of this paper is to compare the extension services offered in the field of organic agriculture (OA) in Baden-Württemberg (BW), Germany and Crete, Greece. Design/methodology approach: 16 in-depth interviews, 10 in BW and 6 in Crete, were carried out with representatives of OA extension providers; interviews were qualitatively…
Microbial Groundwater Sampling Protocol for Fecal-Rich Environments
Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William
2014-01-01
Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186
Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva
2018-01-15
Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.
NASA Technical Reports Server (NTRS)
Strout, F. G.
1976-01-01
A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.
Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes
NASA Technical Reports Server (NTRS)
Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.
2017-01-01
NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.
Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation
Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.
2014-01-01
Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494
Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.
Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M
2014-08-01
Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.
Handheld hyperspectral imager for standoff detection of chemical and biological aerosols
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard
2004-08-01
Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.
CV-990 Landing Systems Research Aircraft (LSRA) during Space Shuttle tire test
1995-08-02
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), lands on the Edwards AFB main runway in test of the space shuttle landing gear system. In this case, the shuttle tire failed, bursting into flame during the rollout. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. The CV-990 used as the LSRA was built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
NASA Astrophysics Data System (ADS)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, A; Ironwood CRC, Phoenix, AZ; Rajaguru, P
2014-06-15
Purpose: To establish a set of tests based on the iCOM software that can be used to commission and perform periodic QA of VMAT delivery on the Elekta Synergy-S, commonly known as the Beam Modulator (BM). Methods: iCOM is used to create and deliver customized treatment fields to characterize the system in terms of 1) MLC positioning accuracy under static and dynamic delivery with full gantry rotation, 2) MLC positioning with known errors, 3) Maximum dose rate, 4) Maximum MLC speed, 5) Maximum gantry speed, 6) Synchronization: gantry speed versus dose rate, and 7) Synchronization: MLC speed versus dose rate.more » The resulting images were captured on the iView GT and exported in DICOM format to Dosimetry Check™ system for visual and quantitative analysis. For the initial commissioning phase, the system tests described should be supplemented with extensive patient QAs covering all clinically relevant treatment sites. Results: The system performance test suite showed that on our Synergy-S, MLC positioning was accurate under both static and dynamic deliveries. Intentional errors of 1 mm were also easily identified on both static and dynamic picket fence tests. Maximum dose rate was verified with stop watch to be consistently between 475-480 MU/min. Maximum gantry speed and MLC speed were 5.5 degree/s and 2.5 cm/s respectively. After accounting for beam flatness, both synchronization tests, gantry versus dose rate and MLC speed versus dose rate, were successful as the fields were uniform across the strips and there were no obvious cold/hot spots. Conclusion: VMAT commissioning and quality assurance should include machine characterization tests in addition to patient QAs. Elekta iCOM is a valuable tool for the design of customized VMAT field with specific MU, MLC leaf positions, dose rate, and indirect control of MLC and gantry speed at each of its control points.« less
7 CFR 3430.33 - Selection of reviewers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... and experience in relevant scientific, extension, or education fields taking into account the following factors: (1) Level of relevant formal scientific, technical education, and extension experience of...
Comparison of Tomo-PIV Versus Dual Plane PIV on a Synthetic Jet Flow
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
2017-01-01
Particle Imaging Velocimetry (PIV) is a planar velocity measurement technique that has found widespread use across a wide class of engineering disciplines. Tomographic PIV (tomoPIV) is an extension of the traditional PIV technique whereby the velocity across a volume of fluid is measured. TomoPIV provides additional fluid mechanical properties of the flow due to the adjacent planes of velocity information that are extracted. Dual Plane PIV is another approach for providing cross-plane flow field properties. Dual Plane PIV and tomoPIV provide all of the same flow properties, albeit through very different routes with significantly different levels of effort, hence a comparison of their application and performance would prove beneficial in a well-known, highly three dimensional flow field. A synthetic jet flow which has a wide range of flow field features including high velocity gradients and regions of high vorticity was used as a rigorous test bed to determine the capabilities limitations of the Dual Plane PIV and tomoPIV techniques. The results show that compressing 3D particle field information down to a limited number of views does not permit the accurate reconstruction of the flow field. The traditional thin sheet techniques are the best approach for accurate flow field measurements.
Dynamo Tests for Stratification Below the Core-Mantle Boundary
NASA Astrophysics Data System (ADS)
Olson, P.; Landeau, M.
2017-12-01
Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.
Rapid parameterization of small molecules using the Force Field Toolkit.
Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C
2013-12-15
The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Aktuğ, Bahadır; Kılıçoğlu, Ali
2006-07-01
To investigate contemporary neotectonic deformation in İzmir, Western Anatolia and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2001. Combination of three spatially dense GPS campaigns in 2001, 2003 and 2004 with temporally dense campaigns between 1992 and 2004 resulted in a combined velocity field representing active deformation rate in the region. We computed horizontal and vertical velocity fields with respect to Earth-centered, Earth-fixed ITRF2000, to Eurasia and to Anatolia as well. The rates of principal and shear strains along with rigid-body rotation rates were derived from velocity field. Results show east-west shortening between Karaburun Peninsula and northern part of İzmir Bay together with the extension of İzmir Bay in accordance with general extension regime of Western Anatolia and Eastern Agea. East-west shortening and north-south extension of Karaburun Peninsula are closely related to right-lateral faulting and a clockwise rotation. There exists a block in the middle of the peninsula with a differential motion at a rate of 3-5 ± 1 mm/year and 5-6 ± 1 mm/year to the east and south, respectively. As is in Western Anatolia, north-south extension is dominant in almost all parts of the region despite the fact that they exhibit significantly higher rates in the middle of the peninsula. Extensional rates along Tuzla Fault lying nearly perpendicular to İzmir Bay and in its west are maximum in the region with an extension rate of 300-500 ± 80-100 nanostrain/year and confirm its active state. Extensional rates in other parts of the region are at level of 50-150 nanostrain/year as expected in the other parts of Western Anatolia.
A very large Brazilian pedigree with 11778 Leber's hereditary optic neuropathy.
Sadun, Alfredo A; Carelli, Valerio; Salomao, Solange R; Berezovsky, Adriana; Quiros, Peter; Sadun, Federico; DeNegri, Anna-Maria; Andrade, Rafael; Schein, Stan; Belfort, Rubens
2002-01-01
PURPOSE: We conducted extensive epidemiological, neuro-ophthalmological, psychophysical, and blood examinations on a newly discovered, very large pedigree with molecular analysis showing mtDNA mutation for Leber's hereditary optic neuropathy (LHON). METHODS: Four patients representing four index cases from a remote area of Brazil were sent to Sao Paulo, where complete ophthalmological examinations strongly suggested LHON. Molecular analysis of their blood demonstrated that they were LHON, homoplasmic 11778, J-haplogroup. They had an extensive family that all lived in one rural area in Brazil. To investigate this family, we drew on a number of international experts to form a team that traveled to Brazil. This field team also included several members of the Federal University of Sao Paulo, and together we evaluated 273 of the 295 family members that were still alive. We conducted epidemiological interviews emphasizing possible environmental risk factors, comprehensive neuro-ophthalmological examinations, psychophysical tests, Humphrey visual field studies, fundus photography, and blood testing for both mitochondrial genetic analysis and nuclear gene linkage analysis. RESULTS: The person representing the first-generation case immigrated from Verona, Italy, to Colatina. Subsequent generations demonstrated penetrance rates of 71%, 60%, 34%, 15%, and 9%. The percentages of males were 60%, 50%, 64%, 100%, and 100%. Age at onset varied from 10 to 64 years, and current visual acuities varied from LP to 20/400. CONCLUSIONS: Almost 95% of a nearly 300-member pedigree with LHON 11778 were comprehensively studied. Analysis of environmental risk factors and a nuclear modifying factor from this group may help address the perplexing mystery of LHON: Why do only some of the genetically affected individuals manifest the disease? This fully described database may also provide an excellent opportunity for future clinical trials of any purported neuroprotective agent. PMID:12545691
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.
2015-01-01
Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..
Gas density field imaging in shock dominated flows using planar laser scattering
NASA Astrophysics Data System (ADS)
Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran
2018-07-01
Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.
Measurement of electromagnetic tracking error in a navigated breast surgery setup
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor
2016-03-01
PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.
NASA Astrophysics Data System (ADS)
Dempewolf, J.; Becker-Reshef, I.; Nakalembe, C. L.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ntikha, O.; Hansen, M.; Justice, C. J.; Adusei, B.; Kongo, V.
2015-12-01
In-season monitoring of crop conditions provides critical information for agricultural policy and decision making and most importantly for food security planning and management. Nationwide agricultural monitoring in countries dominated by smallholder farming systems, generally relies on extensive networks of field data collectors. In Tanzania, extension agents make up this network and report on conditions across the country, approaching a "near-census". Data is collected on paper which is resource and time intensive, as well as prone to errors. Data quality is ambiguous and there is a general lack of clear and functional feedback loops between farmers, extension agents, analysts and decision makers. Moreover, the data are not spatially explicit, limiting the usefulness for analysis and quality of policy outcomes. Despite significant advances in remote sensing and information communication technologies (ICT) for monitoring agriculture, the full potential of these new tools is yet to be realized in Tanzania. Their use is constrained by the lack of resources, skills and infrastructure to access and process these data. The use of ICT technologies for data collection, processing and analysis is equally limited. The AgriSense-STARS project is developing and testing a system for national-scale in-season monitoring of smallholder agriculture using a combination of three main tools, 1) GLAM-East Africa, an automated MODIS satellite image processing system, 2) field data collection using GeoODK and unmanned aerial vehicles (UAVs), and 3) the Tanzania Crop Monitor, a collaborative online portal for data management and reporting. These tools are developed and applied in Tanzania through the National Food Security Division of the Ministry of Agriculture, Food Security and Cooperatives (MAFC) within a statistically representative sampling framework (area frame) that ensures data quality, representability and resource efficiency.
The 2011 Mw 7.1 Van (Eastern Turkey) earthquake
Elliot, John R.; Copley, Alex C.; Holley, R.; Scharer, Katherine M.; Parsons, Barry
2013-01-01
We use interferometric synthetic aperture radar (InSAR), body wave seismology, satellite imagery, and field observations to constrain the fault parameters of the Mw 7.1 2011 Van (Eastern Turkey) reverse-slip earthquake, in the Turkish-Iranian plateau. Distributed slip models from elastic dislocation modeling of the InSAR surface displacements from ENVISAT and COSMO-SkyMed interferograms indicate up to 9 m of reverse and oblique slip on a pair of en echelon NW 40 °–54 ° dipping fault planes which have surface extensions projecting to just 10 km north of the city of Van. The slip remained buried and is relatively deep, with a centroid depth of 14 km, and the rupture reaching only within 8–9 km of the surface, consistent with the lack of significant ground rupture. The up-dip extension of this modeled WSW striking fault plane coincides with field observations of weak ground deformation seen on the western of the two fault segments and has a dip consistent with that seen at the surface in fault gouge exposed in Quaternary sediments. No significant coseismic slip is found in the upper 8 km of the crust above the main slip patches, except for a small region on the eastern segment potentially resulting from the Mw 5.9 aftershock on the same day. We perform extensive resolution tests on the data to confirm the robustness of the observed slip deficit in the shallow crust. We resolve a steep gradient in displacement at the point where the planes of the two fault segments ends are inferred to abut at depth, possibly exerting some structural control on rupture extent.
NASA Astrophysics Data System (ADS)
Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2017-10-01
In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.
Duan, Yong; Wu, Chun; Chowdhury, Shibasish; Lee, Mathew C; Xiong, Guoming; Zhang, Wei; Yang, Rong; Cieplak, Piotr; Luo, Ray; Lee, Taisung; Caldwell, James; Wang, Junmei; Kollman, Peter
2003-12-01
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1999-2012, 2003
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya
1986-01-01
Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.
AstroCappella: Songs of the Universe
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.; Smale, K. M.
2008-11-01
The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and a contemporary vocal band, The Chromatics. A multimedia music CD, ``AstroCappella 2.0,'' has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio and X-ray astronomy. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K--12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the U.S., and are supplemented with frequent live performances and teacher workshops.
Late Quaternary Arc-parallel Extension of the Kongur Extensional System (KES), Chinese Pamir
NASA Astrophysics Data System (ADS)
Chen, J.; Schoenbohm, L. M.; Owen, L. A.; Li, W.; Yuan, Z.; Li, T.; Robinson, A. C.; Sobel, E. R.; Caffee, M. W.
2016-12-01
Recent normal and strike-slip faulting on the Pamir Plateau of the NW Tibetan Plateau has been linked to synorogenic extension, radial thrusting or oroclinal bending, or northward propagation of the Karakorum fault from its southern segment. Clearly the precise driver remains poorly understood. The 250 km long Kongur Extensional System (KES) lies along the northeastern margin of the Pamir at the western end of the Himalayan-Tibetan orogenic belt, and is part of a regional fault system, which accommodates east-west extension in the hanging wall of the active Main Pamir Thrust (MPT).To better understand the nature of extension in the Pamir and to test the existing models, late Quaternary slip rate along the KES need to be defined. We employ geomorphic mapping, dGPS surveying, and 10Be surface exposure and depth profile dating to quantify rates of fault slip using offset outwash terraces, landslides, and moraines at ten sites as strain markers to identify spatial patterns in deformation rate along the KES. Field mapping and kinematic analysis across offset features show that the overall extension direction is subhorizontal, oriented E-W.A systematic north to south decrease in late Quaternary slip magnitude and rate along the KES from 7 mm/yr at Muji to the north to less than 1 mm/yr at Dabudaer to the south. These geologic rates are consistent with geodetic rates determined by GPS data. All available geologic and geodetic data clearly show that the KES is an independent structure which accommodates east-west extension between the west Pamir Plateau and east Pamir-Tarim basin, and is not kinematically linked with the northern Karakoram fault. Recent extension of the KES is arc-parallel and likely relates to the collision between the Pamir and Tian Shan along longitude E74.4 and clockwise rotation of Tarim block.
Determinants of field edge habitat restoration on farms in California's Sacramento Valley.
Garbach, Kelly; Long, Rachael Freeman
2017-03-15
Degradation and loss of biodiversity and ecosystem services pose major challenges in simplified agricultural landscapes. Consequently, best management practices to create or restore habitat areas on field edges and other marginal areas have received a great deal of recent attention and policy support. Despite this, remarkably little is known about how landholders (farmers and landowners) learn about field edge management practices and which factors facilitate, or hinder, adoption of field edge plantings. We surveyed 109 landholders in California's Sacramento Valley to determine drivers of adoption of field edge plantings. The results show the important influence of landholders' communication networks, which included two key roles: agencies that provide technical support and fellow landholders. The networks of landholders that adopted field edge plantings included both fellow landholders and agencies, whereas networks of non-adopters included either landholders or agencies. This pattern documents that social learning through peer-to-peer information exchange can serve as a complementary and reinforcing pathway with technical learning that is stimulated by traditional outreach and extension programs. Landholder experience with benefits and concerns associated with field edge plantings were also significant predictors of adoption. Our results suggest that technical learning, stimulated by outreach and extension, may provide critical and necessary support for broad-scale adoption of field-edge plantings, but that this alone may not be sufficient. Instead, outreach and extension efforts may need to be strategically expanded to incorporate peer-to-peer communication, which can provide critical information on benefits and concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bringing the DuPont Profitability Model to Extension
ERIC Educational Resources Information Center
Roucan-Kane, Maud; Wolfskill, L. A.; Boehlje, Michael D.; Gray, Allan W.
2013-01-01
This article discusses a financial training program used by Deere and Company for almost 10 years. The objective is to describe the program and to discuss a pre-test/post-test methodology to test the effectiveness of a program for possible duplication by Extension. Results show that participants significantly improved from the pre-test to the…
Fundamentals of ISCO Using Hydrogen Peroxide
Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...
NASA Astrophysics Data System (ADS)
Schmitt, Mathias
2014-12-01
The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions
NASA Astrophysics Data System (ADS)
Mendes, Raissa F. P.; Ortiz, Néstor
2016-06-01
Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.
2014-01-01
Background Cases of Mycobacterium bovis infection South American camelids have been increasing in Great Britain. Current antemortem immunological tests have some limitations. Cases at post mortem examination frequently show extensive pathology. The feasibility of detecting Mycobacterium bovis DNA in clinical samples was investigated. Findings A sensitive extraction methodology was developed and used on nasal swabs and faeces taken post-mortem to assess the potential for a PCR test to detect Mycobacterium bovis in clinical samples. The gross pathology of the studied South American camelids was scored and a significantly greater proportion of South American camelids with more severe pathology were positive in both the nasal swab and faecal PCR tests. A combination of the nasal swab and faecal PCR tests detected 63.9% of all the South American camelids with pathology that were tested. Conclusions The results suggest that antemortem diagnosis of Mycobacterium bovis in South American camelids may be possible using a PCR test on clinical samples, however more work is required to determine sensitivity and specificity, and the practicalities of applying the test in the field. PMID:24507471
Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aglan, H.
2005-08-04
The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less
NASA Astrophysics Data System (ADS)
Metzger, Stefan; Durden, David; Sturtevant, Cove; Luo, Hongyan; Pingintha-Durden, Natchaya; Sachs, Torsten; Serafimovich, Andrei; Hartmann, Jörg; Li, Jiahong; Xu, Ke; Desai, Ankur R.
2017-08-01
Large differences in instrumentation, site setup, data format, and operating system stymie the adoption of a universal computational environment for processing and analyzing eddy-covariance (EC) data. This results in limited software applicability and extensibility in addition to often substantial inconsistencies in flux estimates. Addressing these concerns, this paper presents the systematic development of portable, reproducible, and extensible EC software achieved by adopting a development and systems operation (DevOps) approach. This software development model is used for the creation of the eddy4R family of EC code packages in the open-source R language for statistical computing. These packages are community developed, iterated via the Git distributed version control system, and wrapped into a portable and reproducible Docker filesystem that is independent of the underlying host operating system. The HDF5 hierarchical data format then provides a streamlined mechanism for highly compressed and fully self-documented data ingest and output. The usefulness of the DevOps approach was evaluated for three test applications. First, the resultant EC processing software was used to analyze standard flux tower data from the first EC instruments installed at a National Ecological Observatory (NEON) field site. Second, through an aircraft test application, we demonstrate the modular extensibility of eddy4R to analyze EC data from other platforms. Third, an intercomparison with commercial-grade software showed excellent agreement (R2 = 1.0 for CO2 flux). In conjunction with this study, a Docker image containing the first two eddy4R packages and an executable example workflow, as well as first NEON EC data products are released publicly. We conclude by describing the work remaining to arrive at the automated generation of science-grade EC fluxes and benefits to the science community at large. This software development model is applicable beyond EC and more generally builds the capacity to deploy complex algorithms developed by scientists in an efficient and scalable manner. In addition, modularity permits meeting project milestones while retaining extensibility with time.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Federal Acquisition Regulation Supplement; Extension of the Test Program for Negotiation of Comprehensive... Program for Negotiation of Comprehensive Small Business Subcontracting Plans. DATES: Effective Date... Fiscal Year 2012, (Pub. L. 112-81). Section 866 amends the DoD Test Program for Negotiation of...
Pre-Gas Drilling Drinking Water Testing--An Educational Opportunity for Extension
ERIC Educational Resources Information Center
Swistock, Brian; Clark, James
2015-01-01
The increase in shale gas drilling in Pennsylvania has resulted in thousands of landowners receiving predrilling testing of their drinking water. Landowners often have difficulty understanding test reports resulting in low awareness of pre-existing problems. Extension and several partners developed a program to improve understanding of…
Sleep and vestibular adaptation: implications for function in microgravity
NASA Technical Reports Server (NTRS)
Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.
1998-01-01
Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.
Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere
NASA Astrophysics Data System (ADS)
Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.
2013-10-01
The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.
Development and testing of tip devices for horizontal axis wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyatt, G.W.; Lissaman, P.B.S.
1985-05-01
A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. Objective was to improve performance by the reduction of tip losses. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbines. The types were a change in tip planform, and a single-element and double-element nonplannar tip extension (winglets). Approximately 270 h of performance data were collected over a three-month period. The sampling interval was 2.4 s; thus over 400,000 raw data points were logged.more » Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted. The computer model used does not have adequate lifting surface resolution or accuracy to design these small winglet extensions.« less
Effects of Acute Fatigue of the Hip Flexor Muscles on Hamstring Muscle Extensibility.
Muyor, José M; Arrabal-Campos, Francisco M
2016-12-01
The purpose of the present study was to evaluate the influence of acute fatigue of the hip flexor muscles on scores attained in tests frequently used in literature to measure hamstring muscle extensibility, namely the passive straight leg raise (PSLR), active straight leg raise (ASLR), passive knee extension (PKE), active knee extension (AKE), sit-and-reach (SR) and toe-touch (TT) tests. A total of seventy-five healthy and recreationally active adults voluntarily participated in this study. To reach fatigue, the participants actively lifted their legs alternately as many times as possible. In the passive tests, the results were 7.10 ± 5.21° and 5.68 ± 4.54° higher (p < 0.01) for PSLR and PKE tests, respectively, after acute fatigue. However, in the ASLR test, the results were lower post-fatigue than pre-fatigue (mean difference = -5.30° ± 9.51°; p < 0.01). The AKE, SR and TT tests did not show significant differences between pre- and post-fatigue (p > 0.05). Moderate (r = 0.40) to high (r = 0.97) correlation coefficients were found, which were statistically significant among all the measured flexibility tests both pre- and post-fatigue. In conclusion, the active implication of the hip flexor muscles until reaching fatigue had acute influences on the results of the PSLR, PKE and ASLR tests, but not on the results of the AKE, SR and TT tests. It is recommended to use the AKE test to assess hamstring muscle extensibility in situations where athletes show fatigue in their hip flexor muscles.
Normal neurodynamic responses of the femoral slump test.
Lai, Weng-Hang; Shih, Yi-Fen; Lin, Pei-Ling; Chen, Wen-Yin; Ma, Hsiao-Li
2012-04-01
Femoral slump test is a neurodynamic testing, which could be used to assess the mechanosensitivity of the femoral component of the nervous system. Although Trainor and Pinnington reported the diagnosis accuracy of the femoral slump test, the neurodynamic responses of the femoral slump test have never been studied. The purposes of this study were to evaluate whether maneuvers that changed the nerve tension altered the responses of the femoral slump test and if these responses were influenced by gender and leg dominance; and to identify the correlations between flexibility and measured hip extension angle. Thirty-two asymptomatic subjects (16 males, 16 females) were recruited. The femoral slump test was performed in trunk slump and neutral positions, and cervical extension was used as the structure differential technique. Hip extension angle and visual analog scale (VAS) of thigh pain was measured during the test. Our results showed the decrease of nerve tension significantly increased hip extension ROM (P < 0.001) and lowered pain intensity (P < 0.001). The hip extension ROM was similar between genders but smaller for the dominant leg, as compared to the non-dominant side (P < 0.05); and the hip ROM did not correlate with any of the flexibility indices (P > 0.05). These findings indicated that femoral slump test resulted in normal neurodynamic responses in individuals free of lower extremity problems, and these responses were independent of the influence of muscle flexibility or gender. Future research should emphasize the use of femoral slump test in patient groups such as low back and anterior knee pain. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.J. Payne; R. McCaffrey; R.W. King
2012-04-01
We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{supmore » -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the south in the Great Basin and not localized extension in the Basin and Range or Yellowstone hotspot volcanism. We propose that the GPS velocity field reflects the regional deformation pattern since at least 15-12 Ma, with clockwise rotation over the Northern Basin and Range Province consistent with Basin and Range extension initiating 16 Ma. The region modified by hotspot volcanism has a low-strain rate. If we assume the low rate of deformation is reflected in the length of time between eruptions on the order of 10{sup 4} to >10{sup 6} yrs, the low-strain field in the Snake River Plain and Owyhee-Oregon Plateau would extend through the Quaternary.« less
Developing disease resistant stone fruits
USDA-ARS?s Scientific Manuscript database
Stone fruit (Prunus spp.) (peach, nectarine, plum, apricot, cherry) and almonds are susceptible to a number of pathogens. These pathogens can cause extensive losses in the field, during transport and storage, and in the market. Breeding for disease resistance requires an extensive knowledge of the...
7 CFR 3430.33 - Selection of reviewers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... selected based upon training and experience in relevant scientific, extension, or education fields taking into account the following factors: (1) Level of relevant formal scientific, technical education, and... research, education, or extension activities. (2) Need to include as reviewers experts from various areas...
7 CFR 3430.33 - Selection of reviewers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... selected based upon training and experience in relevant scientific, extension, or education fields taking into account the following factors: (1) Level of relevant formal scientific, technical education, and... research, education, or extension activities. (2) Need to include as reviewers experts from various areas...
7 CFR 3430.33 - Selection of reviewers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... selected based upon training and experience in relevant scientific, extension, or education fields taking into account the following factors: (1) Level of relevant formal scientific, technical education, and... research, education, or extension activities. (2) Need to include as reviewers experts from various areas...
Colors of attraction: Modeling insect flight to light behavior.
Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar
2018-06-26
Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.
Stream interfaces and energetic ions II: Ulysses test of Pioneer results
NASA Technical Reports Server (NTRS)
Intriligator, Devrie S.; Siscoe, George L.; Wibberenz, Gerd; Kunow, Horst; Gosling, John T.
1995-01-01
Ulysses measurements of energetic and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating energetic ion population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding is noteworthy since the stream interface is not magnetically connected to the reverse shock, but lies 12-17 corotation hours from it. Thus, the finding seems to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines. Eliminating the inconsistency probably entails an extension of the standard model such as cross-field diffusion or a non-shock energization process operating near the stream interface closer to the sun.
A simple Lagrangian forecast system with aviation forecast potential
NASA Technical Reports Server (NTRS)
Petersen, R. A.; Homan, J. H.
1983-01-01
A trajectory forecast procedure is developed which uses geopotential tendency fields obtained from a simple, multiple layer, potential vorticity conservative isentropic model. This model can objectively account for short-term advective changes in the mass field when combined with fine-scale initial analyses. This procedure for producing short-term, upper-tropospheric trajectory forecasts employs a combination of a detailed objective analysis technique, an efficient mass advection model, and a diagnostically proven trajectory algorithm, none of which require extensive computer resources. Results of initial tests are presented, which indicate an exceptionally good agreement for trajectory paths entering the jet stream and passing through an intensifying trough. It is concluded that this technique not only has potential for aiding in route determination, fuel use estimation, and clear air turbulence detection, but also provides an example of the types of short range forecasting procedures which can be applied at local forecast centers using simple algorithms and a minimum of computer resources.
The Zwicky Transient Facility Camera
NASA Astrophysics Data System (ADS)
Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.
2016-08-01
The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.
An improved model of the Earth's gravitational field: GEM-T1
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Lerch, F. J.; Christodoulidis, D. C.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Martin, T. V.; Pavlis, E. C.
1987-01-01
Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested.
Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo
2017-01-01
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071
Dark-field hyperspectral X-ray imaging
Egan, Christopher K.; Jacques, Simon D. M.; Connolley, Thomas; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Cernik, Robert J.
2014-01-01
In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753
McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M
2018-05-07
Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.
Three-dimensional propagation in near-field tomographic X-ray phase retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim
An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less
Development of natural gas rotary engines
NASA Astrophysics Data System (ADS)
Mack, J. R.
1991-08-01
Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.
Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks
NASA Astrophysics Data System (ADS)
Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.
2010-04-01
A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.
Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks
NASA Technical Reports Server (NTRS)
Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.
2009-01-01
A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.
Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise
NASA Technical Reports Server (NTRS)
Christian, Andrew; Cabell, Randolph
2017-01-01
For the past several years, researchers at NASA Langley have been engaged in a series of projects to study the degree to which existing facilities and capabilities, originally created for work on full-scale aircraft, are extensible to smaller scales --those of the small unmanned aerial systems (sUAS, also UAVs and, colloquially, `drones') that have been showing up in the nation's airspace of late. This paper follows an e ort that has led to an initial human{subject psychoacoustic test regarding the annoyance generated by sUAS noise. This e ort spans three phases: 1. The collection of the sounds through field recordings. 2. The formulation and execution of a psychoacoustic test using those recordings. 3. The initial analysis of the data from that test. The data suggests a lack of parity between the noise of the recorded sUAS and that of a set of road vehicles that were also recorded and included in the test, as measured by a set of contemporary noise metrics. Future work, including the possibility of further human subject testing, is discussed in light of this suggestion.
Stress Fields Along Okinawa Trough and Ryukyu Arc Inferred From Regional Broadband Moment Tensors
NASA Astrophysics Data System (ADS)
Kubo, A.; Fukuyama, E.
2001-12-01
Most shallow earthquakes along Okinawa trough and Ryukyu arc are relatively small (M<5.5). Focal mechanism estimations for such events were difficult due to insufficient dataset. However, this situation is improved by regional broadband network (FREESIA). Lower limit of magnitude of the earthquakes determined becomes 1.5 smaller in M{}w than that of Harvard moment tensors. As a result, we could examine the stress field in more detail than Fournier et al.(2001, JGR, 106, 13751-) did based on surface geology and teleseismic moment tensors. In the NE Okinawa trough, extension axes are oblique to the trough strike, while in SW Okinawa trough, they are perpendicular to the trough. Fault type in SW is normal fault and gradually changes to mixture of normal and strike slip toward NE. In the Ryukyu arc, extension axes are parallel to the arc. Although this feature is not clear in the NW Ryukyu arc, arc parallel extension may be a major property of entire arc. Dominant fault type is normal fault and several strike slips with the same extensional component are included. The volcanic train is located at the edge of arc parallel extension field faced A simple explanation of the arc parallel extension is the response to the opening motion of the Okinawa trough. Another possible mechanism is forearc movement due to oblique subduction which is enhanced in SW. We consider that the Okinawa trough and the Ryukyu arc are independent stress provinces.
GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site
NASA Astrophysics Data System (ADS)
Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.
2009-04-01
In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies caused by explosions and observed on the test site and adjacent territories, and (iv) long-range transport of radioactive aerosols with analysis of dynamics of spatial distribution, averaged and accumulated fields for concentration and deposition patterns.
Recent Transmission of Tuberculosis — United States, 2011–2014
Yuen, Courtney M.; Kammerer, J. Steve; Marks, Kala; Navin, Thomas R.; France, Anne Marie
2016-01-01
Tuberculosis is an infectious disease that may result from recent transmission or from an infection acquired many years in the past; there is no diagnostic test to distinguish the two causes. Cases resulting from recent transmission are particularly concerning from a public health standpoint. To describe recent tuberculosis transmission in the United States, we used a field-validated plausible source-case method to estimate cases likely resulting from recent transmission during January 2011–September 2014. We classified cases as resulting from either limited or extensive recent transmission based on transmission cluster size. We used logistic regression to analyze patient characteristics associated with recent transmission. Of 26,586 genotyped cases, 14% were attributable to recent transmission, 39% of which were attributable to extensive recent transmission. The burden of cases attributed to recent transmission was geographically heterogeneous and poorly predicted by tuberculosis incidence. Extensive recent transmission was positively associated with American Indian/Alaska Native (adjusted prevalence ratio [aPR] = 3.6 (95% confidence interval [CI] 2.9–4.4), Native Hawaiian/Pacific Islander (aPR = 3.2, 95% CI 2.3–4.5), and black (aPR = 3.0, 95% CI 2.6–3.5) race, and homelessness (aPR = 2.3, 95% CI 2.0–2.5). Extensive recent transmission was negatively associated with foreign birth (aPR = 0.2, 95% CI 0.2–0.2). Tuberculosis control efforts should prioritize reducing transmission among higher-risk populations. PMID:27082644
ERIC Educational Resources Information Center
Padde, Paul; And Others
A descriptive study examined the relationship between supervisory techniques and organizational outcomes among supervisors in the agricultural extension service in eight districts in eastern Uganda. Self-rating and rater forms of the Multifactor Leadership Questionnaire were sent to 220 extension agents, 8 field supervisors, and 8 deputy field…
Infectious syphilis mimicking neoplastic disease.
Drusin, L M; Singer, C; Valenti, A J; Armstrong, D
1977-02-01
Five patients who were initially evaluated for malignant neoplasm actually had infectious syphillis (one primary, two secondaries, two secondaries with persistence of primary). Two patients were considered for radical surgery and one for extensive radiation and/or chemotherapy. In four patients an elevated routine admission VDRL was the first indication of the correct diagnosis. Dark-field examination is the most important laboratory test in the diagnosis of primary syphillis; VDRL and FTA-ABS are most important in confirming secondary syphillis. Penicillin remains the drug of choice for therapy. At a time when the incidence of sexually transmitted diseases is increasing, it is extremely important to develop adequate educational programs for medical students and physicians.
Data based abnormality detection
NASA Astrophysics Data System (ADS)
Purwar, Yashasvi
Data based abnormality detection is a growing research field focussed on extracting information from feature rich data. They are considered to be non-intrusive and non-destructive in nature which gives them a clear advantage over conventional methods. In this study, we explore different streams of data based anomalies detection. We propose extension and revisions to existing valve stiction detection algorithm supported with industrial case study. We also explored the area of image analysis and proposed a complete solution for Malaria diagnosis. The proposed method is tested over images provided by pathology laboratory at Alberta Health Service. We also address the robustness and practicality of the solution proposed.
Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V
2001-09-01
The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1996-01-01
Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2013-01-01
The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Fyodorov, Yan V.; Le Doussal, Pierre
2018-02-01
We address systematically an apparent nonphysical behavior of the free-energy moment generating function for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index H =0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM) introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017), 10.1103/PhysRevLett.118.090601] based on the two-dimensional Gaussian free field with background charges and directly related to the Liouville field theory. All these models share anomalously large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested numerically.
Heitz, Richard P; Schall, Jeffrey D
2013-10-19
The stochastic accumulation framework provides a mechanistic, quantitative account of perceptual decision-making and how task performance changes with experimental manipulations. Importantly, it provides an elegant account of the speed-accuracy trade-off (SAT), which has long been the litmus test for decision models, and also mimics the activity of single neurons in several key respects. Recently, we developed a paradigm whereby macaque monkeys trade speed for accuracy on cue during visual search task. Single-unit activity in frontal eye field (FEF) was not homomorphic with the architecture of models, demonstrating that stochastic accumulators are an incomplete description of neural activity under SAT. This paper summarizes and extends this work, further demonstrating that the SAT leads to extensive, widespread changes in brain activity never before predicted. We will begin by reviewing our recently published work that establishes how spiking activity in FEF accomplishes SAT. Next, we provide two important extensions of this work. First, we report a new chronometric analysis suggesting that increases in perceptual gain with speed stress are evident in FEF synaptic input, implicating afferent sensory-processing sources. Second, we report a new analysis demonstrating selective influence of SAT on frequency coupling between FEF neurons and local field potentials. None of these observations correspond to the mechanics of current accumulator models.
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Valentine, Peter G.
2017-01-01
Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.
Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh
2018-04-20
Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.
Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC
NASA Astrophysics Data System (ADS)
Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.
2010-04-01
The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
Where Field Staff Get Information. Approaching the Electronic Times.
ERIC Educational Resources Information Center
Shih, Win-Yuan; Evans, James F.
1991-01-01
Top 3 information sources identified in a survey of 109 extension agents were extension publications, specialists, and personal files. Electronic sources such as satellite programing and bibliographic databases were used infrequently, because of lack of access, user friendliness, and ready applicability of information. (SK)
7 CFR 3430.33 - Selection of reviewers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... education fields taking into account the following factors: (1) Level of relevant formal scientific, technical education, and extension experience of the individual, as well as the extent to which an individual is engaged in relevant research, education, or extension activities. (2) Need to include as...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... comment for 30 days to revise, without extension, Capital Assessments and Stress Testing information..., without extension, the Capital Assessments and Stress Testing information collection (FR Y-14A/Q/M). In...
Galois Module Structure of Lubin-Tate Modules
NASA Astrophysics Data System (ADS)
Tomaskovic-Moore, Sebastian
Let L/K be a finite, Galois extension of local or global fields. In the classical setting of additive Galois modules, the ring of integers OL of L is studied as a module for the group ring OKG, where G is the Galois group of L/K. When K is a p-adic field, we also find a structure of OKG module when we replace OL with the group of points in OL of a Lubin-Tate formal group defined over K. For this new Galois module we find an analogue of the normal basis theorem. When K is a proper unramified extension of Qp , we show that some eigenspaces for the Teichmuller character are not free. We also adapt certain cases of E. Noether's result on normal integral bases for tame extensions. Finally, for wild extensions we define a version of Leopoldt's associated order and demonstrate in a specific case that it is strictly larger than the integral group ring.
Field Hydraulic and Air-Blast Sprayers for Row Crops.
ERIC Educational Resources Information Center
Cole, Herbert, Jr., Comp.
This agriculture extension service publication from Pennsylvania State University discusses techniques and equipment used in spraying field crops. In the discussion of field hydraulic sprayers, specific topics include types of sprayers, tanks, pumps, pressure regulators, hoses, boom spraying, directed spraying, and nozzle bodies. In the discussion…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... Extension of Existing Information Collection; Testing, Evaluation, and Approval of Mining Products AGENCY... Reduction Act of 1995 [44 U.S.C. 3506(c)(2)(A)]. This program helps to ensure that requested data can be..., testing, approval and certification, and quality control of mining equipment and components, materials...
PHENIX Muon Piston Calorimeter (MPC) APD and Prototype MPC Extension (MPC-EX) Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lajoie, John
2013-06-20
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Muon Piston Calorimeter Extension (MPC-EX) Collaboration who have committed to participate in beam tests to be carried out during the 2013- 2014 Fermilab Test Beam Facility program.
Gagnier, Kristin Michod; Dickinson, Christopher A.; Intraub, Helene
2015-01-01
Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14–15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2–4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception. PMID:23547787
Michod Gagnier, Kristin; Dickinson, Christopher A; Intraub, Helene
2013-01-01
Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14-15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2-4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception.
A Study of Water Wave Wakes of Washington State Ferries
NASA Astrophysics Data System (ADS)
Perfect, Bradley; Riley, James; Thomson, Jim; Fay, Endicott
2015-11-01
Washington State Ferries (WSF) operates a ferry route that travels through a 600m-wide channel called Rich Passage. Concerns of shoreline erosion in Rich Passage have prompted this study of the generation and propagation of surface wave wakes caused by WSF vessels. The problem was addressed in three ways: analytically, using an extension of the Kelvin wake model by Darmon et al. (J. Fluid Mech., 738, 2014); computationally, employing a RANS Navier-Stokes model in the CFD code OpenFOAM which uses the Volume of Fluid method to treat the free surface; and with field data taken in Sept-Nov, 2014, using a suite of surface wave measuring buoys. This study represents one of the first times that model predictions of ferry boat-generated wakes can be tested against measurements in open waters. The results of the models and the field data are evaluated using direct comparison of predicted and measured surface wave height as well as other metrics. Furthermore, the model predictions and field measurements suggest differences in wake amplitudes for different class vessels. Finally, the relative strengths and weaknesses of each prediction method as well as of the field measurements will be discussed. Washington State Department of Transportation.
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2012-10-01
A new ITER-relevant non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the Extrap-T2R reversed field pinch. Resistive Wall Modes (RWMs) were generated and their rotation sustained by rotating magnetic perturbations. In particular, stable modes of toroidal mode number n=8 and 10 and unstable modes of n=1 were used in this experiment. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the RWMs were observed to rotate non-uniformly and be modulated in amplitude (in the case of unstable modes, the observed oscillation was superimposed to the mode growth). This behavior was used to infer the amplitude and toroidal phase of n=1, 8 and 10 EFs. The method was first tested against known, deliberately applied EFs, and then against actual intrinsic EFs. Applying equal and opposite corrections resulted in longer discharges and more uniform mode rotation, indicating good EF compensation. The results agree with a simple theoretical model. Extensions to tearing modes, to the non-uniform plasma response to rotating perturbations, and to tokamaks, including ITER, will be discussed.
Microlayered flow structure around an acoustically levitated droplet under a phase-change process
Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi
2016-01-01
The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723
Carnacina, Iacopo; Larrarte, Frédérique; Leonardi, Nicoletta
2017-04-01
The performance of sewer networks has important consequences from an environmental and social point of view. Poor functioning can result in flood risk and pollution at a large scale. Sediment deposits forming in sewer trunks might severely compromise the sewer line by affecting the flow field, reducing cross-sectional areas, and increasing roughness coefficients. In spite of numerous efforts, the morphological features of these depositional environments remain poorly understood. The interface between water and sediment remains inefficiently identified and the estimation of the stock of deposit is frequently inaccurate. In part, this is due to technical issues connected to difficulties in collecting accurate field measurements without disrupting existing morphologies. In this paper, results from an extensive field campaign are presented; during the campaign a new survey methodology based on acoustic techniques has been tested. Furthermore, a new algorithm for the detection of the soil-water interface, and therefore for the correct esteem of sediment stocks is proposed. Finally, results in regard to bed topography, and morphological features at two different field sites are presented and reveal that a large variability in bed forms is present along sewer networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.
2017-04-01
Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.
An Approach to Quad Meshing Based On Cross Valued Maps and the Ginzburg-Landau Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viertel, Ryan; Osting, Braxton
2017-08-01
A generalization of vector fields, referred to as N-direction fields or cross fields when N=4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-Landau problem from mathematical physics. This identification yields a variety of theoretical tools for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure for generating the quad mesh is to (i)more » find a complex-valued "representation" field that minimizes the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques. Under certain assumptions on the geometry of the domain, we prove that this procedure can be used to produce a cross field whose separatrices partition the domain into four sided regions. To solve the energy minimization problem for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation field. Lastly, we demonstrate the method on a variety of test domains.« less
Behennah, Jessica; Conway, Rebecca; Fisher, James; Osborne, Neil; Steele, James
2018-03-01
Chronic low back pain is associated with lumbar extensor deconditioning. This may contribute to decreased neuromuscular control and balance. However, balance is also influenced by the hip musculature. Thus, the purpose of this study was to examine balance in both asymptomatic participants and those with chronic low back pain, and to examine the relationships among balance, lumbar extension strength, trunk extension endurance, and pain. Forty three asymptomatic participants and 21 participants with non-specific chronic low back pain underwent balance testing using the Star Excursion Balance Test, lumbar extension strength, trunk extension endurance, and pain using a visual analogue scale. Significant correlations were found between lumbar extension strength and Star Excursion Balance Test scores in the chronic low back pain group (r = 0.439-0.615) and in the asymptomatic group (r = 0.309-0.411). Correlations in the chronic low back pain group were consistently found in posterior directions. Lumbar extension strength explained ~19.3% to ~37.8% of the variance in Star Excursion Balance Test scores for the chronic low back pain group and ~9.5% to ~16.9% for the asymptomatic group. These results suggest that the lumbar extensors may be an important factor in determining the motor control dysfunctions, such as limited balance, that arise in chronic low back pain. As such, specific strengthening of this musculature may be an approach to aid in reversing these dysfunctions. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ford Brett; Robert V. Westermark
This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig movedmore » off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-14, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI, Brett Davidson and Tim Spanos, Prism Production Technologies, were the instructors. The sixteen attendees also participated in the half-day field trip to the test facility near Tulsa.« less
Quek, June; Brauer, Sandra G; Treleaven, Julia; Pua, Yong-Hao; Mentiplay, Benjamin; Clark, Ross Allan
2014-04-17
Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1-7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant's head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone.The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine.
2014-01-01
Background Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Findings Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1–7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant’s head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone. The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. Conclusion The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine. PMID:24742001
Molecular hydrodynamics: Vortex formation and sound wave propagation
Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; ...
2018-01-14
In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to ormore » larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.« less
Molecular hydrodynamics: Vortex formation and sound wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kyeong Hwan; Kim, Changho; Talkner, Peter
In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to ormore » larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.« less
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments
NASA Astrophysics Data System (ADS)
Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration
2016-09-01
As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.
2016-03-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.
2015-11-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
TU-D-201-05: Validation of Treatment Planning Dose Calculations: Experience Working with MPPG 5.a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, J; Park, J; Kim, L
2016-06-15
Purpose: Newly published medical physics practice guideline (MPPG 5.a.) has set the minimum requirements for commissioning and QA of treatment planning dose calculations. We present our experience in the validation of a commercial treatment planning system based on MPPG 5.a. Methods: In addition to tests traditionally performed to commission a model-based dose calculation algorithm, extensive tests were carried out at short and extended SSDs, various depths, oblique gantry angles and off-axis conditions to verify the robustness and limitations of a dose calculation algorithm. A comparison between measured and calculated dose was performed based on validation tests and evaluation criteria recommendedmore » by MPPG 5.a. An ion chamber was used for the measurement of dose at points of interest, and diodes were used for photon IMRT/VMAT validations. Dose profiles were measured with a three-dimensional scanning system and calculated in the TPS using a virtual water phantom. Results: Calculated and measured absolute dose profiles were compared at each specified SSD and depth for open fields. The disagreement is easily identifiable with the difference curve. Subtle discrepancy has revealed the limitation of the measurement, e.g., a spike at the high dose region and an asymmetrical penumbra observed on the tests with an oblique MLC beam. The excellent results we had (> 98% pass rate on 3%/3mm gamma index) on the end-to-end tests for both IMRT and VMAT are attributed to the quality beam data and the good understanding of the modeling. The limitation of the model and the uncertainty of measurement were considered when comparing the results. Conclusion: The extensive tests recommended by the MPPG encourage us to understand the accuracy and limitations of a dose algorithm as well as the uncertainty of measurement. Our experience has shown how the suggested tests can be performed effectively to validate dose calculation models.« less
Robotics-Centered Outreach Activities: An Integrated Approach
ERIC Educational Resources Information Center
Ruiz-del-Solar, Javier
2010-01-01
Nowadays, universities are making extensive efforts to attract prospective students to the fields of electrical, electronic, and computer engineering. Thus, outreach is becoming increasingly important, and activities with schoolchildren are being extensively carried out as part of this effort. In this context, robotics is a very attractive and…
Avionics Instrument Systems Specialist (AFSC 32551).
ERIC Educational Resources Information Center
Miller, Lawrence B.; Crowcroft, Robert A.
This six-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for avionics instrument systems specialists. Covered in the individual volumes are career field familiarization (career field progression and training, security, occupational safety and health, and career field reference material);…
Gates, Timothy J; Noyce, David A
2016-11-01
This manuscript describes the development and evaluation of a conceptual framework for real-time operation of dynamic on-demand extension of the red clearance interval as a countermeasure for red-light-running. The framework includes a decision process for determining, based on the real-time status of vehicles arriving at the intersection, when extension of the red clearance interval should occur and the duration of each extension. A zonal classification scheme was devised to assess whether an approaching vehicle requires additional time to safely clear the intersection based on the remaining phase time, type of vehicle, current speed, and current distance from the intersection. Expected performance of the conceptual framework was evaluated through modeling of replicated field operations using vehicular event data collected as part of this research. The results showed highly accurate classification of red-light-running vehicles needing additional clearance time and relatively few false extension calls from stopping vehicles, thereby minimizing the expected impacts to signal and traffic operations. Based on the recommended parameters, extension calls were predicted to occur once every 26.5cycles. Assuming a 90scycle, 1.5 extensions per hour were expected per approach, with an estimated extension time of 2.30s/h. Although field implementation was not performed, it is anticipated that long-term reductions in targeted red-light-running conflicts and crashes will likely occur if red clearance interval extension systems are implemented at locations where start-up delay on the conflicting approach is generally minimal, such as intersections with lag left-turn phasing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions
Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya
2017-01-01
Patient: Male, 69 Final Diagnosis: Atherosclerotic renal artery stenosis Symptoms: None Medication: — Clinical Procedure: — Specialty: Radiology Objective: Unusual setting of medical care Background: The GuideLiner catheter extension device is a monorail-type “Child” support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). Case Report: We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guide-wires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. Conclusions: The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion. PMID:28533503
NASA Astrophysics Data System (ADS)
Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.
2014-07-01
A reliable method of sample introduction is presented for on-line gas chromatography with a special application to in-situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a controlled pressure switching device that offers the advantage of long term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing the interface for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient detector and 15% accurate when applied to a vacuum based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG) show approximately three times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in-situ instrument demonstrate minimal trending and a zero failure rate during field deployments ranging up to four weeks of continuous sampling. Extension of the VLI to dual collection cells is presented with less than 3% cell-to-cell carry-over.
NASA Technical Reports Server (NTRS)
Pierzga, M. J.
1981-01-01
The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.
Lu, Jiemin; Kharaka, Yousif K.; Thordsen, James J.; Horita, Juske; Karamalidis, Athanasios; Griffith, Craig; Hakala, J. Alexandra; Ambats, Gil; Cole, David R.; Phelps, Tommy J.; Manning, Michael A.; Cook, Paul J.; Hovorka, Susan D.
2012-01-01
A highly integrated geochemical program was conducted at the Cranfield CO2-enhanced oil recovery (EOR) and sequestration site, Mississippi, U.S.A.. The program included extensive field geochemical monitoring, a detailed petrographic study, and an autoclave experiment under in situ reservoir conditions. Results show that mineral reactions in the Lower Tuscaloosa reservoir were minor during CO2 injection. Brine chemistry remained largely unchanged, which contrasts with significant changes observed in other field tests. Field fluid sampling and laboratory experiments show consistently slow reactions. Carbon isotopic composition and CO2 content in the gas phase reveal simple two-end-member mixing between injected and original formation gas. We conclude that the reservoir rock, which is composed mainly of minerals with low reactivity (average quartz 79.4%, chlorite 11.8%, kaolinite 3.1%, illite 1.3%, concretionary calcite and dolomite 1.5%, and feldspar 0.2%), is relatively unreactive to CO2. The significance of low reactivity is both positive, in that the reservoir is not impacted, and negative, in that mineral trapping is insignificant.
Doppler lidar studies of atmospheric wind field dynamics
NASA Technical Reports Server (NTRS)
Hardesty, R. M.; Post, M. J.; Lawrence, T. R.; Hall, F. F., Jr.
1986-01-01
For the past 5 years the Wave Propagation Lab. has operated a pulsed CO2 Doppler lidar system to evaluate coherent laser radar technology and to investigate applications of the technique in atmospheric research. The capability of the system to provide measurements of atmospheric winds, backscatter, and water vapor has been extensively studied over this period. Because Doppler lidar can measure atmospheric wind structure in the clear air without degradation by terrain features, it offers a unique capability as a research tool for studies of many transient or local scale atmospheric events. This capability was demonstrated in recent field experiments near Boulder, Colo. and Midland, Tex., in which the lidar clearly depicted the wind field structure associated with several types of phenomena, including thunderstorm microbursts, valley drainage flow, and passage of a dryline front. To improve sensitivity during the periods of low aerosol backscatter, the system has recently been upgraded with new transmitter/receiver hardware. The upgraded system, which transmit 2 J per pulse of output energy at a rate of 50 Hz and incorporates computer control for automated operation, underwent calibration testing during the spring of 1986.
φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations
NASA Astrophysics Data System (ADS)
Sornette, D.; Simonetti, P.; Andersen, J. V.
2000-08-01
Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive empirical tests are presented on the foreign exchange market that validate satisfactorily the theory. For “fat tail” distributions, we show that an adequate prediction of the risks of a portfolio relies much more on the correct description of the tail structure rather than on their correlations. For the case of asymmetric return distributions, our theory allows us to generalize the return-risk efficient frontier concept to incorporate the dimensions of large risks embedded in the tail of the asset distributions. We demonstrate that it is often possible to increase the portfolio return while decreasing the large risks as quantified by the fourth and higher-order cumulants. Exact theoretical formulas are validated by empirical tests.
41 CFR 300-90.8 - What must we do to apply for a test program extension?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What must we do to apply for a test program extension? 300-90.8 Section 300-90.8 Public Contracts and Property Management Federal Travel Regulation System GENERAL AGENCY REQUIREMENTS 90-TELEWORK TRAVEL EXPENSES TEST PROGRAMS...
NASA Technical Reports Server (NTRS)
Tarter, Jill; Backus, Peter
1995-01-01
Curriculum materials based on the search for extraterrestrial intelligence (SETI) were developed for grades 3 through 9 science classes. The project was supported in part by NASA. Six teacher's guides, plus ancillary visuals, addressing topics in astronomy, biology, chemistry, geosciences, and physics as well as mathematics, social sciences, and language arts, were designed by a team of teachers, scientists. curriculum developers, and artists. First drafts were piloted by 10 design team teachers; revised drafts were field tested by 109 teachers in 30 states. Extensive feedback from these teachers and their students and reviews by scientists were used to revise materials prior to submission to the publisher. The field test teachers overall ranking of all guides (data from individual lesson feedback forms) was 431 on a one low to five high scale; 85% found the content appropriate to course and grade level and 75% indicated they had no reservations about using the materials again or recommending them to colleagues. The ratio of liked to disliked student responses (from 1305 student letters) was 70:30. Most recommendations from the teachers, students, and science reviewers were incorporated in the final versions for the guides, published by Libraries Unlimited/Teacher Ideas Press, 1995.
Toward Automation of Insulin Delivery - Management Solutions for Type 1 Diabetes.
Nimri, Revital; Phillip, Moshe
2016-01-01
In the past decade, the field of type 1 diabetes was characterized by the efforts to integrate technology into the daily management of diabetes. Automated insulin delivery systems have emerged followed by the improvements in technology of pumps and sensors and automated close-loop systems that were developed around the world for overnight as well as for day and night use. Initially, these closed-loop systems were tested clinically in research centers, then at diabetes camps or hotels, and recently at patients' homes. The systems were tested in a wide range of populations of patients with type 1 diabetes: children, adolescents, adults, newly diagnosed, well and suboptimally controlled patients, the critically ill and pregnant women. The extensive clinical evaluation found these close-loop systems to be safe and efficient in controlling blood glucose levels. Now is the time to take these systems from research to industry and to get a regulatory approval of convenient devices for the use at home. Automated insulin delivery systems have the potential to change the way diabetes is treated and managed for the benefit of patients. This chapter summarizes the recent advances in this field. © 2016 S. Karger AG, Basel.
A method for obtaining a statistically stationary turbulent free shear flow
NASA Technical Reports Server (NTRS)
Timson, Stephen F.; Lele, S. K.; Moser, R. D.
1994-01-01
The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.
Ong, H S; Fan, X D; Ji, T
2014-12-01
The surgical resection of a large unfavourable Shamblin type III carotid body tumour (CBT) can be very challenging technically, with many potential significant complications. Preoperative embolization aids in shrinking the lesion, reducing intraoperative blood loss, and improving visualization of the surgical field. Preoperative internal carotid artery (ICA) stenting aids in reinforcing the arterial wall, thereby providing a better dissection plane. A woman presented to our institution with a large right-sided CBT. Failure of the preoperative temporary balloon occlusion (TBO) test emphasized the importance of intraoperative preservation of the ipsilateral ICA. A combination of both preoperative embolization and carotid stenting allowed a less hazardous radical resection of the CBT. An almost bloodless surgical field permitted meticulous dissection, hence reducing the risk of intraoperative vascular and nerve injury. Embolization and carotid stenting prior to surgical resection should be considered in cases with bilateral CBT or a skull base orientated high CBT, and for those with intracranial extension and patients who have failed the TBO test. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Salamunićcar, G.; Lončarić, S.
2008-07-01
Crater Detection Algorithms (CDAs) applications range from estimation of lunar/planetary surface age to autonomous landing on planets and asteroids and advanced statistical analyses. A large amount of work on CDAs has already been published. However, problems arise when evaluation results of some new CDA have to be compared with already published evaluation results. The problem is that different authors use different test-fields, different Ground-Truth (GT) catalogues, and even different methodologies for evaluation of their CDAs. Re-implementation of already published CDAs or its evaluation environment is a time-consuming and unpractical solution to this problem. In addition, implementation details are often insufficiently described in publications. As a result, there is a need in research community to develop a framework for objective evaluation of CDAs. A scientific question is how CDAs should be evaluated so that the results are easily and reliably comparable. In attempt to solve this issue we first analyzed previously published work on CDAs. In this paper, we propose a framework for solution of the problem of objective CDA evaluation. The framework includes: (1) a definition of the measure for differences between craters; (2) test-field topography based on the 1/64° MOLA data; (3) the GT catalogue wherein each of 17,582 craters is aligned with MOLA data and confirmed with catalogues by N.G. Barlow et al. and J.F. Rodionova et al.; (4) selection of methodology for training and testing; and (5) a Free-response Receiver Operating Characteristics (F-ROC) curves as a way to measure CDA performance. The handling of possible improvements of the framework in the future is additionally addressed as a part of discussion of results. Possible extensions with additional test-field subsystems based on visual images, data sets for other planets, evaluation methodologies for CDAs developed for different purposes than cataloguing of craters, are proposed as well. The goal of the proposed framework is to contribute to the research community by establishing guidelines for objective evaluation of CDAs.
NASA Astrophysics Data System (ADS)
Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.
2018-01-01
There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Farassat, F.
1990-01-01
The results of NASA's Propeller Test Assessment program involving extensive flight tests of a large-scale advanced propeller are presented. This has provided the opportunity to evaluate the current capability of advanced propeller noise prediction utilizing principally the exterior acoustic measurements for the prediction of exterior noise. The principal object of this study was to evaluate the state-of-the-art of noise prediction for advanced propellers utilizing the best available codes of the disciplines involved. The effects of blade deformation on the aerodynamics and noise of advanced propellers were also studied. It is concluded that blade deformation can appreciably influence propeller noise and aerodynamics, and that, in general, centrifugal and blade forces must both be included in the calculation of blade forces. It is noted that the present capability for free-field noise prediction of the first three harmonics for advanced propellers is fairly good. Detailed data and diagrams of the test results are presented.
F/A-18 1/9th scale model tail buffet measurements
NASA Technical Reports Server (NTRS)
Martin, C. A.; Glaister, M. K.; Maclaren, L. D.; Meyn, L. A.; Ross, J.
1991-01-01
Wind tunnel tests were carried out on a 1/9th scale model of the F/A-18 at high angles of attack to investigate the characteristics of tail buffet due to bursting of the wing leading edge extension (LEX) vortices. The tests were carried out at the Aeronautical Research Laboratory low-speed wind tunnel facility and form part of a collaborative activity with NASA Ames Research Center, organized by The Technical Cooperative Program (TTCP). Information from the program will be used in the planning of similar collaborative tests, to be carried out at NASA Ames, on a full-scale aircraft. The program covered the measurement of unsteady pressures and fin vibration for cases with and without the wing LEX fences fitted. Fourier transform methods were used to analyze the unsteady data, and information on the spatial and temporal content of the vortex burst pressure field was obtained. Flow visualization of the vortex behavior was carried out using smoke and a laser light sheet technique.
Azamathulla, H. Md.; Jarrett, Robert D.
2013-01-01
Manning’s roughness coefficient (n) has been widely used in the estimation of flood discharges or depths of flow in natural channels. Therefore, the selection of appropriate Manning’s nvalues is of paramount importance for hydraulic engineers and hydrologists and requires considerable experience, although extensive guidelines are available. Generally, the largest source of error in post-flood estimates (termed indirect measurements) is due to estimates of Manning’s n values, particularly when there has been minimal field verification of flow resistance. This emphasizes the need to improve methods for estimating n values. The objective of this study was to develop a soft computing model in the estimation of the Manning’s n values using 75 discharge measurements on 21 high gradient streams in Colorado, USA. The data are from high gradient (S > 0.002 m/m), cobble- and boulder-bed streams for within bank flows. This study presents Gene-Expression Programming (GEP), an extension of Genetic Programming (GP), as an improved approach to estimate Manning’s roughness coefficient for high gradient streams. This study uses field data and assessed the potential of gene-expression programming (GEP) to estimate Manning’s n values. GEP is a search technique that automatically simplifies genetic programs during an evolutionary processes (or evolves) to obtain the most robust computer program (e.g., simplify mathematical expressions, decision trees, polynomial constructs, and logical expressions). Field measurements collected by Jarrett (J Hydraulic Eng ASCE 110: 1519–1539, 1984) were used to train the GEP network and evolve programs. The developed network and evolved programs were validated by using observations that were not involved in training. GEP and ANN-RBF (artificial neural network-radial basis function) models were found to be substantially more effective (e.g., R2 for testing/validation of GEP and RBF-ANN is 0.745 and 0.65, respectively) than Jarrett’s (J Hydraulic Eng ASCE 110: 1519–1539, 1984) equation (R2 for testing/validation equals 0.58) in predicting the Manning’s n.
Real-time Transient Monitoring With the HAWC Detector: Design and Performance
NASA Astrophysics Data System (ADS)
Wisher, Ian Gabriel
Blazars are some of the most energetic environments in the Universe with exceptionally strong non-thermal emission. Since the detection of VHE variability in the blazar Markarian 421, observations of blazars and their VHE variability have been an active field of research. Through long campaigns of observations, blazars have shown variability over timescales that vary from minutes to days across the electromagnetic spectrum from radio to TeV gamma rays. Though rare, the variability can also have extreme outburst events where the flux peaks at several orders of magnitude higher than the quiescent state of the source. These outbursts are interesting not only for constraining the models of acceleration and variability but also as tools to study other physics topics such as the extragalactic background light, intergalactic magnetic field, and Lorentz invariance. Though powerful, the rarity of these events makes studies challenging and motivates additional searches and detections. The High Altitude Water Cherenkov (HAWC) detector is an extensive air shower instrument with a high duty cycle, large field of view, and extraordinary sensitivity to TeV gamma rays. This allows HAWC to perform unbiased monitoring of a large number of different sources for flaring states and catch rare events such as the aforementioned blazar flares. This work presents a search for short timescale flares from known blazars and TeV sources for the first year of HAWC data with the capability to generate alerts in real time. In the course of this work, a variety of new hardware, software, and detection techniques were developed in conjunction with the construction of the HAWC detector. These include hardware development on the design of the main data acquisition system, electronics integrations and testing, design/testing of the online reconstruction system, and design of the electronics for the outrigger extension. Algorithms and methods to detect transients in HAWC time series data were developed and characterized to allow the rapid reporting of detected flares to other observatories for follow up observations. We identify several candidate flares from historical data that would have been good candidates for alerting other experiments. This shows the method is behaving as expected and capable of detecting and alerting other experiments of large flares.
NASA Astrophysics Data System (ADS)
Mitchell, N.
2007-01-01
Nb3Sn cable in conduit-type conductors were expected to provide an efficient way of achieving large conductor currents at high field (up to 13 T) combined with good stability to electromagnetic disturbances due to the extensive helium contact area with the strands. Although ITER model coils successfully reached their design performance (Kato et al 2001 Fusion Eng. Des. 56/57 59-70), initial indications (Mitchell 2003 Fusion Eng. Des. 66-68 971-94) that there were unexplained performance shortfalls have been confirmed. Recent conductor tests (Pasztor et al 2004 IEEE Trans. Appl. Supercond. 14 1527-30) and modelling work (Mitchell 2005 Supercond. Sci. Technol. 18 396-404) suggest that the shortfalls are due to a combination of strand bending and filament fracture under the transverse magnetic loads. Using the new model, the extensive database from the ITER CS insert coil has been reassessed. A parametric fit based on a loss of filament area and n (the exponent of the power-law fit to the electric field) combined with a more rigorous consideration of the conductor field gradient has enabled the coil behaviour to be explained much more consistently than in earlier assessments, now fitting the Nb3Sn strain scaling laws when used with measurements of the conductor operating strain, including conditions when the insert coil current (and hence operating strain) were reversed. The coil superconducting performance also shows a fatigue-type behaviour consistent with recent measurements on conductor samples (Martovetsky et al 2005 IEEE Trans. Appl. Supercond. 15 1367-70). The ITER conductor design has already been modified compared to the CS insert, to increase the margin and provide increased resistance to the degradation, by using a steel jacket to provide thermal pre-compression to reduce tensile strain levels, reducing the void fraction from 36% to 33% and increasing the non-copper material by 25%. Test results are not yet available for the new design and performance predictions at present rely on models with limited verification.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sumita
This study examined the effects of an extensive inquiry-based field experience on pre-service elementary teachers' personal agency beliefs (PAB) about teaching science and their ability to effectively implement science instruction. The research combined quantitative and qualitative approaches within an ethnographic research tradition. A comparison was made between the pre and posttest scores for two groups. The experimental group utilized the inquiry method; the control group did not. The experimental group had the stronger PAB pattern. The field experience caused no significant differences to the context beliefs of either groups, but did to the capability beliefs. The number of college science courses taken by pre-service elementary teachers' was positively related to their post capability belief (p = .0209). Qualitative information was collected through case studies which included observation of classrooms, assessment of lesson plans and open-ended, extended interviews of the participants about their beliefs in their teaching abilities (efficacy beliefs), and in teaching environments (context beliefs). The interview data were analyzed by the analytic induction method to look for themes. The emerging themes were then grouped under several attributes. Following a review of the attributes a number of hypotheses were formulated. Each hypothesis was then tested across all the cases by the constant comparative method. The pattern of relationship that emerged from the hypotheses testing clearly suggests a new hypothesis that there is a spiral relationship among the ability to establish communicative relationship with students, desire for personal growth and improvement, and greater content knowledge. The study concluded that inquiry based student teaching should be encouraged to train school science teachers. But the meaning and the practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom. A survey should be undertaken to ascertain the extent to which what is currently being practiced, as the inquiry method is indeed the inquiry method. Practicing the inquiry method is greatly more demanding than traditional methods of teacher training. A widespread adoption of the method will require considerable changes in these factors.