Sample records for extensive fossil record

  1. New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae).

    PubMed

    Barclay, Richard S; McElwain, Jennifer C; Duckett, Jeffrey G; van Es, Maarten H; Mostaert, Anika S; Pressel, Silvia; Sageman, Bradley B

    2013-12-01

    Epiphyllous bryophytes are a highly characteristic feature of many humid tropical forest ecosystems. In contrast to the extensive fossil record for the leaves of their host plants, the record is virtually nonexistent for the epiphylls themselves, despite a fossil record for mosses that begins in the Middle Carboniferous Period, 330 million years ago. Epifluorescence optical microscopy, scanning electron microscopy, and atomic force microscopy were employed to investigate an intimate association between a newly discovered epiphyllous moss and a Lauraceae plant host from the middle Cretaceous. We describe the oldest fossil specimen of an epiphyllous moss, Bryiidites utahensis gen. et sp. nov., identified from an individual specimen only 450 µm long, situated on an approximately one millimeter square fossil leaf fragment. The moss epiphyll is exquisitely preserved as germinating spores and short-celled protonemata with transverse and oblique cross-walls closely matching those of extant epiphyllous mosses on the surface of the plant-leaf hosts. The extension of the epiphyll record back to the middle Cretaceous provides fossil evidence for the appearance of epiphyllous mosses during the diversification of flowering plants, at least 95 million years ago. It also provides substantive evidence for a tropical maritime climate in central North America during the middle Cretaceous.

  2. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  3. Assessing the completeness of the fossil record using brachiopod Lazarus taxa

    NASA Astrophysics Data System (ADS)

    Gearty, W.; Payne, J.

    2012-12-01

    Lazarus taxa, organisms that disappear from the fossil record only to reappear later, provide a unique opportunity to assess the completeness of the fossil record. In this study, we apply logistic regression to quantify the associations of body size, geographic extent, and species diversity with the probability of being a Lazarus genus using the Phanerozoic fossil record of brachiopods. We find that both the geographic range and species diversity of a genus are inversely associated with the probability of being a Lazarus taxon in the preceding or succeeding stage. In contrast, body size exhibits little association with the probability of becoming a Lazarus taxon. A model including species diversity and geographic extent as predictors performs best among all combinations examined, whereas a model including only shell size as a predictor performs the worst - even worse than a model that assumes Lazarus taxa are randomly drawn from all available genera. These findings suggest that geographic range and species richness data can be used to improve estimates of extensions on the observed fossil ranges of genera and, thereby, better correct for sampling effects in estimates of taxonomic diversity change through the Phanerozoic.

  4. Dental development in living and fossil orangutans.

    PubMed

    Smith, Tanya M

    2016-05-01

    Numerous studies have investigated molar development in extant and fossil hominoids, yet relatively little is known about orangutans, the only great ape with an extensive fossil record. This study characterizes aspects of dental development, including cuspal enamel daily secretion rate, long-period line periodicities, cusp-specific molar crown formation times and extension rates, and initiation and completion ages in living and fossil orangutan postcanine teeth. Daily secretion rate and periodicities in living orangutans are similar to previous reports, while crown formation times often exceed published values, although direct comparisons are limited. One wild Bornean individual died at 4.5 years of age with fully erupted first molars (M1s), while a captive individual and a wild Sumatran individual likely erupted their M1s around five or six years of age. These data underscore the need for additional samples of orangutans of known sex, species, and developmental environment to explore potential sources of variation in molar emergence and their relationship to life history variables. Fossil orangutans possess larger crowns than living orangutans, show similarities in periodicities, and have faster daily secretion rate, longer crown formation times, and slower extension rates. Molar crown formation times exceed reported values for other fossil apes, including Gigantopithecus blacki. When compared to African apes, both living and fossil orangutans show greater cuspal enamel thickness values and periodicities, resulting in longer crown formation times and slower extension rates. Several of these variables are similar to modern humans, representing examples of convergent evolution. Molar crown formation does not appear to be equivalent among extant great apes or consistent within living and fossil members of Pongo or Homo. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years

    PubMed Central

    Mushegyan, Vagan; Eronen, Jussi T.; Lawing, A. Michelle; Sharir, Amnon; Janis, Christine; Jernvall, Jukka; Klein, Ophir D.

    2015-01-01

    Summary The fossil record is widely informative about evolution, but fossils are not systematically used to study the evolution of stem cell-driven renewal. Here, we examined evolution of the continuous growth (hypselodonty) of rodent molar teeth, which is fuelled by the presence of dental stem cells. We studied occurrences of 3500 North American rodent fossils, ranging from 50 million years ago (mya) to 2 mya. We examined changes in molar height to determine if evolution of hypselodonty shows distinct patterns in the fossil record, and we found that hypselodont taxa emerged through intermediate forms of increasing crown height. Next, we designed a Markov simulation model, which replicated molar height increases throughout the Cenozoic, and, moreover, evolution of hypselodonty. Thus, by extension, the retention of the adult stem-cell niche appears to be a predictable quantitative rather than a stochastic qualitative process. Our analyses predict that hypselodonty will eventually become the dominant phenotype. PMID:25921530

  6. The current state of korean paleoanthropology.

    PubMed

    Norton, C J

    2000-06-01

    The hominid fossil and Paleolithic archaeology records from the Korean Peninsula are extensive, but relatively little is known about the Korean human evolutionary record outside this region. The Korean paleoanthropological record is reviewed here in light of major research issues, including the hominid fossil record, relative and chronometric dating, lithic analysis, hominid subsistence, and the presence of bone tools, art and symbolism. Some of the major conclusions drawn from this review include: (1) hominid fossils have been found in nine separate sites on the Korean Peninsula; (2) possible Homo erectus fossils are present in North Korea; (3) Ryonggok Cave, in North Korea, has exposed the remains of at least five archaic Homo sapiens individuals; (4) a possible burial of an anatomically modern Homo sapiens child, discovered in Hungsu Cave in South Korea, has been tentatively dated to roughly 40,000 years ago; (5) handaxes and cleavers have been found at a number of sites near Chongokni and they appear to date to at least 100,000 years ago; and (6) taphonomic studies are necessary for addressing issues related to determining the nature of hominid-carnivore interaction over similar resources (e.g. carcasses and shelter); and the presence/absence of Early Paleolithic bone tools, art, and symbolism in Korea. Copyright 2000 Academic Press.

  7. Interglacial Extension of the Boreal Forest Limit in the Noatak Valley, Northwest Alaska: Evidence from an Exhumed River-Cut Bluff and Debris Apron

    USGS Publications Warehouse

    Edwards, M.E.; Hamilton, T.D.; Elias, S.A.; Bigelow, N.H.; Krumhardt, A.P.

    2003-01-01

    Numerous exposures of Pleistocene sediments occur in the Noatak basin, which extends for 130 km along the Noatak River in northwestern Alaska. Nk-37, an extensive bluff exposure near the west end of the basin, contains a record of at least three glacial advances separated by interglacial and interstadial deposits. An ancient river-cut bluff and associated debris apron is exposed in profile through the central part of Nk-37. The debris apron contains a rich biotic record and represents part of an interglaciation that is probably assignable to marine-isotope stage 5. Pollen spectra from the lower part of the debris apron closely resemble modern samples taken from the Noatak floodplain in spruce gallery forest, and macrofossils of spruce are also present at this level. Fossil bark beetles and carpenter ants occur higher in the debris apron. Mutual Climatic Range (MCR) estimates from the fossil beetles suggest temperatures similar to or warmer than today. Together, these fossils indicate the presence of an interglacial spruce forest in the western part of the Noatak Basin, which lies about 80 km upstream of the modern limit of spruce forest.

  8. First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    NASA Astrophysics Data System (ADS)

    Georgalis, Georgios L.; Villa, Andrea; Delfino, Massimo

    2016-02-01

    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe.

  9. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  10. Giving the early fossil record of sponges a squeeze.

    PubMed

    Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D

    2014-11-01

    Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  11. Mass extinction in tetraodontiform fishes linked to the Palaeocene-Eocene thermal maximum.

    PubMed

    Arcila, Dahiana; Tyler, James C

    2017-11-15

    Integrative evolutionary analyses based upon fossil and extant species provide a powerful approach for understanding past diversification events and for assessing the tempo of evolution across the Tree of Life. Herein, we demonstrate the importance of integrating fossil and extant species for inferring patterns of lineage diversification that would otherwise be masked in analyses that examine only one source of evidence. We infer the phylogeny and macroevolutionary history of the Tetraodontiformes (triggerfishes, pufferfishes and allies), a group with one of the most extensive fossil records among fishes. Our analyses combine molecular and morphological data, based on an expanded matrix that adds newly coded fossil species and character states. Beyond confidently resolving the relationships and divergence times of tetraodontiforms, our diversification analyses detect a major mass-extinction event during the Palaeocene-Eocene Thermal Maximum (PETM), followed by a marked increase in speciation rates. This pattern is consistently obtained when fossil and extant species are integrated, whereas examination of the fossil occurrences alone failed to detect major diversification changes during the PETM. When taking into account non-homogeneous models, our analyses also detect a rapid lineage diversification increase in one of the groups (tetraodontoids) during the middle Miocene, which is considered a key period in the evolution of reef fishes associated with trophic changes and ecological opportunity. In summary, our analyses show distinct diversification dynamics estimated from phylogenies and the fossil record, suggesting that different episodes shaped the evolution of tetraodontiforms during the Cenozoic. © 2017 The Author(s).

  12. The oldest African bat from the early Eocene of El Kohol (Algeria).

    PubMed

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  13. The oldest African bat from the early Eocene of El Kohol (Algeria)

    NASA Astrophysics Data System (ADS)

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  14. Wormholes record species history in space and time.

    PubMed

    Hedges, S Blair

    2013-02-23

    Genetic and fossil data often lack the spatial and temporal precision for tracing the recent biogeographic history of species. Data with finer resolution are needed for studying distributional changes during modern human history. Here, I show that printed wormholes in rare books and artwork are trace fossils of wood-boring species with unusually accurate locations and dates. Analyses of wormholes printed in western Europe since the fifteenth century document the detailed biogeographic history of two putative species of invasive wood-boring beetles. Their distributions now overlap broadly, as an outcome of twentieth century globalization. However, the wormhole record revealed, unexpectedly, that their original ranges were contiguous and formed a stable line across central Europe, apparently a result of competition. Extension of the wormhole record, globally, will probably reveal other species and evolutionary insights. These data also provide evidence for historians in determining the place of origin or movement of a woodblock, book, document or art print.

  15. Developmental palaeontology of Reptilia as revealed by histological studies.

    PubMed

    Scheyer, Torsten M; Klein, Nicole; Sander, P Martin

    2010-06-01

    Among the fossilized ontogenetic series known for tetrapods, only more basal groups like temnospondyl amphibians have been used extensively in developmental studies, whereas reptilian and synapsid data have been largely neglected so far. However, before such ontogenetic series can be subject to study, the relative age and affiliation of putative specimens within a series has to be verified. Bone histology has a long-standing tradition as being a source of palaeobiological and growth history data in fossil amniotes and indeed, the analysis of bone microstructures still remains the most important and most reliable tool for determining the absolute ontogenetic age of fossil vertebrates. It is also the only direct way to reconstruct life histories and growth strategies for extinct animals. Herein the record of bone histology among Reptilia and its application to elucidate and expand fossilized ontogenies as a source of developmental data are reviewed. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Early cave art and ancient DNA record the origin of European bison

    PubMed Central

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-01-01

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477

  17. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).

    PubMed

    Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo

    2015-01-01

    Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under assessment. This study suggests that current implementations of tip dating may overestimate ages of divergence in calibrated phylogenies. It also provides a comprehensive phylogenetic framework for tetraodontiform systematics and future comparative studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications.

    PubMed

    Xu, Qingqing; Qiu, Jue; Zhou, Zhekun; Jin, Jianhua

    2015-01-01

    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene.

  19. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates.

    PubMed

    Sohn, Jae-Cheon; Labandeira, Conrad C; Davis, Donald R

    2015-02-04

    It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts. We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages. Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.

  20. The Best Modern Analog for Eocene Arctic Forests is within Today's Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L. O.; Ellsworth, P.; Eberth, D.; Sweet, A.

    2011-12-01

    In the 25 years that have passed since the first extensive descriptions of the Fossil Forests that persisted above the Arctic Circle during the Eocene (~45-54 Ma), no less than four locations have been suggested as modern analogs. These locations represent a diverse collection of biomes and temperature/precipitation environments, and include the southeastern Unites States and southeastern Asia (based on flora and fauna assemblages), southern Chile and the U.S. Pacific Northwest (based on biomass and productivity estimates), and Pacific Northwestern U.S. and Canada (based on mean annual temperature and mean annual precipitation). Here we report on new isotope datasets that allow for a prediction of best modern analog based on a quantitative characterization of paleoseasonality. First, we report high-resolution carbon isotope data from fossil tree rings that record the ratio of summer to winter precipitation. Second, we report analyses of the oxygen isotope composition of phenylglucosazone, a compound isolated from fossil cellulose that straightforwardly records the oxygen isotope composition of meteoric water available to the tree. Together, our analyses indicate that the fossil forests of the Eocene Arctic thrived under a summer-dominated, high-intensity, seasonal precipitation regime, with at least 279 mm of rainfall during the wettest month. A quantitative comparison of mean-annual temperature and precipitation, fossil and modern plant communities, and the seasonality indices, highlights the Korean peninsula as the most appropriate modern analog for the Arctic Eocene forests, in preference to the North and South American analogs previously proposed.

  1. Evolutionary History of the Asian Horned Frogs (Megophryinae): Integrative Approaches to Timetree Dating in the Absence of a Fossil Record.

    PubMed

    Mahony, Stephen; Foley, Nicole M; Biju, S D; Teeling, Emma C

    2017-03-01

    Molecular dating studies typically need fossils to calibrate the analyses. Unfortunately, the fossil record is extremely poor or presently nonexistent for many species groups, rendering such dating analysis difficult. One such group is the Asian horned frogs (Megophryinae). Sampling all generic nomina, we combined a novel ∼5 kb dataset composed of four nuclear and three mitochondrial gene fragments to produce a robust phylogeny, with an extensive external morphological study to produce a working taxonomy for the group. Expanding the molecular dataset to include out-groups of fossil-represented ancestral anuran families, we compared the priorless RelTime dating method with the widely used prior-based Bayesian timetree method, MCMCtree, utilizing a novel combination of fossil priors for anuran phylogenetic dating. The phylogeny was then subjected to ancestral phylogeographic analyses, and dating estimates were compared with likely biogeographic vicariant events. Phylogenetic analyses demonstrated that previously proposed systematic hypotheses were incorrect due to the paraphyly of genera. Molecular phylogenetic, morphological, and timetree results support the recognition of Megophryinae as a single genus, Megophrys, with a subgenus level classification. Timetree results using RelTime better corresponded with the known fossil record for the out-group anuran tree. For the priorless in-group, it also outperformed MCMCtree when node date estimates were compared with likely influential historical biogeographic events, providing novel insights into the evolutionary history of this pan-Asian anuran group. Given a relatively small molecular dataset, and limited prior knowledge, this study demonstrates that the computationally rapid RelTime dating tool may outperform more popular and complex prior reliant timetree methodologies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Early evidence for complex social structure in Proboscidea from a late Miocene trackway site in the United Arab Emirates

    PubMed Central

    Bibi, Faysal; Kraatz, Brian; Craig, Nathan; Beech, Mark; Schuster, Mathieu; Hill, Andrew

    2012-01-01

    Many living vertebrates exhibit complex social structures, evidence for the antiquity of which is limited to rare and exceptional fossil finds. Living elephants possess a characteristic social structure that is sex-segregated and multi-tiered, centred around a matriarchal family and solitary or loosely associated groups of adult males. Although the fossil record of Proboscidea is extensive, the origin and evolution of social structure in this clade is virtually unknown. Here, we present imagery and analyses of an extensive late Miocene fossil trackway site from the United Arab Emirates. The site of Mleisa 1 preserves exceptionally long trackways of a herd of at least 13 individuals of varying size transected by that of a single large individual, indicating the presence of both herding and solitary social modes. Trackway stride lengths and resulting body mass estimates indicate that the solitary individual was also the largest and therefore most likely a male. Sexual determination for the herd is equivocal, but the body size profile and number of individuals are commensurate with those of a modern elephant family unit. The Mleisa 1 trackways provide direct evidence for the antiquity of characteristic and complex social structure in Proboscidea. PMID:22357934

  3. The Quaternary fossil-pollen record and global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less

  4. Quantifying long-term human impact in contrasting environments: Statistical analysis of modern and fossil pollen records

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; López-Sáez, José Antonio; Verstraeten, Gert

    2017-04-01

    Reconstructing and quantifying human impact is an important step to understand human-environment interactions in the past. Quantitative measures of human impact on the landscape are needed to fully understand long-term influence of anthropogenic land cover changes on the global climate, ecosystems and geomorphic processes. Nevertheless, quantifying past human impact is not straightforward. Recently, multivariate statistical analysis of fossil pollen records have been proposed to characterize vegetation changes and to get insights in past human impact. Although statistical analysis of fossil pollen data can provide useful insights in anthropogenic driven vegetation changes, still it cannot be used as an absolute quantification of past human impact. To overcome this shortcoming, in this study fossil pollen records were included in a multivariate statistical analysis (cluster analysis and non-metric multidimensional scaling (NMDS)) together with modern pollen data and modern vegetation data. The information on the modern pollen and vegetation dataset can be used to get a better interpretation of the representativeness of the fossil pollen records, and can result in a full quantification of human impact in the past. This methodology was applied in two contrasting environments: SW Turkey and Central Spain. For each region, fossil pollen data from different study sites were integrated, together with modern pollen data and information on modern vegetation. In this way, arboreal cover, grazing pressure and agricultural activities in the past were reconstructed and quantified. The data from SW Turkey provides new integrated information on changing human impact through time in the Sagalassos territory, and shows that human impact was most intense during the Hellenistic and Roman Period (ca. 2200-1750 cal a BP) and decreased and changed in nature afterwards. The data from central Spain shows for several sites that arboreal cover decreases bellow 5% from the Feudal period onwards (ca. 850 cal a BP) related to increasing human impact in the landscape. At other study sites arboreal cover remained above 25% beside significant human impact. Overall, the presented examples from two contrasting environments shows how cluster analysis and NMDS of modern and fossil pollen data can help to provide quantitative insights in anthropogenic land cover changes. Our study extensively discuss and illustrate the possibilities and limitations of statistical analysis of pollen data to quantify human induced land use changes.

  5. Fossils, molecules and embryos: new perspectives on the Cambrian explosion

    NASA Technical Reports Server (NTRS)

    Valentine, J. W.; Jablonski, D.; Erwin, D. H.

    1999-01-01

    The Cambrian explosion is named for the geologically sudden appearance of numerous metazoan body plans (many of living phyla) between about 530 and 520 million years ago, only 1.7% of the duration of the fossil record of animals. Earlier indications of metazoans are found in the Neoproterozic; minute trails suggesting bilaterian activity date from about 600 million years ago. Larger and more elaborate fossil burrows appear near 543 million years ago, the beginning of the Cambrian Period. Evidence of metazoan activity in both trace and body fossils then increased during the 13 million years leading to the explosion. All living phyla may have originated by the end of the explosion. Molecular divergences among lineages leading to phyla record speciation events that have been earlier than the origins of the new body plans, which can arise many tens of millions of years after an initial branching. Various attempts to date those branchings by using molecular clocks have disagreed widely. While the timing of the evolution of the developmental systems of living metazoan body plans is still uncertain, the distribution of Hox and other developmental control genes among metazoans indicates that an extensive patterning system was in place prior to the Cambrian. However, it is likely that much genomic repatterning occurred during the Early Cambrian, involving both key control genes and regulators within their downstream cascades, as novel body plans evolved.

  6. Preservation of Early Cambrian animals of the Chengjiang biota

    NASA Astrophysics Data System (ADS)

    Gabbott, Sarah E.; Xian-Guang, Hou; Norry, Michael J.; Siveter, David J.

    2004-10-01

    The Chengjiang biota of Yunnan, China, documents the earliest extensive radiation of the Metazoa recorded in the fossil record. Gauging preservational bias is crucial in providing an assessment of the completeness of this biota and thereby elucidating whether it represents a comprehensive depiction of Early Cambrian life. We here present a model to explain the nature of the exceptional preservation of the Chengjiang biota and details of the decay process. This study indicates that Chengjiang fossils were preserved through two taphonomic pathways that may have captured tissues of distinct compositions, and this finding should provide a foundation for the interpretation of Chengjiang fossils. Many Chengjiang fossils are preserved by pyrite (later pseudomorphed by iron oxides); the clay-rich host sediment was deficient in organic carbon but replete in available Fe, and this composition ensured that a decaying carcass acted as a local substrate for Fe- and S-reducing bacteria. Pyrite morphology probably reflects contrasts in the decay rate, and hence the H2S production rate, of different tissues in a carcass. Reactive, rapidly decaying tissues would have quickly supplied H2S, producing many pyrite nuclei, resulting in framboidal habits. More recalcitrant tissues would have produced H2S more slowly, so that crystal growth operated on fewer nuclei, resulting in larger euhedral pyrite crystals. Reflective films, especially common on Chengjiang arthropods, represent the remains of degraded carbon.

  7. Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco

    PubMed Central

    Ibrahim, Nizar; Varricchio, David J.; Sereno, Paul C.; Wilson, Jeff A.; Dutheil, Didier B.; Martill, David M.; Baidder, Lahssen; Zouhri, Samir

    2014-01-01

    We describe an extensive ichnofossil assemblage from the likely Cenomanian-age ‘lower’ and ‘upper’ units of the ‘Kem Kem beds’ in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous. PMID:24603467

  8. Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree.

    PubMed

    Herrera, James P; Dávalos, Liliana M

    2016-09-01

    Paleontological and neontological systematics seek to answer evolutionary questions with different data sets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared with a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae).

    PubMed

    Wilf, Peter

    2012-03-01

    Eocene caldera-lake beds at Laguna del Hunco (LH, ca. 52.2 Ma) and Río Pichileufú (RP, ca. 47.7 Ma) in Argentine Patagonia provide copious information about the biological history of Gondwana. Several plant genera from these sites are known as fossils from southern Australia and New Zealand and survive only in Australasian rainforests. The potential presence of Dacrycarpus (Podocarpaceae) holds considerable interest due to its extensive foliage-fossil record in Gondwana, its remarkably broad modern distribution in Southeast Asian and Australasian rainforests, its high physiological moisture requirements, and its bird-dispersed seeds. However, the unique seed cones that firmly diagnose Dacrycarpus were not previously known from the fossil record. I describe and interpret fertile (LH) and vegetative (LH and RP) material of Dacrycarpus and present a nomenclatural revision for fossil Dacrycarpus from South America. Dacrycarpus puertae sp. nov. is the first fossil occurrence of the unusual seed cones that typify living Dacrycarpus, attached to characteristic foliage, and of attached Dacrycarpus pollen cones and foliage. Dacrycarpus puertae is indistinguishable from living D. imbricatus (montane, Burma to Fiji). Dacrycarpus chilensis (Engelhardt) comb. nov. is proposed for Eocene vegetative material from Chile. Modern-aspect Dacrycarpus was present in Eocene Patagonia, demonstrating an astonishingly wide-ranging paleogeographic history and implying a long evolutionary association with bird dispersers. Dacrycarpus puertae provides the first significant Asian link for Eocene Patagonian floras, strengthens the biogeographic connections from Patagonia to Australasia across Antarctica during the warm Eocene, and indicates high-rainfall paleoenvironments.

  10. Contemporaneous trace and body fossils from a late Pleistocene Lakebed in Victoria, Australia, allow assessment of bias in the fossil record.

    PubMed

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones.

  11. Contemporaneous Trace and Body Fossils from a Late Pleistocene Lakebed in Victoria, Australia, Allow Assessment of Bias in the Fossil Record

    PubMed Central

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones. PMID:23301008

  12. Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera).

    PubMed

    Hulva, Pavel; Horácek, Ivan; Benda, Petr

    2007-09-14

    The Rhinopomatidae, traditionally considered to be one of the most ancient chiropteran clades, remains one of the least known groups of Rhinolophoidea. No relevant fossil record is available for this family. Whereas there have been extensive radiations in related families Rhinolophidae and Hipposideridae, there are only a few species in the Rhinopomatidae and their phylogenetic relationship and status are not fully understood. Here we present (a) a phylogenetic analysis based on a partial cytochrome b sequence, (b) new fossils from the Upper Miocene site Elaiochoria 2 (Chalkidiki, Greece), which represents the first appearance datum of the family based on the fossil record, and (c) discussion of the phylogeographic patterns in both molecular and morphological traits. We found deep divergences in the Rhinopoma hardwickii lineage, suggesting that the allopatric populations in (i) Iran and (ii) North Africa and the Middle East should have separate species status. The latter species (R. cystops) exhibits a shallow pattern of isolation by distance (separating the Middle East and the African populations) that contrasts with the pattern of geographic variation in the morphometrical traits. A deep genetic gap was also found in Rhinopoma muscatellum (Iran vs. Yemen). We found only minute genetic distance between R. microphyllum from the Levant and India, which fails to support the sub/species distinctness of the Indian form (R. microphyllum kinneari). The mtDNA survey provided phylogenetic tree of the family Rhinopomatidae for the first time and revealed an unexpected diversification of the group both within R. hardwickii and R. muscatellum morphospecies. The paleobiogeographic scenario compiled in respect to molecular clock data suggests that the family originated in the region south of the Eocene Western Tethyan seaway or in India, and extended its range during the Early Miocene. The fossil record suggests a Miocene spread into the Mediterranean region, followed by a post-Miocene retreat. Morphological analysis compared with genetic data indicates considerable phenotypic plasticity in this group.

  13. 6-carboxydihydroresveratrol 3-O-β-glucopyranoside--a novel natural product from the Cretaceous relict Metasequoia glyptostroboides.

    PubMed

    Nguyen, Xuan Hong Thy; Juvik, Ole Johan; Øvstedal, Dag Olav; Fossen, Torgils

    2014-06-01

    Metasequoia glyptostroboides, a tree native to China, is described as a living fossil and has existed for millions of years. The oldest fossils recorded have been dated to the late Cretaceous era. During the time of its existence, the molecular defence system of the tree has apparently resisted millions of generations of pathogens, which encouraged search for novel natural product from this source. Eight compounds have been characterised from needles of M. glyptostroboides, including the novel natural product 6-carboxydihydroresveratrol 3-O-β-glucopyranoside. The structure determinations were based on extensive use of 2D NMR spectroscopic techniques and high-resolution mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Bilobate leaves of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the middle Miocene of Fujian Province, southeastern China and their biogeographic implications.

    PubMed

    Lin, Yanxiang; Wong, William Oki; Shi, Gongle; Shen, Si; Li, Zhenyu

    2015-11-16

    Morphological and molecular phylogenetic studies suggest that the pantropical genus Bauhinia L. s.l. (Bauhiniinae, Cercideae, Leguminosae) is paraphyletic and may as well be subdivided into nine genera, including Bauhinia L. s.s. and its allies. Their leaves are usually characteristic bilobate and are thus easily recognized in the fossil record. This provides the opportunity to understand the early evolution, diversification, and biogeographic history of orchid trees from an historical perspective under the framework of morphological and molecular studies. The taxonomy, distribution, and leaf architecture of Bauhinia and its allies across the world are summarized in detail, which formed the basis for classifying the bilobate leaf fossils and evaluating the fossil record and biogeography of Bauhinia. Two species of Bauhinia are described from the middle Miocene Fotan Group of Fujian Province, southeastern China. Bauhinia ungulatoides sp. nov. is characterized by shallowly to moderately bilobate, pulvinate leaves with shallowly cordate bases and acute apices on each lobe, as well as paracytic stomatal complexes. Bauhinia fotana F.M.B. Jacques et al. emend. possesses moderately bilobate, pulvinate leaves with moderately to deeply cordate bases and acute or slightly obtuse apices on each lobe. Bilobate leaf fossils Bauhinia ungulatoides and B. fotana together with other late Paleogene - early Neogene Chinese record of the genus suggest that Bauhinia had been diverse in South China by the late Paleogene. Their great similarities to some species from South America and South Asia respectively imply that Bauhinia might have undergone extensive dispersals and diversification during or before the Miocene. The fossil record, extant species diversity, as well as molecular phylogenetic analyses demonstrate that the Bauhiniinae might have originated in the Paleogene of low-latitudes along the eastern Tethys Seaway. They dispersed southwards into Africa, migrated from Eurasia to North America via the North Atlantic Land Bridge or floating islands during the Oligocene. Then the genus spread into South America probably via the Isthmus of Panama since the Miocene onward, and underwent regional extinctions in the Boreotropics of mid-high-latitudes during the Neogene climatic cooling. Hence, Bauhinia presently exhibits a pantropical intercontinental disjunct distribution.

  15. Search for the Evolution of Steroid Biosynthesis in the Geological Record

    NASA Astrophysics Data System (ADS)

    Brocks, J. J.

    2004-12-01

    To study the evolution of the structure of organisms we can directly examine fossilized shells, skeletons and petrified cells. In contrast, for the tentative reconstruction of the phylogeny of biosynthetic pathways, such as steroid anabolism, we rely entirely on the comparative molecular biology of living organisms. Thus, without fossil evidence, the times in geological history when successive steps of a metabolic pathway evolved remain particularly elusive. Molecular clocks of genes coding for the enzymes involved in a biosynthetic pathway might provide a rough guess when a natural product first appeared in geological time, but they are intrinsically unreliable without calibration points in the distant past. However, it might be possible to trace the evolutionary history of some biosynthetic pathways directly in the geological record by searching for hydrocarbon biomarkers of anabolic intermediates. Biomarkers are molecular fossils of natural products. They often retain the diagnostic carbon skeleton of their biological precursor and remain stable over hundreds of millions of years enclosed in organic-rich sedimentary rocks. Sterane hydrocarbons are particularly abundant biomarkers and potentially suitable for the search of biosynthetic intermediates. Steranes are the fossil equivalents of functionalized steroids found in eukaryotes and certain bacteria. The biosynthesis of typical eukaryotic steroids such as cholesterol (C27), ergosterol (C28) and sitosterol (C29) from the acyclic precursor squalene (C30) involves more than 20 enzymatic steps. The most crucial steps include modification of the carbon skeleton by removal of several methyl groups from the ring system and addition of alkyl groups to the steroid side chain. The evolution of this complex pathway must have occurred over geologically significant periods of time and likely involved several preadaptive intermediates that represented structurally less derived but fully functional lipids. Thus, if a molecular corollary of `ontogeny recapitulates phylogeny' applies, it might be possible to detect a sequence of increasingly modified fossil steroids in the geological record and to create a time frame for the evolution of this fundamental biosynthetic pathway. Here we present first results of an extensive search for the fossil remains of evolutionary intermediate steroids in sedimentary successions of Precambrian age.

  16. The fossil record of the sixth extinction.

    PubMed

    Plotnick, Roy E; Smith, Felisa A; Lyons, S Kathleen

    2016-05-01

    Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (< 9%) have a fossil record, compared with 20% of non-threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19(th) century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record. © 2016 John Wiley & Sons Ltd/CNRS.

  17. The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores

    PubMed Central

    Fiorelli, Lucas E.; Ezcurra, Martín D.; Hechenleitner, E. Martín; Argañaraz, Eloisa; Taborda, Jeremías R. A.; Trotteyn, M. Jimena; von Baczko, M. Belén; Desojo, Julia B.

    2013-01-01

    Defecation in communal latrines is a common behaviour of extant mammals widely distributed among megaherbivores. This behaviour has key social functions with important biological and ecological implications. Herbivore communal latrines are only documented among mammals and their fossil record is exceptionally restricted to the late Cenozoic. Here we report the discovery of several massive coprolite associations in the Middle-Late Triassic of the Chañares Formation, Argentina, which represent fossil communal latrines based on a high areal density, small areal extension and taphonomic attributes. Several lines of evidence (size, morphology, abundance and coprofabrics) and their association with kannemeyeriiform dicynodonts indicate that these large synapsids produced the communal latrines and had a gregarious behaviour comparable to that of extant megaherbivores. This is the first evidence of megaherbivore communal latrines in non-mammal vertebrates, indicating that this mammal-type behaviour was present in distant relatives of mammals, and predates its previous oldest record by 220 Mya. PMID:24287957

  18. Icacinaceae from the eocene of Western North America.

    PubMed

    Allen, Sarah E; Stull, Gregory W; Manchester, Steven R

    2015-05-01

    The Icacinaceae are a pantropical family of trees, shrubs, and climbers with an extensive Paleogene fossil record. Our improved understanding of phylogenetic relationships within the family provides an excellent context for investigating new fossil fruit and leaf material from the Eocene of western North America. We examined fossils from early and middle Eocene sediments of western Wyoming, northeastern Utah, northwestern Colorado, and Oregon and compared them with extant species of Iodes and other icacinaceous genera as well as previously described fossils of the family. Three new fossil species are described, including two based on endocarps (Iodes occidentalis sp. nov. and Icacinicaryites lottii sp. nov.) and one based on leaves (Goweria bluerimensis sp. nov.). The co-occurrence of I. occidentalis and G. bluerimensis suggests these might represent detached organs of a single species. A new genus, Biceratocarpum, is also established for morphologically distinct fossil fruits of Icacinaceae previously placed in Carpolithus. Biceratocarpum brownii gen. et comb. nov. resembles the London Clay species "Iodes" corniculata in possessing a pair of subapical protrusions. These fossils increase our knowledge of Icacinaceae in the Paleogene of North America and highlight the importance of the Northern Hemisphere in the early diversification of the family. They also document interchange with the Eocene flora of Europe and biogeographic connections with modern floras of Africa and Asia, where Icacinaceae are diverse today. The present-day restriction of this family to tropical regions offers ecological implications for the Eocene floras in which they occur. © 2015 Botanical Society of America, Inc.

  19. Afrotarsius chatrathi, first tarsiiform primate (? Tarsiidae) from Africa

    USGS Publications Warehouse

    Simons, E.L.; Bown, T.M.

    1985-01-01

    Tarsiiform primates have long been regarded as a Laurasian group, with an extensive fossil record in the Eocene of North America and Europe1-4 and two important but less well-known records from Asia5,6. The only living genus is Tarsius (Tarsiidae), whereas all of the fossil tarsier-like primates are usually placed in the extinct family Omomyidae3. We now report the discovery of Afrotarsius chatrathi from early Oligocene rocks of Fayum Province, Egypt. This is the first known tarsiiform primate from Africa. Compared with fossil primates, the molar tooth morphology of this diminutive prosimian is most similar to that of the European Eocene microchoerine Pseudoloris; however, the closest similarity is to the molars of Tarsius. Because the phylogenetic relationships among living Tarsius and the omomyids remain unclear7,8 and because of the fragmentary nature of the only known specimen of this new primate, allocation of Afrotarsius to either Omomyidae or Tarsiidae is necessarily provisional. As we believe that its molar teeth are more like those of Tarsius than of any omomyids (including Pseudoloris), we tentatively assign the new genus to the extant family Tarsiidae as its only known fossil representative. Recovery of a Tarsius-like primate from Africa suggests that it or its ancestors might have been immigrants from Europe, may have been derived from an unknown Asian stock related to the ancestry of Tarsius, or may have originated in Africa. ?? 1985 Nature Publishing Group.

  20. Leaf fossils of Banksia (Proteaceae) from New Zealand: An Australian abroad.

    PubMed

    Carpenter, Raymond J; Jordan, Gregory J; Lee, Daphne E; Hill, Robert S

    2010-02-01

    Fossils can shed new light on plant biogeography and phylogeny. Pinnately lobed leaves from the Oligo-Miocene Newvale lignite mine, South Island, New Zealand are the first extra-Australian leaf fossils of the charismatic genus Banksia (Proteaceae), and they are assigned to a new species, B. novae-zelandiae. Comparison with extant taxa shows that the fossils are best regarded as an extinct stem relative of Banksia because their available features are either plesiomorphic for the genus (notably, the stomata are superficially placed, not sunken in balloon-like pits as in many extant species) or lack evidence of synapomorphies that would enable them to be placed in the crown group. Banksia novae-zelandiae does, however, exhibit two cuticular features that are unique or highly derived for Banksia. These are rugulate subsidiary cell ornamentation and the presence of complex papillae that extensively cover the abaxial leaf surface. The fossils add to the widespread records of the pinnately lobed leaf form in Banksia in Australia beginning in the late Paleocene. This form is now limited to species confined to sclerophyllous heathlands of Mediterranean climate in southwestern Australia. Banksia novae-zelandiae could be part of a lineage that had a long history in New Zealand, perhaps dating to the early Paleogene.

  1. The Tule Springs local fauna: Rancholabrean vertebrates from the Las Vegas Formation, Nevada

    USGS Publications Warehouse

    Scott, Eric; Springer, Kathleen; Sagebiel, James C.

    2017-01-01

    A middle to late Pleistocene sedimentary sequence in the upper Las Vegas Wash, north of Las Vegas, Nevada, has yielded the largest open-site Rancholabrean vertebrate fossil assemblage in the southern Great Basin and Mojave Deserts. Recent paleontologic field studies have led to the discovery of hundreds of fossil localities and specimens, greatly extending the geographic and temporal footprint of original investigations in the early 1960s. The significance of the deposits and their entombed fossils led to the preservation of 22,650 acres of the upper Las Vegas Wash as Tule Springs Fossil Beds National Monument. These discoveries also warrant designation of the assemblage as a local fauna, named for the site of the original paleontologic studies at Tule Springs.The large mammal component of the Tule Springs local fauna is dominated by remains of Mammuthus columbi as well as Camelops hesternus, along with less common remains of Equus (including E. scotti) and Bison. Large carnivorans including Canis dirus, Smilodon fatalis, and Panthera atrox are also recorded. Micromammals, amphibians, lizards, snakes, birds, invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. The fauna occurs within the Las Vegas Formation, an extensive and stratigraphically complex sequence of groundwater discharge deposits that represent a mosaic of desert wetland environments. Radiometric and luminescence dating indicates the sequence spans the last ∼570 ka, and records hydrologic changes in a dynamic and temporally congruent response to northern hemispheric abrupt climatic oscillations. The vertebrate fauna occurs in multiple stratigraphic horizons in this sequence, with ages of the fossils spanning from ∼100 to ∼12.5 ka.

  2. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-05-27

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous.

  3. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  4. The late Middle Pleistocene hominin fossil record of eastern Asia: synthesis and review.

    PubMed

    Bae, Christopher J

    2010-01-01

    Traditionally, Middle Pleistocene hominin fossils that cannot be allocated to Homo erectus sensu lato or modern H. sapiens have been assigned to different specific taxa. For example, in eastern Asia, these hominin fossils have been classified as archaic, early, or premodern H. sapiens. An increasing number of Middle Pleistocene hominin fossils are currently being assigned to H. heidelbergensis. This is particularly the case for the African and European Middle Pleistocene hominin fossil record. There have been suggestions that perhaps the eastern Asian late Middle Pleistocene hominins can also be allocated to the H. heidelbergensis hypodigm. In this article, I review the current state of the late Middle Pleistocene hominin fossil record from eastern Asia and examine the various arguments for assigning these hominins to the different specific taxa. The two primary conclusions drawn from this review are as follows: 1) little evidence currently exists in the eastern Asian Middle Pleistocene hominin fossil record to support their assignment to H. heidelbergensis; and 2) rather than add to the growing list of hominin fossil taxa by using taxonomic names like H. daliensis for northeast Asian fossils and H. mabaensis for Southeast Asian fossils, it is better to err on the side of caution and continue to use the term archaic H. sapiens to represent all of these hominin fossils. What should be evident from this review is the need for an increase in the quality and quantity of the eastern Asian hominin fossil data set. Fortunately, with the increasing number of large-scale multidisciplinary paleoanthropological field and laboratory research projects in eastern Asia, the record is quickly becoming better understood. Copyright © 2010 Wiley-Liss, Inc.

  5. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of the valley immediately north of the international border.

  6. The First Occurrence in the Fossil Record of an Aquatic Avian Twig-Nest with Phoenicopteriformes Eggs: Evolutionary Implications

    PubMed Central

    Grellet-Tinner, Gerald; Murelaga, Xabier; Larrasoaña, Juan C.; Silveira, Luis F.; Olivares, Maitane; Ortega, Luis A.; Trimby, Patrick W.; Pascual, Ana

    2012-01-01

    Background We describe the first occurrence in the fossil record of an aquatic avian twig-nest with five eggs in situ (Early Miocene Tudela Formation, Ebro Basin, Spain). Extensive outcrops of this formation reveal autochthonous avian osteological and oological fossils that represent a single taxon identified as a basal phoenicopterid. Although the eggshell structure is definitively phoenicopterid, the characteristics of both the nest and the eggs are similar to those of modern grebes. These observations allow us to address the origin of the disparities between the sister taxa Podicipedidae and Phoenicopteridae crown clades, and traces the evolution of the nesting and reproductive environments for phoenicopteriforms. Methodology/Principal Findings Multi-disciplinary analyses performed on fossilized vegetation and eggshells from the eggs in the nest and its embedding sediments indicate that this new phoenicopterid thrived under a semi-arid climate in an oligohaline (seasonally mesohaline) shallow endorheic lacustine environment. High-end microcharacterizations including SEM, TEM, and EBSD techniques were pivotal to identifying these phoenicopterid eggshells. Anatomical comparisons of the fossil bones with those of Phoenicopteriformes and Podicipediformes crown clades and extinct palaelodids confirm that this avian fossil assemblage belongs to a new and basal phoenicopterid. Conclusions/Significance Although the Podicipediformes-Phoenicopteriformes sister group relationship is now well supported, flamingos and grebes exhibit feeding, reproductive, and nesting strategies that diverge significantly. Our multi-disciplinary study is the first to reveal that the phoenicopteriform reproductive behaviour, nesting ecology and nest characteristics derived from grebe-like type strategies to reach the extremely specialized conditions observed in modern flamingo crown groups. Furthermore, our study enables us to map ecological and reproductive characters on the Phoenicopteriformes evolutionary lineage. Our results demonstrate that the nesting paleoenvironments of flamingos were closely linked to the unique ecology of this locality, which is a direct result of special climatic (high evaporitic regime) and geological (fault system) conditions. PMID:23082136

  7. Potential Evaporite Biomarkers from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Thomas-Keprta, Kathie; Allen, Carlton C.; McKay, David S.

    2001-01-01

    The Dead Sea is located on the northern branch of the African-Levant Rift systems. The rift system, according to one model, was formed by a series of strike slip faults, initially forming approximately two million years ago. The Dead Sea is an evaporite basin that receives freshwater from springs and from the Jordan River. The Dead Sea is different from other evaporite basins, such as the Great Salt Lake, in that it possesses high concentrations of magnesium and has an average pH of 6.1. The dominant cation in the Great Salt Lake is sodium, and the pH is 7.7. Calcium concentrations are also higher in the Dead Sea than in the Great Salt Lake. Both basins are similar in that the dominant anion is chlorine and the salinity levels are approximately 20 %. Other common cations that have been identified from the waters of the Dead Sea and the Great Salt Lake include sodium and potassium. A variety of Archea, Bacteria, and a single genus of a green algal, Dunaliella, has been described from the Dead Sea. Earlier studies concentrated on microbial identification and analysis of their unique physiology that allows them to survive in this type of extreme environment. Potential microbial fossilization processes, microbial fossils, and the metallic ions associated with fossilization have not been studied thoroughly. The present study is restricted to identifying probable microbial morphologies and associated metallic ions. XRD (X Ray Diffraction) analysis indicates the presence of halite, quartz, and orthoclase feldspar. In addition to these minerals, other workers have reported potassium chloride, magnesium bromide, magnesium chloride, calcium chloride, and calcium sulfate. Halite, calcium sulfate, and orthoclase were examined in this report for the presence of microbes, microbially induced deposits or microbial alteration. Neither the gypsum nor the orthoclase surfaces possesses any obvious indications of microbial life or fossilization. The sand-sized orthoclase particles are weathered with 122 extensive fan-shaped mineral deposits. The gypsum deposits are associated with halite minerals and also exhibit extensive weathering. Halite minerals represent the only substrates that have probable rod-shaped microbial structures with long, filamentous, apical extensions. EDS (energy dispersive x-ray) analysis of the putative microbes indicates elevated calcium levels that are enriched with magnesium. The rod-shaped structures exhibit possible fossilization stages. Rhombohedralshaped minerals of magnesium-enriched calcium carbonate are deposited on the microbial surfaces, and eventually coat the entire microbial surface. The sodium chloride continues to crystallize on nearby halite surface and even crystallizes on the fossilized microbial remains. The putative fossils are found exclusively on halite surfaces, and all contained elevated levels of calcium magnesium cations. Both of these metallic cations are associated with microbial activity and fossilization. Their morphological diversity is low in comparison with the reported living Dead Sea microbial population. If we examine the fossil record for multicellular organisms, fossilization rates are lower for soft-bodied organisms than for those possessing hard parts, i.e. shells, bones. For example, smaller, single celled organisms would have a smaller chance of fossilization; their fossilized shapes could be mistaken for abiotic products. Another consideration is that dead organisms in the water column are probably utilized as a food source by other microbes before fossilization processes are completed. This may be an important consideration as we attempt to model and interpret ancient microbial environments either on Earth or on Mars.

  8. Old Lineages in a New Ecosystem: Diversification of Arcellinid Amoebae (Amoebozoa) and Peatland Mosses

    PubMed Central

    Leander, Brian S.

    2014-01-01

    Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands. PMID:24762929

  9. The evolution of methods for establishing evolutionary timescales

    PubMed Central

    2016-01-01

    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325838

  10. The evolution of methods for establishing evolutionary timescales.

    PubMed

    Donoghue, Philip C J; Yang, Ziheng

    2016-07-19

    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.

  11. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders

    PubMed Central

    Dunlop, Jason

    2014-01-01

    Arachnids are an important group of arthropods. They are: diverse and abundant; a major constituent of many terrestrial ecosystems; and possess a deep and extensive fossil record. In recent years a number of exceptionally preserved arachnid fossils have been investigated using tomography and associated techniques, providing valuable insights into their morphology. Here we use X-ray microtomography to reconstruct members of two extinct arachnid orders. In the Haptopoda, we demonstrate the presence of ‘clasp-knife’ chelicerae, and our novel redescription of a member of the Phalangiotarbida highlights leg details, but fails to resolve chelicerae in the group due to their small size. As a result of these reconstructions, tomographic studies of three-dimensionally preserved fossils now exist for three of the four extinct orders, and for fossil representatives of several extant ones. Such studies constitute a valuable source of high fidelity data for constructing phylogenies. To illustrate this, here we present a cladistic analysis of the chelicerates to accompany these reconstructions. This is based on a previously published matrix, expanded to include fossil taxa and relevant characters, and allows us to: cladistically place the extinct arachnid orders; explicitly test some earlier hypotheses from the literature; and demonstrate that the addition of fossils to phylogenetic analyses can have broad implications. Phylogenies based on chelicerate morphology—in contrast to molecular studies—have achieved elements of consensus in recent years. Our work suggests that these results are not robust to the addition of novel characters or fossil taxa. Hypotheses surrounding chelicerate phylogeny remain in a state of flux. PMID:25405073

  12. The first darter (Aves: Anhingidae) fossils from India (late Pliocene).

    PubMed

    Stidham, Thomas; Patnaik, Rajeev; Krishan, Kewal; Singh, Bahadur; Ghosh, Abhik; Singla, Ankita; Kotla, Simran S

    2017-01-01

    New fossils from the latest Pliocene portion of the Tatrot Formation exposed in the Siwalik Hills of northern India represent the first fossil record of a darter (Anhingidae) from India. The darter fossils possibly represent a new species, but the limited information on the fossil record of this group restricts their taxonomic allocation. The Pliocene darter has a deep pit on the distal face of metatarsal trochlea IV not reported in other anhingids, it has an open groove for the m. flexor perforatus et perforans digiti II tendon on the hypotarsus unlike New World anhingid taxa, and these darter specimens are the youngest of the handful of Neogene records of the group from Asia. These fossil specimens begin to fill in a significant geographic and temporal gap in the fossil record of this group that is largely known from other continents and other time periods. The presence of a darter and pelican (along with crabs, fish, turtles, and crocodilians) in the same fossil-bearing horizon strongly indicates the past presence of a substantial water body (large pond, lake, or river) in the interior of northern India in the foothills of the Himalayan Mountains.

  13. 180,000 years of climate change in Europe: avifaunal responses and vegetation implications.

    PubMed

    Holm, Sandra Ravnsbæk; Svenning, Jens-Christian

    2014-01-01

    Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000-10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.

  14. Passifloraceae seeds from the late Eocene of Colombia.

    PubMed

    Martínez, Camila

    2017-12-01

    The plant fossil record for the neotropics is still sparse and temporally discontinuous. The location and description of new fossil material are fundamental for understanding evolutionary and biogeographic patterns of lineages. A new fossil record of Passifloraceae from the late Eocene of Colombia is described in this study. Plant fossils were collected from a new locality from the Eocene Esmeraldas Formation. Eighteen fossil seeds were selected, described, and compared with fossil and extant angiosperm seeds based on the literature and herbarium collections. Taxonomic affinities of the fossil seeds within Passifloraceae s.l. were evaluated by comparing morphological characters of the seeds in a phylogenetic context. Stratigraphic information associated with the fossil locality was used to interpret the environment and taphonomic processes associated with fossil deposition. A new seed fossil genus and species, Passifloroidesperma sogamosense gen. and sp. nov., is described and associated with the subfamily Passifloroideae based on the presence of a foveolate seed surface, ruminate endosperm, and a seed coat with prismatic palisade cells. The depositional environment of the locality is described as a floodplain associated with river channels. A detailed review of the Passifloraceae fossil record indicates that P. sogamosense is the oldest confirmed record of Passifloraceae. Its late Eocene age provides a minimum age that can be used as a calibration point for the crown Passifloroideae node in future dating analyses that together with its neotropical geographic location can shed light on the origin and diversification of the subfamily. © 2017 Botanical Society of America.

  15. A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution.

    PubMed

    Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin

    2016-12-16

    The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

  16. A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin

    2016-12-01

    The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

  17. 78 FR 25065 - Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... collection requests a three-year extension of Form FE-746R, ``Natural Gas Imports and Exports,'' OMB Control Number 1901-0294. The proposed collection will support DOE's Office of Fossil Energy (FE) in the.... Department of Energy, Office of Fossil Energy, Office of Natural Gas Regulatory Activities (FE-34), P.O. Box...

  18. Digging for Fossils in the Hertzsprung Gap

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.

    1999-01-01

    Objective was to conduct deep (approx. 250 ks) pointings on two EUV sources, the early-F giant beta Cas and the mid-G giant mu Velorum; to obtain spectra in the range 70-300 A and to record Deep Survey light curves over the extensive duration of each observation. We have analyzed the DS lightcurve and the SW spectrum, breaking the latter lip into time slices corresponding to key phases of the observation: pre-flare, flare rise, and two segments of the flare decay.

  19. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    USGS Publications Warehouse

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.

  20. Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina).

    PubMed

    Jud, Nathan A; Iglesias, Ari; Wilf, Peter; Gandolfo, Maria A

    2018-06-08

    The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well-represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses. Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature. We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide. Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps' affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  1. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  2. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites.

    PubMed

    Daley, Allison C; Drage, Harriet B

    2016-03-01

    Ecdysis, the process of moulting an exoskeleton, is one of the key characters uniting arthropods, nematodes and a number of smaller phyla into Ecdysozoa. The arthropod fossil record, particularly trilobites, eurypterids and decapod crustaceans, yields information on moulting, although the current focus is predominantly descriptive and lacks a broader evolutionary perspective. We here review literature on the fossil record of ecdysis, synthesising research on the behaviour, evolutionary trends, and phylogenetic significance of moulting throughout the Phanerozoic. Approaches vary widely between taxonomic groups, but an overall theme uniting these works suggests that identifying moults in the palaeontological record must take into account the morphology, taphonomy and depositional environment of fossils. We also quantitatively analyse trends in trilobite ecdysis based on a newly generated database of published incidences of moulting behaviour. This preliminary work reveals significant taxonomic and temporal signal in the trilobite moulting fossil record, with free cheek moulting being prevalent across all Orders and throughout the Phanerozoic, and peaks of cephalic moulting in Phacopida during the Ordovician and rostral plate moulting in Redlichiida during the Cambrian. This study and a review of the literature suggest that it is feasible to extract large-scale evolutionary information from the fossil record of moulting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  4. Arthropod colonization of land--linking molecules and fossils in oribatid mites (Acari, Oribatida).

    PubMed

    Schaefer, Ina; Norton, Roy A; Scheu, Stefan; Maraun, Mark

    2010-10-01

    Terrestrial fossils that document the early colonization of land are scarce for >100 my after the Cambrian explosion. This raises the question whether life on land did not exist or just did not fossilize. With a molecular dating technique, we analyzed the origin of terrestrial chelicerate microarthropods (Acari, Oribatida) which have a fossil record since the Middle Devonian that is exceptional among soil animals. Our results suggest that oribatid mites originated in the Precambrian (571+/-37 mya) and that the radiation of basal groups coincides with the gap in the terrestrial fossil record between the Cambrian explosion and the earliest fossilized records of continental ecosystems. Further, they suggest that the colonization of land started via the interstitial, approximately 150 my earlier than the oldest fossils of terrestrial ecosystems. Overall, the results imply that omnivorous and detritivorous arthropods formed a major component in early terrestrial food webs, thereby facilitating the invasion of terrestrial habitats by later colonizers of higher trophic levels. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents.

    PubMed

    Kimura, Yuri; Hawkins, Melissa T R; McDonough, Molly M; Jacobs, Louis L; Flynn, Lawrence J

    2015-09-28

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating.

  6. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents

    PubMed Central

    Kimura, Yuri; Hawkins, Melissa T. R.; McDonough, Molly M.; Jacobs, Louis L.; Flynn, Lawrence J.

    2015-01-01

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391

  7. Nacre tablet thickness records formation temperature in modern and fossil shells

    DOE PAGES

    Gilbert, Pupa U. P. A.; Bergmann, Kristin D.; Myers, Corinne E.; ...

    2016-12-15

    Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is made of periodic, parallel, organic sheets alternating with aragonite (CaCO 3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye.Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore beenmore » extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation.« less

  8. Nacre tablet thickness records formation temperature in modern and fossil shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Pupa U. P. A.; Bergmann, Kristin D.; Myers, Corinne E.

    Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is made of periodic, parallel, organic sheets alternating with aragonite (CaCO 3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye.Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore beenmore » extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation.« less

  9. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil)

    NASA Astrophysics Data System (ADS)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria

    2015-08-01

    The Bauru Basin was one of the great Cretaceous desert basins of the world, evolved in arid zone called Southern Hot Arid Belt. Its paleobiological record consists mainly of dinosaurs, crocodiles and turtles. The Bauru Basin is an extensive region of the South American continent that includes parts of the southeast and south of Brazil, covering an area of 370,000 km2. It is an interior continental basin that developed as a result of subsidence of the central-southern part of the South-American Platform during the Late Cretaceous (Coniacian-Maastrichtian). This sag basin is filled by a sandy siliciclastic sequence with a preserved maximum thickness of 480 m, deposited in semiarid to desert conditions. Its basement consists of volcanic rocks (mainly basalts) of the Lower Cretaceous (Hauterivian) Serra Geral basalt flows, of the Paraná-Etendeka Continental Flood Basalt Province. The sag basin was filled by an essentially siliciclastic psammitic sequence. In lithostratigraphic terms the sequence consists of the Caiuá and Bauru groups. The northern and northeastern edges of the basin provide a record of more proximal original deposits, such as associations of conglomeratic sand facies from alluvial fans, lakes, and intertwined distributary river systems. The progressive basin filling led to the burial of the basaltic substrate by extensive blanket sand sheets, associated with deposits of small dunes and small shallow lakes that retained mud (such as loess). Also in this intermediate context between the edges (more humid) and the interior (dry), wide sand sheet areas crossed by unconfined desert rivers (wadis) occurred. In the central axis of the elliptical basin a regional drainage system formed, flowing from northeast to southwest between the edges of the basin and the hot and dry inner periphery of the Caiuá desert (southwest). Life in the Bauru Basin flourished most in the areas with the greatest water availability, in which dinosaurs, crocodiles, turtles, fish, amphibians, molluscs, crustaceans, and charophyte algae lived. The fossil record mainly consists of transported bones and other skeletal fragments. In the northeastern and eastern marginal regions fossils are found in marginal alluvial fan deposits, broad plains of braided streams and ephemeral alkaline water lakes. In the basin interior the fossil record is related to deposits in sand sheets with braided streams, small dunes, and shallow lakes. In the great Caiuá inner desert a few smaller animals could survive (small reptiles and early mammals), sometimes leaving their footprints in dune foreset deposits. The aim of this article is to present and link the basin sedimentary evolution, palaeoecological features and palaeontological record.

  10. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals

    NASA Technical Reports Server (NTRS)

    Foote, M.; Hunter, J. P.; Janis, C. M.; Sepkoski, J. J. Jr

    1999-01-01

    Some molecular clock estimates of divergence times of taxonomic groups undergoing evolutionary radiation are much older than the groups' first observed fossil record. Mathematical models of branching evolution are used to estimate the maximal rate of fossil preservation consistent with a postulated missing history, given the sum of species durations implied by early origins under a range of species origination and extinction rates. The plausibility of postulated divergence times depends on origination, extinction, and preservation rates estimated from the fossil record. For eutherian mammals, this approach suggests that it is unlikely that many modern orders arose much earlier than their oldest fossil records.

  11. New records and species of Crepidodera Chevrolat (Coleoptera: Chrysomelidae) in Eocene European amber, with a brief review of described fossil beetles from Bitterfeld amber.

    PubMed

    Bukejs, Andris; Biondi, Maurizio; Alekseev, Vitalii I

    2016-11-15

    Based on six relatively well-preserved specimens from Eocene Baltic amber, Crepidodera tertiotertiaria sp. nov. is described. The new species is illustrated and compared with morphologically similar extant and fossil relatives. It is the third described fossil species of Crepidodera Chevrolat. In addition to the new taxon, new fossil records of C. decolorata Nadein & Perkovsky from Baltic and Bitterfeld amber are presented. A key to species of Crepidodera described from fossil resins is provided, and a checklist of Coleoptera described from Bitterfeld amber is compiled.

  12. The shape of pterosaur evolution: evidence from the fossil record.

    PubMed

    Dyke, G J; McGowan, A J; Nudds, R L; Smith, D

    2009-04-01

    Although pterosaurs are a well-known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon-specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased - this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.

  13. Articulated Wiwaxia from the Cambrian Stage 3 Xiaoshiba lagerstätte.

    PubMed

    Yang, Jie; Smith, Martin R; Lan, Tian; Hou, Jin-bo; Zhang, Xi-guang

    2014-04-10

    Wiwaxia is a bizarre metazoan that has been interpreted as a primitive mollusc and as a polychaete annelid worm. Extensive material from the Burgess Shale provides a detailed picture of its morphology and ontogeny, but the fossil record outside this lagerstätte is scarce, and complete wiwaxiids are particularly rare. Here we report small articulated specimens of Wiwaxia foliosa sp. nov. from the Xiaoshiba fauna (Cambrian Stage 3, Hongjingshao Formation, Kunming, south China). Although spines are absent, the fossils' sclerites - like those of W. corrugata - are symmetrically arranged in five distinct zones. They form rows across the body, and were individually added and shed throughout growth to retain an approximately symmetrical body shape. Their development pattern suggests a molluscan affinity. The basic body plan of wiwaxiids is fundamentally conserved across two continents through Cambrian Stages 3-5 - revealing morphological stasis in the wake of the Cambrian explosion.

  14. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  15. A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates.

    PubMed

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N; Miller, Gifford H; Prideaux, Gavin J; Roberts, Richard G; Turney, Chris S M; Bradshaw, Corey J A

    2016-07-19

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery.

  16. A comprehensive database of quality-rated fossil ages for Sahul’s Quaternary vertebrates

    PubMed Central

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W.; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I.; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N.; Miller, Gifford H.; Prideaux, Gavin J.; Roberts, Richard G.; Turney, Chris S.M.; Bradshaw, Corey J.A.

    2016-01-01

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery. PMID:27434208

  17. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies

    PubMed Central

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a “knowledge bias” and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades. PMID:27192490

  18. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    PubMed

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  19. Delineating modern variation from extinct morphology in the fossil record using shells of the Eastern Box Turtle (Terrapene carolina)

    PubMed Central

    2018-01-01

    Characterization of morphological variation in the shells of extant Eastern Box Turtles, Terrapene carolina, provides a baseline for comparison to fossil populations. It also provides an example of the difficulties inherent to recognizing intraspecific diversity in the fossil record. The degree to which variation in fossils of T. carolina can be accommodated by extant variation in the species has been disagreed upon for over eighty years. Using morphometric analyses of the carapace, I address the relationship between modern and fossil T. carolina in terms of sexual dimorphism, geographic and subspecific variation, and allometric variation. Modern T. carolina display weak male-biased sexual size dimorphism. Sexual shape dimorphism cannot be reliably detected in the fossil record. Rather than a four-part subspecific division, patterns of geographic variation are more consistent with clinal variation between various regions in the species distribution. Allometric patterns are qualitatively similar to those documented in other emydid turtles and explain a significant amount of shape variation. When allometric patterns are accounted for, Holocene specimens are not significantly different from modern specimens. In contrast, several geologically older specimens have significantly different carapace shape with no modern analogue. Those large, fossilized specimens represent extinct variation occupying novel portions of morphospace. This study highlights the need for additional documentation of modern osteological variation that can be used to test hypotheses of intraspecific evolution in the fossil record. PMID:29513709

  20. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.

    PubMed

    Clarke, Julia A; Boyd, Clint A

    2015-01-01

    Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used together to describe the relationship between time trees and a set of fossil data, which we recommend be phylogenetically vetted and referred on the basis of apomorphy. Differences from previously proposed metrics and the utility of MDI and DIG range are illustrated in three empirical case studies from angiosperms, ostracods, and birds. These case studies also illustrate the ways in which MDI and DIG range may be used to assess time trees resultant from analyses varying in calibration regime, divergence dating approach or molecular sequence data analyzed. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.

    PubMed

    Selden, Paul A; Huys, Rony; Stephenson, Michael H; Heward, Alan P; Taylor, Paul N

    2010-08-10

    Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.

  2. Molecular Decay of the Tooth Gene Enamelin (ENAM) Mirrors the Loss of Enamel in the Fossil Record of Placental Mammals

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Murphy, William J.; Ryder, Oliver A.; Springer, Mark S.

    2009-01-01

    Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory. PMID:19730686

  3. Estimating times of extinction in the fossil record

    PubMed Central

    Marshall, Charles R.

    2016-01-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. PMID:27122005

  4. Estimating times of extinction in the fossil record.

    PubMed

    Wang, Steve C; Marshall, Charles R

    2016-04-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. © 2016 The Author(s).

  5. Benthic iron cycling in a high-oxygen environment: Implications for interpreting the Archean sedimentary iron isotope record.

    PubMed

    McCoy, V E; Asael, D; Planavsky, N

    2017-09-01

    The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.

  6. The first Loranthaceae fossils from Africa

    PubMed Central

    2018-01-01

    Abstract An ongoing re-investigation of the early Miocene Saldanha Bay (South Africa) palynoflora, using combined light and scanning electron microscopy (single grain method), is revealing several pollen types new to the African fossil record. One of the elements identified is Loranthaceae pollen. These grains represent the first and only fossil record of Loranthaceae in Africa. The fossil pollen grains resemble those produced by the core Lorantheae and are comparable to recent Asian as well as some African taxa/lineages. Molecular and fossil signals indicate that Loranthaceae dispersed into Africa via Asia sometime during the Eocene. The present host range of African Loranthaceae and the composition of the palynoflora suggest that the fossil had a range of potential host taxa to parasitise during the early Miocene in the Saldanha Bay region. PMID:29780299

  7. The origin of animals: Can molecular clocks and the fossil record be reconciled?

    PubMed

    Cunningham, John A; Liu, Alexander G; Bengtson, Stefan; Donoghue, Philip C J

    2017-01-01

    The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less divergent than is often claimed. Modern clock analyses do not predict the presence of the crown-representatives of most animal phyla in the Neoproterozoic. Furthermore, despite challenges provided by incomplete preservation, a paucity of phylogenetically informative characters, and uncertain expectations of the anatomy of early animals, a number of Neoproterozoic fossils can reasonably be interpreted as metazoans. A considerable discrepancy remains, but much of this can be explained by the limited preservation potential of early metazoans and the difficulties associated with their identification in the fossil record. Critical assessment of both records may permit better resolution of the tempo and mode of early animal evolution. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  8. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing

    PubMed Central

    Droser, Mary L.; Jensen, Sören; Gehling, James G.

    2002-01-01

    The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at ≈555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sediments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. PMID:12271130

  9. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  10. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado.

    PubMed

    Calder, W John; Shuman, Bryan

    2017-10-01

    Ecosystems may shift abruptly when the effects of climate change and disturbance interact, and landscapes with regularly patterned vegetation may be especially vulnerable to abrupt shifts. Here we use a fossil pollen record from a regularly patterned ribbon forest (alternating bands of forests and meadows) in Colorado to examine whether past changes in wildfire and climate produced abrupt vegetation shifts. Comparing the percentages of conifer pollen with sedimentary δ 18 O data (interpreted as an indicator of temperature or snow accumulation) indicates a first-order linear relationship between vegetation composition and climate change with no detectable lags over the past 2,500 yr (r = 0.55, P < 0.001). Additionally, however, we find that the vegetation changed abruptly within a century of extensive wildfires, which were recognized in a previous study to have burned approximately 80% of the surrounding 1,000 km 2 landscape 1,000 yr ago when temperatures rose ~0.5°C. The vegetation change was larger than expected from the effects of climate change alone. Pollen assemblages changed from a composition associated with closed subalpine forests to one similar to modern ribbon forests. Fossil pollen assemblages then remained like those from modern ribbon forests for the following ~1,000 yr, providing a clear example of how extensive disturbances can trigger persistent new vegetation states and alter how vegetation responds to climate. © 2017 by the Ecological Society of America.

  11. Precambrian evolution and the rock record

    NASA Technical Reports Server (NTRS)

    Awramik, S.

    1985-01-01

    The Precambrian time which refers to geological time prior to the first appearance of animals with mineralized hard parts was investigated. Best estimates for this event are around 570 million years ago. Because the rock record begins some 3,800 million years ago the Precambrian encompasses about 84% of geologic time. The fossil record for this immense span of time is dominated by prokaryotes and the sedimentary structures produced by them. The first fossil remains that are considered eukaryotic are found in 1,000 million year old rocks. The first animals may be as old as 700 million years. The fossil records of the first 84% of the Earth's history are collected and described.

  12. Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits, and leaves from Australia.

    PubMed

    Tarran, Myall; Wilson, Peter G; Hill, Robert S

    2016-04-01

    Myrtaceous fossil capsular fruits and flowers from the northwest of Tasmania, in the Early Oligocene-aged Little Rapid River (LRR) deposit, are described. The reproductive organs are found in association with Myrtaceous leaves previously thought to belong to a fleshy-fruited genus, Xanthomyrtus at both LRR, and an Eocene Tasmanian site at Hasties, which are reassessed with fresh morphological evidence. Standard Light Microscopy (LM) and Scanning Electron Microscopy (SEM) were used to investigate cuticular characters and an auto-montage camera system was used to take high-resolution images of fossil and extant fruits. Fossils are identified using a nearest living relative (NLR) approach. The fossil fruits and flowers share a number of characters with genera of capsular-fruited Myrtaceae, in particular sharing several synapomorphies with species of Metrosideros subg. Metrosideros (tribe: Metrosidereae). The fossil is here described, and named Metrosideros leunigii, sp. nov. This research establishes the presence of Metrosideros (aff. subg. Metrosideros) in the Eocene-Oligocene (∼40-30 mya) of Tasmania, Australia. This is the first fossil record of Metrosideros in Australia, as well as the oldest conclusive fossil record, and may provide evidence for an Australian origin of the genus. It is also yet another example of extinction in the Tertiary of a group of plants on the Australian mainland that is only found today on nearby Pacific landmasses. © 2016 Botanical Society of America.

  13. Gaps in the Rock and Fossil Records and Implications for the Rate and Mode of Evolution.

    ERIC Educational Resources Information Center

    Smith, Grant Sackett

    1988-01-01

    Examines three types of gaps in the fossil record: real gaps, imaginary gaps, and temporary gaps. Reviews some recent evidence concerning evolution from the paleontological record of microfossils, invertebrates, and vertebrates in order to make some general conclusions regarding the manner in which life evolved on earth. (CW)

  14. Terrestrial responses of low-latitude Asia to the Eocene-Oligocene climate transition revealed by integrated chronostratigraphy

    NASA Astrophysics Data System (ADS)

    Li, Y. X.; Jiao, W. J.; Liu, Z. H.; Jin, J. H.; Wang, D. H.; He, Y. X.; Quan, C.

    2016-02-01

    The Paleogene sedimentary records from southern China hold important clues to the impacts of the Cenozoic climate changes on low latitudes. However, although there are extensive Paleogene terrestrial archives and some contain abundant fossils in this region, few are accurately dated or have a temporal resolution adequate to decipher climate changes. Here, we present a detailed stratigraphic and paleomagnetic study of a fossiliferous late Paleogene succession in the Maoming Basin, Guangdong Province. The succession consists of oil shale of the Youganwo Formation (Fm) in the lower part and the overlying sandstone-dominated Huangniuling Fm in the upper part. Fossil records indicate that the age of the succession possibly spans the late Eocene to the Oligocene. Both the Youganwo Fm and the overlying Huangniuling Fm exhibit striking sedimentary rhythms, and spectral analysis of the depth series of magnetic susceptibility of the Youganwo Fm reveals dominant sedimentary cycles at orbital frequency bands. The transition from the Youganwo oil shale to the overlying Huangniuling sandstones is conformable and represents a major depositional environmental change from a lacustrine to a deltaic environment. Integrating the magnetostratigraphic, lithologic, and fossil data allows establishing a substantially refined chronostratigraphic framework that places the major depositional environmental change at 33.88 Ma, coinciding with the Eocene-Oligocene climate transition (EOT) at ˜ 33.7 to ˜ 33.9 Ma. We suggest that the transition from a lacustrine to deltaic environment in the Maoming Basin represents terrestrial responses to the EOT and indicates prevailing drying conditions in low-latitude regions during the global cooling at EOT.

  15. Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks

    PubMed Central

    Pérez, María Encarnación; Pol, Diego

    2012-01-01

    Background Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (“eocardiids”). Results A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates. Conclusions The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone. PMID:23144757

  16. Diagnosing Homo sapiens in the fossil record.

    PubMed

    Stringer, Christopher Brian; Buck, Laura Tabitha

    2014-01-01

    Diagnosing Homo sapiens is a critical question in the study of human evolution. Although what constitutes living members of our own species is straightforward, in the fossil record this is still a matter of much debate. The issue is complicated by questions of species diagnoses and ideas about the mode by which a new species is born, by the arguments surrounding the behavioural and cognitive separateness of the species, by the increasing appreciation of variation in the early African H. sapiens record and by new DNA evidence of hybridization with extinct species. This study synthesizes thinking on the fossils, archaeology and underlying evolutionary models of the last several decades with recent DNA results from both H. sapiens and fossil species. It is concluded that, although it may not be possible or even desirable to cleanly partition out a homogenous morphological description of recent H. sapiens in the fossil record, there are key, distinguishing morphological traits in the cranium, dentition and pelvis that can be usefully employed to diagnose the H. sapiens lineage. Increasing advances in retrieving and understanding relevant genetic data provide a complementary and perhaps potentially even more fruitful means of characterizing the differences between H. sapiens and its close relatives.

  17. The oldest Mahonia (Berberidaceae) fossil from East Asia and its biogeographic implications.

    PubMed

    Huang, Jian; Su, Tao; Lebereton-Anberrée, Julie; Zhang, Shi-Tao; Zhou, Zhe-Kun

    2016-03-01

    Interpretation of the biogeography of the genus Mahonia (Berberidaceae) is limited by the lack of fossil records in East Asia. Compressed fossil foliage, described here as Mahonia mioasiatica sp. nov., were collected from the Upper Miocene Xiaolongtan Formation in Wenshan, Yunnan, southwest China. These specimens represent the oldest reliable fossil record of Mahonia in East Asia. This new fossil species shows a general similarity to Group Orientales and is most similar to the extant eastern Asian Mahonia conferta. Considering other fossil evidence of Mahonia, we propose a migration route of this genus to Asia over the North Atlantic Land Bridge rather than the Bering Land Bridge. Our results also suggest that North America, Europe and East Asia have been successive centers of diversity for the genus, as a consequence of diversification in Group Orientales potentially related to historical climate change.

  18. Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms.

    PubMed

    Gandolfo, M A; Nixon, K C; Crepet, W L

    2004-05-25

    Based on recent molecular systematics studies, the water lily lineage (Nymphaeales) provides an important key to understanding ancestral angiosperm morphology and is of considerable interest in the context of angiosperm origins. Therefore, the fossil record of Nymphaeales potentially provides evidence on both the timing and nature of diversification of one of the earliest clades of flowering plants. Recent fossil evidence of Turonian age (approximately 90 million years B.P.) includes fossil flowers with characters that, upon rigorous analysis, firmly place them within Nymphaeaceae. Unequivocally the oldest floral record of the Nymphaeales, these fossils are closely related to the modern Nymphaealean genera Victoria (the giant Amazon water lily) and Euryale. Although the fossils are much smaller than their modern relatives, the precise and dramatic correspondence between the fossil floral morphology and that of modern Victoria flowers suggests that beetle entrapment pollination was present in the earliest part of the Late Cretaceous.

  19. Tetrapod trackways from the early Middle Devonian period of Poland.

    PubMed

    Niedźwiedzki, Grzegorz; Szrek, Piotr; Narkiewicz, Katarzyna; Narkiewicz, Marek; Ahlberg, Per E

    2010-01-07

    The fossil record of the earliest tetrapods (vertebrates with limbs rather than paired fins) consists of body fossils and trackways. The earliest body fossils of tetrapods date to the Late Devonian period (late Frasnian stage) and are preceded by transitional elpistostegids such as Panderichthys and Tiktaalik that still have paired fins. Claims of tetrapod trackways predating these body fossils have remained controversial with regard to both age and the identity of the track makers. Here we present well-preserved and securely dated tetrapod tracks from Polish marine tidal flat sediments of early Middle Devonian (Eifelian stage) age that are approximately 18 million years older than the earliest tetrapod body fossils and 10 million years earlier than the oldest elpistostegids. They force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition, as well as the completeness of the body fossil record.

  20. The non-uniformity of fossil preservation.

    PubMed

    Holland, Steven M

    2016-07-19

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  1. The non-uniformity of fossil preservation

    PubMed Central

    2016-01-01

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325828

  2. C-isotope composition of fossil sedges and grasses

    NASA Astrophysics Data System (ADS)

    Kurschner, Wolfram M.

    2010-05-01

    C4 plants differ from C3 plants regarding their anatomy and their C-isotope composition. Both features can be used in the geological record to determine the presence of C4 plants. Yet, the evolution of the C4 pathway in the fossil record is enigmatic as palaeobotanical and geological evidence for C4 plants is sparse. The oldest structural evidence for Kranz anatomy has been found in Late Miocene permineralized grass leaf remains. But studies on the C-isotope composition of sedimentary organic matter indicate that abundant C4 biomass was present in N-America and Asia throughout the Miocene in expanding savannahs and grasslands. The success of C4 plants appears to be related also to an increasing seasonal aridity in the tropical climate belts and the co-evolution of grazers. However, C- isotope composition of palaeosols or vertebrate teeth only allows to estimate the abundance of C4 plant biomass in the vegetation or in the diet without further taxonomical specification which plant groups would have had C4 metabolism. In this contribution the first extensive C-isotope analysis of fossil seeds of sedges and a few grasses are presented. The age of the carpological material ranges from Late Eocene to Pliocene and was collected from several central European brown coal deposits. The 52 different taxa studied include several species of Carex, Cladiocarya, Eriopherum, Eleocharis, Scirpus, Sparganium. Most of them representing herbaceous elements of a (sub)tropical vegetation growing near the edge of a lake. The C-isotope composition of the fossil seeds varies between -30 and -23 o/oo indicating C3 photosynthesis. This first systematic inventory shows that C4 plants were absent in the European (sub)tropical brown coal forming wetland vegetation during the Tertiary. These preliminary data are in agreement with phylogenetic studies which predict the origin of C4 plants outside the European realm.

  3. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    DOE R&D Accomplishments Database

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  4. Fossilized embryos are widespread but the record is temporally and taxonomically biased

    USGS Publications Warehouse

    Donoghue, P.C.J.; Kouchinsky, A.; Waloszek, Dieter; Bengtson, S.; Dong, X.-P.; Val'Kov, A.K.; Cunningham, J.A.; Repetski, J.E.

    2006-01-01

    We report new discoveries of embryos and egg capsules from the Lower Cambrian of Siberia, Middle Cambrian of Australia and Lower Ordovician of North America. Together with existing records, embryos have now been recorded from four of the seven continents. However, the new discoveries highlight secular and systematic biases in the fossil record of embryonic stages. The temporal window within which the embryos and egg capsules are found is of relatively short duration; it ends in the Early Ordovician and is roughly coincident with that of typical "Orsten"-type faunas. The reduced occurrence of such fossils has been attributed to reducing levels of phosphate in marine waters during the early Paleozoic, but may also be owing to the increasing depth of sediment mixing by infaunal metazoans. Furthermore, most records younger than the earliest Cambrian are of a single kind - large eggs and embryos of the priapulid-like scalidophoran Markuelia. We explore alternative explanations for the low taxonomic diversity of embryos recovered thus far, including sampling, size, anatomy, ecology, and environment, concluding that the preponderance of Markuelia embryos is due to its precocious development of cuticle at an embryonic stage, predisposing it to preservation through action as a substrate on which microbially mediated precipitation of authigenic calcium phosphate may occur. The fossil record of embryos may be limited to a late Neoproterozoic to early Ordovician snapshot that is subject to dramatic systematic bias. Together, these biases must be considered seriously in attempts to use the fossil record to arbitrate between hypotheses of developmental and life history evolution implicated in the origin of metazoan clades. ?? 2006 Blackwell Publishing Ltd.

  5. Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.

    PubMed

    Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth

    2012-07-01

    Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.

  7. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    PubMed

    Varricchio, David J; Balanoff, Amy M; Norell, Mark A

    2015-01-01

    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  8. From dinosaurs to birds: a tail of evolution

    PubMed Central

    2014-01-01

    A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events. PMID:25621146

  9. Oldest known dinosaurian nesting site and reproductive biology of the Early Jurassic sauropodomorph Massospondylus

    PubMed Central

    Reisz, Robert R.; Evans, David C.; Roberts, Eric M.; Sues, Hans-Dieter; Yates, Adam M.

    2012-01-01

    The extensive Early Jurassic continental strata of southern Africa have yielded an exceptional record of dinosaurs that includes scores of partial to complete skeletons of the sauropodomorph Massospondylus, ranging from embryos to large adults. In 1976 an incomplete egg clutch including in ovo embryos of this dinosaur, the oldest known example in the fossil record, was collected from a road-cut talus, but its exact provenance was uncertain. An excavation program at the site started in 2006 has yielded multiple in situ egg clutches, documenting the oldest known dinosaurian nesting site, predating other similar sites by more than 100 million years. The presence of numerous clutches of eggs, some of which contain embryonic remains, in at least four distinct horizons within a small area, provides the earliest known evidence of complex reproductive behavior including site fidelity and colonial nesting in a terrestrial vertebrate. Thus, fossil and sedimentological evidence from this nesting site provides empirical data on reproductive strategies in early dinosaurs. A temporally calibrated optimization of dinosaurian reproductive biology not only demonstrates the primary significance of the Massospondylus nesting site, but also provides additional insights into the initial stages of the evolutionary history of dinosaurs, including evidence that deposition of eggs in a tightly organized single layer in a nest evolved independently from brooding. PMID:22308330

  10. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics.

    PubMed

    Bibi, Faysal

    2013-08-08

    Molecular phylogenetics has provided unprecedented resolution in the ruminant evolutionary tree. However, molecular age estimates using only one or a few (often misapplied) fossil calibration points have produced a diversity of conflicting ages for important evolutionary events within this clade. I here identify 16 fossil calibration points of relevance to the phylogeny of Bovidae and Ruminantia and use these, individually and together, to construct a dated molecular phylogeny through a reanalysis of the full mitochondrial genome of over 100 ruminant species. The new multi-calibrated tree provides ages that are younger overall than found in previous studies. Among these are young ages for the origin of crown Ruminantia (39.3-28.8 Ma), and crown Bovidae (17.3-15.1 Ma). These are argued to be reasonable hypotheses given that many basal fossils assigned to these taxa may in fact lie on the stem groups leading to the crown clades, thus inflating previous age estimates. Areas of conflict between molecular and fossil dates do persist, however, especially with regard to the base of the rapid Pecoran radiation and the sister relationship of Moschidae to Bovidae. Results of the single-calibrated analyses also show that a very wide range of molecular age estimates are obtainable using different calibration points, and that the choice of calibration point can influence the topology of the resulting tree. Compared to the single-calibrated trees, the multi-calibrated tree exhibits smaller variance in estimated ages and better reflects the fossil record. The use of a large number of vetted fossil calibration points with soft bounds is promoted as a better approach than using just one or a few calibrations, or relying on internal-congruency metrics to discard good fossil data. This study also highlights the importance of considering morphological and ecological characteristics of clades when delimiting higher taxa. I also illustrate how phylogeographic and paleoenvironmental hypotheses inferred from a tree containing only extant taxa can be problematic without consideration of the fossil record. Incorporating the fossil record of Ruminantia is a necessary step for future analyses aiming to reconstruct the evolutionary history of this clade.

  11. Experimental analysis of decay biases in the fossil record of lobopodians

    NASA Astrophysics Data System (ADS)

    Murdock, Duncan; Gabbott, Sarah; Purnell, Mark

    2016-04-01

    If fossils are to realize their full potential in reconstructing the tree of life we must understand how our view of ancient organisms is obscured by taphonomic filters of decay and preservation. In most cases, processes of decay will leave behind either nothing or only the most decay resistant body parts, and even in those rare instances where soft tissues are fossilized we cannot assume that the resulting fossil, however exquisite, represents a faithful anatomical representation of the animal as it was in life.Recent experiments have shown that the biases introduced by decay can be far from random; in chordates, for example, the most phylogenetically informative characters are also the most decay-prone, resulting in 'stemward slippage'. But how widespread is this phenomenon, and are there other non-random biases linked to decay? Intuitively, we make assumptions about the likelihood of different kinds of characters to survive and be preserved, with knock-on effects for anatomical and phylogenetic interpretations. To what extent are these assumptions valid? We combine our understanding of the fossil record of lobopodians with insights from decay experiments of modern onychophorans (velvet worms) to test these assumptions. Our analysis demonstrates that taphonomically informed tests of character interpretations have the potential to improve phylogenetic resolution. This approach is widely applicable to the fossil record - allowing us to ground-truth some of the assumptions involved in describing exceptionally preserved fossil material.

  12. Evidence for Evolution from the Vertebrate Fossil Record.

    ERIC Educational Resources Information Center

    Gingerich, Philip D.

    1983-01-01

    Discusses three examples of evolutionary transition in the vertebrate fossil record, considering evolutionary transitions at the species level. Uses archaic squirrel-like Paleocine primates, the earliest primates of modern aspect, as examples. Also reviews new evidence on the origin of whales and their transition from land to sea. (JN)

  13. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?

    PubMed

    Leung, Tommy L F

    2017-02-01

    Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism-induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re-examination, display traits which are just as (if not more) likely to be found in free-living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history. © 2015 Cambridge Philosophical Society.

  14. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends.

    PubMed

    Smith, Andrew B; Lloyd, Graeme T; McGowan, Alistair J

    2012-11-07

    Sampling bias created by a heterogeneous rock record can seriously distort estimates of marine diversity and makes a direct reading of the fossil record unreliable. Here we compare two independent estimates of Phanerozoic marine diversity that explicitly take account of variation in sampling-a subsampling approach that standardizes for differences in fossil collection intensity, and a rock area modelling approach that takes account of differences in rock availability. Using the fossil records of North America and Western Europe, we demonstrate that a modelling approach applied to the combined data produces results that are significantly correlated with those derived from subsampling. This concordance between independent approaches argues strongly for the reality of the large-scale trends in diversity we identify from both approaches.

  15. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-09-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  16. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic Margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-07-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  17. Using more than the oldest fossils: dating osmundaceae with three Bayesian clock approaches.

    PubMed

    Grimm, Guido W; Kapli, Paschalia; Bomfleur, Benjamin; McLoughlin, Stephen; Renner, Susanne S

    2015-05-01

    A major concern in molecular clock dating is how to use information from the fossil record to calibrate genetic distances from DNA sequences. Here we apply three Bayesian dating methods that differ in how calibration is achieved-"node dating" (ND) in BEAST, "total evidence" (TE) dating in MrBayes, and the "fossilized birth-death" (FBD) in FDPPDiv-to infer divergence times in the royal ferns. Osmundaceae have 16-17 species in four genera, two mainly in the Northern Hemisphere and two in South Africa and Australasia; they are the sister clade to the remaining leptosporangiate ferns. Their fossil record consists of at least 150 species in ∼17 genera. For ND, we used the five oldest fossils, whereas for TE and FBD dating, which do not require forcing fossils to nodes and thus can use more fossils, we included up to 36 rhizomes and frond compression/impression fossils, which for TE dating were scored for 33 morphological characters. We also subsampled 10%, 25%, and 50% of the 36 fossils to assess model sensitivity. FBD-derived divergence ages were generally greater than those inferred from ND; two of seven TE-derived ages agreed with FBD-obtained ages, the others were much younger or much older than ND or FBD ages. We prefer the FBD-derived ages because they best fit the Osmundales fossil record (including Triassic fossils not used in our study). Under the preferred model, the clade encompassing extant Osmundaceae (and many fossils) dates to the latest Paleozoic to Early Triassic; divergences of the extant species occurred during the Neogene. Under the assumption of constant speciation and extinction rates, the FBD approach yielded speciation and extinction rates that overlapped those obtained from just neontological data. However, FBD estimates of speciation and extinction are sensitive to violations in the assumption of continuous fossil sampling; therefore, these estimates should be treated with caution. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Learning about Fossil Formation by Classroom Simulation.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Yoshida, Sarah J.

    1991-01-01

    Activities in which students build their own simulations of fossils, using seashells, chicken bones, toy dinosaurs, or leaves as models and plaster of paris, sand, mud, clay, or a mixture of gravel and clay as a matrix are presented. Curriculum extensions are included. (KR)

  19. Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma

    NASA Technical Reports Server (NTRS)

    Karlstrom, K. E.; Bowring, S. A.; Dehler, C. M.; Knoll, A. H.; Porter, S. M.; Des Marais, D. J.; Weil, A. B.; Sharp, Z. D.; Geissman, J. W.; Elrick, M. B.; hide

    2000-01-01

    The Chuar Group (approximately 1600 m thick) preserves a record of extensional tectonism, ocean-chemistry fluctuations, and biological diversification during the late Neoproterozoic Era. An ash layer from the top of the section has a U-Pb zircon age of 742 +/- 6 Ma. The Chuar Group was deposited at low latitudes during extension on the north-trending Butte fault system and is inferred to record rifting during the breakup of Rodinia. Shallow-marine deposition is documented by tide- and wave-generated sedimentary structures, facies associations, and fossils. C isotopes in organic carbon show large stratigraphic variations, apparently recording incipient stages of the marked C isotopic fluctuations that characterize later Neoproterozoic time. Upper Chuar rocks preserve a rich biota that includes not only cyanobacteria and algae, but also heterotrophic protists that document increased food web complexity in Neoproterozoic ecosystems. The Chuar Group thus provides a well-dated, high-resolution record of early events in the sequence of linked tectonic, biogeochemical, environmental, and biological changes that collectively ushered in the Phanerozoic Eon.

  20. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".

    PubMed

    Li, Qiang; Ni, Xijun

    2016-01-14

    Treeshrews are widely considered a "living model" of an ancestral primate, and have long been called "living fossils". Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage.

  1. Organic preservation of fossil musculature with ultracellular detail

    PubMed Central

    McNamara, Maria; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2010-01-01

    The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota. PMID:19828545

  2. 'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.

    PubMed

    Guinot, Guillaume; Cavin, Lionel

    2016-11-01

    Actinopterygii (ray-finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of 'fish' evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic-Cainozoic interval. This approach provides information on the 'fish' fossil record quality and on the corrected 'fish' deep-time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil-like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early-Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene-Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous-Paleogene extinction, we provide an in-depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea-levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on 'fish' evolutionary history, along with other biotic constraints. © 2015 Cambridge Philosophical Society.

  3. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina

    PubMed Central

    Hermsen, Elizabeth J

    2017-01-01

    Abstract Background and Aims Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Methods Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. Key Results The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum. Conclusions The Patagonian fossil fruits are the oldest known record for Ceratopetalum. Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. PMID:28110267

  4. Mio-Pliocene Faunal Exchanges and African Biogeography: The Record of Fossil Bovids

    PubMed Central

    Bibi, Faysal

    2011-01-01

    The development of the Ethiopian biogeographic realm since the late Miocene is here explored with the presentation and review of fossil evidence from eastern Africa. Prostrepsiceros cf. vinayaki and an unknown species of possible caprin affinity are described from the hominid-bearing Asa Koma and Kuseralee Members (∼5.7 and ∼5.2 Ma) of the Middle Awash, Ethiopia. The Middle Awash Prostrepsiceros cf. vinayaki constitutes the first record of this taxon from Africa, previously known from the Siwaliks and Arabia. The possible caprin joins a number of isolated records of caprin or caprin-like taxa recorded, but poorly understood, from the late Neogene of Africa. The identification of these two taxa from the Middle Awash prompts an overdue review of fossil bovids from the sub-Saharan African record that demonstrate Eurasian affinities, including the reduncin Kobus porrecticornis, and species of Tragoportax. The fossil bovid record provides evidence for greater biological continuity between Africa and Eurasia in the late Miocene and earliest Pliocene than is found later in time. In contrast, the early Pliocene (after 5 Ma) saw the loss of any significant proportions of Eurasian-related taxa, and the continental dominance of African-endemic taxa and lineages, a pattern that continues today. PMID:21358825

  5. A new Cheirolepidiaceae (Coniferales) from the Early Jurassic of Patagonia (Argentina): Reconciling the records of impression and permineralized fossils.

    PubMed

    Escapa, Ignacio; Leslie, Andrew

    2017-02-01

    Plants preserved in different fossil modes provide complementary data concerning the paleobiology and evolutionary relationships among plant groups. New material from the Early Jurassic of Patagonia shows the importance of combining these sources of information, as we describe the first compression/impression fossils of Pararaucaria , a genus of the extinct conifer family Cheirolepidiaceae previously known from permineralized fossils. These fossils extend the temporal range of this genus and may allow its wider recognition in the fossil record. We studied fossil plants from the Early Jurassic (Pleinsbachian-Toarcian) locality of Taquetrén in Patagonia, Argentina using standard paleobotanical preparation and description techniques. Pararaucaria taquetrensis consists of isolated ovuliferous scales and small seed cones with helically arranged bract-scale complexes attached to scale-leaf foliage. Bract-scale complexes consist of separated bracts and ovuliferous scales with two seeds and three broad distal lobes. Pararaucaria taquetrensis represents the oldest known Cheirolepidiaceae seed cones from the Southern Hemisphere, and this material highlights the importance of compression and impression fossils in understanding the distribution of fossil taxa. This material also suggests that Cheirolepidiaceae cone scales can be easily confused with those of another common conifer family, the Araucariaceae, which has important implications for accurately understanding Mesozoic conifer diversity and paleoecology. © 2017 Botanical Society of America.

  6. Paleopedology Comes Down to Earth.

    ERIC Educational Resources Information Center

    Retallack, Greg J.

    1983-01-01

    Discusses content, laboratory work, and field studies of a senior-level course in paleopedology (study of fossil soils). The course explores interpretation of ancient terrestrial environments from fossil soils and the study of the fossil record of such soils as an additional approach to earth history. (JN)

  7. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island.

    PubMed

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2017-04-01

    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  8. The Ecological Rise of Whales Chronicled by the Fossil Record.

    PubMed

    Pyenson, Nicholas D

    2017-06-05

    The evolution of cetaceans is one of the best examples of macroevolution documented from the fossil record. While ecological transitions dominate each phase of cetacean history, this context is rarely stated explicitly. The first major ecological phase involves a transition from riverine and deltaic environments to marine ones, concomitant with dramatic evolutionary transformations documented in their early fossil record. The second major phase involves ecological shifts associated with evolutionary innovations: echolocation (facilitating hunting prey at depth) and filter-feeding (enhancing foraging efficiency on small prey). This latter phase involves body size shifts, attributable to changes in foraging depth and environmental forcing, as well as re-invasions of freshwater systems on continental basins by multiple lineages. Modern phenomena driving cetacean ecology, such as trophic dynamics and arms races, have an evolutionary basis that remains mostly unexamined. The fossil record of cetaceans provides an historical basis for understanding current ecological mechanisms and consequences, especially as global climate change rapidly alters ocean and river ecosystems at rates and scales comparable to those over geologic time. Published by Elsevier Ltd.

  9. Fidelity of fossil n-alkanes from leaf to paleosol and applications to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.

    2011-12-01

    Long chain n-alkanes (C21-C35) are well-known as biomarkers of terrestrial plants. They can be preserved across a wide range of terrestrial and marine environments, survive in the sedimentary record for millions of years, and can serve as proxies for ancient environments. Most n-alkane records are derived from sediments rather than directly from fossil leaves. However, little is known about the fidelity of the n-alkane record: how and where leaf preservation relates to n-alkane preservation and how patterns of n-alkane carbon isotope ratios (δ13C) compare to living relatives. To examine these questions, we analyzed n-alkanes from fluvial sediments and individual leaf fossils collected in the Bighorn Basin, Wyoming, across the Paleocene-Eocene Thermal Maximum (PETM) carbon isotope excursion. We assessed the fidelity of the n-alkane signature from individual fossil leaves via three separate means. 1) Spatial variations were assessed by comparing n-alkane concentrations on a fossil leaf and in sediments both directly adjacent to the leaf and farther away. Absolute concentrations were greater within the compression fossil than in the directly adjacent sediment, which were in turn greater than in more distant sediment. 2) n-Alkane abundances and distributions were examined in fossil leaves having a range of preservational quality, from fossils with intact cuticle to carbonized fossils lacking cuticle and higher-order venation. The best preserved fossils preserved a higher concentration of n-alkanes and showed the most similar n-alkane distribution to living relatives. However, a strong odd over even predominance suggests a relatively unmodified plant source occurred in all samples regardless of preservation state. 3) n-Alkane δ13C values were measured for both fossil leaves and their living relatives. Both the saw-tooth pattern of δ13C values between odd and even chain lengths and the general decrease in δ13C values with increasing chain length are consistent with modern plant data. These results suggest that n-alkanes extracted directly from a fossil leaf provide a true signature of an individual leaf fossil rather than a mixture from the entire plant community. Therefore, comparisons between fossil morphotypes and between fossil and related modern taxa should be robust. Furthermore, by placing fossil leaf data within the context of the chemostratigraphy of Bighorn Basin sediments across the P-E boundary, fossil leaf n-alkanes can be used to bridge the gap between our understanding of modern plant lipids and bulk lipid data from sediments across the PETM. It has been hypothesized that changes in the both the molecular distribution and carbon isotope composition of n-alkanes across the PETM were due to changes in the local plant community, which included a large proportion of deciduous gymnosperms before and after-but not during-the PETM. Analysis of fossils such as Ginkgo and angiosperms provides the opportunity to compare and distinguish the molecular and isotopic signatures of gymnosperms and angiosperms. These comparisons shed light on the dynamics of climate and ecosystem changes as they are recorded in the signatures of lipid biomarkers.

  10. Hominin footprints from early Pleistocene deposits at Happisburgh, UK.

    PubMed

    Ashton, Nick; Lewis, Simon G; De Groote, Isabelle; Duffy, Sarah M; Bates, Martin; Bates, Richard; Hoare, Peter; Lewis, Mark; Parfitt, Simon A; Peglar, Sylvia; Williams, Craig; Stringer, Chris

    2014-01-01

    Investigations at Happisburgh, UK, have revealed the oldest known hominin footprint surface outside Africa at between ca. 1 million and 0.78 million years ago. The site has long been recognised for the preservation of sediments containing Early Pleistocene fauna and flora, but since 2005 has also yielded humanly made flint artefacts, extending the record of human occupation of northern Europe by at least 350,000 years. The sediments consist of sands, gravels and laminated silts laid down by a large river within the upper reaches of its estuary. In May 2013 extensive areas of the laminated sediments were exposed on the foreshore. On the surface of one of the laminated silt horizons a series of hollows was revealed in an area of ca. 12 m(2). The surface was recorded using multi-image photogrammetry which showed that the hollows are distinctly elongated and the majority fall within the range of juvenile to adult hominin foot sizes. In many cases the arch and front/back of the foot can be identified and in one case the impression of toes can be seen. Using foot length to stature ratios, the hominins are estimated to have been between ca. 0.93 and 1.73 m in height, suggestive of a group of mixed ages. The orientation of the prints indicates movement in a southerly direction on mud-flats along the river edge. Early Pleistocene human fossils are extremely rare in Europe, with no evidence from the UK. The only known species in western Europe of a similar age is Homo antecessor, whose fossil remains have been found at Atapuerca, Spain. The foot sizes and estimated stature of the hominins from Happisburgh fall within the range derived from the fossil evidence of Homo antecessor.

  11. A lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae).

    PubMed

    Klymiuk, Ashley A; Stockey, Ruth A

    2012-06-01

    Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.

  12. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    PubMed Central

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have not yet been sampled or are difficult to identify because of the fragmentary nature of the specimens. PMID:22761723

  13. Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkman, P.A.

    Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmentalmore » proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.« less

  14. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.

    PubMed

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-11-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.

  15. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina.

    PubMed

    Gandolfo, María A; Hermsen, Elizabeth J

    2017-03-01

    Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum . The Patagonian fossil fruits are the oldest known record for Ceratopetalum . Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Introducing Evolution to Non-Biology Majors via the Fossil Record: A Case Study from the Israeli High School System.

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    Discusses challenges faced in the teaching and learning of evolution. Presents a curricular program and a case study on evolutionary biology. Investigates students' conceptual knowledge after exposure to the program "From Dinosaurs to Darwin," which focuses on fossil records as evidence of evolution. (Contains 32 references.) (YDS)

  17. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics

    PubMed Central

    2013-01-01

    Background Molecular phylogenetics has provided unprecedented resolution in the ruminant evolutionary tree. However, molecular age estimates using only one or a few (often misapplied) fossil calibration points have produced a diversity of conflicting ages for important evolutionary events within this clade. I here identify 16 fossil calibration points of relevance to the phylogeny of Bovidae and Ruminantia and use these, individually and together, to construct a dated molecular phylogeny through a reanalysis of the full mitochondrial genome of over 100 ruminant species. Results The new multi-calibrated tree provides ages that are younger overall than found in previous studies. Among these are young ages for the origin of crown Ruminantia (39.3–28.8 Ma), and crown Bovidae (17.3–15.1 Ma). These are argued to be reasonable hypotheses given that many basal fossils assigned to these taxa may in fact lie on the stem groups leading to the crown clades, thus inflating previous age estimates. Areas of conflict between molecular and fossil dates do persist, however, especially with regard to the base of the rapid Pecoran radiation and the sister relationship of Moschidae to Bovidae. Results of the single-calibrated analyses also show that a very wide range of molecular age estimates are obtainable using different calibration points, and that the choice of calibration point can influence the topology of the resulting tree. Compared to the single-calibrated trees, the multi-calibrated tree exhibits smaller variance in estimated ages and better reflects the fossil record. Conclusions The use of a large number of vetted fossil calibration points with soft bounds is promoted as a better approach than using just one or a few calibrations, or relying on internal-congruency metrics to discard good fossil data. This study also highlights the importance of considering morphological and ecological characteristics of clades when delimiting higher taxa. I also illustrate how phylogeographic and paleoenvironmental hypotheses inferred from a tree containing only extant taxa can be problematic without consideration of the fossil record. Incorporating the fossil record of Ruminantia is a necessary step for future analyses aiming to reconstruct the evolutionary history of this clade. PMID:23927069

  18. Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae).

    PubMed

    Delfino, Massimo

    2017-07-13

    Isolated amphibian bones from the early Pliocene of Kanapoi (West Turkana, Kenya) help to improve the scarce fossil record of the late Neogene and Quaternary amphibians from East Africa. All currently available 579 bones are referable exclusively to the Anura (frogs and toads). More than half of the remains (366) are identified as Hemisus cf. Hemisus marmoratus, an extant species that still inhabits Kenya, but apparently not the northwest of the country and the Turkana area in particular. The rest of the remains are identified simply as Anura indet. because of poor preservation or non congruence with the relatively few African extant taxa whose osteology is known in detail. The Hemisus material represents the first fossil record for Hemisotidae, an endemic African family of peculiar, head-first burrowing frogs, whose sister taxon relationships indicate a divergence from brevicipitids in the Late Cretaceous or early Paleocene. The ecological requirements of extant H. marmoratus suggest that the Kanapoi area surrounding the fluvial and deltaic settings, from where the fossil remains of vertebrates were buried, was likely a grassland or relatively dry, open low tree-shrub savanna. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Origin of bonebeds in Quaternary tank deposits

    NASA Astrophysics Data System (ADS)

    Araújo-Júnior, Hermínio Ismael de; Porpino, Kleberson de Oliveira; Bergqvist, Lílian Paglarelli

    2017-07-01

    Tank deposits are an exceptional type of fossiliferous deposit and bear a remarkably fossil record of the Pleistocene megafauna of South America, particularly of Brazil. The taphonomy of vertebrate remains preserved in this type of environmental context was clearly driven by climate, similarly to most of the Quaternary continental fossil record. The formation of the vertebrates fossil record in tank deposits was influenced by the climate seasonality typical of arid climate. The taphonomic history of most tank deposits is a consequence of this seasonality and, as a result, the paleoecological data preserved in their fossil assemblages is reliable with respect to paleobiological and paleoenvironmental settings of the Quaternary ecosystems of the Brazilian Intertropical Region (BIR). Other tank deposits experienced an unusual taphonomic history that, besides climate, was affected by recurrent events of reworking produced by the depositional agents dominant in the surrounding alluvial plains. The conclusions obtained here concerning the main taphonomic settings and formative processes that characterize fossil vertebrate assemblages of tank deposits will help further studies aimed to recover information on the paleoecology of Quaternary fauna collected in such deposits by allowing a better understanding of their time and spatial resolutions and other potential biases.

  20. Adaptation, plant evolution, and the fossil record

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases, environmental disruption appears to have been a major factor in shaping the fossil record. This does not mean that continuing adaptation was not important during this interval, but it may indicate that adaptive evolution was strongest in environments other than those best represented in the paleobotanical record.

  1. Adaptation, plant evolution, and the fossil record.

    PubMed

    Knoll, A H; Niklas, K J

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases, environmental disruption appears to have been a major factor in shaping the fossil record. This does not mean that continuing adaptation was not important during this interval, but it may indicate that adaptive evolution was strongest in environments other than those best represented in the paleobotanical record.

  2. The first fossil of a bolbitidoid fern belongs to the early-divergent lineages of Elaphoglossum (Dryopteridaceae).

    PubMed

    Lóriga, Josmaily; Schmidt, Alexander R; Moran, Robbin C; Feldberg, Kathrin; Schneider, Harald; Heinrichs, Jochen

    2014-09-01

    • Closing gaps in the fossil record and elucidating phylogenetic relationships of mostly incomplete fossils are major challenges in the reconstruction of the diversification of fern lineages through time. The cosmopolitan family Dryopteridaceae represents one of the most species-rich families of leptosporangiate ferns, yet its fossil record is sparse and poorly understood. Here, we describe a fern inclusion in Miocene Dominican amber and investigate its relationships to extant Dryopteridaceae.• The morphology of the fossil was compared with descriptions of extant ferns, resulting in it being tentatively assigned to the bolbitidoid fern genus Elaphoglossum. This assignment was confirmed by reconstructing the evolution of the morphological characters preserved in the inclusion on a molecular phylogeny of 158 extant bolbitidoid ferns. To assess the morphology-based assignment of the fossil to Elaphoglossum, we examined DNA-calibrated divergence time estimates against the age of the amber deposits from which it came.• The fossil belongs to Elaphoglossum and is the first of a bolbitidoid fern. Its assignment to a particular section of Elaphoglossum could not be determined; however, sects. Lepidoglossa, Polytrichia, and Setosa can be discounted because the fossil lacks subulate scales or scales with acicular marginal hairs. Thus, the fossil might belong to either sects. Amygdalifolia, Wrightiana, Elaphoglossum, or Squamipedia or to an extinct lineage.• The discovery of a Miocene Elaphoglossum fossil provides remarkable support to current molecular clock-based estimates of the diversification of these ferns. © 2014 Botanical Society of America, Inc.

  3. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.

    PubMed

    Mitchell, Jonathan S

    2015-09-01

    Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. First report of fossil "keratose" demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction.

    PubMed

    Luo, Cui; Reitner, Joachim

    2014-06-01

    Fossil record of Phanerozoic non-spicular sponges, beside of being important with respect to the lineage evolution per se, could provide valuable references for the investigation of Precambrian ancestral animal fossils. However, although modern phylogenomic studies resolve non-spicular demosponges as the sister group of the remaining spiculate demosponges, the fossil record of the former is extremely sparse or unexplored compared to that of the latter; the Middle Cambrian Vauxiidae Walcott 1920, is the only confirmed fossil taxon of non-spicular demosponges. Here, we describe carbonate materials from Devonian (Upper Givetian to Lower Frasnian) bioherms of northern France and Triassic (Anisian) microbialites of Poland that most likely represent fossil remnants of keratose demosponges. These putative fossils of keratose demosponges are preserved as automicritic clumps. They are morphologically distinguishable from microbial fabrics but similar to other spiculate sponge fossils, except that the skeletal elements consist of fibrous networks instead of assembled spicules. Consistent with the immunological behavior of sponges, these fibrous skeletons often form a rim at the edge of the automicritic aggregate, separating the inner part of the aggregate from foreign objects. To confirm the architecture of these fibrous networks, two fossil specimens and a modern thorectid sponge for comparison were processed for three-dimensional (3-D) reconstruction using serial grinding tomography. The resulting fossil reconstructions are three-dimensionally anastomosing, like modern keratose demosponges, but their irregular and nonhierarchical meshes indicate a likely verongid affinity, although a precise taxonomic conclusion cannot be made based on the skeletal architecture alone. This study is a preliminary effort, but an important start to identify fossil non-spicular demosponges in carbonates and to re-evaluate their fossilization potential.

  5. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri

    2012-01-01

    Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.

  6. Earth's early fossil record: Why not look for similar fossils on Mars?

    NASA Technical Reports Server (NTRS)

    Awramik, Stanley M.

    1989-01-01

    The oldest evidence of life on Earth is discussed with attention being given to the structure and formation of stromatolites and microfossils. Fossilization of microbes in calcium carbonate or chert media is discussed. In searching for fossil remains on Mars, some lessons learned from the study of Earth's earliest fossil record can be applied. Certain sedimentary rock types and sedimentary rock configurations should be targeted for investigation and returned by the Martian rover and ultimately by human explorers. Domical, columnar to wavy laminated stratiform sedimentary rocks that resemble stromatolites should be actively sought. Limestone, other carbonates, and chert are the favored lithology. Being macroscopic, stromatolites might be recognized by an intelligent unmanned rover. In addition, black, waxy chert with conchoidal fracture should be sought. Chert is by far the preferred lithology for the preservation of microbes and chemical fossils. Even under optimal geological conditions (little or no metamorphism or tectonic alteration, excellent outcrops, and good black chert) and using experienced field biogeologists, the chances of finding well preserved microbial remains in chert are very low.

  7. Miocene Fossils Reveal Ancient Roots for New Zealand's Endemic Mystacina (Chiroptera) and Its Rainforest Habitat.

    PubMed

    Hand, Suzanne J; Lee, Daphne E; Worthy, Trevor H; Archer, Michael; Worthy, Jennifer P; Tennyson, Alan J D; Salisbury, Steven W; Scofield, R Paul; Mildenhall, Dallas C; Kennedy, Elizabeth M; Lindqvist, Jon K

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina.

  8. Miocene Fossils Reveal Ancient Roots for New Zealand’s Endemic Mystacina (Chiroptera) and Its Rainforest Habitat

    PubMed Central

    Hand, Suzanne J.; Lee, Daphne E.; Worthy, Trevor H.; Archer, Michael; Worthy, Jennifer P.; Tennyson, Alan J. D.; Salisbury, Steven W.; Scofield, R. Paul; Mildenhall, Dallas C.; Kennedy, Elizabeth M.; Lindqvist, Jon K.

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19–16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina. PMID:26083758

  9. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism.

    PubMed

    Su, Tao; Wilf, Peter; Xu, He; Zhou, Zhe-Kun

    2014-08-01

    • The Qinghai-Tibet Plateau is a major center of plant diversity and endemism, but little is known about how this developed due to the region's very scarce paleobotanical record. The silverberry genus Elaeagnus (Elaeagnaceae) reaches its greatest diversity (54 species) and endemism (36 species) in this area. Fossil Elaeagnaceae could provide significant evidence for the phylogeny and biogeography of the family and contribute primary data regarding the evolution of the unique Qinghai-Tibet Plateau flora in its dramatic setting of tectonic and climatic change.• We describe four fossil leaves with diagnostic features of Elaeagnus from the late Miocene of eastern Tibet, modern altitude of 3910 m a.s.l.. We also review prior fossil records of Elaeagnaceae.• The well-preserved, densely packed, stellate scales on fossil leaf surfaces are diagnostic of Elaeagnaceae. We assign these fossil leaves to Elaeagnus tibetensis T. Su et Z.K. Zhou sp. nov., comprising the first confirmed fossil Elaeagnus leaves worldwide.• Elaeagnus was present in eastern Tibet by the late Miocene. Together with previous fossil records, the new species supports a Holarctic history of the family. The diversification of Elaeagnus in the Qinghai-Tibet Plateau and adjacent areas might have been driven by continuous uplift at least since the late Miocene, causing formation of complex topography and climate with high rainfall seasonality. The characteristic scales on leaf surfaces are likely to be an important functional adaptation to seasonal droughts during early spring. © 2014 Botanical Society of America, Inc.

  10. The Strontium Isotope Composition of Fossil Hackberry Seed Carbonate and Tooth Enamel as a Potential Record of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Cooke, M. J.; Stern, L. A.; Banner, J. L.

    2001-12-01

    The Edwards Plateau in central Texas has experienced significant soil erosion since the Last Glacial Maximum. In contrast to the thin soils that mantle the Cretaceous limestone bedrock of the modern Edwards Plateau, Quaternary fossils of burrowing mammals contained within several central Texas cave deposits suggest soil cover was much thicker in the latest Pleistocene and early Holocene. As the landscape is denuded, the Cretaceous limestone bedrock is exhumed and becomes a more important source of exchangeable Sr to the soils. Therefore, the Sr isotope composition of the soil and organisms deriving nutrients from the soil, such as plants and herbivores, should become more like the Sr isotope composition of the bedrock as erosion continues. Because the marine limestone bedrock has a lower 87Sr/86Sr value than the soil, the exchangeable soil Sr should evolve to lower 87Sr/86Sr values through time resulting in a decrease in the 87Sr/86Sr of plants and animals deriving nutrients from the soil. In order to test this hypothesis, terrestrial fossils from an extensively dated Quaternary deposit within Hall's Cave, Kerr County, Texas were analyzed by TIMS for 87Sr/86Sr. The materials analyzed include aragonitic fossil hackberry seeds and rodent tooth enamel. Results indicate an overall decrease in the 87Sr/86Sr of fossil hackberry seed aragonite and rodent tooth enamel over the last 16,000 years, with the highest rate of decrease in the 87Sr/86Sr of fossil hackberry seeds (0.70982 to 0.70841) occurring between approximately 16,000 and 10,000 Y.B.P. This decrease in the 87Sr/86Sr is interpreted as evidence for an increase in the proportion of bedrock-derived Sr to the soils, corresponding to a general decrease in soil thickness. An increase in aridity or an increase in the seasonality of precipitation during this time could account for the post-glacial soil erosion in central Texas. This study suggests that the 87Sr/86Sr of fossils may be a useful proxy for paleo soil depth. Additionally, when applied to central Texas cave fossils, this technique may be able to provide a better understanding of the geomorphic and environmental history of the Edwards Plateau.

  11. An Additional Baurusuchid from the Cretaceous of Brazil with Evidence of Interspecific Predation among Crocodyliformes

    PubMed Central

    Godoy, Pedro L.; Montefeltro, Felipe C.; Norell, Mark A.; Langer, Max C.

    2014-01-01

    A new Baurusuchidae (Crocodyliformes, Mesoeucrocodylia), Aplestosuchus sordidus, is described based on a nearly complete skeleton collected in deposits of the Adamantina Formation (Bauru Group, Late Cretaceous) of Brazil. The nesting of the new taxon within Baurusuchidae can be ensured based on several exclusive skull features of this clade, such as the quadrate depression, medial approximation of the prefrontals, rostral extension of palatines (not reaching the level of the rostral margin of suborbital fenestrae), cylindrical dorsal portion of palatine bar, ridge on the ectopterygoid-jugal articulation, and supraoccipital with restricted thin transversal exposure in the caudalmost part of the skull roof. A newly proposed phylogeny of Baurusuchidae encompasses A. sordidus and recently described forms, suggesting its sixter-taxon relationship to Baurusuchus albertoi, within Baurusuchinae. Additionally, the remains of a sphagesaurid crocodyliform were preserved in the abdominal cavity of the new baurusuchid. Direct fossil evidence of behavioral interaction among fossil crocodyliforms is rare and mostly restricted to bite marks resulting from predation, as well as possible conspecific male-to-male aggression. This is the first time that a direct and unmistaken evidence of predation between different taxa of this group is recorded as fossils. This discovery confirms that baurusuchids were top predators of their time, with sphagesaurids occupying a lower trophic position, possibly with a more generalist diet. PMID:24809508

  12. Global Climate Change (GCC) Issues and Their Impacts on the US Army Corps of Engineers

    DTIC Science & Technology

    1991-11-01

    Amazon River flow. At first this flow was channeled down the Mississippi River to the Gulf of Mexico: "... about 11,000 years ago, however, a major...Foraminifera ( fossil evidence of microorganisms that inhabit water masses of specific temperature and salinity) from surface waters of the Gulf of...records can be tied into tree ring records (both current and fossilized ) to produce an accurate record for the last 8,200 years. This type of study is

  13. Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths

    PubMed Central

    McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-01-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene. PMID:22110404

  14. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. First record of Podocarpoid fossil wood in South China

    PubMed Central

    Li, Long; Jin, Jian-Hua; Quan, Cheng; Oskolski, Alexei A.

    2016-01-01

    A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is characterized by distinct growth rings, circular to oval tracheids in cross section, 1–2-seriate opposite pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3–4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. PMID:27571780

  16. A new species of the genus Orchesia Latreille (Coleoptera: Melandryidae) from Baltic amber with a key to species described from fossil resins.

    PubMed

    Alekseev, Vitalii I; Bukejs, Andris

    2015-04-17

    Orchesia (Orchestera) canaliculata sp. nov. is described and illustrated from Eocene Baltic amber (Kaliningrad Region, Russia). New fossil records on O. turkini Alekseev & Bukejs and O. rasnitzyni Nikitsky are presented. A key to species of Orchesia Latreille, described from fossil resins, is provided.

  17. How Theories on Origins Can Be Taught in Public Schools without Controversy.

    ERIC Educational Resources Information Center

    Sunderland, Luther D.

    The two general concepts of how living organisms originated are defined: namely, common ancestry evolution and the abrupt appearance of completed organisms on earth. The fossil record is examined from the deepest first fossil-bearing rocks to the top of the geologic column. Evidence obtained from fossil museums is presented so students can…

  18. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  19. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model

    PubMed Central

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-01-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  20. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    PubMed

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  1. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  2. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals

    NASA Astrophysics Data System (ADS)

    Sher, A. V.; Kuzmina, S. A.; Kuznetsova, T. V.; Sulerzhitsky, L. D.

    2005-03-01

    Multidisciplinary study of a key section on the Laptev Sea Coast (Bykovsky Peninsula, east Lena Delta) in 1998-2001 provides the most complete record of Middle and Late Weichselian environments in the East Siberian Arctic. The 40-m high Mamontovy Khayata cliff is a typical Ice Complex section built of icy silts with a network of large syngenetic polygonal ice wedges, and is richly fossiliferous. In combination with pollen, plant macrofossil and mammal fossils, a sequence of ca 70 insect samples provides a new interpretation of the environment and climate of the area between ca 50 and 12 ka. The large number of radiocarbon dates from the section, together with an extensive 14C database on mammal bones, allows chronological correlation of the various proxies. The Bykovsky record shows how climate change, and the Last Glacial Maximum in particular, affected terrestrial organisms such as insects and large grazing mammals. Both during the presumed "Karginsky Interstadial" (MIS 3) and the Sartanian Glacial (MIS 2), the vegetation remained a mosaic arctic grassland with relatively high diversity of grasses and herbs and dominance of xeric habitats: the tundra-steppe type. This biome was supported by a constantly very continental climate, caused by low sea level and enormous extension of shelf land. Variations within the broad pattern were caused mainly by fluctuations in summer temperature, related to global trends but overprinted by the effect of continentality. No major changes in humidity were observed nor were advances of modern-type forest or forest-tundra recorded, suggesting a major revision of the "Karginsky Interstadial" paradigm. The changing subtypes of the tundra-steppe environment were persistently favourable for mammalian grazers, which inhabited the shelf lowlands throughout the studied period. Mammal population numbers were lowered during the LGM, especially toward its end, and then flourished in a short, but impressive peak in the latest Weichselian, just before the collapse of the tundra-steppe biome. Throughout MIS 3 and MIS 2, the climate remained very favourable for the aggradation of permafrost. No events of regional permafrost degradation were observed in the continuous Bykovsky sequence until the very end of the Pleistocene.

  3. Is evolutionary history repeatedly rewritten in light of new fossil discoveries?

    PubMed

    Tarver, J E; Donoghue, P C J; Benton, M J

    2011-02-22

    Mass media and popular science journals commonly report that new fossil discoveries have 'rewritten evolutionary history'. Is this merely journalistic hyperbole or is our sampling of systematic diversity so limited that attempts to derive evolutionary history from these datasets are premature? We use two exemplars-catarrhine primates (Old World monkeys and apes) and non-avian dinosaurs-to investigate how the maturity of datasets can be assessed. Both groups have been intensively studied over the past 200 years and so should represent pinnacles in our knowledge of vertebrate systematic diversity. We test the maturity of these datasets by assessing the completeness of their fossil records, their susceptibility to changes in macroevolutionary hypotheses and the balance of their phylogenies through study time. Catarrhines have shown prolonged stability, with discoveries of new species being evenly distributed across the phylogeny, and thus have had little impact on our understanding of their fossil record, diversification and evolution. The reverse is true for dinosaurs, where the addition of new species has been non-random and, consequentially, their fossil record, tree shape and our understanding of their diversification is rapidly changing. The conclusions derived from these analyses are relevant more generally: the maturity of systematic datasets can and should be assessed before they are exploited to derive grand macroevolutionary hypotheses.

  4. Primate diversification inferred from phylogenies and fossils.

    PubMed

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Footprints reveal direct evidence of group behavior and locomotion in Homo erectus

    PubMed Central

    Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.

    2016-01-01

    Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790

  6. First records of Canis dirus and Smilodon fatalis from the late Pleistocene Tule Springs local fauna, upper Las Vegas Wash, Nevada

    PubMed Central

    Springer, Kathleen B.

    2016-01-01

    Late Pleistocene groundwater discharge deposits (paleowetlands) in the upper Las Vegas Wash north of Las Vegas, Nevada, have yielded an abundant and diverse vertebrate fossil assemblage, the Tule Springs local fauna (TSLF). The TSLF is the largest open-site vertebrate fossil assemblage dating to the Rancholabrean North American Land Mammal Age in the southern Great Basin and Mojave Desert. Over 600 discrete body fossil localities have been recorded from the wash, including an area that now encompasses Tule Springs Fossil Beds National Monument (TUSK). Paleowetland sediments exposed in TUSK named the Las Vegas Formation span the last 250 ka, with fossiliferous sediments spanning ∼100–13 ka. The recovered fauna is dominated by remains of Camelopsand Mammuthus, and also includes relatively common remains of extinct Equusand Bisonas well as abundant vertebrate microfaunal fossils. Large carnivorans are rare, with only Puma concolor and Panthera atrox documented previously. Postcranial remains assigned to the species Canis dirus (dire wolf) and Smilodon fatalis (sabre-toothed cat) represent the first confirmed records of these species from the TSLF, as well as the first documentation of Canis dirus in Nevada and the only known occurrence of Smilodonin southern Nevada. The size of the recovered canid fossil precludes assignment to other Pleistocene species of Canis. The morphology of the felid elements differentiates them from other large predators such as Panthera, Homotherium, and Xenosmilus, and the size of the fossils prevents assignment to other species of Smilodon. The confirmed presence of S. fatalis in the TSLF is of particular interest, indicating that this species inhabited open habitats. In turn, this suggests that the presumed preference of S. fatalis for closed-habitat environments hunting requires further elucidation. PMID:27366649

  7. First records of Canis dirus and Smilodon fatalis from the late Pleistocene Tule Springs local fauna, upper Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Scott, Eric; Springer, Kathleen

    2016-01-01

    Late Pleistocene groundwater discharge deposits (paleowetlands) in the upper Las Vegas Wash north of Las Vegas, Nevada, have yielded an abundant and diverse vertebrate fossil assemblage, the Tule Springs local fauna (TSLF). The TSLF is the largest open-site vertebrate fossil assemblage dating to the Rancholabrean North American Land Mammal Age in the southern Great Basin and Mojave Desert. Over 600 discrete body fossil localities have been recorded from the wash, including an area that now encompasses Tule Springs Fossil Beds National Monument (TUSK). Paleowetland sediments exposed in TUSK named the Las Vegas Formation span the last 250 ka, with fossiliferous sediments spanning ∼100–13 ka. The recovered fauna is dominated by remains of Camelopsand Mammuthus, and also includes relatively common remains of extinct Equusand Bisonas well as abundant vertebrate microfaunal fossils. Large carnivorans are rare, with only Puma concolor and Panthera atrox documented previously. Postcranial remains assigned to the species Canis dirus (dire wolf) and Smilodon fatalis(sabre-toothed cat) represent the first confirmed records of these species from the TSLF, as well as the first documentation of Canis dirus in Nevada and the only known occurrence of Smilodonin southern Nevada. The size of the recovered canid fossil precludes assignment to other Pleistocene species of Canis. The morphology of the felid elements differentiates them from other large predators such as Panthera, Homotherium, and Xenosmilus, and the size of the fossils prevents assignment to other species of Smilodon. The confirmed presence of S. fatalis in the TSLF is of particular interest, indicating that this species inhabited open habitats. In turn, this suggests that the presumed preference of S. fatalis for closed-habitat environments hunting requires further elucidation.

  8. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms

    PubMed Central

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies. PMID:28484485

  9. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms.

    PubMed

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  10. Understanding Late Triassic low latitude terrestrial ecosystems: new insights from the Colorado Plateau Coring Project (CPCP)

    NASA Astrophysics Data System (ADS)

    Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.

    2017-12-01

    The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent with the hypothesis that latitudinal differences in climate sorted the biota found across Pangaea during the Late Triassic Period.

  11. Luminescence dating and palaeomagnetic age constraint on hominins from Sima de los Huesos, Atapuerca, Spain.

    PubMed

    Arnold, Lee J; Demuro, Martina; Parés, Josep M; Arsuaga, Juan Luis; Aranburu, Arantza; Bermúdez de Castro, José María; Carbonell, Eudald

    2014-02-01

    Establishing a reliable chronology on the extensive hominin remains at Sima de los Huesos is critical for an improved understanding of the complex evolutionary histories and phylogenetic relationships of the European Middle Pleistocene hominin record. In this study, we use a combination of 'extended-range' luminescence dating techniques and palaeomagnetism to provide new age constraint on sedimentary infills that are unambiguously associated with the Sima fossil assemblage. Post-infrared-infrared stimulated luminescence (pIR-IR) dating of K-feldspars and thermally transferred optically stimulated luminescence (TT-OSL) dating of individual quartz grains provide weighted mean ages of 433 ± 15 ka (thousands of years) and 416 ± 19 ka, respectively, for allochthonous sedimentary horizons overlying the hominin-bearing clay breccia. The six replicate luminescence ages obtained for this deposit are reproducible and provide a combined minimum age estimate of 427 ± 12 ka for the underlying hominin fossils. Palaeomagnetic directions for the luminescence dated sediment horizon and underlying fossiliferous clays display exclusively normal polarities. These findings are consistent with the luminescence dating results and confirm that the hominin fossil horizon accumulated during the Brunhes Chron, i.e., within the last 780 ka. The new bracketing age constraint for the Sima hominins is in broad agreement with radiometrically dated Homo heidelbergensis fossil sites, such as Mauer and Arago, and suggests that the split of the H. neanderthalensis and H. sapiens lineages took place during the early Middle Pleistocene. More widespread numerical dating of key Early and Middle Pleistocene fossil sites across Europe is needed to test and refine competing models of hominin evolution. The new luminescence chronologies presented in this study demonstrate the versatility of TT-OSL and pIR-IR techniques and the potential role they could play in helping to refine evolutionary histories over Middle Pleistocene timescales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Replication in plastic of three-dimensional fossils preserved in indurated clastic sedimentary rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapasink, H.T.; Johnston, P.A.

    A new technique for replicating in plastic the fossils preserved in clastic rocks should now make available reliable morphologic and frequency data, comparable in quality to those derived from acid-prepared silicified faunas, for a major segment of the fossil record. The technique involves 3 steps: the dissolution of carbonate in fossiliferous rocks with hydrochloric acid, impregnation of resulting voids with liquid plastic, and dissolution of the rock matrix with hydrofluoric acid, leaving a concentrate of plastic-replaced fossils.

  13. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  14. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  15. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  16. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  17. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  18. Review of the fossil matamata turtles: earliest well-dated record and hypotheses on the origin of their present geographical distribution

    NASA Astrophysics Data System (ADS)

    Ferreira, Gabriel S.; Rincón, Ascanio D.; Solórzano, Andrés; Langer, Max C.

    2016-04-01

    The matamata ( Chelus fimbriatus) is a highly aquatic chelid turtle known exclusively from northern South America. Due to its extremely modified morphology, it is well circumscribed among living taxa, but that is not the case of the two extinct species ascribed to the taxon, Chelus colombianus and Chelus lewisi. These were originally described for the Miocene of Colombia and Venezuela, respectively, and are known mostly from post-cranial material. Few traits have been considered diagnostic for these fossil taxa, and their shared geographic and temporal distributions raise doubts about their distinctiveness. Here, we describe new turtle remains from the early Miocene Castillo Formation, at Cerro la Cruz, northwestern Venezuela, assigning them to C. colombianus. We also review the taxonomy and diagnostic features of the fossil species of Chelus, comparing them with the variation recognized within C. fimbriatus. All alleged differences between the fossil Chelus species were found in our sample of the extant species, and may represent intraspecific variation of a single fossil species. Further, we reviewed the fossil record of Chelus spp. and proposed a paleobiogeographic hypothesis to explain its present geographic range.

  19. Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms.

    PubMed

    Poinar, George

    2017-07-01

    Ticks transmit a variety of pathogenic organisms to vertebrates, especially mammals. The fossil record of such associations is extremely rare. An engorged nymphal tick of the genus Ambylomma in Dominican amber was surrounded by erythrocytes from its mammalian host. Some of the exposed erythrocytes contained developmental stages of a hemoprotozoan resembling members of the Order Piroplasmida. The fossil piroplasm is described, its stages compared with those of extant piroplasms, and reasons provided why the mammalian host could have been a primate. The parasites were also found in the gut epithelial cells and body cavity of the fossil tick. Aside from providing the first fossil mammalian red blood cells and the first fossil intraerythrocytic hemoparasites, the present discovery shows that tick-piroplasm associations were already well established in the Tertiary. This discovery provides a timescale that can be used in future studies on the evolution of the Piroplasmida. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com Version of Record, first published online March 20, 2017 with fixed content and layout in compliance with Art. 8.1.3.2 ICZN.

  20. An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”

    PubMed Central

    Li, Qiang; Ni, Xijun

    2016-01-01

    Treeshrews are widely considered a “living model” of an ancestral primate, and have long been called “living fossils”. Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage. PMID:26766238

  1. Unlocking the early fossil record of the arthropod central nervous system

    PubMed Central

    Edgecombe, Gregory D.; Ma, Xiaoya; Strausfeld, Nicholas J.

    2015-01-01

    Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits. PMID:26554038

  2. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater.

    PubMed

    Potter-McIntyre, Sally L; Chan, Marjorie A; McPherson, Brian J

    2014-01-01

    Iron (oxyhydr)oxide microbial mats in modern to ∼100 ka tufa terraces are present in a cold spring system along Ten Mile Graben, southeastern Utah, USA. Mats exhibit morphological, chemical, and textural biosignatures and show diagenetic changes that occur over millennial scales. The Jurassic Brushy Basin Member of the Morrison Formation in the Four Corners region of the USA also exhibits comparable microbial fossils and iron (oxyhydr)oxide biosignatures in the lacustrine unit. Both the modern spring system and Brushy Basin Member represent alkaline, saline, groundwater-fed systems and preserve diatoms and other similar algal forms with cellular elaboration. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se, P) are associated with microbial fossils in modern and ancient iron (oxyhydr)oxides and may be potential markers for biosignatures. The presence of ferrihydrite in ∼100 ka fossil microbial mats and Jurassic rocks suggests that this thermodynamically unstable mineral may also be a potential biomarker. One of the most extensive sedimentary records on Mars is exposed in Gale Crater and consists of non-acidic clays and sulfates possibly of lacustrine origin. These terrestrial iron (oxyhydr)oxide examples are a valuable analogue because of similar iron- and clay-rich host rock compositions and will help (1) understand diagenetic processes in a non-acidic, saline lacustrine environment such as the sedimentary rocks in Gale Crater, (2) document specific biomediated textures, (3) demonstrate how biomediated textures might persist or respond to diagenesis over time, and (4) provide a ground truth library of textures to explore and compare in extraterrestrial iron (oxyhydr)oxides, where future explorations hope to detect past evidence of life.

  3. Fossil Fuel Industry Funding of Climate-Relevant Research at U.S. Universities

    NASA Astrophysics Data System (ADS)

    Franta, B.; Supran, G.

    2017-12-01

    Commercial producers of lead, tobacco, petroleum, and other products have funded extensive scholarly research in ways designed to confuse the public about the dangers of those products and thwart regulation [1-3]. For example, strategy documentation of the U.S. oil and gas industry from the late 1990s describes using selective support for scientists as a strategy for creating an atmosphere of debate and uncertainty, with the ultimate goal of delaying and defeating climate policies [4]. In this context, we systematically examine current funding from commercial fossil fuel interests of climate-relevant research - such as energy technology and climate policy research - in U.S. universities. We quantify such funding using charitable giving databases, university websites, and other publicly available records. We find that, especially among the most influential universities, climate-related research programs are frequently dominated by funding from fossil fuel interests. Moreover, these relationships sometimes afford funders privileges including formal control over research directions. This work represents an advance in mapping the presence of commercial fossil fuel interests in academia and may contribute to discussions of appropriate funding systems for climate-relevant research. 1. Markowitz, G. and D. Rosner, Lead Wars: The Politics of Science and the Fate of America's Children. 1st ed. 2013: University of California Press. 2. Brandt, A.M., Inventing Conflicts of Interest: A History of Tobacco Industry Tactics. American Journal of Public Health, 2012. 102(1): p. 63-71. 3. Oreskes, N. and E.M. Conway, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. 2011: Bloomsbury Press. 4. Walker, J., Global Climate Science Communications Action Plan. 1998. Workshop held at the headquarters of the American Petroleum Institute.

  4. Sea-level history and tectonic uplift during the last-interglacial period (LIG): Inferred from the Bab al-Mandab coral reef terraces, southern Red Sea

    NASA Astrophysics Data System (ADS)

    Al-Mikhlafi, Ahmed Saif; Edwards, Lawrence R.; Cheng, Hai

    2018-02-01

    Results of U-series dating of late Pleistocene raised coral reef terraces from the Bab al-Mandab area, define two distinct groups: (1) well-preserved aragonitic fossil corals recorded from the Al-Hajaja terrace (Tr3) yield ages for last-interglacial period (LIG); and (2) calcitic fossil corals recovered from Perim Island terrace (Tr1) show varying degrees of U-series open system behavior and yield coral assemblage ages of LIG and older ages. Fossil corals from Tr1 are recrystallized corals, have anomalously high initial δ234U ranged from (152 ± 2‰ to 287 ± 7‰), corresponding to ages of ∼120 ka and ∼406 ka, respectively. Applying age reliability criteria on the current data suggest majority of the ages cannot be considered reliable and all are suspected for open system behavior associated with U loss/addition that significantly affects the 230Th/U ages. The diagenesis shown by these corals occurred probably due to extensive interaction of fossil corals with freshwater during the wet periods prevailed in southern Arabia coeval with the African monsoon, which led to U loss. Post-depositional U loss suggest (230Th/238U) increase, which shift the U-Th ages to unexpectedly higher levels as it is shown here. Measured elevation at the Al-Hajaja terrace (Tr3) is ∼4 ± 2 m above present sea level (apsl) consistent with eustatic sea level changes and indicates that the Bab al-Mandab area is stable at least since the LIG period. The Perim Island terrace (Tr1) is at elevation of 7 ± 2 m apsl; its reef yields diageneticaly-altered corals of multiple ages and cannot be used for sea level reconstructions.

  5. On microbial contaminants, micropseudofossils, and the oldest records of life

    USGS Publications Warehouse

    Cloud, P.; Morrison, K.

    1979-01-01

    Microbial contaminants may be introduced on outcrop as well as en route to or in the laboratory. Micropseudofossils may be natural or man-made. It is possible to recognize such misleading objects and important that they are not allowed to dilute the growing record of authentic pre-Phanerozoic life. Filamentous microbial contaminants from minute cracks in samples of ancient carbonate rocks from Brazil (perhaps 1 Ga old) and South Africa (???2.3 Ga old) are similar to occurrences previously described as fossils. Published records of supposedly Archean microbial life also include microcontaminants and laboratory artifacts. Although microstructures from sedimentary rocks of the Swaziland system could be fossils, they are not demonstrably so. The oldest structurally preserved fossils yet known seem to be the filaments described by Lois Nagy from stromatolitic limestone in the ???2.3 Ga old Malmani Dolomite of South Africa. It will be difficult to establish unequivocal older records in the absence of definitive ultrastructural or micro-chemical evidence. ?? 1979.

  6. Evaluation of the fossil fish-specific diversity in a chadian continental assemblage: Exploration of morphological continuous variation in Synodontis (Ostariophysi, Siluriformes).

    PubMed

    Pinton, Aurélie; Le Fur, Soizic; Otero, Olga

    2016-11-01

    In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486-1496, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera.

    PubMed

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L; Rasnitsyn, Alexandr P

    2012-12-01

    Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.].

  8. A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera

    PubMed Central

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L.; Rasnitsyn, Alexandr P.

    2012-01-01

    Abstract Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.] PMID:22723471

  9. Eumetazoan fossils in terminal Proterozoic phosphorites?

    PubMed Central

    Xiao, Shuhai; Yuan, Xunlai; Knoll, Andrew H.

    2000-01-01

    Phosphatic sedimentary rocks preserve a record of early animal life different from and complementary to that provided by Ediacaran fossils in terminal Proterozoic sandstones and shales. Phosphorites of the Doushantuo Formation, South China, contain eggs, egg cases, and stereoblastulae that document animals of unspecified phylogenetic position; small fossils containing putative spicules may specifically record the presence of sponges. Microfossils recently interpreted as the preserved gastrulae of cnidarian and bilaterian metazoans can alternatively be interpreted as conventional algal cysts and/or egg cases modified by diagenetic processes known to have had a pervasive influence on Doushantuo phosphorites. Regardless of this interpretation, evidence for Doushantuo eumetazoans is provided by millimeter-scale tubes that display tabulation and apical budding characteristic of some Cnidaria, especially the extinct tabulates. Like some Ediacaran remains, these small, benthic, colonial fossils may represent stem-group eumetazoans or stem-group cnidarians that lived in the late Proterozoic ocean. PMID:11095754

  10. Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish.

    PubMed

    Tanaka, Gengo; Parker, Andrew R; Hasegawa, Yoshikazu; Siveter, David J; Yamamoto, Ryoichi; Miyashita, Kiyoshi; Takahashi, Yuichi; Ito, Shosuke; Wakamatsu, Kazumasa; Mukuda, Takao; Matsuura, Marie; Tomikawa, Ko; Furutani, Masumi; Suzuki, Kayo; Maeda, Haruyoshi

    2014-12-23

    Vision, which consists of an optical system, receptors and image-processing capacity, has existed for at least 520 Myr. Except for the optical system, as in the calcified lenses of trilobite and ostracod arthropods, other parts of the visual system are not usually preserved in the fossil record, because the soft tissue of the eye and the brain decay rapidly after death, such as within 64 days and 11 days, respectively. The Upper Carboniferous Hamilton Formation (300 Myr) in Kansas, USA, yields exceptionally well-preserved animal fossils in an estuarine depositional setting. Here we show that the original colour, shape and putative presence of eumelanin have been preserved in the acanthodii fish Acanthodes bridgei. We also report on the tissues of its eye, which provides the first record of mineralized rods and cones in a fossil and indicates that this 300 Myr-old fish likely possessed colour vision.

  11. Leaf fossils of the ancient Tasmanian relict Microcachrys (Podocarpaceae) from New Zealand.

    PubMed

    Carpenter, Raymond J; Jordan, Gregory J; Mildenhall, Dallas C; Lee, Daphne E

    2011-07-01

    Microcachrys tetragona (Podocarpaceae), endemic to the mountains of Tasmania, represents the only remaining taxon of one of the world's most ancient and widely distributed conifer lineages. Remarkably, however, despite its ∼150 Myr heritage, our understanding of the fossil history of this lineage is based almost entirely on the pollen record. Fossils of Microcachrys are especially important in light of recent molecular phylogenetic and dating evidence. This evidence dates the Microcachrys lineage to the Mesozoic and does not support the traditional placement of Microcachrys as sister to the southeastern Australian genus Pherosphaera. We undertook comparative studies of the foliage architecture, cuticle, and paleoecology of newly discovered fossils from the Oligo-Miocene of New Zealand and M. tetragona and discussed the importance of Microcachrys in the context of Podocarpaceae phylogeny. The fossils represent the oldest and first extra-Australian macrofossils of Microcachrys and are described as the new foliage species M. novae-zelandiae. These fossils confirm that the distinctive opposite decussate phyllotaxy of the genus is at least as old as the Oligo-Miocene and contribute to evidence that Microcachrys plants were sometimes important components of oligotrophic swampy habitats. Leaf fossils of Microcachrys closely comparable with the only extant species confirm that this lineage had a much wider past distribution. The fossil record and recent molecular phylogenetic studies, including that of Microcachrys, also serve to emphasize the important status of Tasmania as a refugium for seed plant lineages.

  12. Pre-Ediacaran to Ediacaran Radiation in the Vindhyan Supergroup, India

    NASA Astrophysics Data System (ADS)

    Srivastava, P.

    2009-04-01

    The Vindhyan Supergroup is globally acknowledged amongst the best repositories of the Proterozoic life evidences. Fossils of the Vindhyan Supergroup exhibit extensive diversity and variable biologic affinities represented by: bacteria, cyanobacteria, algae, fungi, acritarchs, metaphytes and metazoans (including members of the Ediacaran Fauna). The size of fossils ranges from less than a micron to almost a meter. As the Ediacaran fauna has already been recorded from the uppermost Vindhyans that is from the Bhander Group, strata lying beneath and above the Ediacaran fossil bearing horizons, exhibit presence of a vast range of fossils (both micro and mega fossils) inclining towards variable biologic affinities stated earlier. Besides identified fossils, a number of peculiar morphologies (due to deviation of morphologies from conventional structures), present in various stratigraphic horizons of the entire Vindhyan Supergroup, have also been observed. It is very difficult to identify and decide biologic affinities of these peculiar morphologies or bizarre fossil forms. In thin sections of Lower Vindhyan cherts (of Semri Group), microfossils resembling, a Volvox colony like structure and a vase- shaped body without an opening, Lichen- like or fungal forms in which a sac encompassing a coiled filament may possibly indicate a symbiotic relationship are unique. Megascopic branching and associated Grypania like structure is another form preserved as an impression on a micritic limestone slab. A very unusual and interesting fossil is a transparent disc of about one mm in diameter, composed of numerous chromosome-like structures or the appendages of an unidentified mesoscopic insect- like organism. In Upper Vindhyans, microscopic unidentified forms (in thin sections of chert) include acritarchs and acanthomorphs of variable morphologies and a dividing cell like structure interpreted as rhodophycean form or a cleaving embryo of an animal affinity. Among the carbonaceous fossils, peculiar morphologies are branched filaments that have attached sporangia-like vesicles, Chuaria-like body comprising cluster of very small sized spheroids resemble with scale like structure; a chrysophycean alga or a multicellular tissue of a metaphyte. Another carbonaceous fossil represents a possible metazoan exhibiting an elongate body and a mid-gut like structure or a voucheriacean alga. Although the biologic affinities of these forms can be a matter of debate, their biogenic nature is almost undoubted. The presence of such forms in the Vindhyans, well exhibits pre-Ediacaran - Ediacaran radiation, advancement in morphology and a gradual evolution of life during the Palaeoproterozoic- Neoproterozoic period that is the time of Vindhyan deposition. In addition, presence of large- sized acritarchs, especially the presence of an age marker acanthomorph; Trachystrichosphaera sp. in Bhander Group (Uppermost Vindhyans) also suggests Vendian as an upper age limit of the Vindhyan Supergroup (which is also supported by the presence of Ediacaran fauna from the uppermost Vindhyans.

  13. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families

    PubMed Central

    van Tuinen, Marcel; Torres, Christopher R.

    2015-01-01

    Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life. PMID:26106406

  14. Shallow and marginal marine Triassic trace fossils and ichnofabric from northwest Australia (ocean drilling program leg 122)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droser, M.L.; O'Connell, S.

    The ichnofabric index method of ranking amount of bioturbation was used for the first time in conjunction with discrete trace fossils to examine shallow-water marine cores. Previous ichnological studies on cores have focused primarily on outer shelf and deep-sea discrete trace fossils. Upper Triassic cores examined in this study were recovered off northwest Australia during ODP Leg 122. These sediments were deposited in a shallow-water and continental shelf setting, which included swamp and prodelta environments. The most common lithology is siltstone with interbedded mudstone and sandstone. Sediments deposited in a swamp setting have rootlets and coal beds with an ichnologicalmore » record consisting primarily of mottled bedding rather than discrete trace fossils. Ichnofabric indices 1 through 5 were recorded. Marginal marine/lagoonal facies have a low trace fossil diversity with common Chondrites, Planolites, and Teichichnus. Recorded ichnofabric indices include 1, 2, and 3. Laminated mudstones and siltstones (ii1) are most common. Fully marine open shelf strata are thoroughly bioturbated (ii5 and ii6) with Thalassinoides, Zoophycos, Teichichnus, and Planolites. Wackestone and packstone occur in discrete uppermost Triassic intervals and have ii1 through ii6 represented. In part due to the drilling process, sandstones and reefal limestones were poorly recovered and ichnofabric is not well preserved. Physical sedimentary structures and lateral facies relationships can be difficult to discern in core. In shallow marine deposits, the distribution of ichnofabric indices and discrete trace fossils within these strata provide an additional important data base to evaluate depositional environments.« less

  15. Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale

    NASA Astrophysics Data System (ADS)

    Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A.; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni

    2015-12-01

    Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.

  16. †Kenyaichthyidae fam. nov. and †Kenyaichthys gen. nov. – First Record of a Fossil Aplocheiloid Killifish (Teleostei, Cyprinodontiformes)

    PubMed Central

    Altner, Melanie; Reichenbacher, Bettina

    2015-01-01

    The extant Cyprinodontiformes (killifishes) with their two suborders Cyprinodontoidei and Aplocheiloidei represent a diverse and well-studied group of fishes. However, their fossil record is comparatively sparse and has so far yielded members of the Cyprinodontoidei only. Here we report on cyprinodontiform fossils from the upper Miocene Lukeino Formation in the Tugen Hills of the Central Rift Valley of Kenya, which represent the first fossil record of an aplocheiloid killifish. A total of 169 specimens - mostly extraordinarily well preserved - and a sample of ten extant cyprinodontiform species were studied on the basis of morphometrics, meristics and osteology. A phylogenetic analysis using PAUP was also conducted for the fossils. Both the osteological data and the phylogenetic analysis provide strong evidence for the assignment of the fossils to the Aplocheiloidei, and justify the definition of the new family †Kenyaichthyidae, the new genus †Kenyaichthys and the new species †K. kipkechi sp. nov. The phylogenetic analysis unexpectedly places †Kenyaichthys gen. nov. in a sister relationship to the Rivulidae (a purely Neotropical group), a probable explanation might be lack of available synapomorphies for the Rivulidae, Nothobranchiidae and Aplocheilidae. The specimens of †K. kipkechi sp. nov. show several polymorphic characters and large overlap in meristic traits, which justifies their interpretation as a species flock in statu nascendi. Patterns of variation in neural and haemal spine dimensions in the caudal vertebrae of †Kenyaichthys gen. nov. and the extant species studied indicate that some previously suggested synapomorphies of the Cyprinodontoidei and Aplocheiloidei need to be revised. PMID:25923654

  17. Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale.

    PubMed

    Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni

    2015-12-01

    Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.

  18. Geologic constraints on the macroevolutionary history of marine animals

    PubMed Central

    Peters, Shanan E.

    2005-01-01

    The causes of mass extinctions and the nature of taxonomic radiations are central questions in paleobiology. Several episodes of taxonomic turnover in the fossil record, particularly the major mass extinctions, are generally thought to transcend known biases in the geologic record and are widely interpreted as distinct macroevolutionary phenomena that require unique forcing mechanisms. Here, by using a previously undescribed compilation of the durations of sedimentary rock sequences, I compare the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera. Many features of the highly variable record of taxonomic first and last occurrences in the marine animal fossil record, including the major mass extinctions, the frequency distribution of genus longevities, and short- and long-term patterns of genus diversity, can be predicted on the basis of the temporal continuity and quantity of preserved sedimentary rock. Although these results suggest that geologically mediated sampling biases have distorted macroevolutionary patterns in the fossil record, preservation biases alone cannot easily explain the extent to which the sedimentary record duplicates paleobiological patterns. Instead, these results suggest that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanerozoic. PMID:16105949

  19. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    PubMed

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  20. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family.

    PubMed

    Grímsson, Friðgeir; Kapli, Paschalia; Hofmann, Christa-Charlotte; Zetter, Reinhard; Grimm, Guido W

    2017-01-01

    We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.

  1. Fossil Crustaceans as Parasites and Hosts.

    PubMed

    Klompmaker, Adiël A; Boxshall, Geoff A

    2015-01-01

    Numerous crustacean lineages have independently moved into parasitism as a mode of life. In modern marine ecosystems, parasitic crustaceans use representatives from many metazoan phyla as hosts. Crustaceans also serve as hosts to a rich diversity of parasites, including other crustaceans. Here, we show that the fossil record of such parasitic interactions is sparse, with only 11 examples, one dating back to the Cambrian. This may be due to the limited preservation potential and small size of parasites, as well as to problems with ascribing traces to parasitism with certainty, and to a lack of targeted research. Although the confirmed stratigraphic ranges are limited for nearly every example, evidence of parasitism related to crustaceans has become increasingly more complete for isopod-induced swellings in decapods so that quantitative analyses can be carried out. Little attention has yet been paid to the origin of parasitism in deep time, but insight can be generated by integrating data on fossils with molecular studies on modern parasites. In addition, there are other traces left by parasites that could fossilize, but have not yet been recognized in the fossil record. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada).

    PubMed

    Matsunaga, Kelly K S; Stockey, Ruth A; Tomescu, Alexandru M F

    2013-02-01

    Colonists of even the most inhospitable environments, lichens are present in all terrestrial ecosystems. Because of their ecological versatility and ubiquity, they have been considered excellent candidates for early colonizers of terrestrial environments. Despite such predictions, good preservation potential, and the extant diversity of lichenized fungi, the fossil record of lichen associations is sparse. Unequivocal lichen fossils are rare due, in part, to difficulties in ascertaining the presence of both symbionts and in characterizing their interactions. This study describes an exceptionally well-preserved heteromerous lichen from the Lower Cretaceous of Vancouver Island. The fossil occurs in a marine carbonate concretion collected from the Apple Bay locality on Vancouver Island, British Columbia, and was prepared for light microscopy and SEM using the cellulose acetate peel technique. The lichen, Honeggeriella complexa gen. et sp. nov., is formed by an ascomycete mycobiont and a chlorophyte photobiont, and exhibits heteromerous thallus organization. This is paired with a mycobiont-photobiont interface characterized by intracellular haustoria, previously not documented in the fossil record. Honeggeriella adds a lichen component to one of the richest and best characterized Early Cretaceous floras and provides a significant addition to the sparse fossil record of lichens. As a heteromerous chlorolichen, it bridges the >350 million-year gap between previously documented Early Devonian and Eocene occurrences.

  3. Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals

    PubMed Central

    2012-01-01

    Background Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae. Results Concatenated phylogenetic analysis showed most species of Caribbean faviids were monophyletic, with the exception of two Manicina species. The time-calibrated tree revealed the stem group originated around the closure of the Tethys Sea (17.0 Ma), while the genus Manicina diversified during the Late Miocene (8.20 Ma), when increased sedimentation and productivity may have favored free-living, heterotrophic species. Reef and shallow water specialists, represented by Diploria and Favia, originate at the beginning of the Pliocene (5 – 6 Ma) as the Isthmus of Panama shoaled and regional productivity declined. Conclusions Later origination of the stem group than predicted from the fossil record corroborates the hypothesis of morphological convergence in Diploria and Favia genera. Our data support the rapid evolution of morphological and life-history traits among faviid corals that can be linked to Mio-Pliocene environmental changes. PMID:22831179

  4. Synthesizing and databasing fossil calibrations: divergence dating and beyond

    PubMed Central

    Ksepka, Daniel T.; Benton, Michael J.; Carrano, Matthew T.; Gandolfo, Maria A.; Head, Jason J.; Hermsen, Elizabeth J.; Joyce, Walter G.; Lamm, Kristin S.; Patané, José S. L.; Phillips, Matthew J.; Polly, P. David; Van Tuinen, Marcel; Ware, Jessica L.; Warnock, Rachel C. M.; Parham, James F.

    2011-01-01

    Divergence dating studies, which combine temporal data from the fossil record with branch length data from molecular phylogenetic trees, represent a rapidly expanding approach to understanding the history of life. National Evolutionary Synthesis Center hosted the first Fossil Calibrations Working Group (3–6 March, 2011, Durham, NC, USA), bringing together palaeontologists, molecular evolutionists and bioinformatics experts to present perspectives from disciplines that generate, model and use fossil calibration data. Presentations and discussions focused on channels for interdisciplinary collaboration, best practices for justifying, reporting and using fossil calibrations and roadblocks to synthesis of palaeontological and molecular data. Bioinformatics solutions were proposed, with the primary objective being a new database for vetted fossil calibrations with linkages to existing resources, targeted for a 2012 launch. PMID:21525049

  5. Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2004-03-01

    Study of modern microbial mats produced by iron precipitating microbes. Aging and compaction experiments to evaluate fossilization potential and likelihood to recognize these deposits in the rock record.

  6. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    NASA Astrophysics Data System (ADS)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and carbon-isotope data confirm that there was a peak in wildfire activity in the Polish Basin in the earliest Jurassic, and support previous suggestions of widespread increased wildfire activity at the Triassic-Jurassic Boundary.

  7. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman

    USGS Publications Warehouse

    Haymon, R.M.; Koski, R.A.; Sinclair, C.

    1984-01-01

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.

  8. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs.

    PubMed

    Brusatte, Stephen L; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B

    2016-03-29

    Tyrannosaurids--the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus--were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  9. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    PubMed Central

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-01-01

    Tyrannosaurids—the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus—were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90–92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size. PMID:26976562

  10. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-03-01

    Tyrannosaurids-the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus-were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  11. Recent advances in Chinese palaeontology.

    PubMed

    Xu, Xing; Luo, Zhe-Xi; Rong, Jia-Yu

    2010-01-22

    Discoveries are a driving force for progress in palaeontology. Palaeontology as a discipline of scientific inquiry has gained many fresh insights into the history of life, from the discoveries of many new fossils in China in the last 20 years, and from the new ideas derived from these fossils. This special issue of Proceedings of Royal Society B entitled Recent Advances in Chinese Palaeontology selects some of the very latest studies aimed at resolving the current problems of palaeontology and evolutionary biology based on new fossils from China. These fossils and their studies help to clarify some historical debates about a particular fossil group, or to raise new questions about history of life, or to pose a new challenge in our pursuit of science. These works on new Chinese fossils have covered the whole range of the diversity through the entire Phanerozoic fossil record.

  12. Heavy metal contents in growth bands of Porites corals: record of anthropogenic and human developments from the Jordanian Gulf of Aqaba.

    PubMed

    Al-Rousan, Saber A; Al-Shloul, Rashid N; Al-Horani, Fuad A; Abu-Hilal, Ahmad H

    2007-12-01

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.

  13. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores

    NASA Astrophysics Data System (ADS)

    Sheward, Rosie M.; Poulton, Alex J.; Gibbs, Samantha J.; Daniels, Chris J.; Bown, Paul R.

    2017-03-01

    Coccolithophores are an abundant phytoplankton group that exhibit remarkable diversity in their biology, ecology and calcitic exoskeletons (coccospheres). Their extensive fossil record is a testament to their important biogeochemical role and is a valuable archive of biotic responses to environmental change stretching back over 200 million years. However, to realise the full potential of this archive for (palaeo-)biology and biogeochemistry requires an understanding of the physiological processes that underpin coccosphere architecture. Using culturing experiments on four modern coccolithophore species (Calcidiscus leptoporus, Calcidiscus quadriperforatus, Helicosphaera carteri and Coccolithus braarudii) from three long-lived families, we investigate how coccosphere architecture responds to shifts from exponential (rapid cell division) to stationary (slowed cell division) growth phases as cell physiology reacts to nutrient depletion. These experiments reveal statistical differences in coccosphere size and the number of coccoliths per cell between these two growth phases, specifically that cells in exponential-phase growth are typically smaller with fewer coccoliths, whereas cells experiencing growth-limiting nutrient depletion have larger coccosphere sizes and greater numbers of coccoliths per cell. Although the exact numbers are species-specific, these growth-phase shifts in coccosphere geometry demonstrate that the core physiological responses of cells to nutrient depletion result in increased coccosphere sizes and coccoliths per cell across four different coccolithophore families (Calcidiscaceae, Coccolithaceae, Isochrysidaceae and Helicosphaeraceae), a representative diversity of this phytoplankton group. Building on this, the direct comparison of coccosphere geometries in modern and fossil coccolithophores enables a proxy for growth phase to be developed that can be used to investigate growth responses to environmental change throughout their long evolutionary history. Our data also show that changes in growth rate and coccoliths per cell associated with growth-phase shifts can substantially alter cellular calcite production. Coccosphere geometry is therefore a valuable tool for accessing growth information in the fossil record, providing unprecedented insights into the response of species to environmental change and the potential biogeochemical consequences.

  14. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed

    Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J

    2016-01-18

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.

  15. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed Central

    Condamine, Fabien L.; Clapham, Matthew E.; Kergoat, Gael J.

    2016-01-01

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders. PMID:26778170

  16. 40 CFR 98.167 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CEMS is not used to measure GHG emissions. (2) Fossil fuel consumption, when, pursuant to § 98.33(e), the owner or operator of a unit that uses CEMS to quantify CO2 emissions and that combusts both fossil...

  17. Trace fossil evidence of coral-inhabiting crabs (Cryptochiridae) and its implications for growth and paleobiogeography

    NASA Astrophysics Data System (ADS)

    Klompmaker, Adiël A.; Portell, Roger W.; van der Meij, Sancia E. T.

    2016-03-01

    Members of the Cryptochiridae are small, fragile, symbiotic crabs that live in domiciles in modern corals. Despite their worldwide occurrence with over 50 species known today, their fossil record is unknown. We provide the first unambiguous evidence of cryptochirids in the fossil record through their crescentic pits, typical for certain cryptochirids, in Western Atlantic fossil corals, while the Eocene genus Montemagrechirus is excluded from the Cryptochiridae and referred to Montemagrechiridae fam. nov. Nine Pleistocene corals with crescentic pits originate from Florida (USA), and single specimens with pits come from the late Pleistocene of Cuba and the late Pliocene of Florida, all of which are measured for growth analyses. These pits represent trace fossils named Galacticus duerri igen. nov., isp. nov. A study of modern cryptochirid domicile shape (crescentic pit, circular-oval pit, or a true gall) shows that species within crab genera tend to inhabit the same pit shape. Crescentic pits in corals occur not only in the Western Atlantic today, but also in the Indo-West Pacific and in the Eastern Pacific. Thus, examination of Cenozoic fossil coral collections from these regions should yield further examples of cryptochirid pits, which would help to constrain the antiquity of this cryptic crab family.

  18. Coryphoid Palm Leaf Fossils from the Maastrichtian–Danian of Central India with Remarks on Phytogeography of the Coryphoideae (Arecaceae)

    PubMed Central

    Srivastava, Rashmi; Srivastava, Gaurav; Dilcher, David L.

    2014-01-01

    Premise of research A large number of fossil coryphoid palm wood and fruits have been reported from the Deccan Intertrappean beds of India. We document the oldest well-preserved and very rare costapalmate palm leaves and inflorescence like structures from the same horizon. Methodology A number of specimens were collected from Maastrichtian–Danian sediments of the Deccan Intertrappean beds, Ghughua, near Umaria, Dindori District, Madhya Pradesh, India. The specimens are compared with modern and fossil taxa of the family Arecaceae. Pivotal results Sabalites dindoriensis sp. nov. is described based on fossil leaf specimens including basal to apical parts. These are the oldest coryphoid fossil palm leaves from India as well as, at the time of deposition, from the Gondwana- derived continents. Conclusions The fossil record of coryphoid palm leaves presented here and reported from the Eurasian localities suggests that this is the oldest record of coryphoid palm leaves from India and also from the Gondwana- derived continents suggesting that the coryphoid palms were well established and wide spread on both northern and southern hemispheres by the Maastrichtian–Danian. The coryphoid palms probably dispersed into India from Europe via Africa during the latest Cretaceous long before the Indian Plate collided with the Eurasian Plate. PMID:25394208

  19. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  20. Neandertal demise: an archaeological analysis of the modern human superiority complex.

    PubMed

    Villa, Paola; Roebroeks, Wil

    2014-01-01

    Neandertals are the best-studied of all extinct hominins, with a rich fossil record sampling hundreds of individuals, roughly dating from between 350,000 and 40,000 years ago. Their distinct fossil remains have been retrieved from Portugal in the west to the Altai area in central Asia in the east and from below the waters of the North Sea in the north to a series of caves in Israel in the south. Having thrived in Eurasia for more than 300,000 years, Neandertals vanished from the record around 40,000 years ago, when modern humans entered Europe. Modern humans are usually seen as superior in a wide range of domains, including weaponry and subsistence strategies, which would have led to the demise of Neandertals. This systematic review of the archaeological records of Neandertals and their modern human contemporaries finds no support for such interpretations, as the Neandertal archaeological record is not different enough to explain the demise in terms of inferiority in archaeologically visible domains. Instead, current genetic data suggest that complex processes of interbreeding and assimilation may have been responsible for the disappearance of the specific Neandertal morphology from the fossil record.

  1. Neandertal Demise: An Archaeological Analysis of the Modern Human Superiority Complex

    PubMed Central

    Villa, Paola; Roebroeks, Wil

    2014-01-01

    Neandertals are the best-studied of all extinct hominins, with a rich fossil record sampling hundreds of individuals, roughly dating from between 350,000 and 40,000 years ago. Their distinct fossil remains have been retrieved from Portugal in the west to the Altai area in central Asia in the east and from below the waters of the North Sea in the north to a series of caves in Israel in the south. Having thrived in Eurasia for more than 300,000 years, Neandertals vanished from the record around 40,000 years ago, when modern humans entered Europe. Modern humans are usually seen as superior in a wide range of domains, including weaponry and subsistence strategies, which would have led to the demise of Neandertals. This systematic review of the archaeological records of Neandertals and their modern human contemporaries finds no support for such interpretations, as the Neandertal archaeological record is not different enough to explain the demise in terms of inferiority in archaeologically visible domains. Instead, current genetic data suggest that complex processes of interbreeding and assimilation may have been responsible for the disappearance of the specific Neandertal morphology from the fossil record. PMID:24789039

  2. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  3. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  4. The role of behaviour in adaptive morphological evolution of African proboscideans.

    PubMed

    Lister, Adrian M

    2013-08-15

    The fossil record richly illustrates the origin of morphological adaptation through time. However, our understanding of the selective forces responsible in a given case, and the role of behaviour in the process, is hindered by assumptions of synchrony between environmental change, behavioural innovation and morphological response. Here I show, from independent proxy data through a 20-million-year sequence of fossil proboscideans in East Africa, that changes in environment, diet and morphology are often significantly offset chronologically, allowing dissection of the roles of behaviour and different selective drivers. These findings point the way to hypothesis-driven testing of the interplay between habitat change, behaviour and morphological adaptation with the use of independent proxies in the fossil record.

  5. Protein molecular data from ancient (>1 million years old) fossil material: pitfalls, possibilities and grand challenges.

    PubMed

    Schweitzer, Mary Higby; Schroeter, Elena R; Goshe, Michael B

    2014-07-15

    Advances in resolution and sensitivity of analytical techniques have provided novel applications, including the analyses of fossil material. However, the recovery of original proteinaceous components from very old fossil samples (defined as >1 million years (1 Ma) from previously named limits in the literature) is far from trivial. Here, we discuss the challenges to recovery of proteinaceous components from fossils, and the need for new sample preparation techniques, analytical methods, and bioinformatics to optimize and fully utilize the great potential of information locked in the fossil record. We present evidence for survival of original components across geological time, and discuss the potential benefits of recovery, analyses, and interpretation of fossil materials older than 1 Ma, both within and outside of the fields of evolutionary biology.

  6. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe

    PubMed Central

    Knitlová, Markéta; Horáček, Ivan

    2017-01-01

    Wood mice of the genus Apodemus are an essential component of small mammal communities throughout Europe. Molecular data suggest the postglacial colonization of current ranges from south European glacial refugia, different in particular species. Yet, details on the course of colonization and Holocene history of particular species are not available, partly because of a lack of reliable criteria for species identification in the fossil record. Using a sample of extant species, we analyzed variation patterns and between-species overlaps for a large set of metric and non-metric dental variables and established the criteria enabling the reliable species identification of fragmentary fossil material. The corresponding biometrical analyses were undertaken with fossil material of the genus (2528 items, 747 MNI) from 22 continuous sedimentary series in the Czech Republic and Slovakia, from LGM to Recent. In Central Europe, the genus is invariantly absent in LGM assemblages but regularly appears during the Late Vistulian. All the earliest records belong to A. flavicollis, the species clearly predominating in the fossil record until the Late Holocene. A. uralensis accompanied it in all regions until the late Boreal when disappeared from the fossil record (except for Pannonia). A few items identified as A. sylvaticus had already appeared in the early Holocene assemblages, first in the western part of the region, yet the regular appearance of the species is mostly in the post-Neolithic age. A. agrarius appeared sparsely from the Boreal with a maximum frequency during the post-Neolithic period. The results conform well to the picture suggested by molecular phylogeography but demonstrate considerable differences among particular species in dynamic of the range colonization. Further details concerning Holocene paleobiogeography of individual species in the medium latitude Europe are discussed. PMID:28282422

  7. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest

    PubMed Central

    Wing, Scott L.; Herrera, Fabiany; Jaramillo, Carlos A.; Gómez-Navarro, Carolina; Wilf, Peter; Labandeira, Conrad C.

    2009-01-01

    Neotropical rainforests have a very poor fossil record, making hypotheses concerning their origins difficult to evaluate. Nevertheless, some of their most important characteristics can be preserved in the fossil record: high plant diversity, dominance by a distinctive combination of angiosperm families, a preponderance of plant species with large, smooth-margined leaves, and evidence for a high diversity of herbivorous insects. Here, we report on an ≈58-my-old flora from the Cerrejón Formation of Colombia (paleolatitude ≈5 °N) that is the earliest megafossil record of Neotropical rainforest. The flora has abundant, diverse palms and legumes and similar family composition to extant Neotropical rainforest. Three-quarters of the leaf types are large and entire-margined, indicating rainfall >2,500 mm/year and mean annual temperature >25 °C. Despite modern family composition and tropical paleoclimate, the diversity of fossil pollen and leaf samples is 60–80% that of comparable samples from extant and Quaternary Neotropical rainforest from similar climates. Insect feeding damage on Cerrejón fossil leaves, representing primary consumers, is abundant, but also of low diversity, and overwhelmingly made by generalist feeders rather than specialized herbivores. Cerrejón megafossils provide strong evidence that the same Neotropical rainforest families have characterized the biome since the Paleocene, maintaining their importance through climatic phases warmer and cooler than present. The low diversity of both plants and herbivorous insects in this Paleocene Neotropical rainforest may reflect an early stage in the diversification of the lineages that inhabit this biome, and/or a long recovery period from the terminal Cretaceous extinction. PMID:19833876

  8. A second Eocene species of death-watch beetle belonging to the genus Microbregma Seidlitz (Coleoptera: Bostrichoidea) with a checklist of fossil Ptinidae.

    PubMed

    Bukejs, Andris; Alekseev, Vitalii I

    2015-04-17

    Based on a well-preserved specimen from Upper Eocene Baltic amber (Kaliningrad region, Russia), Microbregma waldwico sp. nov., the second fossil species of this genus, is described. The new species is similar to the extant Holarctic M. emarginatum (Duftschmid), 1825, and fossil M. sucinoemarginatum (Kuśka), 1992, but differs in its shorter abdominal ventrite 1 (about 0.43 length of ventrite 2) and larger body (5.1 mm). A key to species of the genus Microbregma is given, and a check-list of described fossil Ptinidae is provided. The fossil record of Ptinidae now includes 48 species in 27 genera and 8 subfamilies.

  9. Caught in the act: the first record of copulating fossil vertebrates.

    PubMed

    Joyce, Walter G; Micklich, Norbert; Schaal, Stephan F K; Scheyer, Torsten M

    2012-10-23

    The behaviour of fossil organisms can typically be inferred only indirectly, but rare fossil finds can provide surprising insights. Here, we report from the Eocene Messel Pit Fossil Site between Darmstadt and Frankfurt, Germany numerous pairs of the fossil carettochelyid turtle Allaeochelys crassesculpta that represent for the first time among fossil vertebrates couples that perished during copulation. Females of this taxon can be distinguished from males by their relatively shorter tails and development of plastral kinesis. The preservation of mating pairs has important taphonomic implications for the Messel Pit Fossil Site, as it is unlikely that the turtles would mate in poisonous surface waters. Instead, the turtles initiated copulation in habitable surface waters, but perished when their skin absorbed poisons while sinking into toxic layers. The mating pairs from Messel are therefore more consistent with a stratified, volcanic maar lake with inhabitable surface waters and a deadly abyss.

  10. Ancient nursery area for the extinct giant shark megalodon from the Miocene of Panama.

    PubMed

    Pimiento, Catalina; Ehret, Dana J; Macfadden, Bruce J; Hubbell, Gordon

    2010-05-10

    As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories.

  11. Phytogeographical implication of Bridelia Will. (Phyllanthaceae) fossil leaf from the late Oligocene of India.

    PubMed

    Srivastava, Gaurav; Mehrotra, R C

    2014-01-01

    The family Phyllanthaceae has a predominantly pantropical distribution. Of its several genera, Bridelia Willd. is of a special interest because it has disjunct equally distributed species in Africa and tropical Asia i.e. 18-20 species in Africa-Madagascar (all endemic) and 18 species in tropical Asia (some shared with Australia). On the basis of molecular phylogenetic study on Bridelia, it has been suggested that the genus evolved in Southeast Asia around 33±5 Ma, while speciation and migration to other parts of the world occurred at 10±2 Ma. Fossil records of Bridelia are equally important to support the molecular phylogenetic studies and plate tectonic models. We describe a new fossil leaf of Bridelia from the late Oligocene (Chattian, 28.4-23 Ma) sediments of Assam, India. The detailed venation pattern of the fossil suggests its affinities with the extant B. ovata, B. retusa and B. stipularis. Based on the present fossil evidence and the known fossil records of Bridelia from the Tertiary sediments of Nepal and India, we infer that the genus evolved in India during the late Oligocene (Chattian, 28.4-23 Ma) and speciation occurred during the Miocene. The stem lineage of the genus migrated to Africa via "Iranian route" and again speciosed in Africa-Madagascar during the late Neogene resulting in the emergence of African endemic clades. Similarly, the genus also migrated to Southeast Asia via Myanmar after the complete suturing of Indian and Eurasian plates. The emergence and speciation of the genus in Asia and Africa is the result of climate change during the Cenozoic. On the basis of present and known fossil records of Bridelia, we have concluded that the genus evolved during the late Oligocene in northeast India. During the Neogene, the genus diversified and migrated to Southeast Asia via Myanmar and Africa via "Iranian Route".

  12. Fruits and wood of Parinari from the early Miocene of Panama and the fossil record of Chrysobalanaceae.

    PubMed

    Jud, Nathan A; Nelson, Chris W; Herrera, Fabiany

    2016-02-01

    Chrysobalanaceae are woody plants with over 500 species in 20 genera. They are among the most common trees in tropical forests, but a sparse fossil record has limited our ability to test evolutionary and biogeographic hypotheses, and several previous reports of Chrysobalanaceae megafossils are doubtful. We prepared fossil endocarps and wood collected from the lower Miocene beds along the Panama Canal using the cellulose acetate peel technique and examined them using light microscopy. We compared the fossil endocarps with previously published fossils and with fruits from herbarium specimens. We compared the fossil wood with photographs and descriptions of extant species. Parinari endocarps can be distinguished from other genera within Chrysobalanaceae by a suite of features, i.e., thick wall, a secondary septum, seminal cavities lined with dense, woolly trichomes, and two ovate to lingulate basal germination plugs. Fossil endocarps from the Cucaracha, Culebra, and La Boca Formations confirm that Parinari was present in the neotropics by the early Miocene. The earliest unequivocal evidence of crown-group Chrysobalanaceae is late Oligocene-early Miocene, and the genus Parinari was distinct by at least 19 million years ago. Parinari and other Chrysobalanaceae likely reached the neotropics via long-distance dispersal rather than vicariance. The presence of Parinari in the Cucaracha flora supports the interpretation of a riparian, moist tropical forest environment. Parinari was probably a canopy-dominant tree in the Cucaracha forest and took advantage of the local megafauna for seed dispersal. © 2016 Botanical Society of America.

  13. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals

    PubMed Central

    McNamara, Maria E.; Saranathan, Vinod; Locatelli, Emma R.; Noh, Heeso; Briggs, Derek E. G.; Orr, Patrick J.; Cao, Hui

    2014-01-01

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735 000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. PMID:25185581

  14. Mummified fossil woods of Fagaceae from the upper Oligocene of Guangxi, South China

    NASA Astrophysics Data System (ADS)

    Huang, Luliang; Jin, Jianhua; Quan, Cheng; Oskolski, Alexei A.

    2018-02-01

    Three new fossil species, two attributed to the genus Castanopsis (C. nanningensis and C. guangxiensis) and one to the organ genus Lithocarpoxylon (L. nanningensis) are described on the basis of well-preserved mummified wood from the upper Oligocene of Yongning Formation in the Nanning Basin, Guangxi Province, South China. The two species of Castanopsis represent the most ancient reliable wood record of this genus in China and also southeastern Asia, which is the center of diversity of extant species. The fossil leaf records of Castanopsis indicated this genus has migrated to South China in the late Eocene. This fossil wood evidence confirms the presence and persistence of Castanopsis in this region in the late Oligocene. In the Yongning Formation, the presence of numerous Fagaceae woods with faint or absent growth ring boundaries (in C. nanningensis) occasionally associated with prominent ring-porous patterns, suggests that Guangxi (South China) had a seasonal (probably monsoonal) tropical climate during the late Oligocene.

  15. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals.

    PubMed

    McNamara, Maria E; Saranathan, Vinod; Locatelli, Emma R; Noh, Heeso; Briggs, Derek E G; Orr, Patrick J; Cao, Hui

    2014-11-06

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735,000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Likelihood of Tree Topologies with Fossils and Diversification Rate Estimation.

    PubMed

    Didier, Gilles; Fau, Marine; Laurin, Michel

    2017-11-01

    Since the diversification process cannot be directly observed at the human scale, it has to be studied from the information available, namely the extant taxa and the fossil record. In this sense, phylogenetic trees including both extant taxa and fossils are the most complete representations of the diversification process that one can get. Such phylogenetic trees can be reconstructed from molecular and morphological data, to some extent. Among the temporal information of such phylogenetic trees, fossil ages are by far the most precisely known (divergence times are inferences calibrated mostly with fossils). We propose here a method to compute the likelihood of a phylogenetic tree with fossils in which the only considered time information is the fossil ages, and apply it to the estimation of the diversification rates from such data. Since it is required in our computation, we provide a method for determining the probability of a tree topology under the standard diversification model. Testing our approach on simulated data shows that the maximum likelihood rate estimates from the phylogenetic tree topology and the fossil dates are almost as accurate as those obtained by taking into account all the data, including the divergence times. Moreover, they are substantially more accurate than the estimates obtained only from the exact divergence times (without taking into account the fossil record). We also provide an empirical example composed of 50 Permo-Carboniferous eupelycosaur (early synapsid) taxa ranging in age from about 315 Ma (Late Carboniferous) to 270 Ma (shortly after the end of the Early Permian). Our analyses suggest a speciation (cladogenesis, or birth) rate of about 0.1 per lineage and per myr, a marginally lower extinction rate, and a considerable hidden paleobiodiversity of early synapsids. [Extinction rate; fossil ages; maximum likelihood estimation; speciation rate.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber

    PubMed Central

    Krell, Frank-Thorsten; Dimitrov, Dimitar

    2016-01-01

    Despite the increasing rate of systematic research on scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae), their fossil record has remained largely unrevised. In this paper, we review all 33 named scarabaeine fossils and describe two new species from Dominican amber (Canthochilum alleni sp.n., Canthochilum philipsivieorum sp.n.). We provide a catalogue of all fossil Scarabaeinae and evaluate their assignment to this subfamily, based primarily on the original descriptions but also, where possible, by examining the type specimens. We suggest that only 21 fossil taxa can be reliably assigned to the Scarabaeinae, while the remaining 14 should be treated as doubtful Scarabaeinae. The doubtful scarabaeines include the two oldest dung beetle fossils known from the Cretaceous and we suggest excluding them from any assessments of the minimum age of scarabaeine dung beetles. The earliest reliably described scarabaeine fossil appears to be Lobateuchus parisii, known from Oise amber (France), which shifts the minimum age of the Scarabaeinae to the Eocene (53 Ma). We scored the best-preserved fossils, namely Lobateuchus and the two Canthochilum species described herein, into the character matrix used in a recent morphology-based study of dung beetles, and then inferred their phylogenetic relationships with Bayesian and parsimony methods. All analyses yielded consistent phylogenies where the two fossil Canthochilum are placed in a clade with the extant species of Canthochilum, and Lobateuchus is recovered in a clade with the extant genera Ateuchus and Aphengium. Additionally, we evaluated the distribution of dung beetle fossils in the light of current global dung beetle phylogenetic hypotheses, geological time and biogeography. The presence of only extant genera in the late Oligocene and all later records suggests that the main present-day dung beetle lineages had already been established by the late Oligocene–mid Miocene. PMID:27547512

  18. Carnivorous leaves from Baltic amber.

    PubMed

    Sadowski, Eva-Maria; Seyfullah, Leyla J; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R

    2015-01-06

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants.

  19. Carnivorous leaves from Baltic amber

    PubMed Central

    Sadowski, Eva-Maria; Seyfullah, Leyla J.; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R.

    2015-01-01

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants. PMID:25453067

  20. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family

    PubMed Central

    Kapli, Paschalia; Hofmann, Christa-Charlotte

    2017-01-01

    Background We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Methods Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. Results The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. Discussion With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks. PMID:28607837

  1. Using extant taxa to inform studies of fossil footprints

    NASA Astrophysics Data System (ADS)

    Falkingham, Peter; Gatesy, Stephen

    2016-04-01

    Attempting to use the fossilized footprints of extinct animals to study their palaeobiology and palaeoecology is notoriously difficult. The inconvenient extinction of the trackmaker makes direct correlation between footprints and foot far from straightforward. However, footprints are the only direct evidence of vertebrate motion recorded in the fossil record, and are potentially a source of data on palaeobiology that cannot be obtained from osteological remains alone. Our interests lie in recovering information about the movements of dinosaurs from their tracks. In particular, the Hitchcock collection of early Jurassic tracks held at the Beneski Museum of Natural History, Amherst, provide a rare look into the 3D form of tracks at and below the surface the animal walked on. Breaking naturally along laminations into 'track books', the specimens present sediment deformation at multiple levels, and in doing so record more of the foot's motion than a single surface might. In order to utilize this rich information source to study the now extinct trackmakers, the process of track formation must be understood at a fundamental level; the interaction of the moving foot and compliant substrate. We used bi-planar X-ray techniques (X-ray Reconstruction of Moving Morphology) to record the limb and foot motions of a Guineafowl traversing both granular and cohesive substrates. This data was supplemented with photogrammetric records of the resultant track surfaces, as well as the motion of metal beads within the sediment, to provide a full experimental dataset of foot and footprint formation. The physical experimental data was used to generate computer simulations of the process using high performance computing and the Discrete Element Method. The resultant simulations showed excellent congruence with reality, and enabled visualization within the sediment volume, and throughout the track-forming process. This physical and virtual experimental set-up has provided major insight into how to interpret the track-books within the Amherst Collection, and as such begin to understand how these early Jurassic dinosaurs moved. More broadly, this complete view of track formation afforded by experimental techniques will aid in interpretation of fossil vertebrate tracks throughout the fossil record.

  2. Development and Application of Sr/Ca-δ18O-Sea Surface Temperature calibrations for Last Glacial Maximum-Aged Isopora corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Brenner, L. D.; Linsley, B. K.; Potts, D. C.; Felis, T.; Mcgregor, H. V.; Gagan, M. K.; Inoue, M.; Tudhope, A. W.; Esat, T. M.; Thompson, W. G.; Tiwari, M.; Fallon, S.; Humblet, M.; Yokoyama, Y.; Webster, J.

    2016-12-01

    Isopora (Acroporidae) are sub-massive to massive corals found on most modern and fossil Indo-Pacific reefs. Despite their abundance, they are largely absent from the paleoceanographic literature but have the potential to provide proxy data where other commonly used corals, such as Porites, are sparse. The retrieval of Isopora fossils during International Ocean Discovery Program Leg 325 in the Great Barrier Reef (GBR) signaled the need to evaluate their possible paleoceanographic utility. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations for six modern Isopora colonies collected at Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Reduced Major Axis Sr/Ca- and δ18O-SST sensitivities of -0.054 mmol/mol/°C and -0.152 ‰/°C, respectively, falling within the range of published Porites values. We applied our Isopora-based regressions and previously published sensitivities from other species to a suite (n=37) of fossil samples collected from IODP 32. The calibrations produced a range of 3-7°C of warming, averaging 5°C, in the GBR from 22 ka to modern climate. This SST change is similar or slightly larger than other coral studies and larger than planktonic foraminifera Mg/Ca records. The planktonic Mg/Ca records from the Indonesian and Western Pacific Warm Pools indicate a warming of 3-3.5°C since 23ka (Linsley et al., 2010) while a fossil coral record from Tahiti indicates a warming of 3.2°C from 9.5ka to present (DeLong et al., 2010) and western Pacific coral records suggest a cooling of 5-6°C (Gagan et al., 2010; Guilderson et al., 1994: Beck et al., 1997), although these value might require rescaling (Gagan et al., 2012) resulting in slightly warmer temperature calculations. Our Isopora fossils from the GBR speak to the spatial heterogeneity of warming since the LGM and the continued need to develop more records for a more comprehensive understanding of the deglaciation.

  3. A nomenclator of extant and fossil taxa of the Valvatidae (Gastropoda, Ectobranchia)

    PubMed Central

    Haszprunar, Gerhard

    2014-01-01

    Abstract A compilation of all supra- and (infra-) specific taxa of extant and fossil Valvatidae, a group of freshwater operculate snails, is provided, including taxa initially described in this family and subsequently classified in other families, as well as names containing errors or misspellings. The extensive reference list is directly linked to the available electronic source (digital view or pdf-download) of the respective papers. PMID:24578604

  4. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    1999-10-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  5. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  6. Discovery of the fossil otter Enhydritherium terraenovae (Carnivora, Mammalia) in Mexico reconciles a palaeozoogeographic mystery.

    PubMed

    Tseng, Z Jack; Pacheco-Castro, Adolfo; Carranza-Castañeda, Oscar; Aranda-Gómez, José Jorge; Wang, Xiaoming; Troncoso, Hilda

    2017-06-01

    The North American fossil otter Enhydritherium terraenovae is thought to be partially convergent in ecological niche with the living sea otter Enhydra lutris , both having low-crowned crushing teeth and a close association with marine environments. Fossil records of Enhydritherium are found in mostly marginal marine deposits in California and Florida; despite presence of very rich records of fossil terrestrial mammals in contemporaneous localities inland, no Enhydritherium fossils are hitherto known in interior North America. Here we report the first occurrence of Enhydritherium outside of Florida and California, in a land-locked terrestrial mammal fauna of the upper Miocene deposits of Juchipila Basin, Zacatecas State, Mexico. This new occurrence of Enhydritherium is at least 200 km from the modern Pacific coastline, and nearly 600 km from the Gulf of Mexico. Besides providing further evidence that Enhydritherium was not dependent on coastal marine environments as originally interpreted, this discovery leads us to propose a new east-to-west dispersal route between the Florida and California Enhydritherium populations through central Mexico. The proximity of the fossil locality to nearby populations of modern neotropical otters Lontra longicaudis suggests that trans-Mexican freshwater corridors for vertebrate species in riparian habitats may have persisted for a prolonged period of time, pre-dating the Great American Biotic Interchange. © 2017 The Author(s).

  7. Microbial Fossilization in Mineralizing Environments: Relevance for Mars "EXOPALEONTOLOGY"

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; DesMarais, David J.; Morrison, David (Technical Monitor)

    1994-01-01

    The goals of post-Viking exobiology include the search for a Martian fossil record. How can we optimize future exploration efforts to search for fossils on Mars? The Precambrian fossil record indicates that key factors for the long-term preservation of microbial fossils include: 1) the rapid entombment and/or replacement of organisms and organic matter by fine-grained, stable mineral phases (e.g. silica, phosphate, and to a lesser extent, carbonate), 2) low-permeability host sediments (maintaining a closed chemical system during early diagenesis), and 3) shallow burial (maintaining post-depositional temperatures and pressures within the stability range for complex organic molecules). Modem terrestrial environments where early mineralization commonly occurs in association with microbial organisms include: subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporites of alkaline lakes, and subsoil environments where hardpans (e.g. calcretes, silcretes) and duricrusts form. Studies of microbial fossilization in such environments provide important insights preservation patterns in Precambrian rocks, while also playing a role in the development of strategies for Mars exopaleontology. The refinement of site priorities for Mars exopaleontology is expected to benefit greatly from high resolution imaging and altimetry acquired during upcoming orbital missions, and especially infrared and gamma ray spectral data needed for determining surface composition. In anticipation of future orbital missions, constraints for identifying high priority mineral deposits on Mars are being developed through analog remote sensing studies of key mineralizing environments on Earth.

  8. A dating success story: genomes and fossils converge on placental mammal origins

    PubMed Central

    2012-01-01

    The timing of the placental mammal radiation has been a source of contention for decades. The fossil record of mammals extends over 200 million years, but no confirmed placental mammal fossils are known prior to 64 million years ago, which is approximately 1.5 million years after the Cretaceous-Paleogene (K-Pg) mass extinction that saw the end of non-avian dinosaurs. Thus, it came as a great surprise when the first published molecular clock studies suggested that placental mammals originated instead far back in the Cretaceous, in some cases doubling divergence estimates based on fossils. In the last few decades, more than a hundred new genera of Mesozoic mammals have been discovered, and molecular divergence studies have grown from simple clock-like models applied to a few genes to sophisticated analyses of entire genomes. Yet, molecular and fossil-based divergence estimates for placental mammal origins have remained remote, with knock-on effects for macro-scale reconstructions of mammal evolution. A few recent molecular studies have begun to converge with fossil-based estimates, and a new phylogenomic study in particular shows that the palaeontological record was mostly correct; most placental mammal orders diversified after the K-Pg mass extinction. While a small gap still remains for Late Cretaceous supraordinal divergences, this study has significantly improved the congruence between molecular and palaeontological data and heralds a broader integration of these fields of evolutionary science. PMID:22883371

  9. Exceptionally preserved insect fossils in the Late Jurassic lagoon of Orbagnoux (Rhône Valley, France)

    PubMed Central

    Nel, Patricia; Krieg-Jacquier, Régis; Pouillon, Jean-Marc

    2014-01-01

    The Late Kimmeridgian marine limestones of the area around Orbagnoux (Rhône, France) are well known for their fish fauna and terrestrial flora. Here we record the first insects and their activities (mines on leaves and trails in sediments) from these layers, including the oldest record of the gerromorphan bugs, as a new genus and species Gallomesovelia grioti, attributed to the most basal family Mesoveliidae and subfamily Madeoveliinae. These new fossils suggest the presence of a complex terrestrial palaeoecosystem on emerged lands near the lagoon where the limestones were deposited. The exquisite state of preservation of these fossils also suggests that these outcrops can potentially become an important Konservat-Lagerstätte for the Late Jurassic of Western Europe. PMID:25210652

  10. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  11. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    PubMed

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The pipid root.

    PubMed

    Bewick, Adam J; Chain, Frédéric J J; Heled, Joseph; Evans, Ben J

    2012-12-01

    The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].

  13. We're Going on a Fossil Hunt!

    ERIC Educational Resources Information Center

    Powell, Deborah A.; Aram, Richard B.; Aram, Roberta J.; Chase, Terry L.

    2007-01-01

    Scientists understand that scientific ideas are subject to change and improvement. Fourth- through eighth- graders develop this understanding about the nature of science as they gather and examine fossil evidence from the Paleozoic era, record their findings, and read and write about science for authentic purposes as scientists do. Students…

  14. 7 CFR 4288.5 - Oversight, monitoring, and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... terms of Form RD 4288-5, “Repowering Assistance Program—Agreement,” along with any potential refunds... with the fossil fuel reduction and energy production requirements of this subpart, each biorefinery... displace fossil fuel loads with renewable biomass. These records must be held in one place and be available...

  15. 7 CFR 4288.5 - Oversight, monitoring, and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... terms of Form RD 4288-5, “Repowering Assistance Program—Agreement,” along with any potential refunds... with the fossil fuel reduction and energy production requirements of this subpart, each biorefinery... displace fossil fuel loads with renewable biomass. These records must be held in one place and be available...

  16. 7 CFR 4288.5 - Oversight, monitoring, and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... terms of Form RD 4288-5, “Repowering Assistance Program—Agreement,” along with any potential refunds... with the fossil fuel reduction and energy production requirements of this subpart, each biorefinery... displace fossil fuel loads with renewable biomass. These records must be held in one place and be available...

  17. Late Miocene fossils from shallow marine sediments in Brunei Darussalam: systematics, palaeoenvironment and ecology.

    NASA Astrophysics Data System (ADS)

    Roslim, Amajida; Briguglio, Antonino; Kocsis, László; Ćorić, Stjepan; Razak, Hazirah

    2016-04-01

    The geology of Brunei Darussalam is fascinating but difficult to approach: rainforests and heavy precipitation tend to erode and smoothen the landscape limiting rocks exposure, whereas abundant constructions sites and active quarries allow the creation of short time available outcrop, which have to be immediately sampled. The stratigraphy of Brunei Darussalam comprises mainly Neogene sediments deposited in a wave to tide dominated shallow marine environment in a pure siliciclastic system. Thick and heavily bioturbated sandstone layers alternate to claystone beds which occasionally yield an extraordinary abundance and diversity of fossils. The sandstones, when not bioturbated, are commonly characterized by a large variety of sedimentary structures (e.g., ripple marks, planar laminations and cross beddings). In this study, we investigate the sediments and the fossil assemblages to record the palaeoenvironmental evolution of the shallow marine environment during the late Miocene, in terms of sea level change, chemostratigraphy and sedimentation rate. The study area is one of the best in terms of accessibility, extension, abundance and preservation of fossils; it is located in the region -'Bukit Ambug' (Ambug Hill), Tutong District. The fossils fauna collected encompasses mollusks, decapods, otoliths, shark and ray teeth, amber, foraminifera and coccolithophorids. In this investigation, sediment samples were taken along a section which measures 62.5 meters. A thick clay layer of 9 meters was sampled each 30 cm to investigate microfossils occurrences. Each sample was treated in peroxide and then sieved trough 63 μm, 150μm, 250μm, 450μm, 600μm, 1mm and 2mm sieves. Results point on the changes in biodiversity of foraminifera along the different horizons collected reflecting sea level changes and sediment production. The most abundant taxa identified are Pseoudorotalia schroeteriana, Ampistegina lessonii, Elphidium advenum, Quinqueloculina sp., Bolivina sp., Globigerina sp. Coccolithophorids assemblage recovered from one horizon dates the sediment to the biozone NN11a due to the presence of Discoaster berggrenii and D. quinqueramus, which are both also warm water indicators. The absence of Amaurolithus primus reduces the stratigraphic range to the uppermost Tortonian only (˜7.5-8 Ma).

  18. Coral Reef Response to Marine Isotope Stage (MIS) 5e Sea Level Changes in the Granitic Seychelles

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.

    2015-12-01

    Sea-level position has a direct control on coral reef morphology and composition. Examining changes in these parameters in fossil reefs can inform reconstructions of past sea-level behavior and, indirectly, ice sheet dynamics. Here we provide a detailed examination of fossil reefs from Marine Isotope Stage (MIS) 5e. These fossil reefs are located in the granitic Seychelles, which is tectonically stable site and far-field from the former margins of Northern Hemisphere ice sheets. To reconstruct relative sea level (RSL), we combine RTK and Total Station elevation surveys with sedimentary and taxonomic evaluations of eight fossil reef sites. Carbonate coralgal reef buildups of the shallowest portion of the reef are preserved in limestone outcrops that are protected by granite boulder overhangs. Two primary outcrop morphologies were observed at these sites: plastering and massive. Plastering outcrops manifest as thin (~ 1 m height x 1 m width x 0.5 m depth) vertical successions of reef framework and detritus, while massive outcrops are larger (~ 2-6 m height x 2-6 m width x 1-2 m depth). The base of these limestone outcrops consistently record a period of reef growth, characterized by corals or coralline algae colonizing the surface or face of a granite boulder and building upwards. This lower reefal unit is capped by a disconformity that is commonly overlain by coral rubble or a ~10 cm thick layer of micrite. Rubble units contain coarse fragments of the coralgal reef buildups while micrite layers consist of a relatively homogeneous fine-grained carbonate, bearing coral-dwelling, Pyrgomatid barnacles. In many of the outcrops, this succession is repeated upsection with another unit of coralgal reef framework capped by a disconformity that is recognized by the sharp transition to coral rubble or micrite with barnacles. We identified four distinct fossil coralgal assemblages in the limestone outcrops. These assemblages are consistent with modern assemblages which constrain the paleo-water depth histories at each site. The combination of reef taxonomy as well as accretion hiatuses provides robust control on the reef, and thus sea-level, history of this region, and by extension, global mean sea level, during MIS 5e.

  19. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems

    NASA Astrophysics Data System (ADS)

    Davies, Neil S.; Gibling, Martin R.

    2013-05-01

    Evidence from modern rivers and the deep-time geological record attests to the fundamental importance of plant life for the construction of physical habitats within fluvial environments. Data from an extensive literature review and original fieldwork demonstrates that many landforms and geomorphic features of modern river systems appear in the Palaeozoic stratigraphic record once terrestrial vegetation had adopted certain evolutionary advances. For example, stable point bars are associated with the onset of rooted plants in the Siluro-Devonian and avulsive and anabranching fluvial systems become common at the same time as extensive arborescent vegetation in the Carboniferous. In this paper, we demonstrate a correlation between the diversification of physical fluvial environments and the expansion of terrestrial fauna and flora, with an emphasis on the culmination of these trends within Carboniferous alluvial systems. Many extrinsic factors have been considered as possible controls on the evolutionary timelines of terrestrialization for organisms. However, a fundamental prerequisite for achieving terrestrial biodiversity was the variety of physical habitats, especially riparian systems, available for newly evolved organisms. In association with abundant lowland meandering systems, the widespread appearance across Carboniferous alluvial plains of fixed-channel and anabranching reaches created further physical landforms for colonization and would have promoted increasingly complex hyporheic flow regimes. Furthermore the associated increase in arborescent vegetation and supply of large woody debris to inland and coastal rivers would have created a wealth of microhabitats for continental organisms. We argue that the expanding extent and diversity of physical alluvial niches during the Palaeozoic is an underappreciated driver of the terrestrialization of early continental life. The study of the deep-time fossil and stratigraphic record also illustrates that vegetation is a fundamental prerequisite for the creation of biogeomorphic alluvial landforms and physical habitats and microhabitats.

  20. Early evolution of the lungfish pectoral fin endoskeleton: evidence from the Middle Devonian (Givetian) Pentlandia macroptera

    NASA Astrophysics Data System (ADS)

    Jude, Emma; Johanson, Zerina; Kearsley, Anton; Friedman, Matt

    2014-08-01

    As the closest living relatives of tetrapods, lungfishes are frequently used as extant models for exploring the fin-to-limb transition. These studies have generally given little consideration to fossil taxa. This is because although lungfish fins are relatively common in the fossil record, the internal structure of these fins is virtually unknown. Information on pectoral-fin endoskeletons in fossil representatives of Dipnomorpha (the lungfish total group) is limited to poorly preserved remains in the lungfish Dipterus and Conchopoma and more complete material in the porolepiform Glyptolepis. Here we describe a well-preserved pectoral-fin endoskeleton in the Middle Devonian (Givetian) lungfish Pentlandia macroptera from the John O’Groats fish bed, Caithness, northeastern Scotland. The skeleton is in association with a cleithrum and clavicle, and consists of a series of at least eight mesomeres. Extensive series of preaxial and postaxial radials are present. Some of the radials are jointed, but none branch. No mesomere articulates with multiple radials on either its pre- or post-axial face. The first two mesomeres, corresponding to the humerus and ulna, bear well-developed axial processes. Uniquely among dipnomorphs, a distinct ossification centre corresponding to the radius is present in Pentlandia. A review of anatomy and development of the pectoral-fin endoskeleton in the living Neoceratodus is presented based on cleared and stained material representing different size stages. These developmental data, in conjunction with new details of primitive lungfish conditions based on Pentlandia, highlight many of the derived features of the pectoral-fin skeleton of Neoceratodus, and clarify patterns of appendage evolution within the dipnomorphs more generally.

  1. Global Climate Change and Sedimentation Patterns in the Neogene Baringo Basin, Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Deino, A. L.; Kingston, J. D.; Wilson, K. E.; Hill, A.

    2010-12-01

    The Tugen Hills are part of a ~100 km N-S tilted fault block, just west of Lake Baringo within the Central Kenyan Rift Valley. Sediments exposed in this block span the last 16 Ma and have yielded abundant and diverse fossil assemblages including a number of hominoid and hominid specimens. Much research has also focused on documenting the paleoecology of the succession through analyses of fossil floral, faunal, and biogeochemical proxies. Data from the Tugen Hills have revealed a complex evolutionary history of ecosystems characterized by spatial and temporal heterogeneity with no clear evidence of any long-term trends. While these studies suggest that the patterns of heterogeneity may be shifting at short time-scales (104-105 ka), limited temporal resolution has until now generally precluded assessments of environmental change at these scales. Recently published investigations in the Baringo Basin have provided evidence of orbitally mediated environmental change over periods which include hominid fossil localities (Deino et al., 2006; Kingston et al., 2007). The Baringo data represent the only empirical evidence for significant local environmental shifts that can directly be correlated with insolation patterns in equatorial Africa. Sedimentation patterns in the Baringo Basin between ca. 2.70 and 2.55 Ma, controlled by climatic factors, provide a detailed paleoenvironmental record including a sequence of diatomites that record rhythmic cycling of major freshwater lake systems consistent with ~23 kyr Milankovitch precessional periodicity modulated by eccentricity. The timing of the paleolakes most closely approximates insolation maximum for the June/July 30○N insolation curve, suggesting that precipitation patterns in the region are controlled by the African monsoon system. More recent fieldwork has identified older sequences that similarly demonstrate rhythmic cycling of freshwater lake systems. Preliminary 40Ar/39Ar dating of intercalated tephra reveals that these deposits occur at ~3.7-3.8 Ma, ~4.8-4.9 Ma, and ~5.7-5.8 Ma, though each occurrence is unique in terms of the number of cycles recorded, the thickness of diatomites, and the nature of the non-lacustrine sediments. The oldest of these packages is characterized by very thick (>50 m), continuous diatomite accumulation interrupted only by deposition of pyroclastic deposits. This unit is laterally quite extensive, with exposures extending over 150 km2, indicating the establishment of a large, deep, and persistent paleolake. The development of this major water body, possibly the largest recorded in the Baringo Basin, may be in part a consequence of hemisphere-wide climate disruptions accompanying dessication events in the Mediterranean during the Messinian.

  2. Late Cenozoic History of the Genus Micromys (Mammalia, Rodentia) in Central Europe

    PubMed Central

    Horáček, Ivan; Knitlová, Markéta; Wagner, Jan; Kordos, László; Nadachowski, Adam

    2013-01-01

    Molecular phylogeography suggests that Micromys minutus, the sole extant species of the genus, colonized its extensive range quite recently, during the Late Pleistocene-Holocene period. Rich Pliocene and Pleistocene fossil records both from Europe and China suggest rather continuous and gradual in situ phenotype rearrangements from the Pliocene to the Recent periods. To elucidate the discrepancy we reexamined a considerable part of the European fossil record of the genus (14 sites from MN15 to Q3, 0.4–4.2 Ma, including the type series of M. preaminutus from MN15 Csarnóta 2), analyzed them with the aid of detailed morphometric comparisons, and concluded that: (a) The European Pliocene form, M. praeminutus, differs significantly from the extant species; (b) it exhibits a broad phenotypic variation covering the presumptive diagnostic characters of MN16 M. caesaris; (c) despite having smaller dimensions, the Early and Middle Pleistocene forms (MN17-Q3, 2.6–0.4 Ma) seem to be closer to M. praeminutus than to the extant species; (d) the extinction of M. praeminutus during Q3 and the re-occupation of its niche by the recent expansion of M. minutus from E-European – C Asiatic sources (suggested by phylogeographic hypotheses) cannot be excluded. Discussing interpretations of the phylogenetic past of the genus we emphasize the distinct history of the West Palearctic clade (Late Miocene-Early Pleistocene) terminating with M. praeminutus and the East Asiatic clade (chalceus, tedfordi, minutus), and the possible identity of the Western clade with the Late Miocene genus Parapodemus. PMID:23671605

  3. The oldest gibbon fossil (Hylobatidae) from insular Southeast Asia: evidence from Trinil, (East Java, Indonesia), Lower/Middle Pleistocene.

    PubMed

    Ingicco, Thomas; de Vos, John; Huffman, O Frank

    2014-01-01

    A fossil femur excavated by Eugène Dubois between 1891-1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here.

  4. Dating Tips for Divergence-Time Estimation.

    PubMed

    O'Reilly, Joseph E; Dos Reis, Mario; Donoghue, Philip C J

    2015-11-01

    The molecular clock is the only viable means of establishing an accurate timescale for Life on Earth, but it remains reliant on a capricious fossil record for calibration. 'Tip-dating' promises a conceptual advance, integrating fossil species among their living relatives using molecular/morphological datasets and evolutionary models. Fossil species of known age establish calibration directly, and their phylogenetic uncertainty is accommodated through the co-estimation of time and topology. However, challenges remain, including a dearth of effective models of morphological evolution, rate correlation, the non-random nature of missing characters in fossil data, and, most importantly, accommodating uncertainty in fossil age. We show uncertainty in fossil-dating propagates to divergence-time estimates, yielding estimates that are older and less precise than those based on traditional node calibration. Ultimately, node and tip calibrations are not mutually incompatible and may be integrated to achieve more accurate and precise evolutionary timescales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Oldest Gibbon Fossil (Hylobatidae) from Insular Southeast Asia: Evidence from Trinil, (East Java, Indonesia), Lower/Middle Pleistocene

    PubMed Central

    Ingicco, Thomas; de Vos, John; Huffman, O. Frank

    2014-01-01

    A fossil femur excavated by Eugène Dubois between 1891–1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here. PMID:24914951

  6. Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracidae

    PubMed Central

    Portell, Roger W.; Klier, Aaron T.; Prueter, Vanessa; Tucker, Alyssa L.

    2015-01-01

    Spider crabs (Majoidea) are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs appeared in the Western Atlantic in deep time, and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most species and genera are found in the Caribbean region from the Miocene onwards. Furthermore, taxonomic work on some modern and fossil Mithracidae, a family that might have originated in the Western Atlantic, was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax cf. pleuracanthus is recognized for the first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp. nov. and Nemausa windsorae sp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is not always taken into account while describing and comparing among taxa. PMID:26557432

  7. Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment

    PubMed Central

    Moyer, Alison E.; Zheng, Wenxia; Schweitzer, Mary H.

    2016-01-01

    Keratinous ‘soft tissue’ structures (i.e. epidermally derived and originally non-biomineralized), include feathers, skin, claws, beaks, and hair. Despite their relatively common occurrence in the fossil record (second only to bone and teeth), few studies have addressed natural degradation processes that must occur in all organic material, including those keratinous structures that are incorporated into the rock record as fossils. Because feathers have high preservation potential and strong phylogenetic signal, in the current study we examine feathers subjected to different burial environments for a duration of ~10 years, using transmission electron microscopy (TEM) and in situ immunofluorescence (IF). We use morphology and persistence of specific immunoreactivity as indicators of preservation at the molecular and microstructural levels. We show that feather keratin is durable, demonstrates structural and microstructural integrity, and retains epitopes suitable for specific antibody recognition in even the harshest conditions. These data support the hypothesis that keratin antibody reactivity can be used to identify the nature and composition of epidermal structures in the rock record, and to address evolutionary questions by distinguishing between alpha- (widely distributed) and beta- (limited to sauropsids) keratin. PMID:27384819

  8. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães

    2017-12-01

    The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.

  9. Federico Cesi and his field studies on the origin of fossils between 1610 and 1630.

    PubMed

    Scott, A C

    2001-09-01

    In 1603 Federico Cesi, along with four of his friends, founded the first Scientific Academy in Europe, the Accademia dei Lincei, which included Galileo Galillei as a member. Between 1611 and 1630 Cesi undertook an ambitious project to collect and record fossils from his lands around Acquasparta in Umbria. He had drawings and descriptions made of all the excavated fossils, fossil woods and their sites of origin. He died before his work could be published and it was left to his friend Francesco Stelluti to publish a monograph in which he claimed that evidence demonstrated that the fossil woods were formed from stone and were 'not once living'. The corpus of drawings, now in the Royal Collection at Windsor, has allowed the project to be reconstructed and fieldwork in Italy has shown that the complex nature of the fossil preservation could have easily confused the researchers and have led to misinterpretation of the fossils. This research by Cesi is the first to combine field and specimen data to interpret the origin of fossils and has been widely neglected by historians of Science.

  10. The Fossil Calibration Database-A New Resource for Divergence Dating.

    PubMed

    Ksepka, Daniel T; Parham, James F; Allman, James F; Benton, Michael J; Carrano, Matthew T; Cranston, Karen A; Donoghue, Philip C J; Head, Jason J; Hermsen, Elizabeth J; Irmis, Randall B; Joyce, Walter G; Kohli, Manpreet; Lamm, Kristin D; Leehr, Dan; Patané, Josés L; Polly, P David; Phillips, Matthew J; Smith, N Adam; Smith, Nathan D; Van Tuinen, Marcel; Ware, Jessica L; Warnock, Rachel C M

    2015-09-01

    Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Textural and Mineralogical Characteristics of Microbial Fossils Associated with Modern and Ancient Iron (Oxyhydr)Oxides: Terrestrial Analogue for Sediments in Gale Crater

    PubMed Central

    Chan, Marjorie A.; McPherson, Brian J.

    2014-01-01

    Abstract Iron (oxyhydr)oxide microbial mats in modern to ∼100 ka tufa terraces are present in a cold spring system along Ten Mile Graben, southeastern Utah, USA. Mats exhibit morphological, chemical, and textural biosignatures and show diagenetic changes that occur over millennial scales. The Jurassic Brushy Basin Member of the Morrison Formation in the Four Corners region of the USA also exhibits comparable microbial fossils and iron (oxyhydr)oxide biosignatures in the lacustrine unit. Both the modern spring system and Brushy Basin Member represent alkaline, saline, groundwater-fed systems and preserve diatoms and other similar algal forms with cellular elaboration. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se, P) are associated with microbial fossils in modern and ancient iron (oxyhydr)oxides and may be potential markers for biosignatures. The presence of ferrihydrite in ∼100 ka fossil microbial mats and Jurassic rocks suggests that this thermodynamically unstable mineral may also be a potential biomarker. One of the most extensive sedimentary records on Mars is exposed in Gale Crater and consists of non-acidic clays and sulfates possibly of lacustrine origin. These terrestrial iron (oxyhydr)oxide examples are a valuable analogue because of similar iron- and clay-rich host rock compositions and will help (1) understand diagenetic processes in a non-acidic, saline lacustrine environment such as the sedimentary rocks in Gale Crater, (2) document specific biomediated textures, (3) demonstrate how biomediated textures might persist or respond to diagenesis over time, and (4) provide a ground truth library of textures to explore and compare in extraterrestrial iron (oxyhydr)oxides, where future explorations hope to detect past evidence of life. Key Words: Biogeochemistry—Mars—Biosignatures—Diagenesis—Iron oxides. Astrobiology 14, 1–14. PMID:24380534

  12. Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae).

    PubMed

    Farkašová, Helena; Hron, Tomáš; Pačes, Jan; Hulva, Pavel; Benda, Petr; Gifford, Robert James; Elleder, Daniel

    2017-03-21

    Retroviruses can create endogenous forms on infiltration into the germline cells of their hosts. These forms are then vertically transmitted and can be considered as genetic fossils of ancient viruses. All retrovirus genera, with the exception of deltaretroviruses, have had their representation identified in the host genome as a virus fossil record. Here we describe an endogenous Deltaretrovirus, identified in the germline of long-fingered bats (Miniopteridae). A single, heavily deleted copy of this retrovirus has been found in the genome of miniopterid species, but not in the genomes of the phylogenetically closest bat families, Vespertilionidae and Cistugonidae. Therefore, the endogenization occurred in a time interval between 20 and 45 million years ago. This discovery closes the last major gap in the retroviral fossil record and provides important insights into the history of deltaretroviruses in mammals.

  13. Implications of a fossil stickleback assemblage for Darwinian gradualism.

    PubMed

    Bell, M A

    2009-11-01

    Darwin postulated that a complete fossil record would contain numerous gradual transitions between ancestral and descendant species, but 150 years after publication of The Origin of Species, few such transitions have materialized. The fossil stickleback Gasterosteus doryssus and the deposit in which it occurs provide excellent conditions to detect such transitions. Abundant, well-preserved fossils occur in a stratigraphic setting with fine temporal resolution. The paleoecology of G. doryssus resembles the ecology of modern lakes that harbour the phenotypically similar three-spined stickleback Gasterosteus aculeatus. Gasterosteus aculeatus are primitively highly armoured, but G. doryssus comprised two contemporaneous biological species with relatively weak armour, including a near-shore, benthic feeder (benthic) and an offshore planktivore (limnetic). The benthic species expanded its range into the limnetic zone of the lake, where it apparently switched to planktivory and evolved reduced armour within c. 5000 years in response to directional selection. Although gradual evolution of mean phenotypes occurred, a single major gene caused much of evolutionary change of the pelvic skeleton. Thus, Darwin's expectation that transitions between species in the fossil record would be gradual was met at a fine time scale, but for pelvic structure, a well-studied trait, his expectation that gradual change would depend entirely on numerous, small, heritable differences among individuals was incorrect.

  14. Exopaleontology and the search for a fossil record on Mars

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; Desmarais, D. J.

    1994-01-01

    Although present Martian surface conditions appear unfavorable for life as we know it, there is compelling geological evidence that the climate of early Mars was much more Earth-like, with a denser atmosphere and abundant surface water. The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it is likely to have left behind a fossil record. This has led to the development of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets. The most important factor enhancing microbial fossilization is the rapid entombment of microorganisms by fine-grained, stable mineral phases, such as silica, phosphate, or carbonate. The oldest body fossils on Earth are preserved in this way, occurring as permineralized cells in fine-grained siliceous sediments (cherts) associated with ancient volcanic terranes in Australia and South Africa. Modern terrestrial environments where minerals may precipitate in the presence of microorganisms include subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporitic alkaline lakes, zones of mineralization within soils where 'hardpans' (e.g. calcretes, silcretes) form, and high latitude frozen soils or ground ice.

  15. Fossil endocarps of Aralia (Araliaceae) from the upper Pliocene of Yunnan in southwest China, and their biogeographical implications

    DOE PAGES

    Zhu, Hai; Jacques, Frederic M. B.; Wang, Li; ...

    2015-10-09

    Aralia stratosa H. Zhu, Y.J. Huang et Z.K. Zhou sp. nov. is described based on fossil endocarps from the upper Pliocene of northwest Yunnan in southwest China. The endocarps are characterized by a semicircular to elliptic outline in the lateral view, an apical beak-like structure bending towards the ventral side, and a transversely wrinkled surface, collectively indicating taxonomical inclusion in the genus Aralia (Araliaceae). The new fossil taxon is compared with nine extant species of Aralia based on endocarp morphology and anatomy, showing the carpological resemblance to A. echinocaulis. Aralia stratosa sp. nov. represents the first confirmed fossil record frommore » lower latitudes in the Northern Hemisphere. This implies a southerly biogeographical range for this genus than was previously interpreted. The fossil record of Aralia suggests a Cretaceous origin in North America and an Eocene dispersal to eastern Asia, likely via the Bering land bridge, followed by Miocene establishment in Europe. The genus likely began to inhabit lower latitudes in eastern Asia no later than the late Pliocene, which is in line with results from molecular analyses. As a result, all these may suggest a southward distributional change probably associated with the global cooling and northern acidification.« less

  16. Fossil endocarps of Aralia (Araliaceae) from the upper Pliocene of Yunnan in southwest China, and their biogeographical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hai; Jacques, Frederic M. B.; Wang, Li

    Aralia stratosa H. Zhu, Y.J. Huang et Z.K. Zhou sp. nov. is described based on fossil endocarps from the upper Pliocene of northwest Yunnan in southwest China. The endocarps are characterized by a semicircular to elliptic outline in the lateral view, an apical beak-like structure bending towards the ventral side, and a transversely wrinkled surface, collectively indicating taxonomical inclusion in the genus Aralia (Araliaceae). The new fossil taxon is compared with nine extant species of Aralia based on endocarp morphology and anatomy, showing the carpological resemblance to A. echinocaulis. Aralia stratosa sp. nov. represents the first confirmed fossil record frommore » lower latitudes in the Northern Hemisphere. This implies a southerly biogeographical range for this genus than was previously interpreted. The fossil record of Aralia suggests a Cretaceous origin in North America and an Eocene dispersal to eastern Asia, likely via the Bering land bridge, followed by Miocene establishment in Europe. The genus likely began to inhabit lower latitudes in eastern Asia no later than the late Pliocene, which is in line with results from molecular analyses. As a result, all these may suggest a southward distributional change probably associated with the global cooling and northern acidification.« less

  17. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives

    PubMed Central

    Sánchez-Villagra, Marcelo R.

    2010-01-01

    The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals. PMID:20071389

  18. Vegetation and paleoclimate of the last interglacial period, central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Beget, J.E.

    2001-01-01

    The last interglacial period is thought to be the last time global climate was significantly warmer than present. New stratigraphic studies at Eva Creek, near Fairbanks, Alaska indicate a complex last interglacial record wherein periods of loess deposition alternated with periods of soil formation. The Eva Forest Bed appears to have formed about the time of or after deposition of the Old Crow tephra (dated to ??? 160 to ??? 120 ka), and is therefore correlated with the last interglacial period. Pollen, macrofossils, and soils from the Eva Forest Bed indicate that boreal forest was the dominant vegetation and precipitation may have been greater than present around Fairbanks during the peak of the last interglacial period. A new compilation of last interglacial localities indicates that boreal forest was extensive over interior Alaska and Yukon Territory. Boreal forest also extended beyond its present range onto the Seward and Baldwin Peninsulas, and probably migrated to higher elevations, now occupied by tundra, in the interior. Comparison of last interglacial pollen and macrofossil data with atmospheric general circulation model results shows both agreement and disagreement. Model results of warmer-than-present summers are in agreement with fossil data. However, numerous localities with boreal forest records are in conflict with model reconstructions of an extensive cool steppe in interior Alaska and much of Yukon Territory during the last interglacial. ?? 2000 Elsevier Science Ltd.

  19. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  20. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  1. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  2. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  3. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  4. Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge

    PubMed Central

    Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.

    2013-01-01

    Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988

  5. A golden orb-weaver spider (Araneae: Nephilidae: Nephila) from the Middle Jurassic of China.

    PubMed

    Selden, Paul A; Shih, ChungKun; Ren, Dong

    2011-10-23

    Nephila are large, conspicuous weavers of orb webs composed of golden silk, in tropical and subtropical regions. Nephilids have a sparse fossil record, the oldest described hitherto being Cretaraneus vilaltae from the Cretaceous of Spain. Five species from Neogene Dominican amber and one from the Eocene of Florissant, CO, USA, have been referred to the extant genus Nephila. Here, we report the largest known fossil spider, Nephila jurassica sp. nov., from Middle Jurassic (approx. 165 Ma) strata of Daohugou, Inner Mongolia, China. The new species extends the fossil record of the family by approximately 35 Ma and of the genus Nephila by approximately 130 Ma, making it the longest ranging spider genus known. Nephilidae originated somewhere on Pangaea, possibly the North China block, followed by dispersal almost worldwide before the break-up of the supercontinent later in the Mesozoic. The find suggests that the palaeoclimate was warm and humid at this time. This giant fossil orb-weaver provides evidence of predation on medium to large insects, well known from the Daohugou beds, and would have played an important role in the evolution of these insects.

  6. The first fossil salmonfly (Insecta: Plecoptera: Pteronarcyidae), back to the Middle Jurassic.

    PubMed

    Cui, Yingying; Béthoux, Olivier; Kondratieff, Boris; Shih, Chungkun; Ren, Dong

    2016-10-18

    The fossil record of Plecoptera (stoneflies) is considered relatively complete, with stem-groups of each of the three major lineages, viz. Antarctoperlaria, Euholognatha and Systellognatha (and some of their families) represented in the Mesozoic. However, the family Pteronarcyidae (the salmonflies; including two genera, Pteronarcys and Pteronarcella) has no fossil record to date, and the family has been suggested to have diverged recently. In this paper, we report on a set of specimens belonging to a new fossil species of stonefly, discovered from the Middle Jurassic Daohugou locality (China). Our comparative analysis of wing venation and body characters demonstrates that the new species belongs to the Pteronarcyidae, and is more closely related to Pteronarcys than to Pteronarcella. However, it differs from all known species of the former genus. It is therefore assigned to a new genus and named Pteroliriope sinitshenkovae gen. et sp. nov. under the traditional nomenclatural procedure. The cladotypic nomenclatural procedure is also employed, with the resulting combination Pteroliriope nec Pteronarcys sinitshenkovae sp. nov. The first discovery of a fossil member of the Pteronarcyidae demonstrates that the corresponding lineage is not a very recent offshoot but was already present ca. 165 million years ago. This discovery concurs with the view that divergence of most stonefly families took place very early, probably in the Triassic, or even in the Permian. This contribution demonstrates the need for (re-)investigations of the systematics of fossil stoneflies to refine divergence date estimates for Plecoptera lineages.

  7. Toward an accurate taxonomic interpretation of Carex fossil fruits (Cyperaceae): a case study in section Phacocystis in the Western Palearctic.

    PubMed

    Jiménez-Mejías, Pedro; Martinetto, Edoardo

    2013-08-01

    Despite growing interest in the systematics and evolution of the hyperdiverse genus Carex, few studies have focused on its evolution using an absolute time framework. This is partly due to the limited knowledge of the fossil record. However, Carex fruits are not rare in certain sediments. We analyzed carpological features of modern materials from Carex sect. Phacocystis to characterize the fossil record taxonomically. We studied 374 achenes from modern materials (18 extant species), as well as representatives from related groups, to establish the main traits within and among species. We also studied 99 achenes from sediments of living populations to assess their modification process after decay. Additionally, we characterized 145 fossil achenes from 10 different locations (from 4-0.02 mya), whose taxonomic assignment we discuss. Five main characters were identified for establishing morphological groups of species (epidermis morphology, achene-utricle attachment, achene base, style robustness, and pericarp section). Eleven additional characters allowed the discrimination at species level of most of the taxa. Fossil samples were assigned to two extant species and one unknown, possibly extinct species. The analysis of fruit characters allows the distinction of groups, even up to species level. Carpology is revealed as an accurate tool in Carex paleotaxonomy, which could allow the characterization of Carex fossil fruits and assign them to subgeneric or sectional categories, or to certain species. Our conclusions could be crucial for including a temporal framework in the study of the evolution of Carex.

  8. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations

    PubMed Central

    Szöllősi, Gergely J.; Boussau, Bastien; Abby, Sophie S.; Tannier, Eric; Daubin, Vincent

    2012-01-01

    The timing of the evolution of microbial life has largely remained elusive due to the scarcity of prokaryotic fossil record and the confounding effects of the exchange of genes among possibly distant species. The history of gene transfer events, however, is not a series of individual oddities; it records which lineages were concurrent and thus provides information on the timing of species diversification. Here, we use a probabilistic model of genome evolution that accounts for differences between gene phylogenies and the species tree as series of duplication, transfer, and loss events to reconstruct chronologically ordered species phylogenies. Using simulations we show that we can robustly recover accurate chronologically ordered species phylogenies in the presence of gene tree reconstruction errors and realistic rates of duplication, transfer, and loss. Using genomic data we demonstrate that we can infer rooted species phylogenies using homologous gene families from complete genomes of 10 bacterial and archaeal groups. Focusing on cyanobacteria, distinguished among prokaryotes by a relative abundance of fossils, we infer the maximum likelihood chronologically ordered species phylogeny based on 36 genomes with 8,332 homologous gene families. We find the order of speciation events to be in full agreement with the fossil record and the inferred phylogeny of cyanobacteria to be consistent with the phylogeny recovered from established phylogenomics methods. Our results demonstrate that lateral gene transfers, detected by probabilistic models of genome evolution, can be used as a source of information on the timing of evolution, providing a valuable complement to the limited prokaryotic fossil record. PMID:23043116

  9. A 6900-year history of landscape modification by humans in lowland Amazonia

    NASA Astrophysics Data System (ADS)

    Bush, M. B.; Correa-Metrio, A.; McMichael, C. H.; Sully, S.; Shadik, C. R.; Valencia, B. G.; Guilderson, T.; Steinitz-Kannan, M.; Overpeck, J. T.

    2016-06-01

    A sedimentary record from the Peruvian Amazon provided evidence of climate and vegetation change for the last 6900 years. Piston cores collected from the center of Lake Sauce, a 20 m deep lake at 600 m elevation, were 19.7 m in length. The fossil pollen record showed a continuously forested catchment within the period of the record, although substantial changes in forest composition were apparent. Fossil charcoal, found throughout the record, was probably associated with humans setting fires. Two fires, at c. 6700 cal BP and 4270 cal BP, appear to have been stand-replacing events possibly associated with megadroughts. The fire event at 4270 cal BP followed a drought that caused lowered lake levels for several centuries. The successional trajectories of forest recovery following these large fires were prolonged by smaller fire events. Fossil pollen of Zea mays (cultivated maize) provided evidence of agricultural activity at the site since c. 6320 cal BP. About 5150 years ago, the lake deepened and started to deposit laminated sediments. Maize agriculture reached a peak of intensity between c. 3380 and 700 cal BP. Fossil diatom data provided a proxy for lake nutrient status and productivity, both of which peaked during the period of maize cultivation. A marked change in land use was evident after c. 700 cal BP when maize agriculture was apparently abandoned at this site. Iriartea, a hyperdominant of riparian settings in western Amazonia, increased in abundance within the last 1100 years, but declined markedly at c. 1070 cal BP and again between c. 80 and -10 cal BP.

  10. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa.

    PubMed

    Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W

    2010-12-01

    Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.

  11. Livers, guts and gills: mapping the decay profiles of soft tissues to understand authigenic mineral replacement.

    NASA Astrophysics Data System (ADS)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2016-04-01

    The hard mineralised parts of organisms such as shells, teeth and bones dominate the fossil record. There are, however, sites around the world where soft-tissues are preserved often through rapid replacement of original tissue by rapidly-precipitating authigenic minerals. These exceptionally well-preserved soft-bodied fossils are much more informative about the anatomy, physiology, ecology and behaviour of ancient organisms as well as providing a more inclusive picture of ecosystems and evolution throughout geological time. However, despite the wealth of information that soft-bodied fossils can provide they must first be correctly interpreted as the processes of both decay and preservation act to modify the carcass from its in vivo condition. Decay leads to alteration of the appearance and topology of anatomy, and ultimately to loss. Preservation is selective with some anatomical features being more likely to be captured than others. These problems are especially germane to the interpretation of deep-time and/or enigmatic fossils where no modern analogue exist for comparative anatomical analysis. It is therefore of vital importance to understand the processes carcasses undergo during the fossilisation process, , in order to interpret the anatomical remains of fossils and thus extract true evolutionary presence or absence of anatomy from absence due to taphonomic biases. We have designed a series of novel experiments to investigate, in real time, how decay processes affect the fossilisation potential of soft-tissues - especially of internal anatomy. Our data allow us to unravel both the timing and sequence of anatomical decay of different organs. At the same time through measuring Eh and pH in selected organs we can predict when anatomical features will fall in to the window of authigenic mineralization and thus potentially become preserved. We can also place constraints on which minerals will operate to capture tissues. Our findings are applied to the fossil record allowing greater accuracy in reading the record of exceptionally preserved organisms.

  12. Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama

    PubMed Central

    Pimiento, Catalina; Ehret, Dana J.; MacFadden, Bruce J.; Hubbell, Gordon

    2010-01-01

    Background As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. Methodology/Principal Findings We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. Conclusions/Significance We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories. PMID:20479893

  13. Cooling and drying in northeast Africa across the Pliocene

    NASA Astrophysics Data System (ADS)

    Liddy, Hannah M.; Feakins, Sarah J.; Tierney, Jessica E.

    2016-09-01

    Terrestrial records suggest that Northeast Africa experienced drying during the Pliocene; however, these records are often incomplete in time and space, and questions about this shift in climate remain. Here, we use marine sediments from Deep Sea Drilling Project (DSDP) Site 231 in the Gulf of Aden to generate a multi-proxy organic geochemical record of northeast African climate spanning 5.3-2 Ma. This new record provides a regional perspective on climate and serves as context for the fossil record of early hominin evolution. We measured leaf wax carbon (δ13Cwax) and hydrogen (δDwax) isotopic composition and TEX86 (tetraether index of 86 carbons) to investigate past changes in vegetation, aridity, and ocean temperature, respectively. In the earliest Pliocene, we infer warm subsurface ocean temperatures from TEX86, semi-arid conditions on land and extensive C4 grasslands based on δDwax, δ13Cwax and previously published pollen. After 5 Ma, ocean temperatures gradually cooled, and at 4.3 Ma there was a transition to arid conditions on land based on δDwax and pollen. Grasslands yielded to a mid Pliocene landscape of dry shrublands. This drying appears to be an atmospheric response to cooling ocean temperatures, which may reflect changes in tropical ocean circulation, the intensification of Indian Monsoon winds or perhaps other changes associated with Pliocene cooling.

  14. Salishicetus meadi, a new aetiocetid from the late Oligocene of Washington State and implications for feeding transitions in early mysticete evolution

    NASA Astrophysics Data System (ADS)

    Peredo, Carlos Mauricio; Pyenson, Nicholas D.

    2018-04-01

    Living baleen whales, or Mysticeti, lack teeth and instead feed using keratinous baleen plates to sieve prey-laden water. This feeding strategy is profoundly different from that of their toothed ancestors, which processed prey using the differentiated dentition characteristic of mammals. The fossil record of mysticetes reveals stem members that include extinct taxa with dentition, illuminating the morphological states that preceded the loss of teeth and the subsequent origin of baleen. The relationships among stem mysticetes, including putative clades such as Mammalodontidae and Aetiocetidae, remain debatable. Aetiocetids are among the more species-rich clade of stem mysticetes, and known only from fossil localities along the North Pacific coastline. Here, we report a new aetiocetid, Salishicetus meadi gen. et sp. nov, from the late Oligocene of Washington State, USA. Salishicetus preserves a near-complete lower dentition with extensive occlusal wear, indicating that it processed prey using shearing cheek teeth in the same way as its stem cetacean ancestors. Using a matrix with all known species of aetiocetids, we recover a monophyletic Aetiocetidae, crownward of a basal clade of Mammalodontidae. The description of Salishicetus resolves phylogenetic relationships among aetiocetids, which provides a basis for reconstructing ancestral feeding morphology along the stem leading to crown Mysticeti.

  15. A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines

    PubMed Central

    Bredehoeft, Keila E.; Wallace, Steven C.

    2018-01-01

    The wolverine (Gulo gulo) is the largest living terrestrial member of the Mustelidae; a versatile predator formerly distributed throughout boreal regions of North America and Eurasia. Though commonly recovered from Pleistocene sites across their range, pre-Pleistocene records of the genus are exceedingly rare. Here, we describe a new species of Gulo from the Gray Fossil Site in Tennessee. Based on biostratigraphy, a revised estimate of the age of the Gray Fossil Site is Early Pliocene, near the Hemphillian—Blancan transition, between 4.9 and 4.5 Ma. This represents the earliest known occurrence of a wolverine, more than one million years earlier than any other record. The new species of wolverine described here shares similarities with previously described species of Gulo, and with early fishers (Pekania). As the earliest records of both Gulo and Pekania are known from North America, this suggests the genus may have evolved in North America and dispersed to Eurasia later in the Pliocene. Both fauna and flora at the Gray Fossil Site are characteristic of warm/humid climates, which suggests wolverines may have become ‘cold-adapted’ relatively recently. Finally, detailed comparison indicates Plesiogulo, which has often been suggested to be ancestral to Gulo, is not likely closely related to gulonines, and instead may represent convergence on a similar niche. PMID:29682423

  16. The hominin fossil record: taxa, grades and clades

    PubMed Central

    Wood, Bernard; Lonergan, Nicholas

    2008-01-01

    This paper begins by reviewing the fossil evidence for human evolution. It presents summaries of each of the taxa recognized in a relatively speciose hominin taxonomy. These taxa are grouped in grades, namely possible and probable hominins, archaic hominins, megadont archaic hominins, transitional hominins, pre-modern Homo and anatomically modern Homo. The second part of this contribution considers some of the controversies that surround hominin taxonomy and systematics. The first is the vexed question of how you tell an early hominin from an early panin, or from taxa belonging to an extinct clade closely related to the Pan-Homo clade. Secondly, we consider how many species should be recognized within the hominin fossil record, and review the philosophies and methods used to identify taxa within the hominin fossil record. Thirdly, we examine how relationships within the hominin clade are investigated, including descriptions of the methods used to break down an integrated structure into tractable analytical units, and then how cladograms are generated and compared. We then review the internal structure of the hominin clade, including the problem of how many subclades should be recognized within the hominin clade, and we examine the reliability of hominin cladistic hypotheses. The last part of the paper reviews the concepts of a genus, including the criteria that should be used for recognizing genera within the hominin clade. PMID:18380861

  17. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record.

    PubMed

    Sforna, M C; Daye, M; Philippot, P; Somogyi, A; van Zuilen, M A; Medjoubi, K; Gérard, E; Jamme, F; Dupraz, C; Braissant, O; Glunk, C; Visscher, P T

    2017-03-01

    The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record. © 2016 John Wiley & Sons Ltd.

  18. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J

    2012-01-01

    A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  19. Conidae and Terebridae (Gastropoda: Neogastropoda) from the Plio-Pleistocene of the Philippines.

    PubMed

    Helwerda, Enate A

    2017-01-20

    Six species of Conidae and seven species of Terebridae are reported from the Plio-Pleistocene "Cabarruyan" fauna of Pangasinan, the Philippines. Eleven species are identified; these species all occur in the Recent Indo-Pacific fauna and seven of these are previously known from the fossil record as well. The species composition of this fauna shows little overlap with other fossil assemblages, except with the Fijian fossil assemblage. This is attributed to a lack of knowledge on Indo-pacific fossil faunas as well as to the relatively deep water setting (200-300 m) of this fauna. More research is needed to determine why the Fijian assemblage is relatively similar.

  20. Ferns diversified in the shadow of angiosperms.

    PubMed

    Schneider, Harald; Schuettpelz, Eric; Pryer, Kathleen M; Cranfill, Raymond; Magallón, Susana; Lupia, Richard

    2004-04-01

    The rise of angiosperms during the Cretaceous period is often portrayed as coincident with a dramatic drop in the diversity and abundance of many seed-free vascular plant lineages, including ferns. This has led to the widespread belief that ferns, once a principal component of terrestrial ecosystems, succumbed to the ecological predominance of angiosperms and are mostly evolutionary holdovers from the late Palaeozoic/early Mesozoic era. The first appearance of many modern fern genera in the early Tertiary fossil record implies another evolutionary scenario; that is, that the majority of living ferns resulted from a more recent diversification. But a full understanding of trends in fern diversification and evolution using only palaeobotanical evidence is hindered by the poor taxonomic resolution of the fern fossil record in the Cretaceous. Here we report divergence time estimates for ferns and angiosperms based on molecular data, with constraints from a reassessment of the fossil record. We show that polypod ferns (> 80% of living fern species) diversified in the Cretaceous, after angiosperms, suggesting perhaps an ecological opportunistic response to the diversification of angiosperms, as angiosperms came to dominate terrestrial ecosystems.

  1. The semi-aquatic pondweed bugs of a Cretaceous swamp

    PubMed Central

    Sánchez-García, Alba; Nel, André; Arillo, Antonio

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology. PMID:28890856

  2. The semi-aquatic pondweed bugs of a Cretaceous swamp.

    PubMed

    Sánchez-García, Alba; Nel, André; Arillo, Antonio; Solórzano Kraemer, Mónica M

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology.

  3. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Weed, Rebecca

    1987-01-01

    In the Antarctic cold desert (Ross Desert), the survival of the cryptoendolithic microorganisms that colonize the near-surface layer of porous sandstone rocks depends on a precarious equilibrium of biological and geological factors. An unfavorable shift of this equilibrium results in death, and this may be followed by formation of trace fossils that preserve the characteristic iron-leaching pattern caused by microbial activity. Similar microbial trace fossils may exist in the geological record. If life ever arose on early Mars, similar processes may have occurred there and left recognizable traces.

  4. Mantophasmatodea now in the Jurassic

    NASA Astrophysics Data System (ADS)

    Huang, Di-Ying; Nel, André; Zompro, Oliver; Waller, Alain

    2008-10-01

    The Mantophasmatodea is the most recently discovered insect order. The fossil records of all other ‘polyneopteran’ orders extend far in the past, but the current absence of pre-Cenozoic fossils of the Mantophasmatodea contradicts a long evolutionary history, which has to be assumed from the morphological distinctness of the group. In this paper, we report the first Mesozoic evidence of a mantophasmatodean from the Middle Jurassic of Daohugou, Inner Mongolia, China. Furthermore, the new fossil shares apomorphic characters with Cenozoic and recent Mantophasmatodea, suggesting a longer evolutionary history of this order.

  5. Early organisms in the fossil record: paleontological aspects, evolutionary and ecological impacts

    NASA Astrophysics Data System (ADS)

    Sabbatini, Anna; Negri, Alessandra; Morigi, Caterina; Bartolini, Annachiara; Lipps, Jere

    2017-04-01

    With this abstract we introduce our session whose aim is twofold: 1) to gather information on the earliest foraminifera (single- organic and agglutinated taxa) which so far are sparse and uncoordinated in order to understand their evolution and their relationship with modern single-chambered taxa, contextualizing scientific current results in the geo-biological field. 2) to explore also every other early organism trace fossils or so far overlooked organisms coated with fine sediment (i.e., bacteria, testate amoebae) to understand how and if this coating might help these creatures to fossilize. For this reason, this session will integrate many disciplines, from genomics to palaeo-environmental modelling to palaeontology and geochemistry. Our experience starts from Foraminifera which are an ecologically important group of modern heterotrophic amoeboid eukaryotes whose naked and testate ancestors are thought to have evolved 1 Ga ago. However, the single-chambered agglutinated test of these protists is hypothesized to appear in the fossil record in the Neoproterozoic, before the rise of complex animals. In addition, the difficulty of recognizing unambiguously ancestral monothalamous foraminifera in the fossil record represents the main challenge and might be related to a combination of factors, such as preservation in the sediments, adverse palaeo-environmental conditions and the absence of clear morphological characters distinguishing them from other morphologically simple testate organisms. However, recent publications have evidenced the finding of such organisms in several sedimentary successions tracing back to the Neoproterozoic. An integrate approach will result in profound insights about life—past, present, future— representing a new frontier in the palaeobiological studies. Therefore, aim of this session is to bring together specialists across all these disciplines to provide a uniquely rich and fertile intellectual environment for the pursuit of this intrinsically interdisciplinary topic.

  6. Maturation experiments reveal bias in the fossil record of feathers

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Field, Daniel

    2016-04-01

    The evolutionary history of birds and feathers is a major focus in palaeobiology and evolutionary biology. Diverse exceptionally preserved birds and feathered dinosaurs from Jurassic and Cretaceous biotas in China have provided pivotal evidence of early feathers and feather-like integumentary features, but the true nature of many of these fossil soft tissues is still debated. Interpretations of feathers at intermediate developmental stages (i.e. Stages II, III and IV) and of simple quill-like (Stage I) feathers are particularly controversial. This reflects key uncertainties relating to the preservation potential of feathers at different evolutionary-developmental stages, and to the relative preservation potential of diagnostic features of Stage I feathers and hair. To resolve these issues, we used high pressure-high temperature autoclave experiments to simulate the effects of burial on modern feathers from the Black Coucal (Centropus grilii) and Common Starling (Sturnus vulgaris), and on human hair. Our results reveal profound differences in the recalcitrance of feathers of different types during maturation: Stage I and Stage V feathers retain diagnostic morphological and ultrastructural details following maturation, whereas other feather types do not. Further, the morphology and arrangement of certain ultrastructural features diagnostic of Stages III and IV, e.g. barbules, are preferentially lost during maturation. These results indicate a pervasive bias in the fossil record of feathers, whereby preservation of feathers at Stages I and V is favored. Critical stages in the evolution of feathers, i.e. Stages II, III and IV, are less likely to be preserved and more likely to be misinterpreted as feathers at earlier developmental stages. Our discovery has major implications for our understanding of the fidelity of the fossil record of feathers and provides a framework for testing the significance of putative examples of fossil feathers at different developmental stages.

  7. Patterns of generic extinction in the fossil record

    NASA Technical Reports Server (NTRS)

    Raup, D. M.; Boyajian, G. E.

    1988-01-01

    Analysis of the stratigraphic records of 19,897 fossil genera indicates that most classes and orders show largely congruent rises and falls in extinction intensity throughout the Phanerozoic. Even an ecologically homogeneous sample of reef genera shows the same basic extinction profile. The most likely explanation for the congruence is that extinction is physically rather than biologically driven and that it is dominated by the effects of geographically widespread environmental perturbations influencing most habitats. Significant departures from the congruence are uncommon but important because they indicate physiological or habitat selectivity. The similarity of the extinction records of reef organisms and the marine biota as a whole confirms that reefs and other faunas are responding to the same history of environmental stress.

  8. Oligocene terrestrial strata of northwestern Ethiopia : a preliminary report on paleoenvironments and paleontology

    Treesearch

    Bonnie F. Jacobs; Neil Tabor; Mulugeta Feseha; Aaron Pan; John Kappelman; Tab Rasmussen; William Sanders; Michael Wiemann; Jeff Crabaugh; Juan Leandro Garcia Massini

    2005-01-01

    The Paleogene record of Afro-Arabia is represented by few fossil localities, most of which are coastal. Here we report sedimentological and paleontological data from continental Oligocene strata in northwestern Ethiopia. These have produced abundant plant fossils and unique assemblages of vertebrates, thus filling a gap in what is known of Paleogene interior Afro-...

  9. Thermal impacts of a fossil-fueled electric power plant discharge on seagrass bed communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeth, J.C.; Garrett, R.A.; Imbur, W.E.

    1979-01-01

    This paper deals with a 316a demonstration for an older fossil-fueled electric power plant which is often overlooked but nevertheless a regultory compliance. In this report, the Lansing Smith coal-fired steam electric power plant went under a 316a demonstration and the results are recorded and tabulated.

  10. A roller-like bird (Coracii) from the Early Eocene of Denmark.

    PubMed

    Bourdon, Estelle; Kristoffersen, Anette V; Bonde, Niels

    2016-09-27

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies.

  11. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia; an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin

    USGS Publications Warehouse

    Madden, Gary T.; Schmidt, Dwight Lyman; Whitmore, Frank C.

    1983-01-01

    A lower jaw fragment with its last molar (M/3) from the Baid formation in Wadi Sabya, southwestern Saudi Arabia, represents the first recorded occurrence in the Arabian Peninsula of an anthracotheriid artiodactyl (hippo-like, even-toed ungulate). This fossil is identified as a primitive species of Masritherium, a North and East African genus restricted, previously to the later early Miocene. This identification indicates that the age of the Baid formation, long problematical, is early Miocene and, moreover, shows that the age of the fossil site is earliest Miocene (from 25 to 21Ma). The Wadi Sabya anthracothere is the first species of fossil mammal recorded from western Saudi Arabia, and more important, it indicates an early Miocene age for the volcanic deposits of a continental rift-valley that preceded the initial sea-floor spreading of the Red Sea.

  12. A roller-like bird (Coracii) from the Early Eocene of Denmark

    PubMed Central

    Bourdon, Estelle; Kristoffersen, Anette V.; Bonde, Niels

    2016-01-01

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies. PMID:27670387

  13. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.

    PubMed

    De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J

    2015-01-01

    Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. How can we reliably identify a taxon based on humeral morphology? Comparative morphology of desmostylian humeri

    PubMed Central

    2017-01-01

    Desmostylia is a clade of marine mammals belonging to either Tethytheria or Perissodactyla. Rich fossil records of Desmostylia were found in the Oligocene to Miocene strata of the Northern Pacific Rim, especially in the northwestern region, which includes the Japanese archipelago. Fossils in many shapes and forms, including whole or partial skeletons, skulls, teeth, and fragmentary bones have been discovered from this region. Despite the prevalent availability of fossil records, detailed taxonomic identification based on fragmentary postcranial materials has been difficult owing to to our limited knowledge of the postcranial diagnostic features of many desmostylian taxa. In this study, I propose the utilization of diagnostic characters found in the humerus to identify desmostylian genus. These characters can be used to identify isolated desmostylian humeri at the genus level, contributing to a better understanding of the stratigraphic and geographic distributions of each genus. PMID:29134151

  15. A long-living species of the hydrophiloid beetles: Helophorus sibiricus from the early Miocene deposits of Kartashevo (Siberia, Russia)

    PubMed Central

    Fikáček, Martin; Prokin, Alexander; Angus, Robert B.

    2011-01-01

    Abstract The recent hydrophiloid species Helophorus (Gephelophorus) sibiricus (Motschulsky, 1860) is recorded from the early Miocene deposits of Kartashevo assigned to the Ombinsk Formation. A detailed comparison with recent specimens allowed a confident identification of the fossil specimen, which is therefore the oldest record of a recent species for the Hydrophiloidea. The paleodistribution as well as recent distribution of the species is summarized, and the relevance of the fossil is discussed. In addition, the complex geological settings of the Kartashevo area are briefly summarized. PMID:22259280

  16. Testing New Proxies for Photosymbiosis in the Fossil Record

    NASA Astrophysics Data System (ADS)

    Tornabene, C.; Martindale, R. C.; Schaller, M. F.

    2015-12-01

    Photosymbiosis is a mutualistic relationship that many corals have developed with dinoflagellates called zooxanthellae. The dinoflagellates, of the genus Symbiodinium, photosynthesize and provide corals with most of their energy, while in turn coral hosts live in waters where zooxanthellae have optimal exposure to sunlight. Thanks to this relationship, symbiotic corals calcify faster than non-symbiotic corals. Photosymbiosis is therefore considered the evolutionary innovation that allowed corals to become major reef-builders through geological time.This relationship is extremely difficult to study. Zooxanthellae, which are housed in the coral tissue, are not preserved in fossil coral skeletons, thus determining whether corals had symbionts requires a robust proxy. In order to address this critical question, the goal of this research is to test new proxies for ancient photosymbiosis. Currently the project is focused on assessing the nitrogen (δ15N) isotopes of corals' organic matrices, sensu Muscatine et al. (2005), as well as carbon and oxygen (δ13C, δ18O) isotopes of fossil coral skeletons. Samples from Modern, Pleistocene, Oligocene and Triassic coral skeletons were analyzed to test the validity of these proxies. Coral samples comprise both (interpreted) symbiotic and non-symbiotic fossil corals from the Oligocene and Triassic as well as symbiotic fossil corals from the Modern and Pleistocene to corroborate our findings with the results of Muscatine et al. (2005). Samples were tested for diagenesis through petrographic and scanning electron microscope (SEM) analyses to avoid contamination. Additionally, a novel technique that has not yet been applied to the fossil record was tested. The technique aims to recognize dinosterol, a dinoflagellate biomarker, in both modern and fossil coral samples. The premise of this proxy is that symbiotic corals should contain the dinoflagellate biomarker, whereas those lacking symbionts should lack dinosterol. Results from this research will ideally lead to the development of a definitive, quantitative test for whether fossil corals had symbionts.

  17. Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance

    NASA Astrophysics Data System (ADS)

    Srivastava, Gaurav; Mehrotra, R. C.; Srikarni, C.

    2018-02-01

    The plant fossil records from the Siwalik Group of Arunachal Pradesh, India are far from satisfactory due to remoteness and dense vegetation of the area. We report seven fossil woods of which three belong to the Middle Siwalik (Subansiri Formation), while the rest are from the Upper Siwalik (Kimin Formation). The modern analogues of the fossils from the Middle Siwalik are Lophopetalum littorale (Celastraceae), Afzelia-Intsia and Sindora siamensis (Fabaceae) and from the Upper Siwalik are Miliusa velutina (Annonaceae), Calophyllum tomentosum and Kayea (Calophyllaceae) and Diospyros melanoxylon (Ebenaceae). The dominance of diffuse porosity in the fossil woods indicates a tropical climate with low seasonality (little variation) in temperature, while a high proportion of large vessels and simple perforation plates in the assemblage infer high precipitation during the deposition of the sediments. The aforesaid inference is in strong agreement with the previous quantitative reconstruction based on fossil leaves. Several modern analogues of the fossil taxa are now growing in low latitudes possibly due to an increase in seasonality (increased variation) in temperature caused by the rising Himalaya.

  18. Getting the measure of extinction.

    PubMed

    Mace, G

    1998-01-01

    Like all species, plants, mammals, and birds have been subject to extinction as a fundamental part of evolution. Indeed, only about 2-4% of all the species that have ever lived during the 600 million years of the fossil record still survive today. Looking at the fossil record, it can be said that invertebrate species and mammals have had an average life span of 5-10 and 1-2 million years, respectively. More recent extinction records for birds and mammals lost over the last half of the century indicate that 1 out of 14,000 species becomes extinct each year, giving each species an average life span of 10,000 years--100 to 1000 times shorter than the lifetime of species in the fossil record. Drawing on the World's Conservation Union Red List of threatened animals (1996), species lifetimes of birds, mammals and reptiles are estimated at 300-500 years and 100-1000 years across broader groups. In general, these estimates show that extinction rates today are 1000 to 10,000 times higher than in the past, making current rates of species loss at least equivalent to the mass extinctions in the past. A major difference, however, is the fact that almost all extinctions that have transpired today are due to the impact of human activities.

  19. Earth’s oldest ‘Bobbit worm’ – gigantism in a Devonian eunicidan polychaete

    PubMed Central

    Eriksson, Mats E.; Parry, Luke A.; Rudkin, David M.

    2017-01-01

    Whilst the fossil record of polychaete worms extends to the early Cambrian, much data on this group derive from microfossils known as scolecodonts. These are sclerotized jaw elements, which generally range from 0.1–2 mm in size, and which, in contrast to the soft-body anatomy, have good preservation potential and a continuous fossil record. Here we describe a new eunicidan polychaete, Websteroprion armstrongi gen. et sp. nov., based primarily on monospecific bedding plane assemblages from the Lower-Middle Devonian Kwataboahegan Formation of Ontario, Canada. The specimens are preserved mainly as three-dimensional moulds in the calcareous host rock, with only parts of the original sclerotized jaw walls occasionally present. This new taxon has a unique morphology and is characterized by an unexpected combination of features seen in several different Palaeozoic polychaete families. Websteroprion armstrongi was a raptorial feeder and possessed the largest jaws recorded in polychaetes from the fossil record, with maxillae reaching over one centimetre in length. Total body length of the species is estimated to have reached over one metre, which is comparable to that of extant ‘giant eunicid’ species colloquially referred to as ‘Bobbit worms’. This demonstrates that polychaete gigantism was already a phenomenon in the Palaeozoic, some 400 million years ago. PMID:28220886

  20. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria.

    PubMed

    Puttick, Mark N; Thomas, Gavin H

    2015-12-22

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. © 2015 The Authors.

  1. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria

    PubMed Central

    Puttick, Mark N.; Thomas, Gavin H.

    2015-01-01

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. PMID:26674947

  2. Molecular relationships between closely related strains and species of nematodes

    NASA Technical Reports Server (NTRS)

    Butler, M. H.; Wall, S. M.; Luehrsen, K. R.; Fox, G. E.; Hecht, R. M.

    1981-01-01

    Electrophoretic comparisons have been made for 24 enzymes in the Bergerac and Bristol strains of Caenorhabditis elegans and the related species, Caenorhabditis briggsae. No variation was detected between the two strains of C. elegans. In contrast, the two species, C. elegans and C. briggsae exhibited electrophoretic differences in 22 of 24 enzymes. A consensus 5S rRNA sequence was determined for C. elegans and found to be identical to that from C. briggsae. By analogy with other species with relatively well established fossil records it can be inferred that the time of divergence between the two nematode species is probably in the tens of millions of years. The limited anatomical evolution during a time period in which proteins undergo extensive changes supports the hypothesis that anatomical evolution is not dependent on overall protein changes.

  3. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. © 2015 Wiley Periodicals, Inc.

  4. The bat community of Haiti and evidence for its long-term persistence at high elevations

    PubMed Central

    Simmons, Nancy B.; Steadman, David W.

    2017-01-01

    Accurate accounts of both living and fossil mammal communities are critical for creating biodiversity inventories and understanding patterns of changing species diversity through time. We combined data from from14 new fossil localities with literature accounts and museum records to document the bat biodiversity of Haiti through time. We also report an assemblage of late-Holocene (1600–600 Cal BP) bat fossils from a montane cave (Trouing Jean Paul, ~1825m) in southern Haiti. The nearly 3000 chiropteran fossils from Trouing Jean Paul represent 15 species of bats including nine species endemic to the Caribbean islands. The fossil bat assemblage from Trouing Jean Paul is dominated by species still found on Hispaniola (15 of 15 species), much as with the fossil bird assemblage from the same locality (22 of 23 species). Thus, both groups of volant vertebrates demonstrate long-term resilience, at least at high elevations, to the past 16 centuries of human presence on the island. PMID:28574990

  5. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link.

    PubMed

    Smith, E F; Nelson, L L; Tweedt, S M; Zeng, H; Workman, J B

    2017-07-12

    Owing to the lack of temporally well-constrained Ediacaran fossil localities containing overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran ( ca 550-541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases. Here, we report new latest Ediacaran fossil discoveries from the lower member of the Wood Canyon Formation in Nye County, Nevada, including the first figured reports of erniettomorphs, Gaojiashania , Conotubus and other problematic fossils. The fossils are spectacularly preserved in three taphonomic windows and occur in greater than 11 stratigraphic horizons, all of which are below the first appearance of Treptichnus pedum and the nadir of a large negative δ 13 C excursion that is a chemostratigraphic marker of the Ediacaran-Cambrian boundary. The co-occurrence of morphologically diverse tubular fossils and erniettomorphs in Nevada provides a biostratigraphic link among latest Ediacaran fossil localities globally. Integrated with a new report of Gaojiashania from Namibia, previous fossil reports and existing age constraints, these finds demonstrate a distinctive late Ediacaran fossil assemblage comprising at least two groups of macroscopic organisms with dissimilar body plans that ecologically and temporally overlapped for at least 6 Myr at the close of the Ediacaran Period. This cosmopolitan biotic assemblage disappeared from the fossil record at the end of the Ediacaran Period, prior to the Cambrian radiation. © 2017 The Author(s).

  6. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link

    USGS Publications Warehouse

    Smith, E. F.; Nelson, L. L.; Tweedt, S. M.; Zeng, H.; Workman, Jeremiah B.

    2017-01-01

    Owing to the lack of temporally well-constrained Ediacaran fossil localities containing overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran (ca 550–541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases. Here, we report new latest Ediacaran fossil discoveries from the lower member of the Wood Canyon Formation in Nye County, Nevada, including the first figured reports of erniettomorphs, Gaojiashania, Conotubus and other problematic fossils. The fossils are spectacularly preserved in three taphonomic windows and occur in greater than 11 stratigraphic horizons, all of which are below the first appearance of Treptichnus pedum and the nadir of a large negative δ13C excursion that is a chemostratigraphic marker of the Ediacaran–Cambrian boundary. The co-occurrence of morphologically diverse tubular fossils and erniettomorphs in Nevada provides a biostratigraphic link among latest Ediacaran fossil localities globally. Integrated with a new report of Gaojiashania from Namibia, previous fossil reports and existing age constraints, these finds demonstrate a distinctive late Ediacaran fossil assemblage comprising at least two groups of macroscopic organisms with dissimilar body plans that ecologically and temporally overlapped for at least 6 Myr at the close of the Ediacaran Period. This cosmopolitan biotic assemblage disappeared from the fossil record at the end of the Ediacaran Period, prior to the Cambrian radiation.

  7. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    PubMed

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Brief communication: Paleobiological inferences on the locomotor repertoire of extinct hominoids based on femoral neck cortical thickness: The fossil great ape hispanopithecus laietanus as a test-case study.

    PubMed

    Pina, Marta; Alba, David M; Almécija, Sergio; Fortuny, Josep; Moyà-Solà, Salvador

    2012-09-01

    The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle-walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test-case study. Both an orthograde body plan and orang-like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape-like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Copyright © 2012 Wiley Periodicals, Inc.

  9. Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the "southern wet forest survivors".

    PubMed

    Kooyman, Robert M; Wilf, Peter; Barreda, Viviana D; Carpenter, Raymond J; Jordan, Gregory J; Sniderman, J M Kale; Allen, Andrew; Brodribb, Timothy J; Crayn, Darren; Feild, Taylor S; Laffan, Shawn W; Lusk, Christopher H; Rossetto, Maurizio; Weston, Peter H

    2014-12-01

    • Have Gondwanan rainforest floral associations survived? Where do they occur today? Have they survived continuously in particular locations? How significant is their living floristic signal? We revisit these classic questions in light of significant recent increases in relevant paleobotanical data.• We traced the extinction and persistence of lineages and associations through the past across four now separated regions-Australia, New Zealand, Patagonia, and Antarctica-using fossil occurrence data from 63 well-dated Gondwanan rainforest sites and 396 constituent taxa. Fossil sites were allocated to four age groups: Cretaceous, Paleocene-Eocene, Neogene plus Oligocene, and Pleistocene. We compared the modern and ancient distributions of lineages represented in the fossil record to see if dissimilarity increased with time. We quantified similarity-dissimilarity of composition and taxonomic structure among fossil assemblages, and between fossil and modern assemblages.• Strong similarities between ancient Patagonia and Australia confirmed shared Gondwanan rainforest history, but more of the lineages persisted in Australia. Samples of ancient Australia grouped with the extant floras of Australia, New Guinea, New Caledonia, Fiji, and Mt. Kinabalu. Decreasing similarity through time among the regional floras of Antarctica, Patagonia, New Zealand, and southern Australia reflects multiple extinction events.• Gondwanan rainforest lineages contribute significantly to modern rainforest community assembly and often co-occur in widely separated assemblages far from their early fossil records. Understanding how and where lineages from ancient Gondwanan assemblages co-occur today has implications for the conservation of global rainforest vegetation, including in the Old World tropics. © 2014 Botanical Society of America, Inc.

  10. Functional Morphology in Paleobiology: Origins of the Method of 'Paradigms'.

    PubMed

    Rudwick, Martin J S

    2018-03-01

    From the early nineteenth century, the successful use of fossils in stratigraphy oriented paleontology (and particularly the study of fossil invertebrates) towards geology. The consequent marginalising of biological objectives was countered in the twentieth century by the rise of 'Paläobiologie', first in the German cultural area and only later, as 'paleobiology', in the anglophone world. Several kinds of paleobiological research flourished internationally after the Second World War, among them the novel field of 'paleoecology'. Within this field there were attempts to apply functional morphology to the problematical cases of fossil organisms, for which functions cannot be observed directly. This article describes the origins of the kind of functional inference for fossils that I proposed in 1961 as the method of 'paradigms' (a year before Thomas Kuhn made that word more widely familiar with a quite different meaning). Here I summarize some of my 'worked exemplars', which were intended to show the paradigm method in action. These case-studies were all taken from the paleontologically important phylum of the Brachiopoda, but the method was claimed to have much wider implications for the interpretation of the fossil record in terms of adaptive evolution. This article takes the history of the paradigm method as far as the late 1960s. I hope to trace, in a sequel, its ambivalent fate during the 1970s and beyond, when for example Gould's critique of 'the adaptationist programme' and the rise of computer-based quantitative methods for the evolutionary interpretation of the fossil record led to the relative eclipse of functional morphology in paleontology.

  11. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales

    PubMed Central

    dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng

    2015-01-01

    Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774

  12. Fossilization of feathers

    NASA Astrophysics Data System (ADS)

    Davis, Paul G.; Briggs, Derek E. G.

    1995-09-01

    Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.

  13. Compression fossil Mymaridae (Hymenoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera

    PubMed Central

    Huber, John T.; Greenwalt, Dale

    2011-01-01

    Abstract Compression fossils of three genera and six species of Mymaridae (Hymenoptera: Chalcidoidea) are described from 46 million year old Kishenehn oil shales in Montana, USA. Two new genera are described: Eoeustochus Huber, gen. n., with two included species, Eoeustochus kishenehn Huber (type species) and Eoeustochus borchersi Huber, sp. n., and Eoanaphes, gen. n., with Eoanaphes stethynioides Huber, sp. n. Three new species of Gonatocerus are also described, Gonatocerus greenwalti Huber, sp. n. , Gonatocerus kootenai Huber, sp. n., and Gonatocerus rasnitsyni Huber, sp. n. Previously described amber fossil genera are discussed and five genera in Baltic amber are tentatively recorded as fossils: Anagroidea, Camptoptera, Dorya, Eustochus, and Mimalaptus. PMID:22259294

  14. An ensemble approach to reconstructing 20th century climate trends in data-sparse regions of the tropical Pacific using young fossil corals

    NASA Astrophysics Data System (ADS)

    Hitt, N. T.; Cobb, K. M.; Sayani, H. R.; Grothe, P. R.; Atwood, A. R.; O'Connor, G.; Chen, T.; Hagos, M. M.; Deocampo, D.; Edwards, R. L.; Cheng, H.; Lu, Y.; Thompson, D. M.

    2016-12-01

    Sea-surface temperature (SST) variability in the central tropical Pacific drives global-scale responses through atmospheric teleconnections, so the response of this region to anthropogenic forcing has important implications for regional climate responses in many areas. However, quantification of anthropogenic SST trends in the central tropical Pacific is complicated by the fact that instrumental SST observations in this region are extremely limited prior to 1950, with trends of opposite sign observed across the various gridded instrumental datasets (Deser et al., 2010). Researchers have turned to multi-century coral records to reconstruct ocean temperatures through time, but the paucity of such records prohibits the generation of uncertainty estimates. In this study, we use a large collection of U/Th-dated fossil corals that to investigate a new ensemble approach to reconstructing temperature from the Central Pacific over the late 20th century. Here we combine monthly-resolved d18O and Sr/Ca from 8 5-14 year long coral records from Christmas Island (2°N, 157°W) to quantify temperature and hydrological trends in this region from 1930 to present. We compare our fossil coral ensemble reconstruction to a long modern coral core from this site that extends back to 1940, as well as to gridded SST datasets. We also provide the first well-replicated coral d18O and Sr/Ca records across both the 1997/98 and 2015/2016 El Nino events, comparing the strength of these two events in the context of long-term temperature trends observed in our longer reconstruction. We conclude that the fossil coral ensemble approach provides a robust means of reconstructing 20th century climate trends. Deser et al., 2010, GRL, doi: 10.1029/2010GL043321

  15. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods?

    PubMed

    Friedman, Matt; Brazeau, Martin D

    2011-02-07

    Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.

  16. The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record.

    PubMed

    Sharma, M; Shukla, Y

    2009-11-01

    The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.

  17. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Treesearch

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  18. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record.

    PubMed

    Park, Eunji; Hwang, Dae-Sik; Lee, Jae-Seong; Song, Jun-Im; Seo, Tae-Kun; Won, Yong-Jin

    2012-01-01

    The phylum Cnidaria is comprised of remarkably diverse and ecologically significant taxa, such as the reef-forming corals, and occupies a basal position in metazoan evolution. The origin of this phylum and the most recent common ancestors (MRCAs) of its modern classes remain mostly unknown, although scattered fossil evidence provides some insights on this topic. Here, we investigate the molecular divergence times of the major taxonomic groups of Cnidaria (27 Hexacorallia, 16 Octocorallia, and 5 Medusozoa) on the basis of mitochondrial DNA sequences of 13 protein-coding genes. For this analysis, the complete mitochondrial genomes of seven octocoral and two scyphozoan species were newly sequenced and combined with all available mitogenomic data from GenBank. Five reliable fossil dates were used to calibrate the Bayesian estimates of divergence times. The molecular evidence suggests that cnidarians originated 741 million years ago (Ma) (95% credible region of 686-819), and the major taxa diversified prior to the Cambrian (543 Ma). The Octocorallia and Scleractinia may have originated from radiations of survivors of the Permian-Triassic mass extinction, which matches their fossil record well. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  20. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae)

    NASA Astrophysics Data System (ADS)

    Wedmann, Sonja; Wappler, Torsten; Engel, Michael S.

    2009-06-01

    Aside from pollen and nectar, bees of the subfamily Megachilinae are closely associated with plants as a source of materials for nest construction. Megachilines use resins, masticated leaves, trichomes and other plant materials sometimes along with mud to construct nests in cavities or in soil. Among these, the leafcutter bees ( Megachile s.l.) are the most famous for their behaviour to line their brood cells with discs cut from various plants. We report on fossil records of one body fossil of a new non-leafcutting megachiline and of 12 leafcuttings from three European sites—Eckfeld and Messel, both in Germany (Eocene), and Menat, France (Paleocene). The excisions include the currently earliest record of probable Megachile activity and suggest the presence of such bees in the Paleocene European fauna. Comparison with extant leafcuttings permits the interpretation of a minimal number of species that produced these excisions. The wide range of size for the leafcuttings indirectly might suggest at least two species of Megachile for the fauna of Messel in addition to the other megachiline bee described here. The presence of several cuttings on most leaves from Eckfeld implies that the preferential foraging behaviour of extant Megachile arose early in megachiline evolution. These results demonstrate that combined investigation of body and trace fossils complement each other in understanding past biodiversity, the latter permitting the detection of taxa not otherwise directly sampled and inferences on behavioural evolution.

  1. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence.

    PubMed

    Ezcurra, Martín D; Scheyer, Torsten M; Butler, Richard J

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus.

  2. The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence

    PubMed Central

    Ezcurra, Martín D.; Scheyer, Torsten M.; Butler, Richard J.

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus. PMID:24586565

  3. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  4. Eocene primates of South America and the African origins of New World monkeys

    NASA Astrophysics Data System (ADS)

    Bond, Mariano; Tejedor, Marcelo F.; Campbell, Kenneth E.; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-01

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  5. Taphonomic bias in pollen and spore record: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, L.H.

    The high dispersibility and ease of pollen and spore transport have led researchers to conclude erroneously that fossil pollen and spore floras are relatively complete and record unbiased representations of the regional vegetation extant at the time of sediment deposition. That such conclusions are unjustified is obvious when the authors remember that polynomorphs are merely organic sedimentary particles and undergo hydraulic sorting not unlike clastic sedimentary particles. Prior to deposition in the fossil record, pollen and spores can be hydraulically sorted by size, shape, and weight, subtly biasing relative frequencies in fossil assemblages. Sorting during transport results in palynofloras whosemore » composition is environmentally dependent. Therefore, depositional environment is an important consideration to make correct inferences on the source vegetation. Sediment particle size of original rock samples may contain important information on the probability of a taphonomically biased pollen and spore assemblage. In addition, a reasonable test of hydraulic sorting is the distribution of pollen grain sizes and shapes in each assemblage. Any assemblage containing a wide spectrum of grain sizes and shapes has obviously not undergone significant sorting. If unrecognized, taphonomic bias can lead to paleoecologic, paleoclimatic, and even biostratigraphic misinterpretations.« less

  6. Constraints on the history and topography of the Northeastern Sierra Nevada from a Neogene sedimentary basin in the Reno-Verdi area, Western Nevada

    USGS Publications Warehouse

    Trexler, James; Cashman, Patricia; Cosca, Michael

    2012-01-01

    Neogene (Miocene–Pliocene) sedimentary rocks of the northeastern Sierra Nevada were deposited in small basins that formed in response to volcanic and tectonic activity along the eastern margin of the Sierra. These strata record an early phase (ca. 11–10 Ma) of extension and rapid sedimentation of boulder conglomerates and debrites deposited on alluvial fans, followed by fluvio-lacustrine sedimentation and nearby volcanic arc activity but tectonic quiescence, until ~ 2.6 Ma. The fossil record in these rocks documents a warmer, wetter climate featuring large mammals and lacking the Sierran orographic rain shadow that dominates climate today on the eastern edge of the Sierra. This record of a general lack of paleo-relief across the eastern margin of the Sierra Nevada is consistent with evidence presented elsewhere that there was not a significant topographic barrier between the Pacific Ocean and the interior of the continent east of the Sierra before ~ 2.6 Ma. However, these sediments do not record an integrated drainage system either to the east into the Great Basin like the modern Truckee River, or to the west across the Sierra like the ancestral Feather and Yuba rivers. The Neogene Reno-Verdi basin was one of several, scattered endorheic (i.e., internally drained) basins occupying this part of the Cascade intra-arc and back-arc area.

  7. Identification of Preferential Paths of Fossil Carbon within Water Resource Recovery Facilities via Radiocarbon Analysis.

    PubMed

    Tseng, Linda Y; Robinson, Alice K; Zhang, Xiaying; Xu, Xiaomei; Southon, John; Hamilton, Andrew J; Sobhani, Reza; Stenstrom, Michael K; Rosso, Diego

    2016-11-15

    The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO 2 ) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO 2 -emission-potential m -3 wastewater treated). By including fossil CO 2 , total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO 2 should be analyzed for each WRRF and not omitted from GHG accounting.

  8. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consistent with the data filed on EIA form 767 for those years and the conversion methodology specified in... of fossil fuels (before any treatment prior to combustion) that will be used at the control unit...

  9. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consistent with the data filed on EIA form 767 for those years and the conversion methodology specified in... of fossil fuels (before any treatment prior to combustion) that will be used at the control unit...

  10. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consistent with the data filed on EIA form 767 for those years and the conversion methodology specified in... of fossil fuels (before any treatment prior to combustion) that will be used at the control unit...

  11. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consistent with the data filed on EIA form 767 for those years and the conversion methodology specified in... of fossil fuels (before any treatment prior to combustion) that will be used at the control unit...

  12. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consistent with the data filed on EIA form 767 for those years and the conversion methodology specified in... of fossil fuels (before any treatment prior to combustion) that will be used at the control unit...

  13. A Pliocene chronostratigraphy for the Canadian western and high Arctic

    NASA Astrophysics Data System (ADS)

    Gosse, John; Braschi, Lea; Rybczynski, Natalia; Lakeman, Thomas; Zimmerman, Susan; Finkel, Robert; Barendregt, Rene; Matthews, John

    2014-05-01

    The Beaufort Formation comprises an extensive (1200 km long, more than 1 km thick) clastic wedge that formed during the Pliocene along the western Canadian Arctic Archipelago (CAA). In the western Arctic, the Ballast Brook (BB) site on Banks Is. exposes more than 20 km of section through the sandy and pebble sandy braided stream deposits with detrital organic beds. Farther north, Beaufort Fm fluvial and estuarine facies have been examined on Meighen Is. In the high Arctic, high terrace gravels (450 m high surface) at the Fyles Leaf Bed (FLB) and Beaver Pond (BP) sites on Ellesmere Is. are not considered part of the Beaufort Fm but have similar paleoenvironmental records. Fossil plant and faunal material from these sediments is often very well preserved and provides evidence of a boreal-type forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The paleoenvironmental records from the Beaufort Fm in the western CAA sites have revealed a similar ecosystem with noteworthy differences in MAT and perhaps seasonality. New burial ages from Meighen Is. indicate a maximum age of 6.1 Ma, consistent with yet much older than previous age estimates, but supportive of paleomagnetic and biostratigraphy at the same location. The age differences may account for some of the interpreted variations in paleoenvironments, in addition to spatial differences in climate. The Beaufort Fm. appears to have filled at least the western portions of the ca. 100 km-wide channels that currently separate the islands of the CAA. Intervals of Pliocene continental-shelf progradation are recorded in the lower Iperk Fm, which is situated offshore and includes complex sigmoid-oblique clinoforms indicative of high-energy, coarse-clastic, deltaic sedimentation. A key objective of our research is to derive new age estimates and improved correlations among the Beaufort and Iperk Formations and high terrace gravels in order to test hypotheses to explain the nature of the dramatic landscape changes responsible for their deposition and the infilling of the CAA channels. If the channels of the modern CAA function as a heat source during winter months and a heat sink during summer months, infilling of the CAA channels and development of a broad coastal plain in the Pliocene may have shut down this radiative process, resulting in increased seasonality and continentality.

  14. Two fossil species of Metrosideros (Myrtaceae) from the Oligo-Miocene Golden Fleece locality in Tasmania, Australia.

    PubMed

    Tarran, Myall; Wilson, Peter G; Macphail, Michael K; Jordan, Greg J; Hill, Robert S

    2017-06-01

    The capsular-fruited genus Metrosideros (Myrtaceae) is one of the most widely distributed flowering plant genera in the Pacific but is extinct in Australia today. The center of geographic origin for the genus and the reason for and timing of its extinction in Australia remain uncertain. We identify fossil Metrosideros fruits from the newly discovered Golden Fleece fossil flora in the Oligo-Miocene of Tasmania, Australia, shedding further light on these problems. Standard paleopalynological techniques were used to date the fossil-bearing sediments. Scanning electron microscopy and an auto-montage camera system were used to take high-resolution images of fossil and extant fruits taken from herbarium specimens. Fossils are identified using a nearest-living-relative approach. The fossil-bearing sediments are palynostratigraphically dated as being Proteacidites tuberculatus Zone Equivalent (ca. 33-16 Ma) in age and provide a confident Oligo-Miocene age for the macrofossils. Two new fossil species of Metrosideros are described and are here named Metrosideros dawsonii sp. nov. and Metrosideros wrightii sp. nov. These newly described fossil species of Metrosideros provide a second record of the genus in the Cenozoic of Australia, placing them in the late Early Oligocene to late Early Miocene. It is now apparent not only that Metrosideros was present in Australia, where the genus is now extinct, but that at least several Metrosideros species were present during the Cenozoic. These fossils further strengthen the case for an Australian origin of the genus. © 2017 Botanical Society of America.

  15. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.

    2013-01-01

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, G.C.

    The Mazon Creek biota (Westphalian D) is composed of plants and animals from terrestrial fresh water and marginal marine habitats. Fossil animals, including jellyfish, worms, crustaceans, holothurians, insects, chordates, and problematica occur in sideritic concretions on spoilpiles of more than 100 abandoned coal mines in a five county region (Mazon Creek area) of northeast Illinois. These fossils record rapid burial and early diagenesis in a muddy, delta-influenced coastal setting submerged during marine transgression.

  17. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).

    PubMed

    Meseguer, Andrea S; Lobo, Jorge M; Ree, Richard; Beerling, David J; Sanmartín, Isabel

    2015-03-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that "the present is the key to the past." Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account "ecological connectivity" through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an integrative approach to historical biogeography-that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics-could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  18. Integrating Fossils, Phylogenies, and Niche Models into Biogeography to Reveal Ancient Evolutionary History: The Case of Hypericum (Hypericaceae)

    PubMed Central

    Meseguer, Andrea S.; Lobo, Jorge M.; Ree, Richard; Beerling, David J.; Sanmartín, Isabel

    2015-01-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that “the present is the key to the past.” Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account “ecological connectivity” through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an integrative approach to historical biogeography—that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics—could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events. PMID:25398444

  19. The Westphalian D fossil lepidodendrid forest at Table Head, Sydney Basin, Nova Scotia: Sedimentology, paleoecology and floral response to changing edaphic conditions

    USGS Publications Warehouse

    Calder, J.H.; Gibling, M.R.; Eble, C.F.; Scott, A.C.; MacNeil, D.J.

    1996-01-01

    Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A mutidisciplinary approach was employed to interpret the origins of the coal bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of Psaronius type tree ferns co-existed with the lepidodendrids on clastic substrates, which developed as incipient gleysol soils. The entombment of the forest can be ascribed to its distributary coastal setting, local subsidence and a seasonal climate that fostered wildfire and increased sedimentation.

  20. The late Quaternary decline and extinction of palms on oceanic Pacific islands

    NASA Astrophysics Data System (ADS)

    Prebble, M.; Dowe, J. L.

    2008-12-01

    Late Quaternary palaeoecological records of palm decline, extirpation and extinction are explored from the oceanic islands of the Pacific Ocean. Despite the severe reduction of faunal diversity coincidental with human colonisation of these previously uninhabited oceanic islands, relatively few plant extinctions have been recorded. At low taxonomic levels, recent faunal extinctions on oceanic islands are concentrated in larger bodied representatives of certain genera and families. Fossil and historic records of plant extinction show a similar trend with high representation of the palm family, Arecaceae. Late Holocene decline of palm pollen types is demonstrated from most islands where there are palaeoecological records including the Cook Islands, Fiji, French Polynesia, the Hawaiian Islands, the Juan Fernandez Islands and Rapanui. A strong correspondence between human impact and palm decline is measured from palynological proxies including increased concentrations of charcoal particles and pollen from cultivated plants and invasive weeds. Late Holocene extinctions or extirpations are recorded across all five of the Arecaceae subfamilies of the oceanic Pacific islands. These are most common for the genus Pritchardia but also many sedis fossil palm types were recorded representing groups lacking diagnostic morphological characters.

  1. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  2. Wing shape of four new bee fossils (Hymenoptera: Anthophila) provides insights to bee evolution.

    PubMed

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.

  3. Wing Shape of Four New Bee Fossils (Hymenoptera: Anthophila) Provides Insights to Bee Evolution

    PubMed Central

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S.; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France. PMID:25354170

  4. Bayesian relaxed clock estimation of divergence times in foraminifera.

    PubMed

    Groussin, Mathieu; Pawlowski, Jan; Yang, Ziheng

    2011-10-01

    Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data.

    PubMed

    Silvestro, Daniele; Zizka, Alexander; Bacon, Christine D; Cascales-Miñana, Borja; Salamin, Nicolas; Antonelli, Alexandre

    2016-04-05

    Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal-extinction-sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography. © 2016 The Author(s).

  6. The origin and evolution of Homo sapiens

    PubMed Central

    Stringer, Chris

    2016-01-01

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400–700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different ‘archaic’ and ‘modern’ morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298468

  7. Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: implications for paleogeography and paleoclimate.

    PubMed

    Zhang, Jian-Wei; D'Rozario, Ashalata; Adams, Jonathan M; Li, Ya; Liang, Xiao-Qing; Jacques, Frédéric M; Su, Tao; Zhou, Zhe-Kun

    2015-01-01

    • The paleogeographical origin of the relict North American Sequoia sempervirens is controversial. Fossil records indicate a Neogene origin for its foliage characteristics. Although several fossils from the Miocene sediments in eastern Asia have been considered to have close affinities with the modern S. sempervirens, they lack the typical features of a leafy twig bearing linear as well as scale leaves, and the fertile shoots terminating by a cone. The taxonomic status of these fossils has remained unclear.• New better-preserved fossils from the upper Miocene of China indicate a new species of Sequoia. This finding not only confirms the former presence of this genus in eastern Asia, but it also confirms the affinity of this Asian form to the modern relict S. sempervirens.• The principal foliage characteristics of S. sempervirens had already originated by the late Miocene. The eastern Asian records probably imply a Beringian biogeographic track of the ancestor of S. sempervirens in the early Neogene, at a time when the land bridge was not too cool for this thermophilic conifer to spread between Asia and North America.• The climatic context of the new fossil Sequoia in Southeast Yunnan, based on other floristic elements of the fossil assemblage in which it is found, is presumed to be warm and humid. Following the uplift of the Qinghai-Tibet Plateau, this warm, humid climate was replaced by the present monsoonal climate with dry winter and spring. This change may have led to the disappearance of this hygrophilous conifer from eastern Asia. © 2015 Botanical Society of America, Inc.

  8. The origin and evolution of Homo sapiens.

    PubMed

    Stringer, Chris

    2016-07-05

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400-700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different 'archaic' and 'modern' morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  9. Paleobiology, community ecology, and scales of ecological pattern.

    PubMed

    Jablonski, D; Sepkoski, J J

    1996-07-01

    The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.

  10. Paleobiology, community ecology, and scales of ecological pattern

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1996-01-01

    The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.

  11. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    PubMed

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  12. Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record

    NASA Astrophysics Data System (ADS)

    Suttle, Martin D.; Genge, Matthew J.

    2017-10-01

    We report the discovery of fossil micrometeorites from Late Cretaceous chalk. Seventy-six cosmic spherules were recovered from Coniacian (87 ± 1 Ma) sediments of the White Chalk Supergroup. Particles vary from pristine silicate and iron-type spherules to pseudomorphic spherules consisting of either single-phase recrystallized magnetite or Fe-silicide. Pristine spherules are readily identified as micrometeorites on the basis of their characteristic mineralogies, textures and compositions. Both magnetite and silicide spherules contain dendritic crystals and spherical morphologies, testifying to rapid crystallisation of high temperature iron-rich metallic and oxide liquids. These particles also contain spherical cavities, representing weathering and removal of metal beads and irregular cavities, representing vesicles formed by trapped gas during crystallization; both features commonly found among modern Antarctic Iron-type (I-type) cosmic spherules. On the basis of textural analysis, the magnetite and Fe-silicide spherules are shown to be I-type cosmic spherules that have experienced complete secondary replacement during diagenesis (fossilization). Our results demonstrate that micrometeorites, preserved in sedimentary rocks, are affected by a suite of complex diagenetic processes, which can result in disparate replacement minerals, even within the same sequence of sedimentary beds. As a result, the identification of fossil micrometeorites requires careful observation of particle textures and comparisons with modern Antarctic collections. Replaced micrometeorites imply that geochemical signatures the extraterrestrial dust are subject to diagenetic remobilisation that limits their stratigraphic resolution. However, this study demonstrates that fossil, pseudomorphic micrometeorites can be recognised and are likely common within the geological record.

  13. Late Middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa.

    PubMed

    Chaimanee, Yaowalak; Chavasseau, Olivier; Beard, K Christopher; Kyaw, Aung Aung; Soe, Aung Naing; Sein, Chit; Lazzari, Vincent; Marivaux, Laurent; Marandat, Bernard; Swe, Myat; Rugbumrung, Mana; Lwin, Thit; Valentin, Xavier; Zin-Maung-Maung-Thein; Jaeger, Jean-Jacques

    2012-06-26

    Reconstructing the origin and early evolutionary history of anthropoid primates (monkeys, apes, and humans) is a current focus of paleoprimatology. Although earlier hypotheses frequently supported an African origin for anthropoids, recent discoveries of older and phylogenetically more basal fossils in China and Myanmar indicate that the group originated in Asia. Given the Oligocene-Recent history of African anthropoids, the colonization of Africa by early anthropoids hailing from Asia was a decisive event in primate evolution. However, the fossil record has so far failed to constrain the nature and timing of this pivotal event. Here we describe a fossil primate from the late middle Eocene Pondaung Formation of Myanmar, Afrasia djijidae gen. et sp. nov., that is remarkably similar to, yet dentally more primitive than, the roughly contemporaneous North African anthropoid Afrotarsius. Phylogenetic analysis suggests that Afrasia and Afrotarsius are sister taxa within a basal anthropoid clade designated as the infraorder Eosimiiformes. Current knowledge of eosimiiform relationships and their distribution through space and time suggests that members of this clade dispersed from Asia to Africa sometime during the middle Eocene, shortly before their first appearance in the African fossil record. Crown anthropoids and their nearest fossil relatives do not appear to be specially related to Afrotarsius, suggesting one or more additional episodes of dispersal from Asia to Africa. Hystricognathous rodents, anthracotheres, and possibly other Asian mammal groups seem to have colonized Africa at roughly the same time or shortly after anthropoids gained their first toehold there.

  14. A detailed taxonomy of Upper Cretaceous and lower Tertiary Crassatellidae in the Eastern United States; an example of the nature of extinction at the boundary

    USGS Publications Warehouse

    Wingard, G. Lynn

    1993-01-01

    Current theories on the causes of extinction at the CretaceousTertiary boundary have been based on previously published data; however, few workers have stopped to ask the question, 'How good is the basic data set?' To test the accuracy of the published record, a quantitative and qualitative analysis of the Crassatellidae (Mollusca, Bivalvia) of the Gulf and Mid-Atlantic Coastal Plains of the United States for the Upper Cretaceous and lower Tertiary was conducted. Thirty-eight species names and four generic names are used in publications for the Crassatellidae within the geographic and stratigraphic constraints of this analysis. Fourteen of the 38 species names are represented by statistically valid numbers of specimens and were tested by using canonical discriminant analysis. All 38 names, with the exception of 1 invalid name and 4 names for which no representative specimen could be located, were evaluated qualitatively. The results show that the published fossil record is highly inaccurate. Only 8 valid, recognizable species exist in the Crassatellidae within the limits of this study, 14 names are synonymized, and 11 names are represented by indeterminate molds or poorly preserved specimens. Three of the four genera are well founded; the fourth is based on the juvenile of another genus and therefore synonymized. This detailed taxonomic analysis of the Crassatellidae illustrates that the published fossil record is not reliable. Calculations of evolutionary and paleobiologic significance based on poorly defined, overly split fossil groups, such as the Crassatellidae, are biased in the following ways: Rates of evolution and extinction are higher, Faunal turnover at mass extinctions appears more catastrophic, Species diversity is high, Average species durations are shortened, and Geographic ranges are restricted. The data on the taxonomically standardized Crassatellidae show evolutionary rates one-quarter to one-half that of the published fossil record; faunal change at the Cretaceous-Tertiary boundary that was not catastrophic; a constant number of species on each side of the Cretaceous-Tertiary boundary; a decrease in abundance in the Tertiary; and lower species diversity, longer average species durations, and expanded geographic ranges. Similar detailed taxonomic studies need to be conducted on other groups of organisms to test the patterns illustrated for the Crassatellidae and to determine the extent and direction of the bias in the published fossil record. Answers to our questions about evolutionary change cannot be found in the literature but rather with the fossils themselves. Evolution and extinction occur within small populations of species groups, and it is only through detailed analysis of these groups that we can achieve an understanding of the causes and effects of evolution and extinction.

  15. The fossil Osmundales (Royal Ferns)—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes

    PubMed Central

    2017-01-01

    The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema, Donwelliacaulis, and Tiania; (2) the thamnopteroid genera Zalesskya, Iegosigopteris, and Petcheropteris are all considered synonymous with Thamnopteris; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis. In addition, we consider Millerocaulis stipabonettiorum a possible member of Palaeosmunda and Millerocaulis estipularis as probably constituting the earliest representative of the (Todea-)Leptopteris lineage (subtribe Todeinae) of modern Osmundoideae. PMID:28713650

  16. The fossil Osmundales (Royal Ferns)-a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes.

    PubMed

    Bomfleur, Benjamin; Grimm, Guido W; McLoughlin, Stephen

    2017-01-01

    The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema , Donwelliacaulis , and Tiania ; (2) the thamnopteroid genera Zalesskya , Iegosigopteris , and Petcheropteris are all considered synonymous with Thamnopteris ; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium ; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis . In addition, we consider Millerocaulis stipabonettiorum a possible member of Palaeosmunda and Millerocaulis estipularis as probably constituting the earliest representative of the ( Todea -) Leptopteris lineage (subtribe Todeinae) of modern Osmundoideae.

  17. The Evolution of Reproduction within Testudinata as Evidenced by the Fossil Record

    NASA Astrophysics Data System (ADS)

    Lawver, Daniel Ryan

    Although known from every continent except Antarctica and having a fossil record ranging from the Middle Jurassic to the Pleistocene, fossil turtle eggs are relatively understudied. In this dissertation I describe four fossil specimens, interpret paleoecology and conduct cladistic analyses in order to investigate the evolution of turtle reproduction. Fossil eggshell descriptions primarily involve analysis by scanning electron and polarized light microscopy, as well as cathodoluminescence to determine the degree of diagenetic alteration. Carapace lengths and gas conductance are estimated in order to investigate the ecology of the adults that produced fossil turtle eggs and clutches, as well as their incubation environments, respectively. Cladistic analyses of turtle egg and reproductive characters permit assessment of the usefulness of these characters for determining phylogenetic relationships of fossil specimens and the evolution of reproduction in turtles. Specimens described here include 1) Testudoolithus oosp. from the Late Cretaceous of Madagascar, 2) a clutch of eggs (some containing late stage embryos and at least one exhibiting multilayer eggshell) from the Late Cretaceous Judith River Formation of Montana and named Testudoolithus zelenitskyae oosp. nov., 3) an egg contained within an adult Basilemys nobilis from the Late Cretaceous Kaiparowits Formation of Utah, and 4) a clutch of Meiolania platyceps eggs from the Pleistocene of Lord Howe Island, Australia. Meiolania platyceps eggs are named Testudoolithus lordhowensis oosp. nov. and provide valuable information on the origin of aragonite eggshell composition and nesting behaviors. Cladistic analyses utilizing egg and reproductive characters are rarely performed on taxa outside of Dinosauria. My analyses demonstrate that morphological data produces poorly resolved trees in which only the clades Adocia and Trionychia are resolved and all other turtles form a large polytomy. However, when combined with molecular data, egg and reproductive characters have more resolving potential towards the top of trees. This poor resolution is likely due to homoplasy in the form of character reversals, convergent evolution, and/or from the limited number of informative characters.

  18. Increased Atmospheric SO2 Detected from Changes in Leaf Physiognomy across the Triassic–Jurassic Boundary Interval of East Greenland

    PubMed Central

    Bacon, Karen L.; Belcher, Claire M.; Haworth, Matthew; McElwain, Jennifer C.

    2013-01-01

    The Triassic–Jurassic boundary (Tr–J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr–J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr–J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr–J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy. PMID:23593262

  19. Reconstructing Tropical Southwest Pacific Climate Variability and Mean State Changes at Vanuatu during the Medieval Climate Anomaly using Geochemical Proxies from Corals

    NASA Astrophysics Data System (ADS)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2017-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when complete we will have a suite of records of paired coral Sr/Ca and δ18O measurements. We will apply similar statistical techniques developed for the Sr/Ca-SST record to also investigate variability in the δ18O of seawater (salinity). Modern salinity variability at Vanuatu arises due to hydrological anomalies associated with the El Niño-Southern Oscillation in the tropical Pacific.

  20. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago

    NASA Astrophysics Data System (ADS)

    Seersholm, Frederik Valeur; Pedersen, Mikkel Winther; Søe, Martin Jensen; Shokry, Hussein; Mak, Sarah Siu Tze; Ruter, Anthony; Raghavan, Maanasa; Fitzhugh, William; Kjær, Kurt H.; Willerslev, Eske; Meldgaard, Morten; Kapel, Christian M. O.; Hansen, Anders Johannes

    2016-11-01

    The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago.

  1. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago

    PubMed Central

    Seersholm, Frederik Valeur; Pedersen, Mikkel Winther; Søe, Martin Jensen; Shokry, Hussein; Mak, Sarah Siu Tze; Ruter, Anthony; Raghavan, Maanasa; Fitzhugh, William; Kjær, Kurt H.; Willerslev, Eske; Meldgaard, Morten; Kapel, Christian M.O.; Hansen, Anders Johannes

    2016-01-01

    The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago. PMID:27824339

  2. Live coral cover in the fossil record: an example from Holocene reefs of the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Lescinsky, H.; Titus, B.; Hubbard, D.

    2012-06-01

    Fossil reefs hold important ecological information that can provide a prehuman baseline for understanding recent anthropogenic changes in reefs systems. The most widely used proxy for reef "health," however, is live coral cover, and this has not been quantified in the fossil record because it is difficult to establish that even adjacent corals were alive at the same time. This study uses microboring and taphonomic proxies to differentiate between live and dead corals along well-defined time surfaces in Holocene reefs of the Enriquillo Valley, Dominican Republic. At Cañada Honda, live coral cover ranged from 59 to 80% along a contemporaneous surface buried by a storm layer, and the reef, as a whole had 33-80% live cover within the branching, mixed, massive and platy zones. These values equal or exceed those in the Dominican Republic and Caribbean today or reported decades ago. The values from the western Dominican Republic provide a geologic baseline against which modern anthropogenic changes in Caribbean reefs can be considered.

  3. The earliest known reptile

    NASA Astrophysics Data System (ADS)

    Smithson, T. R.

    1989-12-01

    AMNIOTES (reptiles, birds and mammals) are distinguished from non-amniote tetrapods (amphibians) by the presence of complex embryonic membranes. One of these, the amnion, gives its name to the group. Very few skeletal characters distinguish amniotes from amphibians1, making it difficult to recognize early amniotes in the fossil record. The earliest amniote fossil identified so far is Hylonomus from the Westphalian (Upper Carboniferous) of Joggins, Nova Scotia2,3, (~300 Myr). I report here the discovery of a much earlier amniote skeleton from the Brigantian (Lower Carboniferous) of Scotland (~338 Myr) 4, which thus represents the earliest occurrence of amniotes in the fossil record. The specimen was collected from the East Kirkton Limestone, near Bathgate, West Lothian4-8, and is part of a unique terrestrial fauna that includes eurypterids, myriapods, scorpions and the earliest-known harvestman spider7,9, together with the earliest known temno-spondyls, a group that may include the ancestors of all living amphibians10. It will make an important contribution to our knowledge of early amniote morphology and the interrelationships of tetrapods.

  4. Progress in life's history: Linking Darwinism and palaeontology in Britain, 1860-1914.

    PubMed

    Manias, Chris

    2017-12-01

    This paper examines the tension between Darwinian evolution and palaeontological research in Britain in the 1860-1914 period, looking at how three key promoters of Darwinian thinking - Thomas Henry Huxley, Edwin Ray Lankester and Alfred Russell Wallace - integrated palaeontological ideas and narratives of life's history into their public presentations of evolutionary theory. It shows how engagement with palaeontological science was an important part of the promotion of evolutionary ideas in Britain, which often bolstered notions that evolution depended upon progress and development along a wider plan. While often critical of some of the non-Darwinian concepts of evolution professed by many contemporary palaeontologists, and frequently citing the 'imperfection' of the fossil record itself, Darwinian thinkers nevertheless engaged extensively with palaeontology to develop evolutionary narratives informed by notions of improvement and progress within the natural world. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Historical land cover changes in the Great Lakes Region

    USGS Publications Warehouse

    Cole, K.L.; Davis, M.B.; Stearns, F.; Guntenspergen, G.; Walker, K.; Sisk, Thomas D.

    1999-01-01

    Two different methods of reconstructing historical vegetation change, drawing on General Land Office (GLO) surveys and fossil pollen deposits, are demonstrated by using data from the Great Lakes region. Both types of data are incorporated into landscape-scale analyses and presented through geographic information systems. Results from the two methods reinforce each other and allow reconstructions of past landscapes at different time scales. Changes to forests of the Great Lakes region during the last 150 years were far greater than the changes recorded over the preceding 1,000 years. Over the last 150 years, the total amount of forested land in the Great Lakes region declined by over 40%, and much of the remaining forest was converted to early successional forest types as a result of extensive logging. These results demonstrate the utility of using GLO survey data in conjunction with other data sources to reconstruct a generalized 'presettlement' condition and assess changes in landcover.

  6. Ontogeny of the maxilla in Neanderthals and their ancestors

    PubMed Central

    Lacruz, Rodrigo S.; Bromage, Timothy G.; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-01-01

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived. PMID:26639346

  7. Ontogeny of the maxilla in Neanderthals and their ancestors.

    PubMed

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-12-07

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.

  8. Paleovegetation changes recorded by n-alkyl lipids bound in macromolecules of plant fossils and kerogens from the Cretaceous sediments in Japan

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.

    2014-12-01

    Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was significantly higher than that of conifer fossil leaf from Ashizawa coal bed. From these results, we propose that the proportions of long chain n-alkanols released from terrigenous kerogens are applicable for paleovegetation reconstruction.

  9. At the feet of the dinosaurs: the early history and radiation of lizards.

    PubMed

    Evans, Susan E

    2003-11-01

    Lizards, snakes and amphisbaenians together constitute the Squamata, the largest and most diverse group of living reptiles. Despite their current success, the early squamate fossil record is extremely patchy. The last major survey of squamate palaeontology and evolution was published 20 years ago. Since then, there have been major changes in systematic theory and methodology, as well as a steady trickle of new fossil finds. This review examines our current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas. Contrary to previous reports, no squamate fossils are currently documented before the Jurassic. Nonetheless, indirect evidence predicts that squamates had evolved by at least the middle Triassic, and had diversified into existing major lineages before the end of this period. There is thus a major gap in the squamate record at a time when key morphological features were evolving. With the exception of fragmentary remains from Africa and India, Jurassic squamates are known only from localities in northern continents (Laurasia). The situation improves in the Early Cretaceous, but the southern (Gondwanan) record remains extremely poor. This constrains palaeobiogeographic discussion and makes it difficult to predict centres of origin for major squamate clades on the basis of fossil evidence alone. Preliminary mapping of morphological characters onto a consensus tree demonstrates stages in the sequence of acquisition for some characters of the skull and postcranial skeleton, but many crucial stages--most notably those relating to the acquisition of squamate skull kinesis--remain unclear.

  10. Paleoserranus lakamhae gen. et sp. nov., a Paleocene seabass (Perciformes: Serranidae) from Palenque, Chiapas, southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Cantalice, Kleyton M.; Alvarado-Ortega, Jesús; Alaniz-Galvan, Abril

    2018-04-01

    Paleoserranus lakamhae gen. et sp. nov. is here described based on well-preserved fossils from the Paleocene marine sediments of the Tenejapa-Lacandón geological unit, belonging to both Division del Norte and Belisario Domínguez quarries, near Palenque, Chiapas, southeastern Mexico. This species exhibits distinctive characters of the order Perciformes, such as the presence of spines in the dorsal, pelvic, and anal fins, as well as the pelvic and pectoral girdles in contact between them. This fish also has neither procurrent spur nor posterior uroneural, characters that support its place within the family Serranidae. It also has a distinctive combination of characters, including a serrated lacrimal and a toothed ectopterygoid, never recorded before among serranids. Additionally, this fossil fish shares some characters with different species nested within the subfamilies Serraninae, Anthiinae, and Ephinephelinae; these include a predorsal formula of 0/0/0 + 2/1 + 1/1; a preopercle with its ventral edge sinuous and showing a strong antrorse spine; its dorsal fin consists of nine spines and eight to ten soft rays; 13 rays in its pectoral fin; and its rounded caudal fin structured with formula I+8-7+I. Paleoserranus lakamhae gen. et sp. nov. is a Serranidae incertae sedis because it does not fit into any subgroup; however, this Paleocene fish is the earliest fossil record of the family Serranidae. The place of occurrence of this new fossil record suggests that the origin and of the seabasses took place in the Caribbean region of North America.

  11. Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts

    PubMed Central

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes. PMID:21940637

  12. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts.

    PubMed

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.

  13. Sporadic sampling, not climatic forcing, drives observed early hominin diversity.

    PubMed

    Maxwell, Simon J; Hopley, Philip J; Upchurch, Paul; Soligo, Christophe

    2018-05-08

    The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined. Copyright © 2018 the Author(s). Published by PNAS.

  14. From Cells to Species - How do Coccolithophore Communities Respond to Climate Change?

    NASA Astrophysics Data System (ADS)

    Gibbs, S.; Bown, P. R.; Poulton, A. J.

    2014-12-01

    The geological record contains a rich archive of the exported remains of plankton skeletons that can inform our predictions of their response to current and near-future environmental change. However, these fossilised remains represent integrated populations of millions of individuals recording reproductive success over daily timescales, with each cell responding to its own microenvironment. How then do whole species and communities show 'response' to changes in climate occurring on timescales far longer than that of the individual? And what exactly does 'response' mean in this context? Here, we utilize remarkably well-preserved assemblages of calcareous nannoplankton in order to interrogate fossil populations uniquely at an individual cellular-level, exploring the link between individuals and the success of the species, thereby tackling these questions from the bottom up. By studying individual fossilized cells we can draw direct comparisons with modern coccolithophore cells and as such we have combined observations from living coccolithophore cultures, naturally occurring populations in the ocean and exquisitely preserved fossil records. The fossils provide us with case studies of community variability alongside environmental change, over both long timescales of greenhouse to icehouse climate states and also more abrupt events such as the Paleogene hyperthermals. Finding these exquisitely preserved fossils is challenging, but there are exceptional situations where preservation bias is greatly reduced and we find complete coccospheres and therefore the intact biomineralised coverings of long-dead cells. These coccospheres preserve invaluable information about the original living cell including its size, levels of particulate organic carbon and inorganic carbon, ontogeny, and growth phase - information that tells us about their reproductive success and their potential role in local biogeochemical cycling. By better understanding these individual cells, we can start to think about the cumulative outcome of seasonal reproductive cycles that results in what we traditionally view as species-level 'responses'.

  15. Tonganoxichnus, a new insect trace from the Upper Carboniferous of eastern Kansas

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.; Maples, C.G.; Lanier, Wendy E.

    1997-01-01

    Upper Carboniferous tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation) at Buildex Quarry, eastern Kansas, USA, host a relatively diverse arthropod-dominated ichnofauna. Bilaterally symmetrical traces displaying unique anterior and posterior sets of morphological features are well represented within the assemblage. A new ichnogenus, Tonganoxichnus, is proposed for these traces. T. buildexensis, the type ichnospecies, has an anterior region characterized by the presence of a frontal pair of maxillary palp impressions, followed by a head impression and three pairs of conspicuous thoracic appendage imprints symmetrically opposite along a median axis. The posterior region commonly exhibits numerous delicate chevron-like markings, recording the abdominal appendages, and a thin, straight, terminal extension. T. buildexensis is interpreted as a resting trace. A second ichnospecies, T. ottawensis, is characterized by a fan-like arrangement of mostly bifid scratch marks at the anterior area that records the head- and thoracic-appendage backstrokes against the substrate. The posterior area shows chevron-like markings or small subcircular impressions that record the abdominal appendages of the animal, also ending in a thin, straight, terminal extension. Specimens display lateral repetition, and are commonly grouped into twos or threes with a fix point at the posteriormost tail-like structure. T. ottawensis is interpreted as a jumping structure, probably in connection with feeding purposes. The two ichnospecies occur in close association, and share sufficient morphologic features to support the same type of arthropod producer. T. buildexensis closely mimics the ventral anatomy of the tracemaker, whereas T. ottawensis records the jumping abilities of the animal providing significant ethologic and paleoecologic information. The presence of well-differentiated cephalic, thoracic, and abdominal features, particularly in T. buildexensis, resembles the diagnostic tagmosis and segmentation of insects. Detailed analysis of trace morphology and comparison with described Paleozoic insect fossils and extant related forms suggest a monuran as the most likely tracemaker.

  16. The largest fossil rodent

    PubMed Central

    Rinderknecht, Andrés; Blanco, R. Ernesto

    2008-01-01

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. PMID:18198140

  17. Cranial Remain from Tunisia Provides New Clues for the Origin and Evolution of Sirenia (Mammalia, Afrotheria) in Africa

    PubMed Central

    Benoit, Julien; Adnet, Sylvain; El Mabrouk, Essid; Khayati, Hayet; Ben Haj Ali, Mustapha; Marivaux, Laurent; Merzeraud, Gilles; Merigeaud, Samuel; Vianey-Liaud, Monique; Tabuce, Rodolphe

    2013-01-01

    Sea cows (manatees, dugongs) are the only living marine mammals to feed solely on aquatic plants. Unlike whales or dolphins (Cetacea), the earliest evolutionary history of sirenians is poorly documented, and limited to a few fossils including skulls and skeletons of two genera composing the stem family of Prorastomidae (Prorastomus and Pezosiren). Surprisingly, these fossils come from the Eocene of Jamaica, while stem Hyracoidea and Proboscidea - the putative sister-groups to Sirenia - are recorded in Africa as early as the Late Paleocene. So far, the historical biogeography of early Sirenia has remained obscure given this paradox between phylogeny and fossil record. Here we use X-ray microtomography to investigate a newly discovered sirenian petrosal from the Eocene of Tunisia. This fossil represents the oldest occurrence of sirenians in Africa. The morphology of this petrosal is more primitive than the Jamaican prorastomids’ one, which emphasizes the basal position of this new African taxon within the Sirenia clade. This discovery testifies to the great antiquity of Sirenia in Africa, and therefore supports their African origin. While isotopic analyses previously suggested sirenians had adapted directly to the marine environment, new paleoenvironmental evidence suggests that basal-most sea cows were likely restricted to fresh waters. PMID:23342128

  18. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire

    PubMed Central

    2016-01-01

    Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216520

  19. First Fossil Record of Alphonsea Hk. f. & T. (Annonaceae) from the Late Oligocene Sediments of Assam, India and Comments on Its Phytogeography

    PubMed Central

    Srivastava, Gaurav; Mehrotra, Rakesh C.

    2013-01-01

    A new fossil leaf impression of Alphonsea Hk. f. & T. of the family Annonaceae is described from the Late Oligocene sediments of Makum Coalfield, Assam, India. This is the first authentic record of the fossil of Alphonsea from the Tertiary rocks of South Asia. The Late Oligocene was the time of the last significant globally warm climate and the fossil locality was at 10°–15°N palaeolatitude. The known palaeoflora and sedimentological studies indicate a fluvio-marine deltaic environment with a mosaic of mangrove, fluvial, mire and lacustrine depositional environments. During the depositional period the suturing between the Indian and Eurasian plates was not complete to facilitate the plant migration. The suturing was over by the end of the Late Oligocene/beginning of Early Miocene resulting in the migration of the genus to Southeast Asia where it is growing profusely at present. The present study is in congruence with the earlier published palaeofloral and molecular phylogenetic data. The study also suggests that the Indian plate was not only a biotic ferry during its northward voyage from Gondwana to Asia but also a place for the origin of several plant taxa. PMID:23349701

  20. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire.

    PubMed

    Belcher, Claire M

    2016-06-05

    Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  1. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil.

    PubMed

    Parry, Luke A; Boggiani, Paulo C; Condon, Daniel J; Garwood, Russell J; Leme, Juliana de M; McIlroy, Duncan; Brasier, Martin D; Trindade, Ricardo; Campanha, Ginaldo A C; Pacheco, Mírian L A F; Diniz, Cleber Q C; Liu, Alexander G

    2017-10-01

    The evolutionary events during the Ediacaran-Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran-Cambrian siltstones in Brazil, alongside U-Pb radioisotopic dates that constrain the age of the oldest specimens to 555-542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal-sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.

  2. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito

    PubMed Central

    Greenwalt, Dale E.; Goreva, Yulia S.; Siljeström, Sandra M.; Rose, Tim; Harbach, Ralph E.

    2013-01-01

    Although hematophagy is found in ∼14,000 species of extant insects, the fossil record of blood-feeding insects is extremely poor and largely confined to specimens identified as hematophagic based on their taxonomic affinities with extant hematophagic insects; direct evidence of hematophagy is limited to four insect fossils in which trypanosomes and the malarial protozoan Plasmodium have been found. Here, we describe a blood-engorged mosquito from the Middle Eocene Kishenehn Formation in Montana. This unique specimen provided the opportunity to ask whether or not hemoglobin, or biomolecules derived from hemoglobin, were preserved in the fossilized blood meal. The abdomen of the fossil mosquito was shown to contain very high levels of iron, and mass spectrometry data provided a convincing identification of porphyrin molecules derived from the oxygen-carrying heme moiety of hemoglobin. These data confirm the existence of taphonomic conditions conducive to the preservation of biomolecules through deep time and support previous reports of the existence of heme-derived porphyrins in terrestrial fossils. PMID:24127577

  3. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China

    PubMed Central

    Zhu, Shixing; Zhu, Maoyan; Knoll, Andrew H.; Yin, Zongjun; Zhao, Fangchen; Sun, Shufen; Qu, Yuangao; Shi, Min; Liu, Huan

    2016-01-01

    Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635–541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion. PMID:27186667

  4. Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records.

    PubMed

    Engels, S; Fong, L S R Z; Chen, Q; Leng, M J; McGowan, S; Idris, M; Rose, N L; Ruslan, M S; Taylor, D; Yang, H

    2018-04-01

    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Individual to Community-Level Faunal Responses to Environmental Change from a Marine Fossil Record of Early Miocene Global Warming

    PubMed Central

    Belanger, Christina L.

    2012-01-01

    Modern climate change has a strong potential to shift earth systems and biological communities into novel states that have no present-day analog, leaving ecologists with no observational basis to predict the likely biotic effects. Fossil records contain long time-series of past environmental changes outside the range of modern observation, which are vital for predicting future ecological responses, and are capable of (a) providing detailed information on rates of ecological change, (b) illuminating the environmental drivers of those changes, and (c) recording the effects of environmental change on individual physiological rates. Outcrops of Early Miocene Newport Member of the Astoria Formation (Oregon) provide one such time series. This record of benthic foraminiferal and molluscan community change from continental shelf depths spans a past interval environmental change (∼20.3-16.7 mya) during which the region warmed 2.1–4.5°C, surface productivity and benthic organic carbon flux increased, and benthic oxygenation decreased, perhaps driven by intensified upwelling as on the modern Oregon coast. The Newport Member record shows that (a) ecological responses to natural environmental change can be abrupt, (b) productivity can be the primary driver of faunal change during global warming, (c) molluscs had a threshold response to productivity change while foraminifera changed gradually, and (d) changes in bivalve body size and growth rates parallel changes in taxonomic composition at the community level, indicating that, either directly or indirectly through some other biological parameter, the physiological tolerances of species do influence community change. Ecological studies in modern and fossil records that consider multiple ecological levels, environmental parameters, and taxonomic groups can provide critical information for predicting future ecological change and evaluating species vulnerability. PMID:22558424

  6. Evidence of Archaean life - A brief appraisal

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1976-01-01

    Attention is called to the question of whether the meagerness of the Archaean fossil record is a function of a sparsity of preserved, cratonal, fossiliferous facies, or whether the abrupt break in the known fossil record near the Archaean-Proterozoic boundary reflects a major event in biological evolution. The paper then reviews the currently available geochemical and paleobiological data on Archaean biota. The occurrence of stromatolites in the Archaean, and the carbon isotopic composition of Archaean organic matter, both suggest strongly the existence of an Archaean biota. The presence of relatively abundant and morphologically complex microorganisms in deposits of early Proterozoic age seems to be certain evidence for a prior episode of Archaean evolution.

  7. A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran.

    PubMed

    Davesne, Donald

    2017-01-01

    Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid † Protolophotus , it is proposed hereby as a new genus and species † Babelichthys olneyi , gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys . This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems.

  8. A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran

    PubMed Central

    2017-01-01

    Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid †Protolophotus, it is proposed hereby as a new genus and species †Babelichthys olneyi, gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys. This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems. PMID:28674642

  9. Study of fossil wood from the Middle-Late Miocene sediments of Dhemaji and Lakhimpur districts of Assam, India and its palaeoecological and palaeophytogeographical implications

    NASA Astrophysics Data System (ADS)

    Mehrotra, R. C.; Bera, S. K.; Basumatary, S. K.; Srivastava, G.

    2011-08-01

    In order to reconstruct the palaeoclimate, a number of fossil wood pieces were collected and investigated from two new fossil localities situated in the Dhemaji and Lakhimpur districts of Assam. They belong to the Tipam Group considered to be of Middle-Late Miocene in age and show affinities with Gluta (Anacardiaceae), Bischofia (Euphorbiaceae), Bauhinia, Cynometra, Copaifera-Detarium-Sindora, Millettia-Pongamia, and Afzelia-Intsia (Fabaceae). The flora also records a new species of Bauhinia named Bauhinia miocenica sp. nov. The assemblage indicates a warm and humid climate in the region during the deposition of the sediments. The occurrence of some southeast Asian elements in the fossil flora indicates that an exchange of floral elements took place between India and southeast Asia during the Miocene.

  10. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs.

    PubMed

    Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-07

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  11. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  12. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    PubMed Central

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred. PMID:26741567

  13. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.

    PubMed

    Thornhill, Andrew H; Popple, Lindsay W; Carter, Richard J; Ho, Simon Y W; Crisp, Michael D

    2012-04-01

    The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Biogeographic Dating of Speciation Times Using Paleogeographically Informed Processes

    PubMed Central

    Landis, Michael J.

    2017-01-01

    Abstract Standard models of molecular evolution cannot estimate absolute speciation times alone, and require external calibrations to do so, such as fossils. Because fossil calibration methods rely on the incomplete fossil record, a great number of nodes in the tree of life cannot be dated precisely. However, many major paleogeographical events are dated, and since biogeographic processes depend on paleogeographical conditions, biogeographic dating may be used as an alternative or complementary method to fossil dating. I demonstrate how a time-stratified biogeographic stochastic process may be used to estimate absolute divergence times by conditioning on dated paleogeographical events. Informed by the current paleogeographical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs for the past 540 Ma of Earth’s history. Simulations indicate biogeographic dating performs well so long as paleogeography imposes constraint on biogeographic character evolution. To gauge whether biogeographic dating may be of practical use, I analyzed the well-studied turtle clade (Testudines) to assess how well biogeographic dating fares when compared to fossil-calibrated dating estimates reported in the literature. Fossil-free biogeographic dating estimated the age of the most recent common ancestor of extant turtles to be from the Late Triassic, which is consistent with fossil-based estimates. Dating precision improves further when including a root node fossil calibration. The described model, paleogeographical dispersal graph, and analysis scripts are available for use with RevBayes. PMID:27155009

  15. Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Lee, Gaik Ee; Váňa, Jiří; Schäfer-Verwimp, Alfons; Krings, Michael; Schmidt, Alexander R

    2015-01-01

    Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

  16. Fossil nutlets of Boraginaceae from the continental Eocene of Hamada of Méridja (southwestern Algeria): The first fossil of the Borage family in Africa.

    PubMed

    Hammouda, Sid Ahmed; Weigend, Maximilian; Mebrouk, Fateh; Chacón, Juliana; Bensalah, Mustapha; Ensikat, Hans-Jürgen; Adaci, Mohammed

    2015-12-01

    The Paleogene deposits of the Hamada of Méridja, southwestern Algeria, are currently dated as lower-to-middle Eocene in age based on fossil gastropods and charophytes. Here we report the presence of fruits that can be assigned to the Boraginaceae s.str., apparently representing the first fossil record for this family in Africa, shedding new light on the historical biogeography of this group. Microscopic studies of the fossil nutlets were carried out and compared to extant Boraginaceae nutlets, and to types reported in the literature for this family. The fossils are strikingly similar in general size and morphology, particularly in the finer details of the attachment scar and ornamentation, to nutlets of extant representatives of the Boraginaceae tribe Echiochileae, and especially the genus Ogastemma. We believe that these nutlets represent an extinct member of this lineage. The Ogastemma-like fossils indicate that the Echiochileae, which are most diverse in northern Africa and southwestern Asia, have a long history in this region, dating back to the Eocene. This tribe corresponds to the basal-most clade in Boraginaceae s.str., and the fossils described here agree well with an assumed African origin of the family and the Boraginales I, providing an important additional calibration point for dating the phylogenies of this clade. © 2015 Botanical Society of America.

  17. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    PubMed

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  18. Loess as an environmental archive of atmospheric trace element deposition

    NASA Astrophysics Data System (ADS)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  19. How Good is the Fossil Record?

    ERIC Educational Resources Information Center

    Boucot, A. J.

    1983-01-01

    Suggests that earth scientists become active in the creationist debate by making sure that the religious concept creationism is not taught in schools and that well-based, informative material about organic evolution, earth's age, and nature of stratigraphic record are employed by science teachers. (Author/JN)

  20. Assessing Biological and Stratigraphic Determinants of Fossil Abundance: A Case Example from the Late Quaternary of Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Kowalewski, Michal; Azzarone, Michele; Kusnerik, Kristopher; Dexter, Troy; Wittmer, Jacalyn; Scarponi, Daniele

    2017-04-01

    Absolute fossil abundance [AFA] can be defined as a relative concentration of identifiable fossils per unit of sediment. AFA, or "sediment shelliness", is controlled by the interplay between the rate of input of skeletal remains (biological productivity), pace of shell destruction (taphonomy), rate of sedimentation, and sediment compaction. Understanding the relative importance of those drivers can augment both stratigraphic and biological interpretations of the fossil record. Using 336 samples from a network of late Quaternary cores drilled in Po Plain (Italy), we examined the importance of those factors in controlling the stratigraphic distribution of fossils. All samples were vertically and volumetrically equivalent, each representing a 10 cm long interval of a core with a diameter of 7 cm ( 0.375 dm3 sediment per sample). Sample-level estimates of AFA (1) varied over 4 orders of magnitudes (from <4 to 44200 specimens per dm3 of sediment); (2) appeared invariant to core depth (rho=-0.04, p=0.72); (3) were statistically indistinguishable (chi-square=1.53, p=0.46) across systems tracts; and (4) did not vary substantially across facies (chi-square=6.04, p=0.20) representing a wide range of depositional and taphonomic settings. These outcomes indicate that compaction (which should increase downcore), sedimentation rates (which vary predictably across systems tracts), and pace of shell destruction (expected to differ across depositional settings) are unlikely to have played important role in controlling fossils density in the sampled cores. In contrast, samples with very high shell density (AFA > 4000 specimens per dm3) were characterized by exceedingly low evenness reflecting dominance by one super-abundant species (Berger-Parker index > 0.8 in all cases). These super-abundant species were limited to small r-selective mollusks capable of an explosive population growth: the marine corbulid bivalve Lentidium mediterraneum and the brackish hyrdobiid gastropod Ecrobia ventrosa. Moreover, despite high mollusk diversity (534 species total), >80% of samples are dominated by one of the five mollusk species, which all represent small, r-selective, deposit and suspension feeders. Trends in absolute fossil abundance within late Quaternary deposits of the Po Plain appear to have been driven primarily by biological productivity of opportunistic shelly species from lowest trophic levels. In the studied system, biodiversity and shelliness of samples is unlikely to reflect stratigraphic or taphonomic overprints, but rather records the ecological importance of r-selective species that dominated the investigated area throughout the late Quaternary. The joint consideration of sequence stratigraphy, facies architecture, and paleontological data, can provide insights regarding both stratigraphic (the origin of sedimentary biofabrics) and biological (the drivers of bio-productivity and observed biodiversity) aspects of the fossil record.

  1. First fossil occurrence of a filefish (Tetraodontiformes; Monacanthidae) in Asia, from the Middle Miocene in Nagano Prefecture, central Japan.

    PubMed

    Miyajima, Yusuke; Koike, Hakuichi; Matsuoka, Hiroshige

    2014-04-10

    A new fossil filefish, Aluterus shigensis sp. nov., with a close resemblance to the extant Aluterus scriptus (Osbeck), is described from the Middle Miocene Bessho Formation in Nagano Prefecture, central Japan. It is characterized by: 21 total vertebrae; very slender and long first dorsal spine with tiny anterior barbs; thin and lancet-shaped basal pterygiophore of the spiny dorsal fin, with its ventral margin separated from the skull; proximal tip of moderately slender first pterygiophore of the soft dorsal fin not reaching far ventrally; soft dorsal-fin base longer than anal-fin base; caudal peduncle having nearly equal depth and length; and tiny, fine scales with slender, straight spinules. The occurrence of this fossil filefish from the Bessho Formation is consistent with the influence of warm water currents suggested by other fossils, but it is inconsistent with the deep-water sedimentary environment of this Formation. This is the first fossil occurrence of a filefish in Asia; previously described fossil filefishes are known from the Pliocene and Pleistocene of Italy, the Pliocene of Greece, and the Miocene and Pliocene of North America. These fossil records suggest that the genus Aluterus had already been derived and was widely distributed during the Middle Miocene with taxa closely resembling Recent species.

  2. Biogeographic distribution and metric dental variation of fossil and living orangutans (Pongo spp.).

    PubMed

    Tshen, Lim Tze

    2016-01-01

    The genus Pongo has a relatively richer Quaternary fossil record than those of the African great apes. Fossil materials are patchy in terms of anatomical parts represented, limited almost exclusively to isolated teeth, jaw and bone fragments. Fossil evidence indicates that the genus Pongo had a broadly continuous distribution across the southern part of the Indomalayan biogeographic region, ranging in time from Early Pleistocene to Holocene: southern China (77 fossil sites), Vietnam (15), Laos (6), Cambodia (2), Thailand (4), Peninsular Malaysia (6), Sumatra (4), Borneo (6) and Java (4). Within this distribution range, there are major geographical gaps with no known orangutan fossils, notably central and southern Indochina, central and southern Thailand, eastern Peninsular Malaysia, northern and southern Sumatra, and Kalimantan. The geological time and place of origin of the genus remain unresolved. Fossil orangutan assemblages usually show greater extent of dental metrical variation than those of modern-day populations. Such variability shown in prehistoric populations has partially contributed to confusion regarding past taxonomic diversity and systematic relationships among extinct and living forms. To date, no fewer than 14 distinct taxa have been identified and named for Pleistocene orangutans. Clear cases suggestive of predation by prehistoric human are few in number, and limited to terminal Pleistocene-Early Holocene sites in Borneo and a Late Pleistocene site in Vietnam.

  3. Record of C4 Photosynthesis Through the Late Neogene and Pleistocene

    NASA Astrophysics Data System (ADS)

    Cerling, T. E.

    2016-12-01

    C4 photosynthesis is an adaptation to the low atmospheric carbon dioxide concentrations experienced in the Neogene; it is found principally in tropical to sub-tropical/temperate regions where temperatures are high in the growing season. Although C4 photosynthesis makes up about 50% of Net Primary Productivity in tropical regions, its macroscopic fossil record is extremely sparse. Therefore, inferences to its significance in local ecosystems are based primarily on stable isotopes, with phytoliths become more important as phytolith morphology becomes better associated with plant structure and classification. Stable isotopes have been the principal recorder for understanding the history of C4 photosynthesis; however, different materials record different aspects of the C4 contribution to ecosystem structure and thus are telling different parts of the same story. With the fossil record so poorly known, we often assume similar ecosystem structures and functions as we observe in modern analogues. It is likely that large evolutionary changes have taken place within C4 plants as they went from < 1% tropical NPP to > 50% tropical NPP in the late Neogene.

  4. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.

    PubMed

    Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre

    2015-07-01

    Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian

    NASA Astrophysics Data System (ADS)

    Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.

    2009-12-01

    The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.

  6. The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    PubMed Central

    Tapanila, Leif; Roberts, Eric M.

    2012-01-01

    Background The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors. Methodology/Principal Findings We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle. Conclusions/Significance This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic. PMID:22355387

  7. Eocene primates of South America and the African origins of New World monkeys.

    PubMed

    Bond, Mariano; Tejedor, Marcelo F; Campbell, Kenneth E; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-23

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  8. 'Citizen science' recording of fossils by adapting existing computer-based biodiversity recording tools

    NASA Astrophysics Data System (ADS)

    McGowan, Alistair

    2014-05-01

    Biodiversity recording activities have been greatly enhanced by the emergence of online schemes and smartphone applications for recording and sharing data about a wide variety of flora and fauna. As a palaeobiologist, one of the areas of research I have been heavily involved in is the question of whether the amount of rock available to sample acts as a bias on our estimates of biodiversity through time. Although great progress has been made on this question over the past ten years by a number of researchers, I still think palaeontology has not followed the lead offered by the 'citizen science' revolution in studies of extant biodiversity. By constructing clearly structured surveys with online data collection support, it should be possible to collect field data on the occurrence of fossils at the scale of individual exposures, which are needed to test competing hypotheses about these effects at relatively small spatial scales. Such data collection would be hard to justify for universities and museums with limited personnel but a co-ordinated citizen science programme would be capable of delivering such a programme. Data collection could be based on the MacKinnon's Lists method, used in rapid conservation assessment work. It relies on observers collecting lists of a fixed length (e.g. 10 species long) but what is important is that it focuses on getting observers to ignore sightings of the same species until that list is complete. This overcomes the problem of 'common taxa being commonly recorded' and encourages observers to seek out and identify the rarer taxa. This gives a targeted but finite task. Rather than removing fossils, participants would be encouraged to take photographs to share via a recording website. The success of iSpot, which allows users to upload photos of plants and animals for other users to help with identifications, offers a model for overcoming the problems of identifying fossils, which can often look nothing like the examples illustrated in guidebooks. The requirements for a web platform could be met by the use of the freely-available Indicia software developed by the UK Centre for Ecology and Hydrology for biodiversity recording. However, some trials with the software have found it would be suitable for recording fossil occurrences as well. The software allows users to plot collections on maps, upload and share photographs and make identifications of material. Within the UK, the British Geological Survey has made geological map data available via the iGeology smartphone app and the Geology of Britain website. Thus it is now possible for people with access to smartphones or the internet to know which geological units they are sampling from, which would previously have been difficult without access to paper copies of geological maps. Such a programme could make a significant contribution towards reviving palaeontology and geology as field-based natural history and create wider interest in basic geological and taxonomic skills and form the basis for work on geodiversity recording and exploring links between geodiversity and biodiversity.

  9. Origin of an Assemblage Massively Dominated by Carnivorans from the Miocene of Spain

    PubMed Central

    Domingo, M. Soledad; Alberdi, M. Teresa; Azanza, Beatriz; Silva, Pablo G.; Morales, Jorge

    2013-01-01

    Carnivoran-dominated fossil sites provide precious insights into the diversity and ecology of species rarely recovered in the fossil record. The lower level assemblage of Batallones-1 fossil site (Late Miocene; Madrid Basin, Spain) has yielded one of the most abundant and diversified carnivoran assemblage ever known from the Cenozoic record of mammals. A comprehensive taphonomic study is carried out here in order to constrain the concentration mode of this remarkable assemblage. Another distinctive feature of Batallones-1 is that the accumulation of carnivoran remains took place in the context of a geomorphological landform (cavity formation through a piping process) practically unknown in the generation of fossil sites. Two characteristics of the assemblage highly restrict the probable causes for the accumulation of the remains: (1) the overwhelming number of carnivorans individuals; and (2) the mortality profiles estimated for the four most abundant taxa do not correspond to the classic mortality types but rather were the consequence of the behavior of the taxa. This evidence together with other taphonomic data supports the hypothesis that carnivoran individuals actively entered the cavity searching for resources (food or water) and were unable to exit. The scarcity of herbivores implies that the shaft was well visible and avoided by these taxa. Fossil bones exhibit a very good preservation state as a consequence of their deposition in the restricted and protective environment of the chamber. Batallones-1 had another assemblage (upper level assemblage) that was dominated by herbivore remains and that potentially corresponded to the final stages of the cavity filling. PMID:23650542

  10. The taphonomy of unmineralised Palaeozoic fossils preserved as siliciclastic moulds and casts, and their utility in assessing the interaction between environmental change and the fossil record

    NASA Astrophysics Data System (ADS)

    MacGabhann, Breandán; Schiffbauer, James; Hagadorn, James; Van Roy, Peter; Lynch, Edward; Morrsion, Liam; Murray, John

    2015-04-01

    The enhanced preservation potential of biomineralised tissues in fossil organisms is a key factor in their utility in the investigation of palaeoenvironmental change on fossil ecosystems. By contrast, the considerably lower preservation potential of entirely unmineralised organisms severely reduces the utility of their temporal and spatial distribution in such analyses. However, understanding the taphonomic processes which lead to the preservation of such soft-bodied fossils may be an under-appreciated source of information, particularly in the case of specimens preserved as moulds and casts in coarser siliciclastic sediments. This information potential is well demonstrated by fossil eldonids, a Cambrian to Devonian clade of unmineralised asymmetrical discoidal basal or stem deuterostomes, with an apparently conservative biology and no clear palaeoenvironmental or biogeographical controls on their distribution. We investigated the taphonomic processes involved in the preservation of fossil eldonids as moulds and casts on bedding surfaces and within event beds from sandstones of the Ordovician Tafilalt lagerstätte in south-eastern Morocco, and from siltstones of the Devonian West Falls Group of New York, USA. Laser Raman microspectroscopy, SEM BSE imaging and EDS elemental mapping of fossil specimens reveals that moulded biological surfaces are coated by a fossil surface veneer primarily consisting of mixed iron oxides and oxyhydroxides (including pseudomorphs after pyrite), and aluminosilicate clay minerals. Moreover, comparison to fossil eldonids preserved as carbonaceous compressions in the Burgess Shale reveals that the biological structures preserved in the Tafilalt and New York specimens - the dorsal surface and a coiled sac containing the digestive tract - represent only specific portions of the anatomy of the complete animal. We suggest that the preserved remains were the only parts of these eldonid organisms composed primarily of complex organic biopolymers, and that these tissues were preferentially fossilised by the formation of an early diagenic mould directly on the organic surfaces. Excess divalent iron ions, produced during decay of more labile tissues by means of bacterial iron reduction, would have adsorbed to anionic functional groups in the biopolymeric tissues. This would have provided a ready substrate for the formation and growth of such an early diagenic mineralised mould, including aluminosilicate minerals produced via reaction with seawater silica and metal ions, and iron sulphide minerals produced via reaction with hydrogen sulphide and free sulphur produced from seawater sulphate through bacterial sulphate reduction associated with further decay. Subsequent weathering would have oxidised such iron sulphides to oxides and oxyhydroxides. This taphonomic model supports the lack of utility of the eldonid palaeobiological record in analysing environmental influence on biological communities, due to the lack of preservation of key anatomical components. However, it also suggests that the very occurrence of fossils preserved in this style is dependent on extrinsic palaeoenvironmental factors - including pH, Eh, and the concentration of other ions in the contemporaneous seawater. Analyses of the distribution of fossils preserved in this style may therefore provide information on ambient conditions which may have affected the distribution of contemporaneous mineralised fossils, potentially allowing a more complete analysis of the effects of palaeoenvironmental change on fossil ecosystems.

  11. A geological history of reflecting optics.

    PubMed

    Parker, Andrew Richard

    2005-03-22

    Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors--diffraction gratings--are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, 'white' and 'blue' scattering structures, antireflective surfaces and the very latest addition to optical physics--photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes--molecular self-assembly.

  12. First direct evidence of a vertebrate three-level trophic chain in the fossil record

    PubMed Central

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H.J

    2007-01-01

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time. PMID:17971323

  13. First direct evidence of a vertebrate three-level trophic chain in the fossil record.

    PubMed

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J

    2008-01-22

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time.

  14. Two new carnivores from an unusual late Tertiary forest biota in eastern North America.

    PubMed

    Wallace, Steven C; Wang, Xiaoming

    2004-09-30

    Late Cenozoic terrestrial fossil records of North America are biased by a predominance of mid-latitude deposits, mostly in the western half of the continent. Consequently, the biological history of eastern North America, including the eastern deciduous forest, remains largely hidden. Unfortunately, vertebrate fossil sites from this vast region are rare, and few pertain to the critically important late Tertiary period, during which intensified global climatic changes took place. Moreover, strong phylogenetic affinities between the flora of eastern North America and eastern Asia clearly demonstrate formerly contiguous connections, but disparity among shared genera (eastern Asia-eastern North America disjunction) implies significant periods of separation since at least the Miocene epoch. Lacustrine sediments deposited within a former sinkhole in the southern Appalachian Mountains provide a rare example of a late Miocene to early Pliocene terrestrial biota from a forested ecosystem. Here we show that the vertebrate remains contained within this deposit represent a unique combination of North American and Eurasian taxa. A new genus and species of the red (lesser) panda (Pristinailurus bristoli), the earliest and most primitive so far known, was recovered. Also among the fauna are a new species of Eurasian badger (Arctomeles dimolodontus) and the largest concentration of fossil tapirs ever recorded. Cladistical analyses of the two new carnivores strongly suggest immigration events that were earlier than and distinct from previous records, and that the close faunal affinities between eastern North America and eastern Asia in the late Tertiary period are consistent with the contemporaneous botanical record.

  15. Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation

    NASA Astrophysics Data System (ADS)

    Harvey, Thomas H. P.; Vélez, Maria I.; Butterfield, Nicholas J.

    2012-01-01

    The early history of crustaceans is obscured by strong biases in fossil preservation, but a previously overlooked taphonomic mode yields important complementary insights. Here we describe diverse crustacean appendages of Middle and Late Cambrian age from shallow-marine mudstones of the Deadwood Formation in western Canada. The fossils occur as flattened and fragmentary carbonaceous cuticles but provide a suite of phylogenetic and ecological data by virtue of their detailed preservation. In addition to an unprecedented range of complex, largely articulated filtering limbs, we identify at least four distinct types of mandible. Together, these fossils provide the earliest evidence for crown-group branchiopods and total-group copepods and ostracods, extending the respective ranges of these clades back from the Devonian, Pennsylvanian, and Ordovician. Detailed similarities with living forms demonstrate the early origins and subsequent conservation of various complex food-handling adaptations, including a directional mandibular asymmetry that has persisted through half a billion years of evolution. At the same time, the Deadwood fossils indicate profound secular changes in crustacean ecology in terms of body size and environmental distribution. The earliest radiation of crustaceans is largely cryptic in the fossil record, but "small carbonaceous fossils" reveal organisms of surprisingly modern aspect operating in an unfamiliar biosphere.

  16. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils.

    PubMed

    Huang, Diying; Hormiga, Gustavo; Cai, Chenyang; Su, Yitong; Yin, Zongjun; Xia, Fangyuan; Giribet, Gonzalo

    2018-04-01

    Understanding the genealogical relationships among the arachnid orders is an onerous task, but fossils have aided in anchoring some branches of the arachnid tree of life. The discovery of Palaeozoic fossils with characters found in both extant spiders and other arachnids provided evidence for a series of extinctions of what was thought to be a grade, Uraraneida, that led to modern spiders. Here, we report two extraordinarily well-preserved Mesozoic members of Uraraneida with a segmented abdomen, multi-articulate spinnerets with well-defined spigots, modified male palps, spider-like chelicerae and a uropygid-like telson. The new fossils, belonging to the species Chimerarachne yingi, were analysed phylogenetically in a large data matrix of extant and extinct arachnids under a diverse regime of analytical conditions, most of which resulted in placing Uraraneida as the sister clade of Araneae (spiders). The phylogenetic placement of this arachnid fossil extends the presence of spinnerets and modified palps more basally in the arachnid tree than was previously thought. Ecologically, the new fossil extends the record of Uraraneida 170 million years towards the present, thus showing that uraraneids and spiders co-existed for a large fraction of their evolutionary history.

  17. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  18. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India

    NASA Astrophysics Data System (ADS)

    Rao, M. R.; Sahni, Ashok; Rana, R. S.; Verma, Poonam

    2013-04-01

    Early Eocene sedimentary successions of south Asia, are marked by the development of extensive fossil-bearing, lignite-rich sediments prior to the collision of India with Asia and provide data on contemporary equatorial faunal and vegetational assemblages. One such productive locality in western India is the Vastan Lignite Mine representing approximately a 54-52 Ma sequence dated by the presence of benthic zone marker species, Nummulites burdigalensis burdigalensis. The present study on Vastan Lignite Mine succession is based on the spore-pollen and dinoflagellate cyst assemblages and documents contemporary vegetational changes. 86 genera and 105 species belonging to algal remains (including dinoflagellate cysts), fungal remains, pteridophytic spores and angiospermous pollen grains have been recorded. On the basis of first appearance, acme and decline of palynotaxa, three cenozones have been recognized and broadly reflect changing palaeodepositional environments. These are in ascending stratigraphic order (i) Proxapertites Spp. Cenozone, (ii) Operculodinium centrocarpum Cenozone and (iii) Spinizonocolpites Spp. Cenozone. The basal sequence is lagoonal, palm-dominated and overlain by more open marine conditions with dinoflagellate cysts and at the top, mangrove elements are dominant. The succession has also provided a unique record of fish, lizards, snakes, and mammals.

  19. Rare hatchling specimens of Araripemys Price, 1973 (Testudines, Pelomedusoides, Araripemydidae) from the Crato Formation, Araripe Basin

    NASA Astrophysics Data System (ADS)

    Oliveira, Gustavo R.; Kellner, Alexander W. A.

    2017-11-01

    Hatchling turtles are rare in the fossil record. Here we report two incomplete juvenile specimens of the genus Araripemys from the Aptian (ca. 115 Ma) Crato Formation (Araripe Basin, Brazil). Although the description of this material does not completely elucidate the ontogeny of this taxon, the analysis of these specimens yield relevant information about diagnostic features of the genus, showing their presence in hatchling such as: skull with nearly oval shape in dorsal view; closely spaced orbits; cervical vertebrae with long vertebral body indicating the presence of a long neck; the extension and the angle of curvature of the axillary (obtuse angle); and unguals arrow-shaped. The small size of the specimens (40-50 mm) and their poor degree of ossification including unfused costal bones indicate that both represent hatchling individuals. The paleoenvironment of the Crato Formation was similar to mangroves, which is corroborated by the presence of juvenile turtles and fishes, anurans and insects. Araripemys barretoi was also recorded in the Romualdo Formation, which represents a lagoon. The fact that this turtle is found in these quite distinct paleoenvironments suggests that this species could be tolerant to distinct salinities levels.

  20. Correlation between investment in sexual traits and valve sexual dimorphism in Cyprideis species (Ostracoda)

    PubMed Central

    Hunt, Gene; Lockwood, Rowan; Swaddle, John P.; Horne, David J.

    2017-01-01

    Assessing the long-term macroevolutionary consequences of sexual selection has been hampered by the difficulty of studying this process in the fossil record. Cytheroid ostracodes offer an excellent system to explore sexual selection in the fossil record because their readily fossilized carapaces are sexually dimorphic. Specifically, males are relatively more elongate than females in this superfamily. This sexual shape difference is thought to arise so that males carapaces can accommodate their very large copulatory apparatus, which can account for up to one-third of body volume. Here we test this widely held explanation for sexual dimorphism in cytheroid ostracodes by correlating investment in male genitalia, a trait in which sexual selection is seen as the main evolutionary driver, with sexual dimorphism of carapace in the genus Cyprideis. We analyzed specimens collected in the field (C. salebrosa, USA; C. torosa, UK) and from collections of the National Museum of Natural History, Washington, DC (C. mexicana). We digitized valve outlines in lateral view to obtain measures of size (valve area) and shape (elongation, measured as length to height ratio), and obtained several dimensions from two components of the hemipenis: the muscular basal capsule, which functions as a sperm pump, and the section that includes the intromittent organ (terminal extension). In addition to the assessment of this primary sexual trait, we also quantified two dimensions of the male secondary sexual trait—where the transformed right walking leg functions as a clasping organ during mating. We also measured linear dimensions from four limbs as indicators of overall (soft-part) body size, and assessed allometry of the soft anatomy. We observed significant correlations in males between valve size, but not elongation, and distinct structural parts of the hemipenis, even after accounting for their shared correlation with overall body size. We also found weak but significant positive correlation between valve elongation and the degree of sexual dimorphism of the walking leg, but only in C. torosa. The correlation between the hemipenis parts, especially basal capsule size and male valve size dimorphism suggests that sexual selection on sperm size, quantity, and/or efficiency of transfer may drive sexual size dimorphism in these species, although we cannot exclude other aspects of sexual and natural selection. PMID:28678866

  1. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

    PubMed Central

    Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303

  2. Response of infaunal organisms represented by trace fossils to sea-level changes in the Ordovician Black River and Trenton Group limestones, upstate New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegan, J.R.; Curran, H.A.

    Small-scale fluctuations in sea level were revealed by detailed analysis of trace fossil assemblages formed by infaunal organisms within the Lowville (Black River Grp.), Napanee, and Kings Falls limestones (Trenton Grp.) at Ingham Mills. The paleodepositional environment of the Lowville Limestone (LL) is interpreted as peritidal, representing the high intertidal to shallow subtidal zones. The trace fossil assemblages define clearly several fluctuations within this environment. Large, well-formed specimens of the trace fossil Beaconites barretti occur within tidal channel and levee beds of the LL. In other regions this trace fossil has consistently been associated with channel and levee beds, mostmore » commonly in fluvial settings. The occurrence of Beaconites in the LL extends the age range of this ichnogenus to Ordovician time (oldest previous record is Silurian) and broadens its paleoenvironment range. The Napanee (Np) and lower Kings Falls (KF), limestones have most commonly been described as being deposited in a lagoonal setting. Both formations contain well-preserved trace fossils; the primary difference being that the Np exhibits much lower trace and body fossil diversities than the KF. The low diversity of trace fossils in the Np was most likely the result of limiting environmental conditions such as low oxygen and/or hypersalinity. The higher diversity of trace fossils in the KF indicates that the ancient lagoon became increasingly controlled by normal marine conditions, and, therefore, hospitable to a more diverse group of organisms. The trace fossil assemblages of the Black River and Trenton Group limestones indicate that the infaunal organisms of these Ordovician communities were highly sensitive to small-scale sea-level fluctuations.« less

  3. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  4. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.

    PubMed

    Harvey, Thomas H P; Butterfield, Nicholas J

    2017-01-30

    Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.

  5. Peaches Preceded Humans: Fossil Evidence from SW China

    PubMed Central

    Su, Tao; Wilf, Peter; Huang, Yongjiang; Zhang, Shitao; Zhou, Zhekun

    2015-01-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000–7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding. PMID:26610240

  6. Peaches Preceded Humans: Fossil Evidence from SW China

    NASA Astrophysics Data System (ADS)

    Su, Tao; Wilf, Peter; Huang, Yongjiang; Zhang, Shitao; Zhou, Zhekun

    2015-11-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000-7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding.

  7. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies

    PubMed Central

    Nelson, Sherry V.

    2013-01-01

    Carbon and oxygen stable isotopes within modern and fossil tooth enamel record the aspects of an animal's diet and habitat use. This investigation reports the first isotopic analyses of enamel from a large chimpanzee community and associated fauna, thus providing a means of comparing fossil ape and early hominin palaeoecologies with those of a modern ape. Within Kibale National Park forest, oxygen isotopes differentiate primate niches, allowing for the first isotopic reconstructions of degree of frugivory versus folivory as well as use of arboreal versus terrestrial resources. In a comparison of modern and fossil community isotopic profiles, results indicate that Sivapithecus, a Miocene ape from Pakistan, fed in the forest canopy, as do chimpanzees, but inhabited a forest with less continuous canopy or fed more on leaves. Ardipithecus, an early hominin from Ethiopia, fed both arboreally and terrestrially in a more open habitat than inhabited by chimpanzees. PMID:24197413

  8. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture

    PubMed Central

    Roberts, Eric M.; Todd, Christopher N.; Aanen, Duur K.; Nobre, Tânia; Hilbert-Wolf, Hannah L.; O’Connor, Patrick M.; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J.

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66–24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7–10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  9. An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK

    PubMed Central

    Siveter, David J.; Briggs, Derek E. G.; Siveter, Derek J.; Sutton, Mark D.

    2010-01-01

    An exceptionally preserved new ostracod crustacean from the Silurian of Herefordshire, UK, represents only the third fully documented Palaeozoic ostracod with soft-part preservation. Appendages, gills, gut system, lateral compound eyes and even a medial eye with a Bellonci organ are preserved, allowing assignment of the fossil to a new genus and species of cylindroleberidid myodocope (Myodocopida, Cylindroleberididae). The Bellonci organ is recorded for the first time in fossil ostracods. The find also represents a rare occurrence of gills in fossil ostracods and confirms the earliest direct evidence of a respiratory-cum-circulatory system in the group. The species demonstrates remarkably conserved morphology within myodocopes over a period of 425 Myr. Its shell morphology more closely resembles several families of myodocopes other than the Cylindroleberididae, especially the Cypridinidae and Sarsiellidae, thus questioning the utility of the carapace alone in establishing the affinity of fossil ostracods. PMID:20106847

  10. Scratching an ancient itch: an Eocene bird louse fossil.

    PubMed Central

    Wappler, Torsten; Smith, Vincent S; Dalgleish, Robert C

    2004-01-01

    Out of the 30 extant orders of insects, all but one, the parasitic lice (Insecta: Phthiraptera), have a confirmed fossil record. Here, we report the discovery of what appears to be the first bird louse fossil: an exceptionally well-preserved specimen collected from the crater of the Eckfeld maar near Manderscheid, Germany. The 44-million-year-old specimen shows close phylogenetic affinities with modern feather louse ectoparasites of aquatic birds. Preservation of feather remnants in the specimen's foregut confirms its association as a bird ectoparasite. Based on a phylogenetic analysis of the specimen and palaeoecological data, we suggest that this louse was the parasite of a large ancestor to modern Anseriformes (swans, geese and ducks) or Charadriiformes (shorebirds). The crown group position of this fossil in the phylogeny of lice confirms the group's long coevolutionary history with birds and points to an early origin for lice, perhaps inherited from early-feathered theropod dinosaurs. PMID:15503987

  11. Fossil preservation and the stratigraphic ranges of taxa

    NASA Technical Reports Server (NTRS)

    Foote, M.; Raup, D. M.

    1996-01-01

    The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.

  12. The origin and paleoecologic significance of the trace fossil Asteriadtes in the Pennsylvanian of Kansas and Missouri

    USGS Publications Warehouse

    Mángano, M. Gabriela; Buatois, L.A.; West, R.R.; Maples, C.G.

    1999-01-01

    The trace fossil Asteriacites, recorded in Cambrian to Recent shallow- and deep-marine facie??s, is traditionally interpreted as the resting trace of asterozoans. Well-preserved specimens of A. lumbricalis are abundant in Pennsylvanian (Upper Carboniferous) shallow- and marginalmarine siliciclastic deposits of eastern Kansas and western Missouri. Detailed morphologic analysis of these specimens suggests that they record the activities of mobile epifaunal ophiuroids. Evidence of a brittle star (ophiuroid) producer rather than sea star (asteroid) is provided by (1) trace-fossil morphologic features reflecting the anatomy of the producer (e.g., well-differentiated central structure, slender vermiform arms) and ophiuroid burrowing technique (e.g., proximal arm expansion, arm branching), and (2) mode of occurrence (e.g., gregarious behavior, horizontal and vertical repetition). Vertical and horizontal repetition produces complex aggregates of A. lumbricalis that are interpreted either as escape structures (fugichnia) or as feeding structures, respectively. Ophiura texturata is proposed.as a modern analogue for the A. lumbricalis producer, based on inferred life habit and feeding behavior. Asteriacites lumbricalis is present in two different intertidal trace-fossil assemblages. The first assemblage is characterized by high diversity and records tidal flats developed outside of embayments under normal marine conditions. The second assemblage consists of A. lumbricalis together with a few other ichnotaxa and represents a depauperate association that developed in restricted tidal flats within an embayment or estuarine setting. This challenges the conventional view of Asteriacites as a normal-marine salinity indicator. Some echinoderms, and particularly asterozoans, penetrate and inhabit modern environments of depressed salinity. The presence of Asteriacites in Pennsylvanian marginal-marine facie??s of Kansas and Missouri provides evidence that ophiuroids had adapted to brackish-water conditions by the late Paleozoic.

  13. A spatial and vertical comparison of coral Sr/Ca variations and growth rates in Montastraea faveolata colonies in Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Cobb, R. M.; DeLong, K. L.; Richey, J. N.; Flannery, J. A.; Kilbourne, K. H.; Smith, J. M.; Quinn, T. M.; Hudson, J. H.

    2013-12-01

    The massive coral genera Montastraea spp. is ubiquitous in modern and fossil coral reefs in the Gulf of Mexico and Caribbean Sea making this genus a potential archive for paleoclimate reconstructions. Interpretation of modern and fossil coral records requires understanding the origins of variability in coral geochemical variations on scales ranging from intracolony to regional as well as differing water depths. In 1991, the U.S. Geological Survey recovered cores from five Montastraea faveolata colonies offshore of Veracruz, Mexico (19.06°N, 96.93°W) in water depths from 2.7 m to 12.2 m. The average linear extension per year based on x-radiograph analysis is similar (8.1 and 8.6, ×1.9 mm/yr, 1σ; n=31) for colonies at water depths of 2.7 and 4.3 m, respectively, for the interval from 1963 to 1991. Progressively slower extension rates are observed for deeper colonies (7.6 × 1.8, 7.5 × 1.9, and 4.5 × 1.5 mm/yr, 1σ; n=31) for 5.8, 6.1 and 12.2 m, respectively. Correlation coefficients among annual linear extension records vary between 0.00 and 0.40 (n=31) with the lowest correlation between colonies in close proximity (~1 km) and highest between colonies furthest apart (~250 km). We analyzed coral Sr/Ca at approximately 18 samples per year (0.5 mm/sample) along corallite thecal walls parallel to the slab surface for the interval from 1982 to 1991. This geochemical proxy for SST reveals seasonal variations within the coral skeleton that correspond to the high- and low-density bands in the coral slab, which represent one year of growth. Our linear regression of coral Sr/Ca from a single core (5.8 m water depth) to the Optimum Interpolation sea surface temperature (OISST; Reynolds et al., 2002) results in a slope of -0.049 (×0.024 mmol/mol/°C, 1σ; n=100; r2=0.52), which is slightly greater than the slope of other published Montastraea calibrations, but less than those reported for Porites spp. An alternative calibration method is to examine mean coral Sr/Ca with mean SST for various locations from studies using the same analytical methods and reference standards. The mean Sr/Ca calibration for nine coral colonies from Veracruz, Puerto Rico, Florida Keys, and Dry Tortugas with OISST results in a slope similar to that observed for Porites spp. determined with the same method. Slope differences between calibration methods may be due to time averaging along the sample transect. Future work will examine coral Sr/Ca in the other four M. faveolata colonies from Veracruz to assess reproducibility.

  14. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    NASA Astrophysics Data System (ADS)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not found in the modern samples, suggesting that additional sampling from dry-grassy meadows is required to verify the presence of this NPP in this kind of environment. The comparison between fossil and modern records of pollen and NPPs provided crucial information in validating the interpretation of 8000 years of climate and vegetation history in the Great Basin.

  15. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  16. Precambrian paleobiology.

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1972-01-01

    Outline in broad terms of major events in Precambrian biological history. Limitations of the Precambrian fossil record, chemical fossils, and findings of the early, middle, and late Precambrian records are examined. Biological systems originated during the earliest third of geologic time, about four billion years ago. It is generally assumed that the primitive atmosphere was a highly reduced mixture, primarily composed of methane and ammonia, and that the earliest living systems were heterotrophic, using organic matter of abiotic origin as a carbon source. The development of the metazoan grade of organization apparently occurred near the close of the Precambrian. The picture of gradually accelerating early evolutionary development, beginning rather slowly but markedly quickening with the emergence of eucaryotic organization, seems consistent with the fragmentary evidence currently available.

  17. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic

    PubMed Central

    Kenrick, Paul; Wellman, Charles H.; Schneider, Harald; Edgecombe, Gregory D.

    2012-01-01

    The geochemical carbon cycle is strongly influenced by life on land, principally through the effects of carbon sequestration and the weathering of calcium and magnesium silicates in surface rocks and soils. Knowing the time of origin of land plants and animals and also of key organ systems (e.g. plant vasculature, roots, wood) is crucial to understand the development of the carbon cycle and its effects on other Earth systems. Here, we compare evidence from fossils with calibrated molecular phylogenetic trees (timetrees) of living plants and arthropods. We show that different perspectives conflict in terms of the relative timing of events, the organisms involved and the pattern of diversification of various groups. Focusing on the fossil record, we highlight a number of key biases that underpin some of these conflicts, the most pervasive and far-reaching being the extent and nature of major facies changes in the rock record. These effects probably mask an earlier origin of life on land than is evident from certain classes of fossil data. If correct, this would have major implications in understanding the carbon cycle during the Early Palaeozoic. PMID:22232764

  18. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen.

    PubMed

    Knoll, A H; Swett, K; Mark, J

    1991-01-01

    Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.

  19. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Swett, K.; Mark, J.

    1991-01-01

    Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.

  20. Gypsum-permineralized microfossils and their relevance to the search for life on Mars.

    PubMed

    Schopf, J William; Farmer, Jack D; Foster, Ian S; Kudryavtsev, Anatoliy B; Gallardo, Victor A; Espinoza, Carola

    2012-07-01

    Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (∼260 Ma) of New Mexico, USA; one from the Miocene (∼6 Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum.

  1. Climate-Driven Range Extension of Amphistegina (Protista, Foraminiferida): Models of Current and Predicted Future Ranges

    PubMed Central

    Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis

    2013-01-01

    Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081

  2. Climate-driven range extension of Amphistegina (protista, foraminiferida): models of current and predicted future ranges.

    PubMed

    Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis

    2013-01-01

    Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.

  3. A new conceptual model of coral biomineralisation: hypoxia as the physiological driver of skeletal extension

    NASA Astrophysics Data System (ADS)

    Wooldridge, S. A.

    2012-09-01

    That corals skeletons are built of aragonite crystals with taxonomy-linked ultrastructure has been well understood since the 19th century. Yet, the way by which corals control this crystallization process remains an unsolved question. Here, I outline a new conceptual model of coral biominerationsation that endeavours to relate known skeletal features with homeostatic functions beyond traditional growth (structural) determinants. In particular, I propose that the dominant physiological driver of skeletal extension is night-time hypoxia, which is exacerbated by the respiratory oxygen demands of the coral's algal symbionts (= zooxanthellae). The model thus provides a new narrative to explain the high growth rate of symbiotic corals, by equating skeletal deposition with the "work-rate" of the coral host needed to maintain a stable and beneficial symbiosis. In this way, coral skeletons are interpreted as a continuous (long-run) recording unit of the stability and functioning of the coral-algae endosymbiosis. After providing supportive evidence for the model across multiple scales of observation, I use coral core data from the Great Barrier Reef (Australia) to highlight the disturbed nature of the symbiosis in recent decades, but suggest that its onset is consistent with a trajectory that has been followed since at least the start of the 1900's. In concluding, I explain how the evolved capacity of the cnidarians (which now includes modern reef corals) to overcome the metabolic limitation of hypoxia via skeletogenesis, may underpin the sudden appearance in the fossil record of calcified skeletons at the Precambrian-Cambrian transition - and the ensuing rapid appearance of most major animal phyla.

  4. A new conceptual model of coral biomineralisation: hypoxia as the physiological driver of skeletal extension

    NASA Astrophysics Data System (ADS)

    Wooldridge, S.

    2013-05-01

    That corals skeletons are built of aragonite crystals with taxonomy-linked ultrastructure has been well understood since the 19th century. Yet, the way by which corals control this crystallization process remains an unsolved question. Here, I outline a new conceptual model of coral biomineralisation that endeavours to relate known skeletal features with homeostatic functions beyond traditional growth (structural) determinants. In particular, I propose that the dominant physiological driver of skeletal extension is night-time hypoxia, which is exacerbated by the respiratory oxygen demands of the coral's algal symbionts (= zooxanthellae). The model thus provides a new narrative to explain the high growth rate of symbiotic corals, by equating skeletal deposition with the "work-rate" of the coral host needed to maintain a stable and beneficial symbiosis. In this way, coral skeletons are interpreted as a continuous (long-run) recording unit of the stability and functioning of the coral-algae endosymbiosis. After providing supportive evidence for the model across multiple scales of observation, I use coral core data from the Great Barrier Reef (Australia) to highlight the disturbed nature of the symbiosis in recent decades, but suggest that its onset is consistent with a trajectory that has been followed since at least the start of the 1900s. In concluding, I outline how the proposed capacity of cnidarians (which includes modern reef corals) to overcome the metabolic limitation of hypoxia via skeletogenesis also provides a new hypothesis to explain the sudden appearance in the fossil record of calcified skeletons at the Precambrian-Cambrian transition - and the ensuing rapid appearance of most major animal phyla.

  5. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene Fauna of the Indian Subcontinent Was Not Isolated

    PubMed Central

    Stebner, Frauke; Szadziewski, Ryszard; Singh, Hukam; Gunkel, Simon; Rust, Jes

    2017-01-01

    India’s unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India’s flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene. PMID:28076427

  6. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene Fauna of the Indian Subcontinent Was Not Isolated.

    PubMed

    Stebner, Frauke; Szadziewski, Ryszard; Singh, Hukam; Gunkel, Simon; Rust, Jes

    2017-01-01

    India's unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India's flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene.

  7. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  8. Ancient DNA clarifies the evolutionary history of American Late Pleistocene equids.

    PubMed

    Orlando, Ludovic; Male, Dean; Alberdi, Maria Teresa; Prado, Jose Luis; Prieto, Alfredo; Cooper, Alan; Hänni, Catherine

    2008-05-01

    Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).

  9. A Record of Moisture History in Hawaii since the Arrival of Humans Inferred from Testate Amoebae and Cladocera Fossils Preserved in Bog Sediments

    NASA Astrophysics Data System (ADS)

    Barrett, K.; Kim, S. H.; Hotchkiss, S.

    2015-12-01

    Around AD 800, Polynesians arrived on the Hawaiian Islands where they expanded and intensified distinct agricultural practices in the islands' wet and dry regions. Dryland farming productivity in particular would have been sensitive to atmospheric rearrangements of the ENSO and PDO systems that affect rainfall in Hawaii. The few detailed terrestrial paleoclimate records in Hawaii are mainly derived from vegetation proxies (e.g. pollen, seeds, fruits, and plant biomarkers) which are heavily influenced by widespread landscape modification following human arrival. Here we present initial results of an independent paleomoisture proxy: fossil remains of moisture-sensitive testate amoebae (Protozoa: Rhizopoda) and cladocera (water fleas) preserved in continuous bog sediments on Kohala Volcano uplsope of the ancient Kohala agricultural field system, one of the largest dryland field systems in Hawaii. Hydrologic conditions inferred from testate amoebae and cladoceran fossil assemblages correlate with observed decadal moisture regimes in Hawaii and state changes of the PDO system during the last century. Testate ameoabe and cladoceran fossils in older sediments reveal an alternating history of very wet, lake-forming conditions on the bog surface to periods when bog soils were much drier than today's, demonstrating that this method can be paired with vegetation proxies to provide a better understanding of hydroclimate variability in prehistoric Hawaii.

  10. Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fishes.

    PubMed

    Near, Thomas J; Dornburg, Alex; Tokita, Masayoshi; Suzuki, Dai; Brandley, Matthew C; Friedman, Matt

    2014-04-01

    Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species-rich clades, but also those that maintain species-poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species-poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray-finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray-finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5-83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high-diversity intervals in the geological past suggest a "boom and bust" pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so-called "living fossils." © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Permian of Southeast Asia: an overview

    NASA Astrophysics Data System (ADS)

    Fontaine, Henri

    2002-08-01

    Permian rocks are widely distributed throughout Southeast Asia. Because of the tropical-equatorial climate the rocks are commonly deeply weathered and covered by dense vegetation over much of the region. Elsewhere, Permian rocks are well exposed and easy to access, particularly where limestone outcrops have weathered to form spectacular, castellated, tower karst. Many limestone outcrops, containing abundant fusulinaceans, were early recognized to be of Permian age, but many outcrops without fusulinaceans, erroneously assigned to the Permian, were found subsequently to be of Triassic age, and more careful studies have established the Permian age of rocks of other lithologies. It is now recognized that different depositional environments are represented by the Permian deposits in various parts of the region. Massive limestones, widespread throughout the region, represent extensive carbonate platforms; local occurrences of thick bedded cherts indicate deposition in deep marine environments, coal, bauxite and clastic sediments with vertebrate remains in North Vietnam and Laos indicate deposition in a continental environment, and pebbly mudstones in Myanmar, Peninsular Thailand, northwest Malaysia and Sumatra, are considered to have been formed in a glacial environment. Volcanic rocks are absent in northwest Peninsular Malaysia and Peninsular Thailand, but are extensively developed in North Vietnam, Sumatra, the eastern Malay Peninsula and Timor. Fossils, representing many fossil groups, are often prolific in Permian sediments, with fusulinaceans, for example, occurring in astronomical numbers in many limestone outcrops. Age-diagnostic fossils demonstrate that the whole of the Permian is represented in different areas of Southeast Asia. Fossil faunal and floral assemblages have been used to establish climatic conditions and environments of deposition, to define distinct crustal blocks and to provide the basis for reconstructing the palaeogeography during Permian times.

  12. The eukaryotic fossil record in deep time

    NASA Astrophysics Data System (ADS)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than their Phanerozoic counterparts. I will argue here that this fundamental change of state was driven by the early Ediacaran appearance of Eumetazoa, a uniquely complex clade of heterotrophic eukaryotes that redefined how the planet worked.

  13. Microbial Fossils from Terrestrial Subsurface Hydrothermal Environments: Examples and Implications for Mars

    NASA Technical Reports Server (NTRS)

    Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).

  14. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman

    2017-04-01

    Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

  15. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

    PubMed Central

    Langergraber, Kevin E.; Prüfer, Kay; Rowney, Carolyn; Boesch, Christophe; Crockford, Catherine; Fawcett, Katie; Inoue, Eiji; Inoue-Muruyama, Miho; Mitani, John C.; Muller, Martin N.; Robbins, Martha M.; Schubert, Grit; Stoinski, Tara S.; Viola, Bence; Watts, David; Wittig, Roman M.; Wrangham, Richard W.; Zuberbühler, Klaus; Pääbo, Svante; Vigilant, Linda

    2012-01-01

    Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage. PMID:22891323

  16. Estimating past precipitation and temperature from fossil ostracodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.J.; Forester, R.M.

    1994-12-31

    The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of livingmore » ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.« less

  17. Flood on Big Fossil Creek at Haltom City near Fort Worth, Texas, in 1962

    USGS Publications Warehouse

    Montgomery, John H.; Ruggles, Frederick H.; Patterson, James Lee

    1965-01-01

    The approximate area inundated near Fort Worth, Texas, by Big Fossil Creek, during the flood of September 7, 1962, is shown on a topographic map to record the flood hazard in graphic form. Big Fossil Creek, which drains an area of 74.7 square miles, flows generally southeastward along the northeast edge of Fort Worth through Richland Hills and Haltom City, into West Fork Trinity River. The flood of September 7, 1962, the greatest in Richland Hills since at least 1900 was the result of a high rate of discharge from the area upstream from the confluence of Big Fossil Creek and Whites Branch. Greater floods are possible, but no attempt has been made to show their probable overflow limits. Future protective works may reduce the frequency of flooding in the area but will not necessarily eliminate flooding. Changes in culture such as new highways and bridges and changes in land use may influence the inundation pattern of future floods. Mapping of the West Fork Trinity River flood was beyond the scope of the Big Fossil Creek study, and is not shown.

  18. The thermal history of human fossils and the likelihood of successful DNA amplification.

    PubMed

    Smith, Colin I; Chamberlain, Andrew T; Riley, Michael S; Stringer, Chris; Collins, Matthew J

    2003-09-01

    Recent success in the amplification of ancient DNA (aDNA) from fossil humans has led to calls for further tests to be carried out on similar material. However, there has been little systematic research on the survival of DNA in the fossil record, even though the environment of the fossil is known to be of paramount importance for the survival of biomolecules over archaeological and geological timescales. A better understanding of aDNA survival would enable research to focus on material with greater chances of successful amplification, thus preventing the unnecessary loss of material and valuable researcher time. We argue that the thermal history of a fossil is a key parameter for the survival of biomolecules. The thermal history of a number of northwest European Neanderthal cave sites is reconstructed here and they are ranked in terms of the relative likelihood of aDNA survival at the sites, under the assumption that DNA depurination is the principal mechanism of degradation. The claims of aDNA amplification from material found at Lake Mungo, Australia, are also considered in the light of the thermal history of this site.

  19. A survey of the rock record of reptilian ontogeny.

    PubMed

    Delfino, Massimo; Sánchez-Villagra, Marcelo R

    2010-06-01

    Given the large diversity and long stratigraphical range of fossil reptiles, their development is a fundamental aspect of the evolution of ontogeny in vertebrates. Eggs, juveniles, embryos and growth series document different aspects of fossilized ontogenies. About three-fifths of the more than 850 available publications on these topics concern dinosaurs. Non-invasive imaging techniques have facilitated the study of embryos in ovo. Examination of ontogenetic trajectories is used to establish criteria to identify fossil growth series and solve taxonomic issues. Many morphological innovations in reptilian skeletal structures are associated with growth heterochronic changes, whereas sequence heterochronic changes remain largely unstudied but are a potential avenue of research. Relative age assessments via not only palaeohistology but also comparative anatomy have been used to reconstruct life history patterns in fossil archosaurs. Several fossil marine reptiles evolved viviparity convergently. Extinct adult phenotypes can reveal information on development, as in the discovery of polydactyly in diapsids, the examination of vertebral number evolution, and its relation to somitgenesis and Hox-gene boundaries, and signs of tissue regeneration provided by anatomical peculiarities following caudal autotomy. (c) 2009 Elsevier Ltd. All rights reserved.

  20. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record

    PubMed Central

    Klompmaker, Adiël A.

    2016-01-01

    Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma), whereas Callianassinae did not appear before the Eocene (56 Ma). PMID:27499814

  1. Grimmiaceae in the Early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes.

    PubMed

    Savoretti, Adolfina; Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2018-06-08

    Widespread and diverse in modern ecosystems, mosses are rare in the fossil record, especially in pre-Cenozoic rocks. Furthermore, most pre-Cenozoic mosses are known from compression fossils, which lack detailed anatomical information. When preserved, anatomy significantly improves resolution in the systematic placement of fossils. Lower Cretaceous (Valanginian) deposits on Vancouver Island (British Columbia, Canada) contain a diverse anatomically preserved flora including numerous bryophytes, many of which have yet to be characterized. Among them is the grimmiaceous moss described here. One fossil moss gametophyte preserved in a carbonate concretion was studied in serial sections prepared using the cellulose acetate peel technique. Tricarinella crassiphylla gen. et sp. nov. is a moss with tristichous phyllotaxis and strongly keeled leaves. The combination of an acrocarpous condition (inferred based on a series of morphological features), a central conducting strand, a homogeneous leaf costa and a lamina with bistratose portions and sinuous cells, and multicellular gemmae, supports placement of Tricarinella in family Grimmiaceae. Tricarinella is similar to Grimmia, a genus that exhibits broad morphological variability. However, tristichous phyllotaxis and especially the lamina, bistratose at the base but not in distal portions of the leaf, set Tricarinella apart as a distinct genus. Tricarinella crassiphylla marks the oldest record for both family Grimmiaceae and sub-class Dicranidae, providing a hard minimum age (136 million years) for these groups. The fact that this fossil could be placed in an extant family, despite a diminutive size, emphasizes the considerable resolving power of anatomically preserved bryophyte fossils, even when recovered from allochthonous assemblages of marine sediments, such as the Apple Bay flora. Discovery of Tricarinella re-emphasizes the importance of paleobotanical studies as the only approach allowing access to a significant segment of biodiversity, the extinct biodiversity, which is unattainable by other means of investigation.

  2. Seasonally resolved climate variability during the last interglacial from southern Caribbean corals

    NASA Astrophysics Data System (ADS)

    Brocas, William; Felis, Thomas; Kölling, Martin; Scholz, Denis; Lohmann, Gerrit; Scheffers, Sanders

    2013-04-01

    A range of future climate scenarios have been predicted for a warmer Earth as a result of varying anthropogenic greenhouse emissions. The Last Interglacial period (~125,000 years ago, Marine Isotope Stage 5) offers a period in time which is estimated to have been in the range of 0.1 to > 2oC warmer than present (AD 1961-1990). Although this period is not considered completely analogous for future climate states, the mechanisms behind such changes have the potential to be well understood. Here we present the initial findings of a study which aims to augment current understanding by quantifying the climate dynamics of the tropical southern Caribbean using high resolution marine climate archives. In doing so, we highlight geochemical proxies obtained from aragonitic coral skeletons as a proxy for seasonality and interannual to decadal climate variability. Unique fossil coral material has been collected from an uplifted reef terrace on the island of Bonaire (Netherlands Antilles), which according to 230Th/U dating, was deposited during the Last Interglacial. The sampling technique employed here has been focused using C/T scanning and X-radiography which revealed annual density bands in 21 individual coral colonies. Due to a high average extension rate of greater than 6mm/year, monthly records are available which represent growth periods from 9 to 40 years and so cover various time windows across the Last Interglacial. We discuss the results from geochemical signals of Sr/Ca and oxygen isotope ratios (δ18O) which reflect, respectively, regional temperature and hydrological balance at the sea surface. The finding that Sr/Ca and δ18O cycles occur alongside visible annual density bands allows the quality of the fossil coral material to be considered high and reliable. To further supplement the interpretation of these records greyscale increment analysis, Mg/Ca and δ13C records are presented. The implications of these findings, when compared to Holocene records, identify the variability of internal and external forcing mechanisms behind the local behaviour of climate patterns and phenomena. By comparing our findings to "state of the art" climate models, the reconstructed index states of such patterns can be placed into a larger spatial context. This work is a contribution to the DFG Programme INTERDYNAMIC

  3. The fossilized birth–death process for coherent calibration of divergence-time estimates

    PubMed Central

    Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja

    2014-01-01

    Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181

  4. Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the canidae (mammalia, carnivora).

    PubMed

    Finarelli, John A; Goswami, Anjali

    2013-12-01

    Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  5. Early evolution and historical biogeography of fishflies (Megaloptera: Chauliodinae): implications from a phylogeny combining fossil and extant taxa.

    PubMed

    Liu, Xingyue; Wang, Yongjie; Shih, Chungkun; Ren, Dong; Yang, Ding

    2012-01-01

    Fishflies (Corydalidae: Chauliodinae) are one of the main groups of the basal holometabolous insect order Megaloptera, with ca. 130 species distributed worldwide. A number of genera from the Southern Hemisphere show remarkably disjunctive distributions and are considered to be the austral remnants or "living fossils" of Gondwana. Hitherto, the evolutionary history of fishflies remains largely unexplored due to limited fossil record and incomplete knowledge of phylogenetic relationships. Here we describe two significant fossil species of fishflies, namely Eochauliodes striolatus gen. et sp. nov. and Jurochauliodes ponomarenkoi Wang & Zhang, 2010 (original designation for fossil larvae only), from the Middle Jurassic of Inner Mongolia, China. These fossils represent the earliest fishfly adults. Furthermore, we reconstruct the first phylogenetic hypothesis including all fossil and extant genera worldwide. Three main clades within Chauliodinae are recognized, i.e. the Dysmicohermes clade, the Protochauliodes clade, and the Archichauliodes clade. The phylogenetic and dispersal-vicariance (DIVA) analyses suggest Pangaean origin and global distribution of fishflies before the Middle Jurassic. The generic diversification of fishflies might have happened before the initial split of Pangaea, while some Gondwanan-originated clades were likely to be affected by the sequential breakup of Pangaea. The modern fauna of Asian fishflies were probably derived from their Gondwanan ancestor but not the direct descendents of the Mesozoic genera in Asia.

  6. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic characteristics associated with canopy effect. A biomass flux-weighted model of alkane chain-length distribution and δ13Cleaf indicate n-alkanes extracted from bulk rock are consistent with inputs integrated over time from plants represented by fossil leaves. In a modern rainforest, we found leaf lipid amounts markedly higher in the shaded and moist understory, consistent with studies that show alkanes proffer fungal protection. Shade tolerance is associated with higher plant orders and, consistent with this, literature data for modern plants from 30 plant orders shows alkane production in asterids and rosids is 2 to 3 times greater than in basal angiosperms or gymnosperms. The lower clades tend to contain greater amounts of terpenoids and novel benzylisoquinoline alkaloids, rather than alkanes. For our three fossil floras, alkane abundance is strongly influenced by depositional setting, with preservation best in the lacustrine setting. Within each site, abundance patterns are potentially influenced by both taxonomic affiliation and by canopy structure as measured by δ13Cleaf values, and such relationships shed light on the combined influences of plant evolution, canopy structure and the function of biochemical resources on the geochemical record of the first rainforests.

  7. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA

    USGS Publications Warehouse

    Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.

    2011-01-01

    Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow ephemeral pools on an extensive coastal plain. The Lake Kemp tetrapod track assemblage is characteristic of the global Early Permian tetrapod ichnofauna found in red beds, which is dominated by a handful of ichnogenera that include Batrachichnus, Limnopus, Amphisauropus, Dromopus, Varanopus, Hyloidichnus, Ichniotherium and Dimetropus, which are the tracks of temnospondyls, seymouriamorphs, diadectomorphs, "pelycosaurs", "captorhinomorphs", and araeoscelids. The Lake Kemp tracks also further document the continuity of the ichnogenera Batrachichnus, Amphisauropus and Dromopus from Wolfcampian into Leonardian time and thus support the concept that Wolfcampian and Leonardian red-bed tetrapod footprints represent a single biostratigraphic assemblage. ?? 2011 Elsevier B.V.

  8. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    PubMed

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled and studied on continental to global scales to understand the global carbon cycle. This work demonstrates the potential of modeling and studying CO2 variability at fine spatiotemporal scales with CMAQ, which has been applied extensively, to study traditionally regulated air pollutants. The abundant observational records of these air pollutants and successful experience in studying and reducing their emissions may be useful for verifying CO2 emissions. Although there remains much more to further investigate, this work opens up a discussion on whether and how to study CO2 as an air pollutant.

  9. Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution

    PubMed Central

    Crees, Jennifer J.; Hansford, James; Jeffree, Timothy E.; Crumpton, Nick; Kurniawan, Iwan; Setiyabudi, Erick; Paranggarimu, Umbu; Dosseto, Anthony; van den Bergh, Gerrit D.

    2017-01-01

    Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000–3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands. PMID:28855367

  10. Evolution of large body size in abalones (Haliotis): Patterns and implications

    USGS Publications Warehouse

    Estes, J.A.; Lindberg, D.R.; Wray, C.

    2005-01-01

    Kelps and other fleshy macroalgae - dominant reef-inhabiting organisms in cool - seasmay have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60-75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosystems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our findings support the view that fleshy-algal dominated ecosystems radiated rapidly in the coastal oceans with the onset of the most recent glacial age. We conclude with a discussion of the broader implications of this change. ?? 2005 The Paleontological Society. All rights reserved.

  11. Vertebrate paleontology, stratigraphy, and paleohydrology of Tule Springs Fossil Beds National Monument, Nevada (USA)

    USGS Publications Warehouse

    Springer, Kathleen; Pigati, Jeffery S.; Scott, Eric

    2017-01-01

    Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.

  12. Fossil hominin radii from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain).

    PubMed

    Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis

    2016-01-01

    Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Paleontology, paleoclimatology and paleoecology of the late middle miocene Musselshell Creek flora, Clearwater County Idaho. A preliminary study of a new fossil flora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baghai, N.L.; Jorstad, R.B.

    The Musselshell Creek flora (12.0-10.5 Ma) of northern Idaho is used to reconstruct paleoclimatic and paleoecologic parameters of the Pacific Northwest during the late Middle Miocene. Other megafossil and microfossil floral records spanning 12.0-6.4 Ma are unknown from this region. The Musselshell Creek fossil flora, previously undescribed, is preserved in lacustrine clays and sediments that accumulated in a narrow valley surrounded by rugged terrain. Dominant taxa include dicotyledons and conifers. Most of the leaves are preserved as impressions or compressions. Some fossil leaves retained their original pigmentation, cellular anatomy, and organic constituents. Other fossils include excellent remains of pollen andmore » spores, dispersed leaf cuticle, pyritized wood, and disarticulated fish bones. A destructive statistical analysis of one block of sediment, approximately 30 cm x 45 cm (1.5 sq. ft) recovered 14 orders, 23 families, and 34 genera of spermatophyte plant fossils. These floral elements are compared with two other earlier Miocene floras which were similarly sampled. Common megafossil genera include Quercus, Zizy-phoides, Taxodium, Alnus, Castanea, Magnolia, Acer, Ex-bucklandia, Sequoia, Populus, and Betula. The rare occurrence of Ginkgo leaves is a first record of this taxon in the Idaho Miocene. Additional plant taxa, are represented by palynomorphs. Common pollen taxa are Pinus, Abies, Carya, Quercus, and Tilia. Most of the megafossil and microfossil flora assemblage is characteristic of a streambank to floodplain environment that existed in a warm to cool temperate climate similar to the modern Mid-Atlantic coast of the United States. 47 refs., 5 figs., 4 tabs.« less

  14. Schmeissneria: a missing link to angiosperms?

    PubMed

    Wang, Xin; Duan, Shuying; Geng, Baoyin; Cui, Jinzhong; Yang, Yong

    2007-02-07

    The origin of angiosperms has been under debate since the time of Darwin. While there has been much speculation in past decades about pre-Cretaceous angiosperms, including Archaefructus, these reports are controversial. The earliest reliable fossil record of angiosperms remains restricted to the Cretaceous, even though recent molecular phylogenetic studies suggest an origin for angiosperms much earlier than the current fossil record. In this paper, after careful SEM and light microscopic work, we report fossils with angiospermous traits of the Jurassic age. The fossils were collected from the Haifanggou Formation (middle Jurassic) in western Liaoning, northeast China. They include two female structures and an associated leaf on the same slab. One of the female structures is physically connected to the apex of a short shoot. The female organs are borne in pairs on short peduncles that are arranged along the axis of the female structure. Each of the female organs has a central unit that is surrounded by an envelope with characteristic longitudinal ribs. Each central unit has two locules completely separated by a vertical septum. The apex of the central unit is completely closed. The general morphology places these fossils into the scope of Schmeissneria, an early Jurassic genus that was previously attributed to Ginkgoales. Because the closed carpel is a character only found in angiosperms, the closed apex of the central unit suggests the presence of angiospermy in Schmeissneria. This angiospermous trait implies either a Jurassic angiosperm or a new seed plant group parallel to angiosperms and other known seed plants. As an angiosperm, the Liassic age (earliest Jurassic) of Schmeissneria microstachys would suggest an origin of angiosperms during the Triassic. Although still uncertain, this could have a great impact on our perspective of the history, diversity and systematics of seed plants and angiosperms.

  15. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Andanje, Samuel A.; Blumenthal, Scott A.; Brown, Francis H.; Chritz, Kendra L.; Harris, John M.; Hart, John A.; Kirera, Francis M.; Kaleme, Prince; Leakey, Louise N.; Leakey, Meave G.; Levin, Naomi E.; Kyalo Manthi, Fredrick; Passey, Benjamin H.; Uno, Kevin T.

    2015-09-01

    A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1-2.35 Ma in the Turkana Basin had a greater diversity of C3-C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3-C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa.

  16. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers and student teachers through workshops, at teacher conferences, and participating Faculties of Education.

  17. New fossils from the Paleogene of central Libya illuminate the evolutionary history of endemic African anomaluroid rodents

    NASA Astrophysics Data System (ADS)

    Coster, Pauline; Beard, K. Christopher; Salem, Mustafa; Chaimanee, Yaowalak; Jaeger, Jean-Jacques

    2015-10-01

    Anomaluroid rodents show interesting biogeographic and macroevolutionary patterns, although their fossil record is meager and knowledge of the natural history of extant members of the clade remains inadequate. Living anomaluroids (Anomaluridae) are confined to equatorial parts of western and central Africa, but the oldest known fossil anomaluroid (Pondaungimys) comes from the late middle Eocene of Myanmar. The first appearance of anomaluroids in the African fossil record coincides with the first appearances of hystricognathous rodents and anthropoid primates there. Both of the latter taxa are widely acknowledged to have originated in Asia, suggesting that anomaluroids may show a concordant biogeographic pattern. Here we describe two new taxa of African Paleogene anomaluroids from sites in the Sirt Basin of central Libya. These include a new Eocene species of the nementchamyid genus Kabirmys, which ranks among the oldest African anomaluroids recovered to date, and a new genus and species of Anomaluridae from the early Oligocene, which appears to be closely related to extant Zenkerella, the only living non-volant anomalurid. Phylogenetic analyses incorporating the new Libyan fossils suggest that anomaluroids are not specially related to Zegdoumyidae, which are the only African rodents known to antedate the first appearance of anomaluroids there. The evolution of gliding locomotion in Anomaluridae appears to conflict with traditional assessments of relationships among living anomalurid taxa. If the historically accepted division of Anomaluridae into Anomalurinae (extant and Miocene Anomalurus and Miocene Paranomalurus) and Zenkerellinae (extant and Miocene Zenkerella and extant Idiurus) is correct, then either gliding locomotion evolved independently in Anomalurinae and Idiurus or non-volant Zenkerella evolved from a gliding ancestor. Anatomical data related to gliding in Anomaluridae are more consistent with a nontraditional systematic arrangement, whereby non-volant Zenkerella is the sister group of a clade including both Anomalurus and Idiurus.

  18. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma

    PubMed Central

    Cerling, Thure E.; Andanje, Samuel A.; Blumenthal, Scott A.; Brown, Francis H.; Chritz, Kendra L.; Harris, John M.; Hart, John A.; Kirera, Francis M.; Kaleme, Prince; Leakey, Louise N.; Leakey, Meave G.; Levin, Naomi E.; Manthi, Fredrick Kyalo; Passey, Benjamin H.; Uno, Kevin T.

    2015-01-01

    A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1–2.35 Ma in the Turkana Basin had a greater diversity of C3–C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3–C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa. PMID:26240344

  19. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

  20. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

Top