Sample records for extensive functional characterization

  1. Molecular characterization and functional analysis of ubiquitin extension genes from the potato cyst nematode Globodera rostochiensis

    USDA-ARS?s Scientific Manuscript database

    Ubiquitin is a highly conserved 76-amino acid protein found in every eukaryotic cell. It has been proposed that ubiquitin has many cellular functions including DNA repair, transcription regulation, regulation of cell cycle and apoptosis. We identified two ubiquitin extension genes (Gr-Ubi1 and Gr-Ub...

  2. The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  3. Functional characterization of two distinct xyoglucanases from rumenal microbes

    USDA-ARS?s Scientific Manuscript database

    Xyloglucans are known to function by binding to cellulose microfibrils, crosslinking adjacent fibers forming cellulose-XG networks important for modulation of rigidity and extensibility of the primary cell wall of plants. Enzymatic hydrolysis and modification of xyloglucans has received considerabl...

  4. Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces

    NASA Astrophysics Data System (ADS)

    Bjorn, Jana; Shanmugalingam, Nageswari

    2007-08-01

    In the setting of metric measure spaces equipped with a doubling measure supporting a weak p-Poincare inequality with 1[less-than-or-equals, slant]p<[infinity], we show that any uniform domain [Omega] is an extension domain for the Newtonian space N1,p([Omega]) and that [Omega], together with the metric and the measure inherited from X, supports a weak p-Poincare inequality. For p>1, we obtain a near characterization of N1,p-extension domains with local estimates for the extension operator.

  5. Kinematics of the thoracic T10-T11 motion segment: locus of instantaneous axes of rotation in flexion and extension.

    PubMed

    Qiu, Tian-Xia; Teo, Ee-Chon; Lee, Kim-Kheng; Ng, Hong-Wan; Yang, Kai

    2004-04-01

    The purpose of this study was to determine the locations and loci of instantaneous axes of rotation (IARs) of the T10-T11 motion segment in flexion and extension. An anatomically accurate three-dimensional model of thoracic T10-T11 functional spinal unit (FSU) was developed and validated against published experimental data under flexion, extension, lateral bending, and axial rotation loading configurations. The validated model was exercised under six load configurations that produced motions only in the sagittal plane to characterize the loci of IARs for flexion and extension. The IARs for both flexion and extension under these six load types were directly below the geometric center of the moving vertebra, and all the loci of IARs were tracked superoanteriorly for flexion and inferoposteriorly for extension with rotation. These findings may offer an insight to better understanding of the kinematics of the human thoracic spine and provide clinically relevant information for the evaluation of spinal stability and implant device functionality.

  6. An extension of the Laplace transform to Schwartz distributions

    NASA Technical Reports Server (NTRS)

    Price, D. R.

    1974-01-01

    A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.

  7. Annotation of Alternatively Spliced Proteins and Transcripts with Protein-Folding Algorithms and Isoform-Level Functional Networks.

    PubMed

    Li, Hongdong; Zhang, Yang; Guan, Yuanfang; Menon, Rajasree; Omenn, Gilbert S

    2017-01-01

    Tens of thousands of splice isoforms of proteins have been catalogued as predicted sequences from transcripts in humans and other species. Relatively few have been characterized biochemically or structurally. With the extensive development of protein bioinformatics, the characterization and modeling of isoform features, isoform functions, and isoform-level networks have advanced notably. Here we present applications of the I-TASSER family of algorithms for folding and functional predictions and the IsoFunc, MIsoMine, and Hisonet data resources for isoform-level analyses of network and pathway-based functional predictions and protein-protein interactions. Hopefully, predictions and insights from protein bioinformatics will stimulate many experimental validation studies.

  8. Fitting species-accumulation functions and assessing regional land use impacts on avian diversity

    Treesearch

    Curtis H. Flather

    1996-01-01

    As one samples species from a particular assemblage, the initial rapid rate with which new species are encountered declines with increasing effort. Nine candidate models to characterize species-accumulation functions were compared in a search for a model that consistently fit geographically extensive avian survey data from a wide range of environmental conditions....

  9. Barcode extension for analysis and reconstruction of structures

    NASA Astrophysics Data System (ADS)

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng

    2017-03-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  10. Barcode extension for analysis and reconstruction of structures.

    PubMed

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-03-13

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  11. Barcode extension for analysis and reconstruction of structures

    PubMed Central

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-01-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117

  12. Electronic part of the optical correlation function at finite temperature: the S-matrix expansion

    NASA Astrophysics Data System (ADS)

    Tavares, M.; Marques, G. E.; Tejedor, C.

    1998-12-01

    We present an extension to finite temperature of the Mahan-Nozières-De Dominicis framework to obtain the electronic part of the current-current correlation function. Its Fourier transform gives the absorption and emission spectra of doped low-dimensional semiconductors. We show the meaning of the new finite-temperature contributions characterizing the electronic part.

  13. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  14. Characterization of microscopic deformation through two-point spatial correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  15. Characterization of microscopic deformation through two-point spatial correlation functions.

    PubMed

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  16. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast.

    PubMed

    Kwon, Young-Yon; Lee, Sung-Keun; Lee, Cheol-Koo

    2017-04-01

    Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.

  17. Bacterial microcompartment assembly: The key role of encapsulation peptides

    DOE PAGES

    Aussignargues, Clément; Paasch, Bradley C.; Gonzalez-Esquer, Raul; ...

    2015-06-23

    Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the β-carboxysome has been characterized, revealing that biogenesis proceeds from the inside out. The enzymes coalesce into a procarboxysome, followed by encapsulation in a protein shell that is recruited to the procarboxysome by a short (~17 amino acids) extension on the C-terminus of one of the encapsulated proteins. A similar extension is also found on the N-more » or C-termini of a subset of metabolosome core enzymes. These encapsulation peptides (EPs) are characterized by a primary structure predicted to form an amphipathic α-helix that interacts with shell proteins. In this study, we review the features, function and widespread occurrence of EPs among metabolosomes, and propose an expanded role for EPs in the assembly of diverse BMCs.« less

  18. Functional assay for T4 lysozyme-engineered G protein-coupled receptors with an ion channel reporter.

    PubMed

    Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J

    2014-01-07

    Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Intact glycopeptide characterization using mass spectrometry.

    PubMed

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prytkova, Iya; Wu, Si

    2016-05-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.

  20. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes

    EPA Science Inventory

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...

  1. GIMS—Software for asset market experiments

    PubMed Central

    Palan, Stefan

    2015-01-01

    In this article we lay out requirements for an experimental market software for financial and economic research. We then discuss existing solutions. Finally, we introduce GIMS, an open source market software which is characterized by extensibility and ease of use, while offering nearly all of the required functionality. PMID:26525085

  2. Vertical field-effect transistor based on wave-function extension

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Lilly, M. P.; Bank, S. R.; Gossard, A. C.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D.

    2011-08-01

    We demonstrate a mechanism for a dual layer, vertical field-effect transistor, in which nearly depleting one layer will extend its wave function to overlap the other layer and increase tunnel current. We characterize this effect in a specially designed GaAs/AlGaAs device, observing a tunnel current increase of two orders of magnitude at cryogenic temperatures, and we suggest extrapolations of the design to other material systems such as graphene.

  3. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and a-bisabolene synthases

    USDA-ARS?s Scientific Manuscript database

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in leaf tissues. Relatively few genes associated with biosynthetic pathwa...

  4. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.

    PubMed

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-05-06

    despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.

  5. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients

    PubMed Central

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-01-01

    Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559

  6. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  7. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    DOE PAGES

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...

    2015-04-22

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less

  8. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance

    PubMed Central

    Chang, Andrew L.; McKeague, Maureen; Smolke, Christina D.

    2015-01-01

    Nucleic acid aptamers find widespread use as targeting and sensing agents in nature and biotechnology. Their ability to bind an extensive range of molecular targets, including small molecules, proteins, and ions, with high affinity and specificity enables their use in diverse diagnostic, therapeutic, imaging, and gene-regulatory applications. Here, we describe methods for characterizing aptamer kinetic and equilibrium binding properties using a surface plasmon resonance-based platform. This aptamer characterization platform is broadly useful for studying aptamer–ligand interactions, comparing aptamer properties, screening functional aptamers during in vitro selection processes, and prototyping aptamers for integration into nucleic acid devices. PMID:25432760

  9. Inhibitory Mechanisms in Down Syndrome: Is There a Specific or General Deficit?

    ERIC Educational Resources Information Center

    Borella, Erika; Carretti, Barbara; Lanfranchi, Silvia

    2013-01-01

    The cognitive profile of individuals with Down syndrome (DS) is known to be characterized by an impaired executive functioning, but inhibition-related processes have not been extensively examined in this setting. The aim of the present study was to investigate whether individuals with DS have any specific or general deficit in inhibitory…

  10. Genome-wide analysis of tandem repeats in plants and green algae

    Treesearch

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  11. The Global Emergency Observation and Warning System

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  12. Communication for extension: developing country experience.

    PubMed

    Meyer, A J

    1985-01-01

    This paper characterizes several major approaches to the use of communication in support of agricultural extension and suggests directions for change. The approaches discussed include: direct farmer contact, farmer forums, open broadcasting, advertising and social marketing, print media, multiple channel systems (campaigns and distance teaching), and comprehensive communication systems. Although all programs should be able to use media in interaction with training and the coordination of other inputs, this approach has not been comprehensively implemented in extension programs. There are few examples of cases where multiple methods have been brought together under a comprehensive communications strategy and institutionalized as part of an ongoing extension system. Lessons from social marketing in other sectors have not been exploited, while lessons from distance teaching have been underutilized. In addition, the networking and feedback functions of communication in extenson have not been given adequate attention. There is substantial potential for increasing the coverage and impact of agricultural extension through the more systematic and comprehensive use of communication.

  13. Shedding new light on opsin evolution

    PubMed Central

    Porter, Megan L.; Blasic, Joseph R.; Bok, Michael J.; Cameron, Evan G.; Pringle, Thomas; Cronin, Thomas W.; Robinson, Phyllis R.

    2012-01-01

    Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function. PMID:22012981

  14. Soft chitosan microbeads scaffold for 3D functional neuronal networks.

    PubMed

    Tedesco, Maria Teresa; Di Lisa, Donatella; Massobrio, Paolo; Colistra, Nicolò; Pesce, Mattia; Catelani, Tiziano; Dellacasa, Elena; Raiteri, Roberto; Martinoia, Sergio; Pastorino, Laura

    2018-02-01

    The availability of 3D biomimetic in vitro neuronal networks of mammalian neurons represents a pivotal step for the development of brain-on-a-chip experimental models to study neuronal (dys)functions and particularly neuronal connectivity. The use of hydrogel-based scaffolds for 3D cell cultures has been extensively studied in the last years. However, limited work on biomimetic 3D neuronal cultures has been carried out to date. In this respect, here we investigated the use of a widely popular polysaccharide, chitosan (CHI), for the fabrication of a microbead based 3D scaffold to be coupled to primary neuronal cells. CHI microbeads were characterized by optical and atomic force microscopies. The cell/scaffold interaction was deeply characterized by transmission electron microscopy and by immunocytochemistry using confocal microscopy. Finally, a preliminary electrophysiological characterization by micro-electrode arrays was carried out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Purification and Characterization of Four β-Expansins (Zea m 1 Isoforms) from Maize Pollen1[w

    PubMed Central

    Li, Lian-Chao; Bedinger, Patricia A.; Volk, Carol; Jones, A. Daniel; Cosgrove, Daniel J.

    2003-01-01

    Four proteins with wall extension activity on grass cell walls were purified from maize (Zea mays) pollen by conventional column chromatography and high-performance liquid chromatography. Each is a basic glycoprotein (isoelectric point = 9.1–9.5) of approximately 28 kD and was identified by immunoblot analysis as an isoform of Zea m 1, the major group 1 allergen of maize pollen and member of the β-expansin family. Four distinctive cDNAs for Zea m 1 were identified by cDNA library screening and by GenBank analysis. One pair (GenBank accession nos. AY104999 and AY104125) was much closer in sequence to well-characterized allergens such as Lol p 1 and Phl p 1 from ryegrass (Lolium perenne) and Phleum pretense, whereas a second pair was much more divergent. The N-terminal sequence and mass spectrometry fingerprint of the most abundant isoform (Zea m 1d) matched that predicted for AY197353, whereas N-terminal sequences of the other isoforms matched or nearly matched AY104999 and AY104125. Highly purified Zea m 1d induced extension of a variety of grass walls but not dicot walls. Wall extension activity of Zea m 1d was biphasic with respect to protein concentration, had a broad pH optimum between 5 and 6, required more than 50 μg mL-1 for high activity, and led to cell wall breakage after only approximately 10% extension. These characteristics differ from those of α-expansins. Some of the distinctive properties of Zea m 1 may not be typical of β-expansins as a class but may relate to the specialized function of this β-expansin in pollen function. PMID:12913162

  16. The diastolic function to cyclic variation of myocardial ultrasonic backscatter relation: the influence of parameterized diastolic filling (PDF) formalism determined chamber properties.

    PubMed

    Lloyd, Christopher W; Shmuylovich, Leonid; Holland, Mark R; Miller, James G; Kovács, Sándor J

    2011-08-01

    Myocardial tissue characterization represents an extension of currently available echocardiographic imaging. The systematic variation of backscattered energy during the cardiac cycle (the "cyclic variation" of backscatter) has been employed to characterize cardiac function in a wide range of investigations. However, the mechanisms responsible for observed cyclic variation remain incompletely understood. As a step toward determining the features of cardiac structure and function that are responsible for the observed cyclic variation, the present study makes use of a kinematic approach of diastolic function quantitation to identify diastolic function determinants that influence the magnitude and timing of cyclic variation. Echocardiographic measurements of 32 subjects provided data for determination of the cyclic variation of backscatter to diastolic function relation characterized in terms of E-wave determined, kinematic model-based parameters of chamber stiffness, viscosity/relaxation and load. The normalized time delay of cyclic variation appears to be related to the relative viscoelasticity of the chamber and predictive of the kinematic filling dynamics as determined using the parameterized diastolic filling formalism (with r-values ranging from .44 to .59). The magnitude of cyclic variation does not appear to be strongly related to the kinematic parameters. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Weili; Richard J. Giannone; Morowitz, Michael J.

    The early-life microbiota establishment in the human infant gut is highly variable and plays a crucial role in host nutrients and immunity maturation. While high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the construction of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on Double Filtering (DF) to enhance microbial protein characterization in complex fecal samples from healthy premature infants. We improved the overall depth of infant gut proteome measurement, withmore » an increase in the number of identified low abundance proteins, and observed greater than twofold improvement in metrics for microbial protein identifications and quantifications with a relatively high rank correlation to control. We further showed the substantial enhancement of this approach for extensively interpreting microbial functional categories between infants by affording more detailed and confident identified categories. This approach provided an avenue for in-depth measurement in the microbial component of infant fecal samples and thus comprehensive characterization of infant gut microbiome functionality.« less

  18. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    DOE PAGES

    Xiong, Weili; Richard J. Giannone; Morowitz, Michael J.; ...

    2014-10-28

    The early-life microbiota establishment in the human infant gut is highly variable and plays a crucial role in host nutrients and immunity maturation. While high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the construction of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on Double Filtering (DF) to enhance microbial protein characterization in complex fecal samples from healthy premature infants. We improved the overall depth of infant gut proteome measurement, withmore » an increase in the number of identified low abundance proteins, and observed greater than twofold improvement in metrics for microbial protein identifications and quantifications with a relatively high rank correlation to control. We further showed the substantial enhancement of this approach for extensively interpreting microbial functional categories between infants by affording more detailed and confident identified categories. This approach provided an avenue for in-depth measurement in the microbial component of infant fecal samples and thus comprehensive characterization of infant gut microbiome functionality.« less

  19. Recombinant G protein-coupled receptor expression in Saccharomyces cerevisiae for protein characterization.

    PubMed

    Blocker, Kory M; Britton, Zachary T; Naranjo, Andrea N; McNeely, Patrick M; Young, Carissa L; Robinson, Anne S

    2015-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that mediate signaling across the cellular membrane and facilitate cellular responses to external stimuli. Due to the critical role that GPCRs play in signal transduction, therapeutics have been developed to influence GPCR function without an extensive understanding of the receptors themselves. Closing this knowledge gap is of paramount importance to improving therapeutic efficacy and specificity, where efforts to achieve this end have focused chiefly on improving our knowledge of the structure-function relationship. The purpose of this chapter is to review methods for the heterologous expression of GPCRs in Saccharomyces cerevisiae, including whole-cell assays that enable quantitation of expression, localization, and function in vivo. In addition, we describe methods for the micellular solubilization of the human adenosine A2a receptor and for reconstitution of the receptor in liposomes that have enabled its biophysical characterization. © 2015 Elsevier Inc. All rights reserved.

  20. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    NASA Astrophysics Data System (ADS)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  1. Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems.

    PubMed

    Varga, Imre; Pipek, János

    2003-08-01

    We discuss some properties of the generalized entropies, called Rényi entropies, and their application to the case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent; however, their differences are free from these divergences, thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corroborate our expectations.

  2. Cost-effective monolithic and hybrid integration for metro and long-haul applications

    NASA Astrophysics Data System (ADS)

    Clayton, Rick; Carter, Andy; Betty, Ian; Simmons, Timothy

    2003-12-01

    Today's telecommunication market is characterized by conservative business practices: tight management of costs, low risk investing and incremental upgrades, rather than the more freewheeling approach taken a few years ago. Optimizing optical components for the current and near term market involves substantial integration, but within particular bounds. The emphasis on evolution, in particular, has led to increased standardization of functions and so created extensive opportunities for integrated product offerings. The same standardization that enables commercially successful integrated functions also changes the competitive environment, and changes the emphasis for component development; shifting the innovation priority from raw performance to delivering the most effective integrated products. This paper will discuss, with specific examples from our transmitter, receiver and passives product families, our understanding of the issues based on extensive experience in delivering high end integrated products to the market, and the direction it drives optical components.

  3. NovelFam3000 – Uncharacterized human protein domains conserved across model organisms

    PubMed Central

    Kemmer, Danielle; Podowski, Raf M; Arenillas, David; Lim, Jonathan; Hodges, Emily; Roth, Peggy; Sonnhammer, Erik LL; Höög, Christer; Wasserman, Wyeth W

    2006-01-01

    Background Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. Description From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. Conclusion Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families. PMID:16533400

  4. Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors.

    PubMed

    Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia

    2018-02-14

    The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.

  5. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  6. Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space

    PubMed Central

    Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F. Xavier; Milham, Michael P.

    2013-01-01

    While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test–retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo’s TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). PMID:23085497

  7. Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Nicholas A.; McKee, Erik M.; Merino, Kyle C.

    2015-10-12

    Bioinspired approaches for the formation of metallic nanomaterials have been extensively employed for a diverse range of applications including diagnostics and catalysis. These materials can often be used under sustainable conditions; however, it is challenging to control the material size, morphology, and composition simultaneously. Here we have employed the R5 peptide, which forms a 3D scaffold to direct the size and linear shape of bimetallic PdAu nanomaterials for catalysis. The materials were prepared at varying Pd:Au ratios to probe optimal compositions to achieve maximal catalytic efficiency. These materials were extensively characterized at the atomic level using transmission electron microscopy, extendedmore » X-ray absorption fine structure spectroscopy, and atomic pair distribution function analysis derived from high-energy X-ray diffraction patterns to provide highly resolved structural information. The results confirmed PdAu alloy formation, but also demonstrated that significant surface structural disorder was present. The catalytic activity of the materials was studied for olefin hydrogenation, which demonstrated enhanced reactivity from the bimetallic structures.These results present a pathway to the bioinspired production of multimetallic materials with enhanced properties, which can be assessed via a suite of characterization methods to fully ascertain structure/function relationships.« less

  8. Cardiovascular Magnetic Resonance Imaging of Myocardial Infarction, Viability, and Cardiomyopathies

    PubMed Central

    West, Amy M.; Kramer, Christopher M.

    2010-01-01

    Cardiovascular magnetic resonance provides the opportunity for a truly comprehensive evaluation of patients with a history of MI, with regards to characterizing the extent of disease, impact on LV function and degree of viable myocardium. The use of contrast-enhanced CMR for first-pass perfusion and late gadolinium enhancement is a powerful technique for delineating areas of myocardial ischemia and infarction. Using a combination of T2-weighted and contrast-enhanced CMR images, information about the acuity of an infarct can be obtained. There is an extensive amount of literature using contrast-enhanced CMR to predict myocardial functional recovery with revascularization in patients with ischemic cardiomyopathies. In addition, CMR imaging in patients with cardiomyopathies can distinguish between ischemic and non-ischemic etiologies, with the ability to further characterize the underlying pathology for non-ischemic cardiomyopathies. PMID:20197150

  9. The Role of Executive Functions in the Control of Aggressive Behavior

    PubMed Central

    Krämer, Ulrike M.; Kopyciok, Robert P. J.; Richter, Sylvia; Rodriguez-Fornells, Antoni; Münte, Thomas F.

    2011-01-01

    An extensive literature suggests a link between executive functions and aggressive behavior in humans, pointing mostly to an inverse relationship, i.e., increased tendencies toward aggression in individuals scoring low on executive function tests. This literature is limited, though, in terms of the groups studied and the measures of executive functions. In this paper, we present data from two studies addressing these issues. In a first behavioral study, we asked whether high trait aggressiveness is related to reduced executive functions. A sample of over 600 students performed in an extensive behavioral test battery including paradigms addressing executive functions such as the Eriksen Flanker task, Stroop task, n-back task, and Tower of London (TOL). High trait aggressive participants were found to have a significantly reduced latency score in the TOL, indicating more impulsive behavior compared to low trait aggressive participants. No other differences were detected. In an EEG-study, we assessed neural and behavioral correlates of error monitoring and response inhibition in participants who were characterized based on their laboratory-induced aggressive behavior in a competitive reaction time task. Participants who retaliated more in the aggression paradigm and had reduced frontal activity when being provoked did not, however, show any reduction in behavioral or neural correlates of executive control compared to the less aggressive participants. Our results question a strong relationship between aggression and executive functions at least for healthy, high-functioning people. PMID:21747775

  10. Robust one-Tube Ω-PCR Strategy Accelerates Precise Sequence Modification of Plasmids for Functional Genomics

    PubMed Central

    Chen, Letian; Wang, Fengpin; Wang, Xiaoyu; Liu, Yao-Guang

    2013-01-01

    Functional genomics requires vector construction for protein expression and functional characterization of target genes; therefore, a simple, flexible and low-cost molecular manipulation strategy will be highly advantageous for genomics approaches. Here, we describe a Ω-PCR strategy that enables multiple types of sequence modification, including precise insertion, deletion and substitution, in any position of a circular plasmid. Ω-PCR is based on an overlap extension site-directed mutagenesis technique, and is named for its characteristic Ω-shaped secondary structure during PCR. Ω-PCR can be performed either in two steps, or in one tube in combination with exonuclease I treatment. These strategies have wide applications for protein engineering, gene function analysis and in vitro gene splicing. PMID:23335613

  11. Physiological and pharmacological characterization of the larval Anopheles albimanus rectum supports a change in protein distribution and/or function in varying salinities

    PubMed Central

    Smith, Kristin E.; Raymond, Steven L.; Valenti, Micheala L.; Smith, Peter J.S.; Linser, Paul J.

    2010-01-01

    Ion regulation is a biological process crucial to the survival of mosquito larvae and a major organ responsible for this regulation is the rectum. The recta of anopheline larvae are distinct from other subfamilies of mosquitoes in several ways, yet have not yet been characterized extensively. Here we characterize the two major cell types of the anopheline rectum, DAR and non-DAR cells, using histological, physiological, and pharmacological analyses. Proton flux was measured at the basal membrane of 2%- and 50%-artificial sea water-reared An. albimanus larvae using self-referencing ion-selective microelectrodes, and the two cell types were found to differ in basal membrane proton flux. Additionally, differences in the response of that flux to pharmacological inhibitors in larvae reared in 2% versus 50% ASW indicate changes in protein function between the two rearing conditions. Finally, histological analyses suggest that the non-DAR cells are structurally suited for mediating ion transport. These data support a model of rectal ion regulation in which the non-DAR cells have a resorptive function in freshwater-reared larvae and a secretive function in saline water-reared larvae. In this way, anopheline larvae may adapt to varying salinities. PMID:20460167

  12. From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling

    PubMed Central

    Ntziachristos, Panagiotis; Lim, Jing Shan; Sage, Julien; Aifantis, Iannis

    2014-01-01

    Since Notch phenotypes in Drosophila melanogaster were identified 100 years, Notch signaling has been extensively characterized as a regulator of cell fate decisions in a variety of organisms and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the Notch pathway to tumorigenesis. In this Perspective, we discuss the pro-tumorigenic and tumor suppressive functions of Notch signaling and dissect the molecular mechanisms that underlie these functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and observations to possible therapeutic strategies targeting the Notch pathway in human cancers. PMID:24651013

  13. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.

    PubMed

    Jin, Ying; Bouyer, Julien; Haas, Christopher; Fischer, Itzhak

    2014-07-01

    Moderate and severe spinal cord contusion injuries have been extensively studied, yet much less is known about mild injuries. Mild contusions result in transient functional deficits, proceeding to near-complete recovery, but they may render the spinal cord vulnerable to future injuries. However, to date there have been no appropriate models to study the behavioral consequences, anatomical changes, and susceptibility of a mild contusion to repeated injuries, which may occur in children as well as adults during competitive sport activities. We have developed a novel mild spinal cord contusion injury model characterized by a sequence of transient functional deficits after the first injury and restoration to near-complete motor and sensory function, which is then followed up by a second injury. This model can serve not only to study the effects of repeated injuries on behavioral and anatomical changes, but also to examine the relationship between successive tissue damage and recovery of function. In the present study, we confirmed that mild thoracic spinal cord contusion, utilizing the NYU impactor device, resulted in localized tissue damage, characterized by a cystic cavity and peripheral rim of spared white matter at the injury epicenter, and rapid functional recovery to near-normal levels utilizing several behavioral tests. Repeated injury after 3weeks, when functional recovery has been completed, resulted in worsening of both motor and sensory function, which did not recover to prior levels. Anatomical analyses showed no differences in the volumes of spared white matter, lesion, or cyst, but revealed modest extension of lesion area rostral to the injury epicenter as well as an increase in inflammation and apoptosis. These studies demonstrate that a mild injury model can be used to test efficacy of treatments for repeated injuries and may serve to assist in the formulation of policies and clinical practice regarding mild SCI injury and spinal concussion. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  15. Multidisciplinary Approach for Restoring Function and Esthetics in a Patient with Amelogenesis Imperfecta: A Clinical Report

    PubMed Central

    Kamble, Vaibhav D; Parkhedkar, Rambhau D

    2013-01-01

    Amelogenesis Imperfecta (AI) is a genetically determined and enamel mineralization defect reported, depicted as “Hereditary brown teeth.” AI is characterized as a clinical entity and its clinical manifestations, histological appearance, and genetic pattern are characterized by their heterogeneity. The need for prosthodontic management of this group of patients varies. Some patients need oral hygiene instructions only, whereas others need extensive dental treatment that includes composite restorations, metal ceramic crowns, all ceramic crowns, porcelain veneers. A 20-year-old male patient presented with sensitive, discoloured, and mutilated teeth, with a decreased vertical dimension of occlusion. The 4-year recall examination revealed no pathology associated with the full mouth rehabilitation, and the patient’s aesthetic and functional expectations were satisfied. The rehabilitation included all-ceramic crowns on anterior teeth and metal-ceramic crowns on posterior teeth following endodontic treatment and a crown-lengthening procedure for eliminating tooth sensitivity, improving the aesthetics and occlusion, and for restoring function. PMID:24551735

  16. Prospecting Metagenomic Enzyme Subfamily Genes for DNA Family Shuffling by a Novel PCR-based Approach*

    PubMed Central

    Wang, Qiuyan; Wu, Huili; Wang, Anming; Du, Pengfei; Pei, Xiaolin; Li, Haifeng; Yin, Xiaopu; Huang, Lifeng; Xiong, Xiaolong

    2010-01-01

    DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64–99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering. PMID:20962349

  17. [Cloning and functional characterization of phytoene desaturase in Andrographis paniculata].

    PubMed

    Shen, Qin-qin; Li, Li-xia; Zhan, Peng-lin; Wang, Qiang

    2015-10-01

    A full-length cDNA of phytoene desaturase (PDS) gene from Andrographis paniculata was obtained through RACE-PCR. The cDNA sequence consists of 2 224 bp with an intact ORF of 1 752 bp (GeneBank: KP982892), encoding a ploypeptide of 584 amino acids. Homology analysis showed that the deduced protein has extensive sequence similarities to PDS from other plants, and contains a conserved NAD ( H) -binding domain of plant dehydrase cofactor binding-domain in N-terminal. Phylogenetic analysis demonstrated that ApPDS was more related to PDS of Sesamum indicum and Pogostemon cablin. The semi-quantitative RT-PCR analysis revealed that ApPDS expressed in whole aboveground tissues with the highest expression in leaves. Virus induced gene silencing (VIGS) was performed to characterize the functional of ApPDS in planta. Significant photobleaching was not observed in infiltrated leaves, while the PDS gene has been down-regulated significantly at the yellowish area. To the best of our knowledge, this represents the first report of PDS gene cloning and functional characterization from A. paniculata, which lays the foundation for further investigation of new genes, especially that correlative to andrographolide biosynthetic pathway.

  18. Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila.

    PubMed

    Campbell, Megan; Ganetzky, Barry

    2012-03-13

    Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.

  19. New true-triaxial rock strength criteria considering intrinsic material characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.

  20. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature.

    PubMed

    Bellofiore, Alessandro; Chesler, Naomi C

    2013-07-01

    The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.

  1. Statistic versus stochastic characterization of persistent droughts

    NASA Astrophysics Data System (ADS)

    Gonzalez-Perez, J.; Valdes, J. B.

    2005-12-01

    Droughts are one of more devastating natural disasters. A drought event is always related with deficiency in precipitation over a time period. As longer are the drought periods, larger are the damages associated with, following a potential relationship. Additionally, the extension covered by an event also increases its impact, because it makes difficult to compensate the deficit from neighbourhood water resources. Therefore, the characterization of a drought by its persistent deficit, and the area over which it extends are main points to be carried on. The Standardized Precipitation Index (SPI) provides a statistical characterization of the deficits. Its computation, for different aggregation time scales, allows a persistence evaluation. Another more recent statistic that may be applied in drought characterization is the extreme persistent probability function (e.p.f.), which characterizes the persistence of extreme realizations in a random sequence. This work presents an analysis of the differences in performance of the SPI and the e.p.f. in the statistical characterization of a drought event. The inclusion of the persistency directly in the statistic gives to the e.p.f. an advantage over the SPI. Furthermore, the relationship between the e.p.f. and its mean frequency of recurrence is known. Thus, the e.p.f. may be applied to provide either statistic or stochastic characterization of a drought event. Both criteria were compared, showing that the stochastic characterization produces a better drought indicator. The stochastic characterization using the e.p.f. as a criterion yields the new Drought Frequency Index (DFI). The index is applicable to any random water related variable to identify drought events. Its main advantages over the SPI are the direct inclusion of persistence, and its larger robustness to the time scale. To incorporate the spatial extension in the characterization of a drought event, the new DFI may also be evaluated to characterize the drought spatial-temporal development using DFI-maps. Case studies in Spain and the USA support the advantages of the e.p.f.

  2. Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf

    2017-09-01

    There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.

  3. National Water-Quality Assessment (NAWQA) area-characterization toolbox

    USGS Publications Warehouse

    Price, Curtis V.; Nakagaki, Naomi; Hitt, Kerie J.

    2010-01-01

    This is release 1.0 of the National Water-Quality Assessment (NAWQA) Area-Characterization Toolbox. These tools are designed to be accessed using ArcGIS Desktop software (versions 9.3 and 9.3.1). The toolbox is composed of a collection of custom tools that implement geographic information system (GIS) techniques used by the NAWQA Program to characterize aquifer areas, drainage basins, and sampled wells. These tools are built on top of standard functionality included in ArcGIS Desktop running at the ArcInfo license level. Most of the tools require a license for the ArcGIS Spatial Analyst extension. ArcGIS is a commercial GIS software system produced by ESRI, Inc. (http://www.esri.com). The NAWQA Area-Characterization Toolbox is not supported by ESRI, Inc. or its technical support staff. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  4. Ultrahigh phase-stable swept-source optical coherence tomography as a cardiac imaging platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Hendon, Christine P.

    2016-02-01

    Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.

  5. Density Functional Theory Investigations of D-A-D' Structural Molecules as Donor Materials in Organic Solar Cell.

    PubMed

    Chen, Junxian; Liu, Qingyu; Li, Hao; Zhao, Zhigang; Lu, Zhiyun; Huang, Yan; Xu, Dingguo

    2018-01-01

    Squaraine core based small molecules in bulk heterojunction organic solar cells have received extensive attentions due to their distinguished photochemical properties in far red and infrared domain. In this paper, combining theoretical simulations and experimental syntheses and characterizations, three major factors (fill factor, short circuit and open-cirvuit voltage) have been carried out together to achieve improvement of power conversion efficiencies of solar cells. As model material systems with D-A-D' framework, two asymmetric squaraines (CNSQ and CCSQ-Tol) as donor materials in bulk heterojunction organic solar cell were synthesized and characterized. Intensive density functional theory computations were applied to identify some direct connections between three factors and corresponding molecular structural properties. It then helps us to predict one new molecule of CCSQ'-Ox that matches all the requirements to improve the power conversion efficiency.

  6. Humoral Epitope Spreading in Autoimmune Bullous Diseases

    PubMed Central

    Didona, Dario; Di Zenzo, Giovanni

    2018-01-01

    Autoimmune blistering diseases are characterized by autoantibodies against structural adhesion proteins of the skin and mucous membranes. Extensive characterization of their autoantibody targets has improved understanding of pathogenesis and laid the basis for the study of antigens/epitopes diversification, a process termed epitope spreading (ES). In this review, we have reported and discussed ES phenomena in autoimmune bullous diseases and underlined their functional role in disease pathogenesis. A functional ES has been proposed: (1) in bullous pemphigoid patients and correlates with the initial phase of the disease, (2) in pemphigus vulgaris patients with mucosal involvement during the clinical transition to a mucocutaneous form, (3) in endemic pemphigus foliaceus, underlining its role in disease pathogenesis, and (4) in numerous cases of disease transition associated with an intermolecular diversification of immune response. All these findings could give useful information to better understand autoimmune disease pathogenesis and to design antigen/epitope specific therapeutic approaches. PMID:29719538

  7. Monkey Visual Short-Term Memory Directly Compared to Humans

    PubMed Central

    Elmore, L. Caitlin; Wright, Anthony A.

    2015-01-01

    Two adult rhesus monkeys were trained to detect which item in an array of memory items had changed using the same stimuli, viewing times, and delays as used with humans. Although the monkeys were extensively trained, they were less accurate than humans with the same array sizes (2, 4, & 6 items), with both stimulus types (colored squares, clip art), and showed calculated memory capacities of about one item (or less). Nevertheless, the memory results from both monkeys and humans for both stimulus types were well characterized by the inverse power-law of display size. This characterization provides a simple and straightforward summary of a fundamental process of visual short-term memory (how VSTM declines with memory load) that emphasizes species similarities based upon similar functional relationships. By more closely matching of monkey testing parameters to those of humans, the similar functional relationships strengthen the evidence suggesting similar processes underlying monkey and human VSTM. PMID:25706544

  8. Thermodynamic and structural characterization of an antibody gel

    PubMed Central

    Esue, Osigwe; Xie, Anna X.; Kamerzell, Tim J.; Patapoff, Thomas W.

    2013-01-01

    Although extensively studied, protein–protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues. PMID:23425660

  9. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space.

    PubMed

    Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F Xavier; Milham, Michael P

    2013-01-15

    While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test-retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo's TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Noradrenergic System in Down Syndrome and Alzheimer's Disease A Target for Therapy.

    PubMed

    Phillips, Cristy; Fahimi, Atoossa; Das, Devsmita; Mojabi, Fatemeh S; Ponnusamy, Ravikumar; Salehi, Ahmad

    2016-01-01

    Locus coeruleus (LC) neurons in the brainstem send extensive noradrenergic (NE)-ergic terminals to the majority of brain regions, particularly those involved in cognitive function. Both Alzheimer's disease (AD) and Down syndrome (DS) are characterized by similar pathology including significant LC degeneration and dysfunction of the NE-ergic system. Extensive loss of NE-ergic terminals has been linked to alterations in brain regions vital for cognition, mood, and executive function. While the mechanisms by which NE-ergic abnormalities contribute to cognitive dysfunction are not fully understood, emergent evidence suggests that rescue of NE-ergic system can attenuate neuropathology and cognitive decline in both AD and DS. Therapeutic strategies to enhance NE neurotransmission have undergone limited testing. Among those deployed to date are NE reuptake inhibitors, presynaptic α-adrenergic receptor antagonists, NE prodrugs, and β-adrenergic agonists. Here we examine alterations in the NE-ergic system in AD and DS and suggest that NE-ergic system rescue is a plausible treatment strategy for targeting cognitive decline in both disorders.

  11. Functionalized copper(II)-phthalocyanine in solution and as thin film: photochemical and morphological characterization toward applications.

    PubMed

    Ingrosso, Chiara; Curri, M Lucia; Fini, Paola; Giancane, Gabriele; Agostiano, Angela; Valli, Ludovico

    2009-09-01

    This article reports on an extensive investigation on a functionalized phthalocyanine, namely, copper(II) tetrakis-(isopropoxy-carbonyl)-phthalocyanine (TIPCuPc). The self-association of the molecules is extensively described in solution in different solvents (DMSO, DMF, CHCl(3), pyridine) by means of UV-vis steady state spectroscopy at the air/water interface by Brewster angle microscopy (BAM) and in thin films by using atomic force microscopy (AFM). We investigated the morphology of TIPCuPc as thin film by evaluating different factors: temperature, solvent, concentration, transferring procedure (spin-coating and Langmuir-Schafer technique), and nature of the substrate (mica and quartz). The behavior of the molecules under UV light irradiation and their thermal stability were studied as well. Such a detailed study can allow a suitable processing of this phthalocyanine derivative for future applications. Here the photoelectrochemical activity of the phthalocyanine was investigated when suitably combined as sensitizer with rodlike TiO(2) nanocrystals (NCs) in hybrid junctions integrated in a photoelectrochemical cell.

  12. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy.

    PubMed

    Falavigna, Vítor da Silveira; Miotto, Yohanna Evelyn; Porto, Diogo Denardi; Anzanello, Rafael; Santos, Henrique Pessoa dos; Fialho, Flávio Bello; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís Fernando

    2015-11-01

    Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple. © 2015 Scandinavian Plant Physiology Society.

  13. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    PubMed Central

    2015-01-01

    The establishment of early life microbiota in the human infant gut is highly variable and plays a crucial role in host nutrient availability/uptake and maturation of immunity. Although high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the acquisition of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on double filtering (DF) the raw samples, a method that fractionates microbial from human cells to enhance microbial protein identification and characterization in complex fecal samples from healthy premature infants. This method dramatically improved the overall depth of infant gut proteome measurement, with an increase in the number of identified low-abundance proteins and a greater than 2-fold improvement in microbial protein identification and quantification. This enhancement of proteome measurement depth enabled a more extensive microbiome comparison between infants by not only increasing the confidence of identified microbial functional categories but also revealing previously undetected categories. PMID:25350865

  14. Voltage-gated sodium channels

    PubMed Central

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel’s fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment. PMID:23531742

  15. Proteomic analysis of human aqueous humor using multidimensional protein identification technology

    PubMed Central

    Richardson, Matthew R.; Price, Marianne O.; Price, Francis W.; Pardo, Jennifer C.; Grandin, Juan C.; You, Jinsam; Wang, Mu

    2009-01-01

    Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states. PMID:20019884

  16. Life and death of neurons in the aging brain

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.

  17. Deciphering functional glycosaminoglycan motifs in development.

    PubMed

    Townley, Robert A; Bülow, Hannes E

    2018-03-23

    Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Plethystic vertex operators and boson-fermion correspondences

    NASA Astrophysics Data System (ADS)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  19. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response.

    PubMed

    Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-06-01

    Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.

  20. Circulating Endothelial Progenitor Cells Present an Inflammatory Phenotype and Function in Patients With Alcoholic Liver Cirrhosis

    PubMed Central

    Kaur, Savneet; Sehgal, Rashi; Shastry, Saggere M.; McCaughan, Geoffrey; McGuire, Helen M.; Fazekas St de Groth, Barbara; Sarin, Shiv; Trehanpati, Nirupma; Seth, Devanshi

    2018-01-01

    Background and Aim: Endothelial progenitor cells (EPCs) have been implicated in liver injury and repair. However, the phenotype and potential of these heterogenous EPCs remain elusive. In particular, their involvement in the pathogenesis of alcoholic liver cirrhosis (ALC) remains unclear. The current study extensively characterized the phenotype and functions of EPCs to understand their role in ALC pathogenesis. Methods: Circulating EPCs were identified as CD34+CD133+CD31+ cells by flow cytometer in ALC patients (n = 7) and healthy controls (HC, n = 7). A comprehensive characterization of circulating EPCs using more than 30 phenotype markers was performed by mass cytometer time of flight (CyTOF) in an independent cohort of age and gender matched ALC patients (n = 4) and controls (n = 5). Ex vivo cultures of circulating EPCs from ALC patients (n = 20) and controls (n = 18) were also tested for their functions, including colony formation, LDL uptake, lectin binding and cytokine secretion (ELISA). Results: Three distinct populations of circulating EPCs (CD34+CD133+CD31+) were identified, classified on their CD45 expression (negative: CD45−; intermediate: CD45int; high: CD45hi). CD45int and CD45hi EPCs significantly increased in ALC patients compared to controls (p-val = 0.006). CyTOF data showed that CD45hi EPCs were distinct from CD45− and CD45int EPCs, with higher expression of T cell and myeloid markers, including CD3, CD4, HLA-DR, and chemokine receptors, CCR2, CCR5, CCR7, and CX3CR1. Similar to circulating EPCs, percentage of CD45hiCD34+CD31+ EPCs in ex-vivo cultures from patients, were significantly higher compared to controls (p < 0.05). Cultured EPCs from patients also showed increased LDL uptake, lectin binding and release of TNF-alpha, RANTES, FGF-2, and VEGF. Conclusions: We report the first extensive characterization of circulating human EPCs with distinct EPC subtypes. Increase in CD45hi EPC subtype in ALC patients with enhanced functions, inflammatory cytokines and angiogenic mediators in patients suggests an inflammatory role for these cells in ALC. PMID:29872403

  1. Determination of the Point-Spread Function for the FERMI Large Area Telescope from On-Orbit Data and Limits on Pair Halos of Active Galactic Nuclei

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2013-02-15

    We present the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from ≈20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of γ rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broadermore » than the pre-launch PSF. We checked for dependence of the PSF on the class of γ-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. Finally, we found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347–121.« less

  2. The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development[OPEN

    PubMed Central

    Bartlett, Madelaine E.; Williams, Steven K.; Taylor, Zac; DeBlasio, Stacy; Hall, Darren H.; Schmidt, Robert J.; Jackson, David P.

    2015-01-01

    In monocots and eudicots, B class function specifies second and third whorl floral organ identity as described in the classic ABCE model. Grass B class APETALA3/DEFICIENS orthologs have been functionally characterized; here, we describe the positional cloning and characterization of a maize (Zea mays) PISTILLATA/GLOBOSA ortholog Zea mays mads16 (Zmm16)/sterile tassel silky ear1 (sts1). We show that, similar to many eudicots, all the maize B class proteins bind DNA as obligate heterodimers and positively regulate their own expression. However, sts1 mutants have novel phenotypes that provide insight into two derived aspects of maize flower development: carpel abortion and floral asymmetry. Specifically, we show that carpel abortion acts downstream of organ identity and requires the growth-promoting factor grassy tillers1 and that the maize B class genes are expressed asymmetrically, likely in response to zygomorphy of grass floral primordia. Further investigation reveals that floral phyllotactic patterning is also zygomorphic, suggesting significant mechanistic differences with the well-characterized models of floral polarity. These unexpected results show that despite extensive study of B class gene functions in diverse flowering plants, novel insights can be gained from careful investigation of homeotic mutants outside the core eudicot model species. PMID:26518212

  3. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  4. Complete Mie-Gruneisen Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-06-28

    The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gruneisen coefficient, {Lambda} = -V({partial_derivative}{sub e}P){sub V}, that is a function of only V. Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that ifmore » the domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then {Lambda} a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gruneisen EOS in which the pressure is linear in both the specific energy and the temperature. Such an EOS has previously been used to model liquid nitromethane.« less

  5. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    PubMed

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  6. G-quadruplex dynamics.

    PubMed

    Harkness, Robert W; Mittermaier, Anthony K

    2017-11-01

    G-quadruplexes (GQs) are four-stranded nucleic acid secondary structures formed by guanosine (G)-rich DNA and RNA sequences. It is becoming increasingly clear that cellular processes including gene expression and mRNA translation are regulated by GQs. GQ structures have been extensively characterized, however little attention to date has been paid to their conformational dynamics, despite the fact that many biological GQ sequences populate multiple structures of similar free energies, leading to an ensemble of exchanging conformations. The impact of these dynamics on biological function is currently not well understood. Recently, structural dynamics have been demonstrated to entropically stabilize GQ ensembles, potentially modulating gene expression. Transient, low-populated states in GQ ensembles may additionally regulate nucleic acid interactions and function. This review will underscore the interplay of GQ dynamics and biological function, focusing on several dynamic processes for biological GQs and the characterization of GQ dynamics by nuclear magnetic resonance (NMR) spectroscopy in conjunction with other biophysical techniques. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Track structure in biological models.

    PubMed

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  8. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection.

    PubMed

    Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.

  9. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection

    PubMed Central

    Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648

  10. Climate-driven changes in functional biogeography of Arctic marine fish communities

    PubMed Central

    Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V.; Fossheim, Maria; Aschan, Michaela M.

    2017-01-01

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. PMID:29087943

  11. Tidal extension and sea-level rise: recommendations for a research agenda

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory

    2018-01-01

    Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.

  12. The microbiome of uncontacted Amerindians.

    PubMed

    Clemente, Jose C; Pehrsson, Erica C; Blaser, Martin J; Sandhu, Kuldip; Gao, Zhan; Wang, Bin; Magris, Magda; Hidalgo, Glida; Contreras, Monica; Noya-Alarcón, Óscar; Lander, Orlana; McDonald, Jeremy; Cox, Mike; Walter, Jens; Oh, Phaik Lyn; Ruiz, Jean F; Rodriguez, Selena; Shen, Nan; Song, Se Jin; Metcalf, Jessica; Knight, Rob; Dantas, Gautam; Dominguez-Bello, M Gloria

    2015-04-03

    Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.

  13. The microbiome of uncontacted Amerindians

    PubMed Central

    Clemente, Jose C.; Pehrsson, Erica C.; Blaser, Martin J.; Sandhu, Kuldip; Gao, Zhan; Wang, Bin; Magris, Magda; Hidalgo, Glida; Contreras, Monica; Noya-Alarcón, Óscar; Lander, Orlana; McDonald, Jeremy; Cox, Mike; Walter, Jens; Oh, Phaik Lyn; Ruiz, Jean F.; Rodriguez, Selena; Shen, Nan; Song, Se Jin; Metcalf, Jessica; Knight, Rob; Dantas, Gautam; Dominguez-Bello, M. Gloria

    2015-01-01

    Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body. PMID:26229982

  14. Broadband Scattering from Sand and Sand/Mud Sediments with Extensive Environmental Characterization

    DTIC Science & Technology

    2017-01-30

    experiment , extensive envi- ronmental characterization was also performed to support data/model comparisons for both experimental efforts. The site...mechanisms, potentially addressing questions left unresolved from the previous sediment acoustics experiments , SAX99 and SAX04. This work was also to provide...environmental characterization to support the analysis of data collected during the Target and Reverberation Experiment in 2013 (TREX13) as well as

  15. The Brazilian Experience with Agroecological Extension: A Critical Analysis of Reform in a Pluralistic Extension System

    ERIC Educational Resources Information Center

    Diesel, Vivien; Miná Dias, Marcelo

    2016-01-01

    Purpose: To analyze the Brazilian experience in designing and implementing a recent extension policy reform based on agroecology, and reflect on its wider theoretical implications for extension reform literature. Design/methodology/approach: Using a critical public analysis we characterize the evolution of Brazilian federal extension policy…

  16. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Systematic Characterization of the Murine Mitochondrial Proteome Using Functionally Validated Cardiac Mitochondria

    PubMed Central

    Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei

    2009-01-01

    Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319

  18. Proximity effects in ferromagnet-superconductor structures

    NASA Astrophysics Data System (ADS)

    Halterman, Klaus Byron

    I present an extensive theoretical investigation of the proximity effects that occur in ferromagnet/superconductor systems. I use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. I obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing both the leakage of superconductivity into the magnet and to study spin splitting induced in the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wave vector mismatch, all of which turn out to have an important influence on the results. These comprehensive results should help characterize and analyze future data, and are shown to be in agreement with existing experiments.

  19. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes.

    PubMed

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel's fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.

  20. Eddy current characterization of magnetic treatment of nickel 200

    NASA Technical Reports Server (NTRS)

    Chern, E. J.

    1993-01-01

    Eddy current methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.

  1. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    PubMed

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  2. Biophysical characterization of α-synuclein and its controversial structure

    PubMed Central

    Alderson, T Reid; Markley, John L

    2013-01-01

    α-synuclein, a presynaptic protein of poorly defined function, constitutes the main component of Parkinson disease-associated Lewy bodies. Extensive biophysical investigations have provided evidence that isolated α-synuclein is an intrinsically disordered protein (IDP) in vitro. Subsequently serving as a model IDP in numerous studies, α-synuclein has aided in the development of many technologies used to characterize IDPs and arguably represents the most thoroughly analyzed IDP to date. Recent reports, however, have challenged the disordered nature of α-synuclein inside cells and have instead proposed a physiologically relevant helical tetramer. Despite α-synuclein’s rich biophysical history, a single coherent picture has not yet emerged concerning its in vivo structure, dynamics, and physiological role(s). We present herein a review of the biophysical discoveries, developments, and models pertinent to the characterization of α-synuclein’s structure and analysis of the native tetramer controversy. PMID:24634806

  3. RNA Characterization by Solid-State NMR Spectroscopy.

    PubMed

    Yang, Yufei; Wang, Shenlin

    2018-06-21

    The structures of RNAs, which play critical roles in various biological processes, provide important clues and insights into the biological functions of these molecules. However, RNA structure determination remains a challenging topic. In recent years, magic-angle-spinning solid-state NMR (MAS SSNMR) has emerged as an alternative technique for structural and dynamic characterization of RNA. MAS SSNMR has been successfully applied to provide atomic-level structural information about several RNA molecules and RNA-protein complexes. In this Minireview, we give an overview of recent progress in the field of MAS SSNMR based RNA structural characterization, and introduce sample preparation strategies and SSNMR spectroscopic techniques that have been incorporated to identify RNA structural elements. We also highlight a few impressive examples of RNAs that have been investigated extensively by SSNMR. Finally, we briefly discuss future technical trends in the use of MAS SSNMR to facilitate RNA structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Color characterization of coatings with diffraction pigments.

    PubMed

    Ferrero, A; Bernad, B; Campos, J; Perales, E; Velázquez, J L; Martínez-Verdú, F M

    2016-10-01

    Coatings with diffraction pigments present high iridescence, which needs to be characterized in order to describe their appearance. The spectral bidirectional reflectance distribution functions (BRDFs) of six coatings with SpectraFlair diffraction pigments were measured using the robot-arm-based goniospectrophotometer GEFE, designed and developed at CSIC. Principal component analysis has been applied to study the coatings of BRDF data. From data evaluation and based on theoretical considerations, we propose a relevant geometric factor to study the spectral reflectance and color gamut variation of coatings with diffraction pigments. At fixed values of this geometric factor, the spectral BRDF component due to diffraction is almost constant. Commercially available portable goniospectrophotometers, extensively used in several industries (automotive and others), should be provided with more aspecular measurement angles to characterize the complex reflectance of goniochromatic coatings based on diffraction pigments, but they would not require either more than one irradiation angle or additional out-of-plane geometries.

  5. Genome-wide characterization of mammalian promoters with distal enhancer functions.

    PubMed

    Dao, Lan T M; Galindo-Albarrán, Ariel O; Castro-Mondragon, Jaime A; Andrieu-Soler, Charlotte; Medina-Rivera, Alejandra; Souaid, Charbel; Charbonnier, Guillaume; Griffon, Aurélien; Vanhille, Laurent; Stephen, Tharshana; Alomairi, Jaafar; Martin, David; Torres, Magali; Fernandez, Nicolas; Soler, Eric; van Helden, Jacques; Puthier, Denis; Spicuglia, Salvatore

    2017-07-01

    Gene expression in mammals is precisely regulated by the combination of promoters and gene-distal regulatory regions, known as enhancers. Several studies have suggested that some promoters might have enhancer functions. However, the extent of this type of promoters and whether they actually function to regulate the expression of distal genes have remained elusive. Here, by exploiting a high-throughput enhancer reporter assay, we unravel a set of mammalian promoters displaying enhancer activity. These promoters have distinct genomic and epigenomic features and frequently interact with other gene promoters. Extensive CRISPR-Cas9 genomic manipulation demonstrated the involvement of these promoters in the cis regulation of expression of distal genes in their natural loci. Our results have important implications for the understanding of complex gene regulation in normal development and disease.

  6. Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.

    PubMed

    Pfister, R C; Papanicolaou, N; Yoder, I C

    1988-01-01

    Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.

  7. Characterization of the salivary microbiome in people with obesity

    PubMed Central

    Zhang, Qian

    2018-01-01

    Background The interactions between the gut microbiome and obesity have been extensively studied. Although the oral cavity is the gateway to the gut, and is extensively colonized with microbes, little is known about the oral microbiome in people with obesity. In the present study, we investigated the salivary microbiome in obese and normal weight healthy participants using metagenomic analysis. The subjects were categorized into two groups, obesity and normal weight, based on their BMIs. Methods We characterized the salivary microbiome of 33 adults with obesity and 29 normal weight controls using high-throughput sequencing of the V3–V4 region of the 16S rRNA gene (Illumina MiSeq). None of the selected participants had systemic, oral mucosal, or periodontal diseases. Results The salivary microbiome of the obesity group was distinct from that of the normal weight group. The salivary microbiome of periodontally healthy people with obesity had both significantly lower bacterial diversity and richness compared with the controls. The genus Prevotella, Granulicatella, Peptostreptococcus, Solobacterium, Catonella, and Mogibacterium were significantly more abundant in the obesity group; meanwhile the genus Haemophilus, Corynebacterium, Capnocytophaga, and Staphylococcus were less abundant in the obesity group. We also performed a functional analysis of the inferred metagenomes, and showed that the salivary community associated with obesity had a stronger signature of immune disease and a decreased functional signature related to environmental adaptation and Xenobiotics biodegradation compared with the normal weight controls. Discussion Our study demonstrates that the microbial diversity and structure of the salivary microbiome in people with obesity are significantly different from those of normal weight controls. These results suggested that changes in the structure and function of salivary microbiome in people with obesity might reflect their susceptibility to oral diseases. PMID:29576948

  8. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    PubMed

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors

    PubMed Central

    2013-01-01

    Background Rice blast caused by the fungus Magnaporthe oryzae is an important disease in virtually every rice growing region of the world, which leads to significant annual decreases of grain quality and yield. To prevent disease, resistance genes in rice have been cloned and introduced into susceptible cultivars. However, introduced resistance can often be broken within few years of release, often due to mutation of cognate avirulence genes in fungal field populations. Results To better understand the pattern of mutation of M. oryzae field isolates under natural selection forces, we used a next generation sequencing approach to analyze the genomes of two field isolates FJ81278 and HN19311, as well as the transcriptome of FJ81278. By comparing the de novo genome assemblies of the two isolates against the finished reference strain 70–15, we identified extensive polymorphisms including unique genes, SNPs (single nucleotide polymorphism) and indels, structural variations, copy number variations, and loci under strong positive selection. The 1.75 MB of isolate-specific genome content carrying 118 novel genes from FJ81278, and 0.83 MB from HN19311 were also identified. By analyzing secreted proteins carrying polymorphisms, in total 256 candidate virulence effectors were found and 6 were chosen for functional characterization. Conclusions We provide results from genome comparison analysis showing extensive genome variation, and generated a list of M. oryzae candidate virulence effectors for functional characterization. PMID:24341723

  10. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses.

    PubMed

    Macqueen, Daniel J; Wilcox, Alexander H

    2014-04-09

    The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate 'classical' subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression.

  11. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses

    PubMed Central

    Macqueen, Daniel J.; Wilcox, Alexander H.

    2014-01-01

    The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression. PMID:24718597

  12. Modal Decomposition of TTV: Inferring Planet Masses and Eccentricities

    NASA Astrophysics Data System (ADS)

    Linial, Itai; Gilbaum, Shmuel; Sari, Re’em

    2018-06-01

    Transit timing variations (TTVs) are a powerful tool for characterizing the properties of transiting exoplanets. However, inferring planet properties from the observed timing variations is a challenging task, which is usually addressed by extensive numerical searches. We propose a new, computationally inexpensive method for inverting TTV signals in a planetary system of two transiting planets. To the lowest order in planetary masses and eccentricities, TTVs can be expressed as a linear combination of three functions, which we call the TTV modes. These functions depend only on the planets’ linear ephemerides, and can be either constructed analytically, or by performing three orbital integrations of the three-body system. Given a TTV signal, the underlying physical parameters are found by decomposing the data as a sum of the TTV modes. We demonstrate the use of this method by inferring the mass and eccentricity of six Kepler planets that were previously characterized in other studies. Finally we discuss the implications and future prospects of our new method.

  13. WRAP-RIB antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Garcia, N. F.; Iwamoto, H.

    1985-01-01

    The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.

  14. Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.

    Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).

  15. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine

    PubMed Central

    Conde, João; Dias, Jorge T.; Grazú, Valeria; Moros, Maria; Baptista, Pedro V.; de la Fuente, Jesus M.

    2014-01-01

    In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles. PMID:25077142

  16. The system N transporter SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors.

    PubMed

    Hamdani, El Hassan; Gudbrandsen, Marius; Bjørkmo, Mona; Chaudhry, Farrukh Abbas

    2012-11-01

    Activation of NMDA receptor requires two co-agonists, glutamate and glycine. Despite its intrinsic role in brain functions molecular mechanisms involved in glutamate replenishment and identification of the origin of glycine have eluded characterization. We have performed direct measurements of glycine flux by SN2 (Slc38a5; also known as SNAT5), executed extensive electrophysiological characterization as well as implemented ratiometric analyses to show that SN2 transport resembles SN1 in mechanism but differ in functional implications. We report that rat SN2 mediates electroneutral and bidirectional transport of glutamine and glycine at perisynaptic astroglial membranes. Sophisticated coupled and uncoupled movements of H(+) differentially associate with glutamine and glycine transport by SN2 and regulate pH(i) and the release mode of the transporter. Consequently, SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors. Copyright © 2012 Wiley Periodicals, Inc.

  17. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance.

    PubMed

    Chen, Jingjing; Zheng, Jinkai; McClements, David Julian; Xiao, Hang

    2014-09-01

    The aim of this study was to design a colloidal delivery system to encapsulate poor water-soluble bioactive flavonoid tangeretin so that it could be utilized in various food products as functional ingredient. Tangeretin-loaded protein nanoparticles were produced by mixing an organic phase containing zein and tangeretin with an aqueous phase containing β-lactoglobulin and then converted into powder by freeze-drying. This powder formed a colloidal suspension when dispersed in water that is relatively stable to particle aggregation and sedimentation. The influence of temperature, ionic strength, and pH on the stability of the protein nanoparticles was tested. Extensive particle aggregation occurred at high ionic strength (>100mM) and intermediate pH (4.5-5.5) due to reduced electrostatic repulsion. Extensive aggregation also occurred at temperatures exceeding 60 °C, which was presumably due to increased hydrophobic attraction. Overall, this study shows that protein-based nanoparticles can be used to encapsulate bioactive tangeretin so that it can be readily dispersed in compatible food products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation.

    PubMed

    Naro, Chiara; Jolly, Ariane; Di Persio, Sara; Bielli, Pamela; Setterblad, Niclas; Alberdi, Antonio J; Vicini, Elena; Geremia, Raffaele; De la Grange, Pierre; Sette, Claudio

    2017-04-10

    Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Molecular Characterization of Mosquitocidal Toxin (Surface Layer Protein, SLP) from Bacillus cereus VCRC B540.

    PubMed

    Mani, Chinnasamy; Selvakumari, Jeyaperumal; Han, YeonSoo; Jo, YongHun; Thirugnanasambantham, Krishnaraj; Sundarapandian, Somaiah; Poopathi, Subbiah

    2018-04-01

    A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.

  20. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    PubMed

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  1. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)

    PubMed Central

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  2. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    PubMed

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  3. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  4. Media effects in modulating the conformational equilibrium of a model compound for tumor necrosis factor converting enzyme inhibition

    NASA Astrophysics Data System (ADS)

    Banchelli, Martina; Guardiani, Carlo; Sandberg, Robert B.; Menichetti, Stefano; Procacci, Piero; Caminati, Gabriella

    2015-07-01

    Small-molecule inhibitors of Tumor Necrosis Factor α Converting Enzyme (TACE) are a promising therapeutic tool for Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. Here we report on an extensive chemical-physical analysis of the media effects in modulating the conformational landscape of MBET306, the common scaffold and a synthetic precursor of a family of recently discovered tartrate-based TACE inhibitors. The structural features of this molecule with potential pharmaceutical applications have been disclosed by interpreting extensive photophysical measurements in various solvents with the aid of enhanced sampling molecular dynamics simulations and time dependent density functional calculations. Using a combination of experimental and computational techniques, the paper provides a general protocol for studying the structure in solution of molecular systems characterized by the existence of conformational metastable states.

  5. Preliminary evidence of altered biomechanics in adolescents with Juvenile Fibromyalgia

    PubMed Central

    Sil, Soumitri; Thomas, Staci; DiCesare, Christopher; Strotman, Daniel; Ting, Tracy V; Myer, Gregory; Kashikar-Zuck, Susmita

    2014-01-01

    Objective Juvenile Fibromyalgia (JFM) is characterized by chronic musculoskeletal pain and marked reduction in physical activity. Despite recommendations for exercise to manage JFM pain, exercise adherence is poor. Due to pain and activity avoidance, adolescents with JFM are at risk for altered joint mechanics that may make them susceptible to increased pain and reduced tolerance for exercise. The primary aim of this study was to assess functional deficits in patients with JFM compared to healthy controls using objective biomechanical assessment. Methods Female adolescent patients with JFM (n=17) and healthy controls (n=14) completed biomechanical assessments including gait analysis and tests of lower extremity strength (isokinetic knee extension/flexion, hip abduction) and functional performance (Drop Vertical Jump) along with self-report measures of disability (Functional Disability Inventory), pain intensity, depressive symptoms (Children’s Depression Inventory), and fear of movement (Tampa Scale of Kinesiophobia). Results Patients with JFM demonstrated mild deficiencies in walking gait and functional performance (p’s <. 05), significantly lower left knee extension and flexion strength (19–26% deficit) and bilateral hip abduction strength (33–37%) compared to healthy controls (p’s < .008). Patients with JFM reported significantly higher functional disability, pain intensity, depressive symptoms, and fear of movement relative to controls (p’s < 0.01). Conclusions This study showed that adolescents with JFM exhibited objective alterations in biomechanics, and self-reported fear of movement which may reinforce their activity avoidance. Interventions for JFM should include a focus on correcting functional deficits and instilling greater confidence in adolescents with JFM to engage in exercise to improve functional outcomes. PMID:25156509

  6. Function and morphology correlates of rectal nerve mechanoreceptors innervating the guinea pig internal anal sphincter.

    PubMed

    Lynn, P A; Brookes, S J H

    2011-01-01

    Mechanoreceptors to the internal anal sphincter (IAS) contribute to continence and normal defecation, yet relatively little is known about their function or morphology. We investigated the function and structure of mechanoreceptors to the guinea pig IAS. Extracellular recordings from rectal nerve branches to the IAS in vitro, combined with anterograde labeling of recorded nerve trunks, were used to characterize extrinsic afferent nerve endings activated by circumferential distension. Slowly adapting, stretch-sensitive afferents were recorded in rectal nerves to the IAS. Ten of 11 were silent under basal conditions and responded to circumferential stretch in a saturating linear manner. Rectal nerve afferents responded to compression with von Frey hairs with low thresholds (0.3-0.5 mN) and 3.4 ± 0.5 discrete, elongated mechanosensitive fields of innervation aligned parallel to circular muscle bundles (length = 62 ± 16 mm, n = 10). Anterogradely labeled rectal nerve axons typically passed through sparse irregular myenteric ganglia adjacent to the IAS, before ending in extensive varicose arrays within the circular muscle and, to a lesser extent, the longitudinal muscle overlying the IAS. Few (8%) IAS myenteric ganglia contained intraganglionic laminar endings. In eight preparations, mechanotransduction sites were mapped in combination with successful anterograde fills. Mechanotransduction sites were strongly associated with extensive fine varicose arrays within the circular muscle (P < 0.05), and not with any other neural structures. Mechanotransduction sites for low-threshold, slowly adapting mechanoreceptors innervating the IAS are likely to correspond to extensive fine varicose arrays within the circular muscle. © 2010 Blackwell Publishing Ltd.

  7. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    PubMed

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  8. The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development.

    PubMed

    Bartlett, Madelaine E; Williams, Steven K; Taylor, Zac; DeBlasio, Stacy; Goldshmidt, Alexander; Hall, Darren H; Schmidt, Robert J; Jackson, David P; Whipple, Clinton J

    2015-11-01

    In monocots and eudicots, B class function specifies second and third whorl floral organ identity as described in the classic ABCE model. Grass B class APETALA3/DEFICIENS orthologs have been functionally characterized; here, we describe the positional cloning and characterization of a maize (Zea mays) PISTILLATA/GLOBOSA ortholog Zea mays mads16 (Zmm16)/sterile tassel silky ear1 (sts1). We show that, similar to many eudicots, all the maize B class proteins bind DNA as obligate heterodimers and positively regulate their own expression. However, sts1 mutants have novel phenotypes that provide insight into two derived aspects of maize flower development: carpel abortion and floral asymmetry. Specifically, we show that carpel abortion acts downstream of organ identity and requires the growth-promoting factor grassy tillers1 and that the maize B class genes are expressed asymmetrically, likely in response to zygomorphy of grass floral primordia. Further investigation reveals that floral phyllotactic patterning is also zygomorphic, suggesting significant mechanistic differences with the well-characterized models of floral polarity. These unexpected results show that despite extensive study of B class gene functions in diverse flowering plants, novel insights can be gained from careful investigation of homeotic mutants outside the core eudicot model species. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    PubMed

    Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef

    2014-01-01

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  10. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    DOE PAGES

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; ...

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function.more » We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.« less

  11. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach.

    PubMed

    Petruzziello, Filomena; Fouillen, Laetitia; Wadensten, Henrik; Kretz, Robert; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe

    2012-02-03

    Neuropeptidomics is used to characterize endogenous peptides in the brain of tree shrews (Tupaia belangeri). Tree shrews are small animals similar to rodents in size but close relatives of primates, and are excellent models for brain research. Currently, tree shrews have no complete proteome information available on which direct database search can be allowed for neuropeptide identification. To increase the capability in the identification of neuropeptides in tree shrews, we developed an integrated mass spectrometry (MS)-based approach that combines methods including data-dependent, directed, and targeted liquid chromatography (LC)-Fourier transform (FT)-tandem MS (MS/MS) analysis, database construction, de novo sequencing, precursor protein search, and homology analysis. Using this integrated approach, we identified 107 endogenous peptides that have sequences identical or similar to those from other mammalian species. High accuracy MS and tandem MS information, with BLAST analysis and chromatographic characteristics were used to confirm the sequences of all the identified peptides. Interestingly, further sequence homology analysis demonstrated that tree shrew peptides have a significantly higher degree of homology to equivalent sequences in humans than those in mice or rats, consistent with the close phylogenetic relationship between tree shrews and primates. Our results provide the first extensive characterization of the peptidome in tree shrews, which now permits characterization of their function in nervous and endocrine system. As the approach developed fully used the conservative properties of neuropeptides in evolution and the advantage of high accuracy MS, it can be portable for identification of neuropeptides in other species for which the fully sequenced genomes or proteomes are not available.

  12. Process Extension from Embryonic Stem Cell-Derived Motor Neurons through Synthetic Extracellular Matrix Mimics

    NASA Astrophysics Data System (ADS)

    McKinnon, Daniel Devaud

    This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.

  13. Modulation of hemoglobin dynamics by an allosteric effector

    DOE PAGES

    Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; ...

    2016-12-15

    Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb andmore » HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo (NSE) measurements accompanied by wideangle x-ray scattering (WAXS) to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. Furthermore, these observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.« less

  14. Fungal hemolysins

    PubMed Central

    Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented. PMID:22769586

  15. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    PubMed

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  16. Complete Mie-Gruneisen Equation of State (update)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-03-14

    The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gr¨uneisen coefficient, = -V (@eP)V , that is a function of only V . Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled-temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that if themore » domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gr¨uneisen EOS in which the pressure is linear in both the specific energy and the temperature. This corresponds to the limiting case of two temperature scales with one of the scales in the high temperature limit. Such an EOS has previously been used to model liquid nitromethane.« less

  17. Polysaccharide production by lactic acid bacteria: from genes to industrial applications.

    PubMed

    Zeidan, Ahmad A; Poulsen, Vera Kuzina; Janzen, Thomas; Buldo, Patrizia; Derkx, Patrick M F; Øregaard, Gunnar; Neves, Ana Rute

    2017-08-01

    The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure-function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure-function-application relationships is essential to achieve this ambitious goal. © FEMS 2017.

  18. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems

    PubMed Central

    Ruiz-Mirazo, Kepa; Briones, Carlos

    2017-01-01

    In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided. PMID:28446711

  19. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems.

    PubMed

    Ruiz-Mirazo, Kepa; Briones, Carlos; de la Escosura, Andrés

    2017-04-01

    In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided. © 2017 The Authors.

  20. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.

    PubMed

    Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander

    2016-04-13

    Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

  1. History of cardiac anatomy: a comprehensive review from the Egyptians to today.

    PubMed

    Loukas, Marios; Youssef, Pamela; Gielecki, Jerzy; Walocha, Jerzy; Natsis, Kostantinos; Tubbs, R Shane

    2016-04-01

    The nature, function, and anatomy of the heart have been extensively studied since 3500 B.C. Greek and Egyptian science developed a basic understanding of the heart, although this was primarily related to religious beliefs. During the Hippocratic era, Hippocrates and his colleagues developed a more scientific and less religious understanding of the cardiovascular system. The post-Hippocratic era was characterized by more advanced descriptions of the location, structure, and function of the heart. The Alexandrian, Roman, Medieval Islamic, and European eras included turning points in the history of cardiac anatomy. Subsequently, after the structure and function of the heart were established, its connection with the lungs was investigated. Description of the pulmonary circulation was followed by the discovery of the conductive system and innervation of the heart. © 2016 Wiley Periodicals, Inc.

  2. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  3. Brain State Differentiation and Behavioral Inflexibility in Autism†

    PubMed Central

    Uddin, Lucina Q.; Supekar, Kaustubh; Lynch, Charles J.; Cheng, Katherine M.; Odriozola, Paola; Barth, Maria E.; Phillips, Jennifer; Feinstein, Carl; Abrams, Daniel A.; Menon, Vinod

    2015-01-01

    Autism spectrum disorders (ASDs) are characterized by social impairments alongside cognitive and behavioral inflexibility. While social deficits in ASDs have extensively been characterized, the neurobiological basis of inflexibility and its relation to core clinical symptoms of the disorder are unknown. We acquired functional neuroimaging data from 2 cohorts, each consisting of 17 children with ASDs and 17 age- and IQ-matched typically developing (TD) children, during stimulus-evoked brain states involving performance of social attention and numerical problem solving tasks, as well as during intrinsic, resting brain states. Effective connectivity between key nodes of the salience network, default mode network, and central executive network was used to obtain indices of functional organization across evoked and intrinsic brain states. In both cohorts examined, a machine learning algorithm was able to discriminate intrinsic (resting) and evoked (task) functional brain network configurations more accurately in TD children than in children with ASD. Brain state discriminability was related to severity of restricted and repetitive behaviors, indicating that weak modulation of brain states may contribute to behavioral inflexibility in ASD. These findings provide novel evidence for a potential link between neurophysiological inflexibility and core symptoms of this complex neurodevelopmental disorder. PMID:25073720

  4. Pathological changes in the subsynovial connective tissue increase with self-reported carpal tunnel syndrome symptoms.

    PubMed

    Tat, Jimmy; Wilson, Katherine E; Keir, Peter J

    2015-05-01

    Fibrosis and thickening of the subysnovial connective tissue are the most common pathological findings in carpal tunnel syndrome. The relationship between subsynovial connective tissue characteristics and self-reported carpal tunnel syndrome symptoms was assessed. Symptoms were characterized using the Boston Carpal Tunnel Questionnaire and Katz hand diagram in twenty-two participants (11 with symptoms, 11 with no symptoms). Using ultrasound, the thickness of the subsynovial connective tissue was measured using a thickness ratio (subsynovial thickness/tendon thickness) and gliding function was assessed using a shear strain index ((Displacement(tendon)-Displacement(subsynovial))/Displacement(tendon)x 100). For gliding function, participants performed 10 repeated flexion-extension cycles of the middle finger at a rate of one cycle per second. Participants with symptoms had a 38.5% greater thickness ratio and 39.2% greater shear strain index compared to participants without symptoms (p<0.05). Ultrasound detected differences the SSCT in symptomatic group that was characterized by low self-reported symptom severity scores. This study found ultrasound useful for measuring structural and functional changes in the SSCT that could provide insight in the early pathophysiology associated with carpal tunnel syndrome symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion.

    PubMed

    Fiordalisi, James J; Holly, Stephen P; Johnson, Ronald L; Parise, Leslie V; Cox, Adrienne D

    2002-03-29

    Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first extensive characterization of this functionally distinct class of DN Ras inhibitor proteins.

  6. Starch Turnover and Metabolism during Flower and Early Embryo Development1[CC-BY

    PubMed Central

    Pazmino, Diana; Gagliardini, Valeria

    2016-01-01

    The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed. PMID:27794100

  7. RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view.

    PubMed

    Jiménez-Zurdo, José I; Robledo, Marta

    2017-12-02

    Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide global functional and mechanistic insights into complex sRNA regulatory networks. The legume endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in which riboregulation is expected to play important adaptive functions. Here, we discuss current knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of single- and double-stranded RNA molecules.

  8. Plasmablasts and plasma cells: reconsidering teleost immune system organization.

    PubMed

    Ye, Jianmin; Kaattari, Ilsa; Kaattari, Stephen

    2011-12-01

    Comparative immunologists have expended extensive efforts in the characterization of early fish B cell development; however, analysis of the post-antigen induction stages of antibody secreting cell (ASC) differentiation has been limited. In contrast, work with murine ASCs has resolved the physically and functionally distinct cells known as plasmablasts, the short-lived plasma cells and long-lived plasma cells. Teleost ASCs are now known to also possess comparable subpopulations, which can greatly differ in such basic functions as lifespan, antigen sensitivity, antibody secretion rate, differentiative potential, and distribution within the body. Understanding the mechanisms by which these subpopulations are produced and distributed is essential for both basic understanding in comparative immunology and practical vaccine engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Expression, purification and functional characterization of human equilibrative nucleoside transporter subtype-1 (hENT1) protein from Sf9 insect cells.

    PubMed

    Rehan, Shahid; Jaakola, Veli-Pekka

    2015-10-01

    Human equilibrative nucleoside transporter-1 (hENT1) is the major plasma membrane transporter involved in transportation of natural nucleosides as well as nucleoside analog drugs, used in anti-cancer and anti-viral therapies. Despite extensive biochemical and pharmacological studies, little is known about the structure-function relationship of this protein. The major obstacles to purification include a low endogenous expression level, the lack of an efficient expression and purification protocol, and the hydrophobic nature of the protein. Here, we report protein expression, purification and functional characterization of hENT1 from Sf9 insect cells. hENT1 expressed by Sf9 cells is functionally active as demonstrated by saturation binding with a Kd of 1.2±0.2nM and Bmax of 110±5pmol/mg for [(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR). We also demonstrate purification of hENT1 using FLAG antibody affinity resin in lauryl maltose neopentyl glycol detergent with a Kd of 4.3±0.7nM. The yield of hENT1 from Sf9 cells was ∼0.5mg active transporter per liter of culture. The purified protein is functionally active, stable, homogenous and appropriate for further biophysical and structural studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Knee extension range of motion and self-report physical function in total knee arthroplasty: mediating effects of knee extensor strength

    PubMed Central

    2013-01-01

    Background Knee extensor strength and knee extension range of motion (ROM) are important predictors of physical function in patients with a total knee arthroplasty (TKA). However, the relationship between the two knee measures remains unclear. The purpose of this study was to examine whether changes in knee extensor strength mediate the association between changes in knee extension ROM and self-report physical function. Methods Data from 441 patients with a TKA were collected preoperatively and 6 months postoperatively. Self-report measure of physical function was assessed by the Short Form 36 (SF-36) questionnaire. Knee extensor strength was measured by handheld dynamometry and knee extension ROM by goniometry. A bootstrapped cross product of coefficients approach was used to evaluate mediation effects. Results Mediation analyses, adjusted for clinicodemographic measures, revealed that the association between changes in knee extension ROM and SF-36 physical function was mediated by changes in knee extensor strength. Conclusions In patients with TKA, knee extensor strength mediated the influence of knee extension ROM on physical function. These results suggest that interventions to improve the range of knee extension may be useful in improving knee extensor performance. PMID:23332039

  11. The UK10K project identifies rare variants in health and disease.

    PubMed

    Walter, Klaudia; Min, Josine L; Huang, Jie; Crooks, Lucy; Memari, Yasin; McCarthy, Shane; Perry, John R B; Xu, ChangJiang; Futema, Marta; Lawson, Daniel; Iotchkova, Valentina; Schiffels, Stephan; Hendricks, Audrey E; Danecek, Petr; Li, Rui; Floyd, James; Wain, Louise V; Barroso, Inês; Humphries, Steve E; Hurles, Matthew E; Zeggini, Eleftheria; Barrett, Jeffrey C; Plagnol, Vincent; Richards, J Brent; Greenwood, Celia M T; Timpson, Nicholas J; Durbin, Richard; Soranzo, Nicole

    2015-10-01

    The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.

  12. Vertebrate homologues of Frodo are dynamically expressed during embryonic development in tissues undergoing extensive morphogenetic movements.

    PubMed

    Hunter, Nina L; Hikasa, Hiroki; Dymecki, Susan M; Sokol, Sergei Y

    2006-01-01

    Frodo has been identified as a protein interacting with Dishevelled, an essential mediator of the Wnt signaling pathway, critical for the determination of cell fate and polarity in embryonic development. In this study, we use specific gene probes to characterize stage- and tissue-specific expression patterns of the mouse Frodo homologue and compare them with Frodo expression patterns in Xenopus embryos. In situ hybridization analysis of mouse Frodo transcripts demonstrates that, similar to Xenopus Frodo, mouse Frodo is expressed in primitive streak mesoderm, neuroectoderm, neural crest, presomitic mesoderm, and somites. In many cases, Frodo expression is confined to tissues undergoing extensive morphogenesis, suggesting that Frodo may be involved in the regulation of cell shape and motility. Highly conserved dynamic expression patterns of Frodo homologues indicate a similar function for these proteins in different vertebrates. 2005 Wiley-Liss, Inc.

  13. CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus

    PubMed Central

    Manica, Andrea; Schleper, Christa

    2013-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-mediated virus defense based on small RNAs is a hallmark of archaea and also found in many bacteria. Archaeal genomes and, in particular, organisms of the extremely thermoacidophilic genus Sulfolobus, carry extensive CRISPR loci each with dozens of sequence signatures (spacers) able to mediate targeting and degradation of complementary invading nucleic acids. The diversity of CRISPR systems and their associated protein complexes indicates an extensive functional breadth and versatility of this adaptive immune system. Sulfolobus solfataricus and S. islandicus represent two of the best characterized genetic model organisms in the archaea not only with respect to the CRISPR system. Here we address and discuss in a broader context particularly recent progress made in understanding spacer recruitment from foreign DNA, production of small RNAs, in vitro activity of CRISPR-associated protein complexes and attack of viruses and plasmids in in vivo test systems. PMID:23535277

  14. Functional aerophagia in children: a frequent, atypical disorder.

    PubMed

    Morabito, Giuliana; Romeo, Claudia; Romano, Claudio

    2014-01-01

    Aerophagia is a functional gastrointestinal disorder characterized by repetitive air swallowing, abdominal distension, belching and flatulence. Pathologic aerophagia is a condition caused by the swallowing of excessive volumes of air with associated various gastrointestinal symptoms, such as burping, abdominal cramps, flatulence and a reduced appetite. It is a clinical entity that can simulate pediatric gastrointestinal motility disorders, such as gastroparesis, megacolon and intestinal pseudo-obstruction, and presents more frequently in children with mental retardation. Early recognition and diagnosis of functional aerophagia or pathologic aerophagia is required to avoid unnecessary, expensive diagnostic investigations or serious clinical complications. Functional aerophagia is frequent in the adult population, but rarely discussed in the pediatric literature. We present two pediatric clinical cases with a history of functional constipation in whom gaseous abdominal distension was the most important symptom. Mechanical intestinal obstruction, chronic intestinal pseudo-obstruction, malabsorption and congenital aganglionic megacolon were ruled out. Extensive gaseous abdominal distension was due to aerophagia, and treatment consisted of parents' reassurance and psychological counseling.

  15. Functional Aerophagia in Children: A Frequent, Atypical Disorder

    PubMed Central

    Morabito, Giuliana; Romeo, Claudia; Romano, Claudio

    2014-01-01

    Aerophagia is a functional gastrointestinal disorder characterized by repetitive air swallowing, abdominal distension, belching and flatulence. Pathologic aerophagia is a condition caused by the swallowing of excessive volumes of air with associated various gastrointestinal symptoms, such as burping, abdominal cramps, flatulence and a reduced appetite. It is a clinical entity that can simulate pediatric gastrointestinal motility disorders, such as gastroparesis, megacolon and intestinal pseudo-obstruction, and presents more frequently in children with mental retardation. Early recognition and diagnosis of functional aerophagia or pathologic aerophagia is required to avoid unnecessary, expensive diagnostic investigations or serious clinical complications. Functional aerophagia is frequent in the adult population, but rarely discussed in the pediatric literature. We present two pediatric clinical cases with a history of functional constipation in whom gaseous abdominal distension was the most important symptom. Mechanical intestinal obstruction, chronic intestinal pseudo-obstruction, malabsorption and congenital aganglionic megacolon were ruled out. Extensive gaseous abdominal distension was due to aerophagia, and treatment consisted of parents’ reassurance and psychological counseling. PMID:24847194

  16. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    PubMed

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpe, T; Marchessoux, C; Rostang, J

    Purpose: Use of color images in medical imaging has increased significantly the last few years. As of today there is no agreed standard on how color information needs to be visualized on medical color displays, resulting into large variability of color appearance and it making consistency and quality assurance a challenge. This paper presents a proposal for an extension of DICOM GSDF towards color. Methods: Visualization needs for several color modalities (multimodality imaging, nuclear medicine, digital pathology, quantitative imaging applications…) have been studied. On this basis a proposal was made for desired color behavior of color medical display systems andmore » its behavior and effect on color medical images was analyzed. Results: Several medical color modalities could benefit from perceptually linear color visualization for similar reasons as why GSDF was put in place for greyscale medical images. An extension of the GSDF (Greyscale Standard Display Function) to color is proposed: CSDF (color standard display function). CSDF is based on deltaE2000 and offers a perceptually linear color behavior. CSDF uses GSDF as its neutral grey behavior. A comparison between sRGB/GSDF and CSDF confirms that CSDF significantly improves perceptual color linearity. Furthermore, results also indicate that because of the improved perceptual linearity, CSDF has the potential to increase perceived contrast of clinically relevant color features. Conclusion: There is a need for an extension of GSDF towards color visualization in order to guarantee consistency and quality. A first proposal (CSDF) for such extension has been made. Behavior of a CSDF calibrated display has been characterized and compared with sRGB/GSDF behavior. First results indicate that CSDF could have a positive influence on perceived contrast of clinically relevant color features and could offer benefits for quantitative imaging applications. Authors are employees of Barco Healthcare.« less

  18. Preliminary evidence of altered biomechanics in adolescents with juvenile fibromyalgia.

    PubMed

    Sil, Soumitri; Thomas, Staci; DiCesare, Christopher; Strotman, Daniel; Ting, Tracy V; Myer, Gregory; Kashikar-Zuck, Susmita

    2015-01-01

    Juvenile fibromyalgia (FM) is characterized by chronic musculoskeletal pain and marked reduction in physical activity. Despite recommendations for exercise to manage juvenile FM pain, exercise adherence is poor. Because of pain and activity avoidance, adolescents with juvenile FM are at risk for altered joint mechanics that may make them susceptible to increased pain and reduced tolerance for exercise. The primary aim of this study was to assess functional deficits in patients with juvenile FM compared to healthy controls using objective biomechanical assessment. Female adolescent patients with juvenile FM (n = 17) and healthy controls (n = 14) completed biomechanical assessments, including gait analysis and tests of lower extremity strength (isokinetic knee extension/flexion and hip abduction) and functional performance (drop vertical jump test) along with self-reported measures of disability (Functional Disability Inventory), pain intensity, depressive symptoms (Children's Depression Inventory), and fear of movement (Tampa Scale of Kinesiophobia). Patients with juvenile FM demonstrated mild deficiencies in walking gait and functional performance (P < 0.05 for both) and significantly lower left knee extension and flexion strength (18-22% deficit) and bilateral hip abduction strength (34-38%) compared with healthy controls (P < 0.008 for all). Patients with juvenile FM reported significantly higher functional disability, pain intensity, depressive symptoms, and fear of movement relative to controls (P < 0.01 for all). This study showed that adolescents with juvenile FM exhibited objective alterations in biomechanics and self-reported fear of movement that may have reinforced their activity avoidance. Interventions for juvenile FM should include a focus on correcting functional deficits and instilling greater confidence in adolescents with juvenile FM to engage in exercise to improve functional outcomes. Copyright © 2015 by the American College of Rheumatology.

  19. New method to incorporate Type B uncertainty into least-squares procedures in radionuclide metrology.

    PubMed

    Han, Jubong; Lee, K B; Lee, Jong-Man; Park, Tae Soon; Oh, J S; Oh, Pil-Jei

    2016-03-01

    We discuss a new method to incorporate Type B uncertainty into least-squares procedures. The new method is based on an extension of the likelihood function from which a conventional least-squares function is derived. The extended likelihood function is the product of the original likelihood function with additional PDFs (Probability Density Functions) that characterize the Type B uncertainties. The PDFs are considered to describe one's incomplete knowledge on correction factors being called nuisance parameters. We use the extended likelihood function to make point and interval estimations of parameters in the basically same way as the least-squares function used in the conventional least-squares method is derived. Since the nuisance parameters are not of interest and should be prevented from appearing in the final result, we eliminate such nuisance parameters by using the profile likelihood. As an example, we present a case study for a linear regression analysis with a common component of Type B uncertainty. In this example we compare the analysis results obtained from using our procedure with those from conventional methods. Copyright © 2015. Published by Elsevier Ltd.

  20. Relationship Between Mitochondrial Electron Transport Chain Dysfunction, Development, and Life Extension in Caenorhabditis elegans

    PubMed Central

    Johnson, Thomas E

    2007-01-01

    Prior studies have shown that disruption of mitochondrial electron transport chain (ETC) function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi) dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1). We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction–dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle–dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control plays a key role in specifying longevity of mitochondrial mutants. PMID:17914900

  1. Involvement of the C-terminal extension of the alpha polypeptide and of the PucC protein in LH2 complex biosynthesis in Rubrivivax gelatinosus.

    PubMed

    Steunou, Anne-Soisig; Ouchane, Soufian; Reiss-Husson, Françoise; Astier, Chantal

    2004-05-01

    The facultative phototrophic nonsulfur bacterium Rubrivivax gelatinosus exhibits several differences from other species of purple bacteria in the organization of its photosynthetic genes. In particular, the puc operon contains only the pucB and pucA genes encoding the beta and alpha polypeptides of the light-harvesting 2 (LH2) complex. Downstream of the pucBA operon is the pucC gene in the opposite transcriptional orientation. The transcription of pucBA and pucC has been studied. No pucC transcript was detected either by Northern blotting or by reverse transcription-PCR analysis. The initiation site of pucBA transcription was determined by primer extension, and Northern blot analysis revealed the presence of two transcripts of 0.8 and 0.65 kb. The half-lives of both transcripts are longer in cells grown semiaerobically than in photosynthetically grown cells, and the small transcript is the less stable. It was reported that the alpha polypeptide, encoded by the pucA gene, presents a C-terminal extension which is not essential for LH2 function in vitro. The biological role of this alanine- and proline-rich C-terminal extension in vivo has been investigated. Two mutants with C-terminal deletions of 13 and 18 residues have been constructed. Both present the two pucBA transcripts, while their phenotypes are, respectively, LH2+ and LH2-, suggesting that a minimal length of the C-terminal extension is required for LH2 biogenesis. Another important factor involved in the LH2 biogenesis is the PucC protein. To gain insight into the function of this protein in R. gelatinosus, we constructed and characterized a PucC mutant. The mutant is devoid of LH2 complex under semiaerobiosis but still produces a small amount of these antennae under photosynthetic growth conditions. This conditional phenotype suggests the involvement of another factor in LH2 biogenesis.

  2. Locomotor Hand Postures, Carpal Kinematics During Wrist Extension, and Associated Morphology in Anthropoid Primates.

    PubMed

    Orr, Caley M

    2017-02-01

    The biomechanics of wrist extension (or dorsiflexion) are important for understanding functional adaptation of the primate hand because extension mobility varies with habitual locomotor hand posture and facilitates certain manipulative tasks. Here, intercarpal kinematics are employed to investigate mechanisms underlying wrist extension in a sample of anthropoids representing various arboreal and terrestrial locomotor modes. Carpal kinematics are studied using computed-tomography of cadaveric forelimbs, and these data are combined with a morphometric analysis of biomechanically-informative anatomical features. The results indicate that stiff-wristed knuckle-walking chimpanzees and digitigrade baboons are characterized by low ranges of motion (ROMs) at the radiocarpal and midcarpal complexes. Palmigrade-capable monkeys have high extension ROMs at both the radiocarpus and midcarpus, while palmigrade-capable orangutans achieve wrist extension through moderate radiocarpal ROMs and high midcarpal ROMs. Morphometrics demonstrate that a more projecting dorsal ridge of the distal radius corresponds with low-to-moderate radioscaphoid mobility in the apes, but that baboons resemble palmigrade-capable monkeys in this metric. Thus, the dorsal ridge of the radius alone is not a good indicator of wrist mobility and hand posture. However, the extent of the lunate's articular arc on the dorsum of the capitate head is correlated with midcarpal mobility across taxa. These findings suggest that although a precise relationship between wrist extension ROM and morphology is difficult to define, the presence of a pronounced dorsal ridge combined with an abbreviated dorsal capitate articular arc reflects limited overall dorsiflexion with attendant constraints on the adoption of palmigrade hand postures. Anat Rec, 300:382-401, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Bicarbonate of soda paint stripping process validation and material characterization

    NASA Technical Reports Server (NTRS)

    Haas, Michael N.

    1995-01-01

    The Aircraft Production Division at San Antonio Air Logistics Center has conducted extensive investigation into the replacement of hazardous chemicals in aircraft component cleaning, degreasing, and depainting. One of the most viable solutions is process substitution utilizing abrasive techniques. SA-ALC has incorporated the use of Bicarbonate of Soda Blasting as one such substitution. Previous utilization of methylene chloride based chemical strippers and carbon removal agents has been replaced by a walk-in blast booth in which we remove carbon from engine nozzles and various gas turbine engine parts, depaint cowlings, and perform various other functions on a variety of parts. Prior to implementation of this new process, validation of the process was performed, and materials and waste stream characterization studies were conducted. These characterization studies examined the effects of the blasting process on the integrity of the thin-skinned aluminum substrates, the effects of the process on both air emissions and effluent disposal, and the effects on the personnel exposed to the process.

  4. Biological pathways and genetic mechanisms involved in social functioning.

    PubMed

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  5. Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis.

    PubMed

    Casaburi, Giorgio; Duscher, Alexandrea A; Reid, R Pamela; Foster, Jamie S

    2016-05-01

    Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, 'who' is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis

    PubMed Central

    Casaburi, Giorgio; Duscher, Alexandrea A.; Reid, R. Pamela; Foster, Jamie S.

    2018-01-01

    Summary Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, ‘who’ is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites. PMID:26471001

  7. CR extension from hypersurfaces of higher type

    NASA Astrophysics Data System (ADS)

    Baracco, Luca

    2007-07-01

    We prove extension of CR functions from a hypersurface M of in presence of the so-called sector property. If M has finite type in the Bloom-Graham sense, then our result is already contained in [C. Rea, Prolongement holomorphe des fonctions CR, conditions suffisantes, C. R. Acad. Sci. Paris 297 (1983) 163-166] by Rea. We think however, that the argument of our proof carries an expressive geometric meaning and deserves interest on its own right. Also, our method applies in some case to hypersurfaces of infinite type; note that for these, the classical methods fail. CR extension is treated by many authors mainly in two frames: extension in directions of iterated of commutators of CR vector fields (cf., for instance, [A. Boggess, J. Pitts, CR extension near a point of higher type, Duke Math. J. 52 (1) (1985) 67-102; A. Boggess, J.C. Polking, Holomorphic extension of CR functions, Duke Math. J. 49 (1982) 757-784. ; M.S. Baouendi, L. Rothschild, Normal forms for generic manifolds and holomorphic extension of CR functions, J. Differential Geom. 25 (1987) 431-467. ]); extension through minimality towards unprecised directions [A.E. Tumanov, Extension of CR-functions into a wedge, Mat. Sb. 181 (7) (1990) 951-964. ; A.E. Tumanov, Analytic discs and the extendibility of CR functions, in: Integral Geometry, Radon Transforms and Complex Analysis, Venice, 1996, in: Lecture Notes in Math., vol. 1684, Springer, Berlin, 1998, pp. 123-141].

  8. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.

    PubMed

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2016-09-01

    OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.

  9. Aberration hubs in protein interaction networks highlight actionable targets in cancer.

    PubMed

    Karimzadeh, Mehran; Jandaghi, Pouria; Papadakis, Andreas I; Trainor, Sebastian; Rung, Johan; Gonzàlez-Porta, Mar; Scelo, Ghislaine; Vasudev, Naveen S; Brazma, Alvis; Huang, Sidong; Banks, Rosamonde E; Lathrop, Mark; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-18

    Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e. individual proteins that interact extensively with genes that show aberrant mutation or expression. Our analysis of the breast cancer data of the TCGA and the renal cancer data from the ICGC shows that aberration hubs are involved in relevant cancer pathways, including factors promoting cell cycle and DNA replication in basal-like breast tumors, and Src kinase and VEGF signaling in renal carcinoma. Moreover, our analysis uncovers novel functionally relevant and actionable targets, among which we have experimentally validated abnormal splicing of spleen tyrosine kinase as a key factor for cell proliferation in renal cancer. Thus, AbHAC provides an effective strategy to uncover novel disease factors that are only identifiable by examining mutational and expression data in the context of biological networks.

  10. Functional and structural correlates of magnetic resonance patterns in a new in vitro model of cerebral ischemia by transient occlusion of the medial cerebral artery.

    PubMed

    Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco

    2010-08-01

    Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.

  11. A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions

    DOE PAGES

    Xu, Kuan; Austin, Anthony P.; Wei, Ke

    2017-12-21

    In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.

  12. A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kuan; Austin, Anthony P.; Wei, Ke

    In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.

  13. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  14. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    PubMed

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, Fanny; Peck, Ariana; Salzman, Julia

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less

  16. Modular magnetic tweezers for single-molecule characterizations of helicases.

    PubMed

    Kemmerich, Felix E; Kasaciunaite, Kristina; Seidel, Ralf

    2016-10-01

    Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A specific role for posterior dorsolateral striatum in human habit learning

    PubMed Central

    Tricomi, Elizabeth; Balleine, Bernard W.; O’Doherty, John P.

    2009-01-01

    Habits are characterized by an insensitivity to their consequences and, as such, can be distinguished from goal-directed actions. The neural basis of the development of demonstrably outcome insensitive habitual actions in humans has not been previously characterized. In this experiment, we show that extensive training on a free-operant task reduces the sensitivity of participants’ behavior to a reduction in outcome value. Analysis of functional magnetic resonance imagine (fMRI) data acquired during training revealed a significant increase in task-related cue sensitivity in a right posterior putamen/globus pallidus region as training progressed. These results provide evidence for a shift from goal-directed to habit-based control of instrumental actions in humans, and suggest that cue-driven activation in a specific region of dorsolateral posterior putamen may contribute to the habitual control of behavior in humans. PMID:19490086

  18. Effect of ovariectomy and Sideritis euboea extract administration on large artery mechanics, morphology, and structure in middle-aged rats.

    PubMed

    Sokolis, Dimitrios P; Dimitriou, Constantinos A; Lelovas, Pavlos; Kostomitsopoulos, Nikolaos G; Dontas, Ismene A

    2017-01-01

    Arterial function is regulated by estrogen, but no consistent pattern of arterial mechanical remodeling in response to depleted estrogen levels is available. To examine long-term effects of ovariectomy (OVX) on the mechanical properties, morphology, and histological structure of the carotid artery in middle-aged rats and a potentially protective effect of Sideritis euboea extract (SID), commonly consumed as "mountain tea". 10-month-old female Wistar rats were allocated into control (sham-operated), OVX, OVX+SID, and OVX+MALT (maltodextrin; excipient used for dilution of SID) groups. They were sacrificed after 6 months and their carotid arteries were submitted to inflation/extension tests and to dimensional and histological evaluation. Remodeling in OVX rats was characterized by a decreased in situ axial extension ratio, along with increased opening angle, thickness, and area of the vessel wall and of its medial layer, but unchanged lumen diameter. Compositional changes involved increased elastin/collagen densities. Characterization by the "four-fiber" microstructure-motivated model revealed similar in situ biaxial response of carotid arteries in OVX and control rats. Carotid artery remodeling in OVX rats was largely consistent with hypertensive remodeling, despite the minor arterial pressure changes found, and was not altered by administration of SID, despite previous evidence of its osteo-protective effect.

  19. Formation of Multilayer Cu Islands Embedded beneath the Surface of Graphite: Characterization and Fundamental Insights

    DOE PAGES

    Lii-Rosales, Ann; Han, Yong; Evans, James W.; ...

    2018-02-06

    Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less

  20. Ultrastructure and regulation of lateralized connexin43 in the failing heart.

    PubMed

    Hesketh, Geoffrey G; Shah, Manish H; Halperin, Victoria L; Cooke, Carol A; Akar, Fadi G; Yen, Timothy E; Kass, David A; Machamer, Carolyn E; Van Eyk, Jennifer E; Tomaselli, Gordon F

    2010-04-02

    Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.

  1. Formation of Multilayer Cu Islands Embedded beneath the Surface of Graphite: Characterization and Fundamental Insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lii-Rosales, Ann; Han, Yong; Evans, James W.

    Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less

  2. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  3. Single stem cell gene therapy for genetic skin disease.

    PubMed

    Larsimont, Jean-Christophe; Blanpain, Cédric

    2015-04-01

    Stem cell gene therapy followed by transplantation into damaged regions of the skin has been successfully used to treat genetic skin blistering disorder. Usually, many stem cells are virally transduced to obtain a sufficient number of genetically corrected cells required for successful transplantation, as genetic insertion in every stem cell cannot be precisely defined. In this issue of EMBO Molecular Medicine, Droz-Georget Lathion et al developed a new strategy for ex vivo single cell gene therapy that allows extensive genomic and functional characterization of the genetically repaired individual cells before they can be used in clinical settings.

  4. Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassi, Marco; Bartollini, Elena; Adriaensens, Peter

    2015-12-07

    In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.

  5. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  6. Conserved and divergent functions of Pax6 underlie species-specific neurogenic patterns in the developing amniote brain.

    PubMed

    Yamashita, Wataru; Takahashi, Masanori; Kikkawa, Takako; Gotoh, Hitoshi; Osumi, Noriko; Ono, Katsuhiko; Nomura, Tadashi

    2018-04-16

    The evolution of unique organ structures is associated with changes in conserved developmental programs. However, characterizing the functional conservation and variation of homologous transcription factors (TFs) that dictate species-specific cellular dynamics has remained elusive. Here, we dissect shared and divergent functions of Pax6 during amniote brain development. Comparative functional analyses revealed that the neurogenic function of Pax6 is highly conserved in the developing mouse and chick pallium, whereas stage-specific binary functions of Pax6 in neurogenesis are unique to mouse neuronal progenitors, consistent with Pax6-dependent temporal regulation of Notch signaling. Furthermore, we identified that Pax6-dependent enhancer activity of Dbx1 is extensively conserved between mammals and chick, although Dbx1 expression in the developing pallium is highly divergent in these species. Our results suggest that spatiotemporal changes in Pax6-dependent regulatory programs contributed to species-specific neurogenic patterns in mammalian and avian lineages, which underlie the morphological divergence of the amniote pallial architectures. © 2018. Published by The Company of Biologists Ltd.

  7. Quantum thermodynamics of nanoscale steady states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  8. Potassium Binding Adjacent to Cationic Transition-Metal Fragments: Unusual Heterobimetallic Adducts of a Calix[4]arene-Based Thione Ligand.

    PubMed

    Patchett, Ruth; Knighton, Richard C; Mattock, James D; Vargas, Alfredo; Chaplin, Adrian B

    2017-11-20

    The synthesis of cationic rhodium and iridium complexes of a bis(imidazole-2-thione)-functionalized calix[4]arene ligand and their surprising capacity for potassium binding are described. In both cases, uptake of the alkali metal into the calix[4]arene cavity occurs despite adverse electrostatic interactions associated with close proximity to the transition-metal fragment [Rh + ···K + = 3.715(1) Å; Ir + ···K + = 3.690(1) Å]. The formation and constituent bonding of these unusual heterobimetallic adducts have been interrogated through extensive solution and solid-state characterization, examination of the host-guest chemistry of the ligand and its upper-rim unfunctionalized calix[4]arene analogue, and use of density functional theory based energy decomposition analysis.

  9. Management of Chronic Hyperplastic Pulpitis in Mandibular Molars of Middle Aged Adults- A Multidisciplinary Approach

    PubMed Central

    Lingeswaran, Somiya; Ari, Geetha; Thyagarajan, Ramakrishnan; Logaranjani, Anitha

    2016-01-01

    The molar tooth of children and young adults is a common site for chronic hyperplastic pulpitis (pulp polyp). It rarely occurs in middle aged adults. This condition is usually characterized by extensive involvement of the pulp, dictating the extraction of involved tooth. Extraction of permanent molars can lead to transient or permanent malocclusion, aesthetic, phonetic and functional problems. Here we report a case of pulp polyp in mandibular first molar of a 33-year-old woman that grew into the carious cavity. The aim of this case report is to describe the diagnosis of a chronic hyperplastic pulpitis involving the permanent molar as well as to describe its management in order to preserve them as a functional unit of the dentition. PMID:26894192

  10. Management of Chronic Hyperplastic Pulpitis in Mandibular Molars of Middle Aged Adults- A Multidisciplinary Approach.

    PubMed

    Anilkumar, Kanakamedala; Lingeswaran, Somiya; Ari, Geetha; Thyagarajan, Ramakrishnan; Logaranjani, Anitha

    2016-01-01

    The molar tooth of children and young adults is a common site for chronic hyperplastic pulpitis (pulp polyp). It rarely occurs in middle aged adults. This condition is usually characterized by extensive involvement of the pulp, dictating the extraction of involved tooth. Extraction of permanent molars can lead to transient or permanent malocclusion, aesthetic, phonetic and functional problems. Here we report a case of pulp polyp in mandibular first molar of a 33-year-old woman that grew into the carious cavity. The aim of this case report is to describe the diagnosis of a chronic hyperplastic pulpitis involving the permanent molar as well as to describe its management in order to preserve them as a functional unit of the dentition.

  11. Crystal structure of a lipoxygenase from Cyanothece sp. may reveal novel features for substrate acquisition[S

    PubMed Central

    Newie, Julia; Andreou, Alexandra; Neumann, Piotr; Einsle, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    In eukaryotes, oxidized PUFAs, so-called oxylipins, are vital signaling molecules. The first step in their biosynthesis may be catalyzed by a lipoxygenase (LOX), which forms hydroperoxides by introducing dioxygen into PUFAs. Here we characterized CspLOX1, a phylogenetically distant LOX family member from Cyanothece sp. PCC 8801 and determined its crystal structure. In addition to the classical two domains found in plant, animal, and coral LOXs, we identified an N-terminal helical extension, reminiscent of the long α-helical insertion in Pseudomonas aeruginosa LOX. In liposome flotation studies, this helical extension, rather than the β-barrel domain, was crucial for a membrane binding function. Additionally, CspLOX1 could oxygenate 1,2-diarachidonyl-sn-glycero-3-phosphocholine, suggesting that the enzyme may act directly on membranes and that fatty acids bind to the active site in a tail-first orientation. This binding mode is further supported by the fact that CspLOX1 catalyzed oxygenation at the n-10 position of both linoleic and arachidonic acid, resulting in 9R- and 11R-hydroperoxides, respectively. Together these results reveal unifying structural features of LOXs and their function. While the core of the active site is important for lipoxygenation and thus highly conserved, peripheral domains functioning in membrane and substrate binding are more variable. PMID:26667668

  12. About the dangers, costs and benefits of living an aerobic lifestyle.

    PubMed

    Knoefler, Daniela; Leichert, Lars I O; Thamsen, Maike; Cremers, Claudia M; Reichmann, Dana; Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2014-08-01

    The era in which ROS (reactive oxygen species) were simply the 'bad boys of biology' is clearly over. High levels of ROS are still rightfully considered to be toxic to many cellular processes and, as such, contribute to disease conditions and cell death. However, the high toxicity of ROS is also extremely beneficial, particularly as it is used to kill invading micro-organisms during mammalian host defence. Moreover, a transient, often more localized, increase in ROS levels appears to play a major role in signal transduction processes and positively affects cell growth, development and differentiation. At the heart of all these processes are redox-regulated proteins, which use oxidation-sensitive cysteine residues to control their function and by extension the function of the pathways that they are part of. Our work has contributed to changing the view about ROS through: (i) our characterization of Hsp33 (heat-shock protein 33), one of the first redox-regulated proteins identified, whose function is specifically activated by ROS, (ii) the development of quantitative tools that reveal extensive redox-sensitive processes in bacteria and eukaryotes, and (iii) the discovery of a link between early exposure to oxidants and aging. Our future research programme aims to generate an integrated and system-wide view of the beneficial and deleterious effects of ROS with the central goal to develop more effective antioxidant strategies and more powerful antimicrobial agents.

  13. Structural and functional characterization of an arylamine N-acetyltransferase from the pathogen Mycobacterium abscessus: differences from other mycobacterial isoforms and implications for selective inhibition.

    PubMed

    Cocaign, Angélique; Kubiak, Xavier; Xu, Ximing; Garnier, Guillaume; Li de la Sierra-Gallay, Inès; Chi-Bui, Linh; Dairou, Julien; Busi, Florent; Abuhammad, Areej; Haouz, Ahmed; Dupret, Jean Marie; Herrmann, Jean Louis; Rodrigues-Lima, Fernando

    2014-11-01

    Mycobacterium abscessus is the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies of M. abscessus proteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural and functional characterization of an arylamine N-acetyltransferase (NAT) from M. abscessus [(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significant N-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid and p-aminosalicylate. The enzyme is endogenously expressed and functional in both the rough and smooth M. abscessus morphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related to Nocardia farcinica NAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from other mycobacterial NATs were found in the active site. Peculiarities of (MYCAB)NAT1 were further supported by kinetic and docking studies showing that the enzyme was poorly inhibited by the piperidinol inhibitor of mycobacterial NATs. This study describes the first structure of an antibiotic-modifying enzyme from M. abscessus and provides bases to better understand the substrate/inhibitor-binding specificities among mycobacterial NATs and to identify/optimize specific inhibitors. These data should also contribute to the understanding of the mechanisms that are responsible for the pathogenicity and extensive chemotherapeutic resistance of M. abscessus.

  14. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    PubMed

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease.

    PubMed

    Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus

    2016-05-04

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.

  16. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  17. Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin-Korepin analysis

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2018-05-01

    We present a method to analyze the wavefunctions of six-vertex models by extending the Izergin-Korepin analysis originally developed for domain wall boundary partition functions. First, we apply the method to the case of the basic wavefunctions of the XXZ-type six-vertex model. By giving the Izergin-Korepin characterization of the wavefunctions, we show that these wavefunctions can be expressed as multiparameter deformations of the quantum group deformed Grothendieck polynomials. As a second example, we show that the Izergin-Korepin analysis is effective for analysis of the wavefunctions for a triangular boundary and present the explicit forms of the symmetric functions representing these wavefunctions. As a third example, we apply the method to the elliptic Felderhof model which is a face-type version and an elliptic extension of the trigonometric Felderhof model. We show that the wavefunctions can be expressed as one-parameter deformations of an elliptic analog of the Vandermonde determinant and elliptic symmetric functions.

  18. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    PubMed Central

    Azzarelli, Roberta; Kerloch, Thomas; Pacary, Emilie

    2015-01-01

    The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations. PMID:25610373

  19. Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    PubMed Central

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L.; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W.; Klock, Heath E.; Miller, Mitchell D.; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Mengin-Lecreulx, Dominique; Wilson, Ian A.

    2011-01-01

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships. PMID:21445265

  20. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    PubMed

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  1. Statistical analysis of Geopotential Height (GH) timeseries based on Tsallis non-extensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Pavlos, G. P.

    2018-02-01

    In this paper, we perform statistical analysis of time series deriving from Earth's climate. The time series are concerned with Geopotential Height (GH) and correspond to temporal and spatial components of the global distribution of month average values, during the period (1948-2012). The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis' q-triplet, namely {qstat, qsens, qrel}, the reconstructed phase space and the estimation of correlation dimension and the Hurst exponent of rescaled range analysis (R/S). The deviation of Tsallis q-triplet from unity indicates non-Gaussian (Tsallis q-Gaussian) non-extensive character with heavy tails probability density functions (PDFs), multifractal behavior and long range dependences for all timeseries considered. Also noticeable differences of the q-triplet estimation found in the timeseries at distinct local or temporal regions. Moreover, in the reconstructive phase space revealed a lower-dimensional fractal set in the GH dynamical phase space (strong self-organization) and the estimation of Hurst exponent indicated multifractality, non-Gaussianity and persistence. The analysis is giving significant information identifying and characterizing the dynamical characteristics of the earth's climate.

  2. Intranasal Oxytocin and Vasopressin Modulate Divergent Brainwide Functional Substrates.

    PubMed

    Galbusera, Alberto; De Felice, Alessia; Girardi, Stefano; Bassetto, Giacomo; Maschietto, Marta; Nishimori, Katsuhiko; Chini, Bice; Papaleo, Francesco; Vassanelli, Stefano; Gozzi, Alessandro

    2017-06-01

    The neuropeptides oxytocin (OXT) and vasopressin (AVP) have been identified as modulators of emotional social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction. Experimental and therapeutic use of OXT and AVP via the intranasal route is the subject of extensive clinical research. However, the large-scale functional substrates directly engaged by these peptides and their functional dynamics remain elusive. By using cerebral blood volume (CBV) weighted fMRI in the mouse, we show that intranasal administration of OXT rapidly elicits the transient activation of cortical regions and a sustained activation of hippocampal and forebrain areas characterized by high oxytocin receptor density. By contrast, intranasal administration of AVP produced a robust and sustained deactivation in cortico-parietal, thalamic and mesolimbic regions. Importantly, intravenous administration of OXT and AVP did not recapitulate the patterns of modulation produced by intranasal dosing, supporting a central origin of the observed functional changes. In keeping with this notion, hippocampal local field potential recordings revealed multi-band power increases upon intranasal OXT administration. We also show that the selective OXT-derivative TGOT reproduced the pattern of activation elicited by OXT and that the deletion of OXT receptors does not affect AVP-mediated deactivation. Collectively, our data document divergent modulation of brainwide neural systems by intranasal administration of OXT and AVP, an effect that involves key substrates of social and emotional behavior. The observed divergence calls for a deeper investigation of the systems-level mechanisms by which exogenous OXT and AVP modulate brain function and exert their putative therapeutic effects.

  3. Pigeon visual short-term memory directly compared to primates.

    PubMed

    Wright, Anthony A; Elmore, L Caitlin

    2016-02-01

    Three pigeons were trained to remember arrays of 2-6 colored squares and detect which of two squares had changed color to test their visual short-term memory. Procedures (e.g., stimuli, displays, viewing times, delays) were similar to those used to test monkeys and humans. Following extensive training, pigeons performed slightly better than similarly trained monkeys, but both animal species were considerably less accurate than humans with the same array sizes (2, 4 and 6 items). Pigeons and monkeys showed calculated memory capacities of one item or less, whereas humans showed a memory capacity of 2.5 items. Despite the differences in calculated memory capacities, the pigeons' memory results, like those from monkeys and humans, were all well characterized by an inverse power-law function fit to d' values for the five display sizes. This characterization provides a simple, straightforward summary of the fundamental processing of visual short-term memory (how visual short-term memory declines with memory load) that emphasizes species similarities based upon similar functional relationships. By closely matching pigeon testing parameters to those of monkeys and humans, these similar functional relationships suggest similar underlying processes of visual short-term memory in pigeons, monkeys and humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Recommendations for Development of Botanical Polyphenols as “Natural Drugs” for Promotion of Resilience Against Stress-Induced Depression and Cognitive Impairment

    PubMed Central

    Ward, Libby; Pasinetti, Giulio Maria

    2016-01-01

    Extensive evidence has demonstrated that psychological stress has detrimental effects on psychological health, cognitive function, and ultimately well-being. While stressful events are a significant cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The mechanisms underlying such resilience are poorly understood, and there is an urgent need to identify and target these mechanisms to promote resilience under stressful events. Botanicals have been used throughout history to treat various medical conditions; however, the development of botanical compounds into potential preventative and therapeutic agents in studies promoting brain health is hindered by the fact that most orally consumed botanicals are extensively metabolized during absorption and/or by post-absorptive xenobiotic metabolism. Therefore, the primary objective of this review article is to provide recommendations for developing natural compounds as novel therapeutic strategies to promote resilience in susceptible subjects. The development of botanical polyphenols to ultimately attenuate mood disorders and cognitive impairment will rely on understanding (1) the absorption and bioavailability of botanical polyphenols with emphasis on flavan-3-ols, (2) the characterization of tissue specific accumulation of biologically available polyphenols and their mechanisms of action in the brain, and eventually (3) the characterization of biologically available polyphenol metabolites in mechanisms associated with the promotion of resilience against mood disorders and cognitive impairment in response to stress. We also summarize exciting new lines of investigation about the role of botanicals such as polyphenols in the promotion of cognitive and psychological resilience. This information will provide a strategical framework for the future development of botanicals as therapeutic agents to promote resilience, ultimately preventing and/or therapeutically treating cognitive impairment and psychological dysfunction. PMID:27342633

  5. Recommendations for Development of Botanical Polyphenols as "Natural Drugs" for Promotion of Resilience Against Stress-Induced Depression and Cognitive Impairment.

    PubMed

    Ward, Libby; Pasinetti, Giulio Maria

    2016-09-01

    Extensive evidence has demonstrated that psychological stress has detrimental effects on psychological health, cognitive function, and ultimately well-being. While stressful events are a significant cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The mechanisms underlying such resilience are poorly understood, and there is an urgent need to identify and target these mechanisms to promote resilience under stressful events. Botanicals have been used throughout history to treat various medical conditions; however, the development of botanical compounds into potential preventative and therapeutic agents in studies promoting brain health is hindered by the fact that most orally consumed botanicals are extensively metabolized during absorption and/or by post-absorptive xenobiotic metabolism. Therefore, the primary objective of this review article is to provide recommendations for developing natural compounds as novel therapeutic strategies to promote resilience in susceptible subjects. The development of botanical polyphenols to ultimately attenuate mood disorders and cognitive impairment will rely on understanding (1) the absorption and bioavailability of botanical polyphenols with emphasis on flavan-3-ols, (2) the characterization of tissue-specific accumulation of biologically available polyphenols and their mechanisms of action in the brain, and eventually (3) the characterization of biologically available polyphenol metabolites in mechanisms associated with the promotion of resilience against mood disorders and cognitive impairment in response to stress. We also summarize exciting new lines of investigation about the role of botanicals such as polyphenols in the promotion of cognitive and psychological resilience. This information will provide a strategical framework for the future development of botanicals as therapeutic agents to promote resilience, ultimately preventing and/or therapeutically treating cognitive impairment and psychological dysfunction.

  6. Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase.

    PubMed

    Matsumoto, Misaki; Katsuyama, Masato; Iwata, Kazumi; Ibi, Masakazu; Zhang, Jia; Zhu, Kai; Nauseef, William M; Yabe-Nishimura, Chihiro

    2014-03-01

    Extensive evidence demonstrates the pathophysiological importance of NOX1, the catalytic subunit of superoxide-generating enzyme NADPH oxidase, as a source of reactive oxygen species in nonphagocytic cells. However, the biochemical properties of NOX1 have not been extensively characterized due to a lack of specific immunological tools. We used a newly raised NOX1 polyclonal antibody to investigate posttranslational modifications of NOX1 overexpressed in cultured cells and in the colon, where endogenous NOX1 is highly expressed. Immunoblots of lysates from cells expressing NOX1 revealed a doublet of 56 and 60kDa accompanied by a broad band of 60-90kDa. Based on differential sensitivity to glycosidases, the doublet was identified as two high-mannose-type glycoforms of NOX1, whereas the broad band represented NOX1 with complex-type N-linked oligosaccharides. Deglycosylated NOX1 migrated at ~53kDa and N-glycosylation was demonstrated in NOX1 derived from both rat and human. Site-directed mutagenesis identified N-glycosylation sites at Asn(161) and Asn(241) on the extracellular loop of mouse NOX1. Elimination of N-glycosylation on NOX1 did not affect its electron transferase activity, protein stability, targeting to the cell surface, or localization in F-actin-positive membrane protrusions. Taken together, these data identify the two specific sites of N-linked glycosylation of murine NOX1 and demonstrate that they are not required for normal enzyme activity, protein stability, and membrane trafficking. As is true for NOX2, the contribution of glycosylation in NOX1 to its biologic function(s) merits further study. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Structure and dynamics of GeoCyp: a thermophilic cyclophilin with a novel substrate binding mechanism that functions efficiently at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Michael; Camilloni, Carlo; Armstrong, Geoffrey S.

    2015-05-26

    Thermophilic proteins have found extensive use in research and industrial applications due to their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamicmore » motions over several timescales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures in order to compare structure, dynamics, and function to a mesophilic counterpart, human Cyclophilin A (CypA). Unlike most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Despite subtle differences in conformational movements, dynamics over fast (ps-ns) and slow (μs) timescales are largely conserved between the two proteins.« less

  8. Harnessing the synthetic capabilities of glycopeptide antibiotic tailoring enzymes: characterization of the UK-68,597 biosynthetic cluster.

    PubMed

    Yim, Grace; Kalan, Lindsay; Koteva, Kalinka; Thaker, Maulik N; Waglechner, Nicholas; Tang, Irene; Wright, Gerard D

    2014-11-24

    In this study, a draft genome sequence of Actinoplanes sp. ATCC 53533 was assembled, and an 81-kb biosynthetic cluster for the unusual sulfated glycopeptide UK-68,597 was identified. Glycopeptide antibiotics are important in the treatment of infections caused by Gram-positive bacteria. Glycopeptides contain heptapeptide backbones that are modified by many tailoring enzymes, including glycosyltransferases, sulfotransferases, methyltransferases, and halogenases, generating extensive chemical and functional diversity. Several tailoring enzymes in the cluster were examined in vitro for their ability to modify glycopeptides, resulting in the synthesis of novel molecules. Tailoring enzymes were also expressed in the producer of the glycopeptide aglycone A47934, generating additional chemical diversity. This work characterizes the biosynthetic program of UK-68,597 and demonstrates the capacity to expand glycopeptide chemical diversity by harnessing the unique chemistry of tailoring enzymes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves

    PubMed Central

    Vukusic, P.; Kelly, R.; Hooper, I.

    2008-01-01

    Broadband optical reflectors generally function through coherent scattering from systems comprising one of three designs: overlapped; chirped; or chaotic multilayer reflectors. For each, the requirement to scatter a broad band of wavelengths is met through the presence of a variation in nanostructural periodicity running perpendicular to the systems' outer surfaces. Consequently, the requisite total thickness of the multilayer can often be in excess of 50 μm. Here, we report the discovery and the microwave-assisted characterization of a natural system that achieves excellent optical broadband reflectivity but that is less than 1 μm thick. This system, found on the wing scales of the butterfly Argyrophorus argenteus, comprises a distinctive variation in periodicity that runs parallel to the reflecting surface, rather than perpendicular to it. In this way, the requirement for an extensively thick system is removed. PMID:19042180

  10. Strategic Analysis of Terrorism

    NASA Astrophysics Data System (ADS)

    Arce, Daniel G.; Sandler, Todd

    Two areas that are increasingly studied in the game-theoretic literature on terrorism and counterterrorism are collective action and asymmetric information. One contribution of this chapter is a survey and extension of continuous policy models with differentiable payoff functions. In this way, policies can be characterized as strategic substitutes (e. g., proactive measures), or strategic complements (e. g., defensive measures). Mixed substitute-complement models are also introduced. We show that the efficiency of counterterror policy depends upon (i) the strategic substitutes-complements characterization, and (ii) who initiates the action. Surprisingly, in mixed-models the dichotomy between individual and collective action may disappear. A second contribution is the consideration of a signaling model where indiscriminant spectacular terrorist attacks may erode terrorists’ support among its constituency, and proactive government responses can create a backlash effect in favor of terrorists. A novel equilibrium of this model reflects the well-documented ineffectiveness of terrorism in achieving its stated goals.

  11. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.

    PubMed

    Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang

    2015-11-01

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.

  12. Constraint-induced sound therapy for sudden sensorineural hearing loss – behavioral and neurophysiological outcomes

    PubMed Central

    Okamoto, Hidehiko; Fukushima, Munehisa; Teismann, Henning; Lagemann, Lothar; Kitahara, Tadashi; Inohara, Hidenori; Kakigi, Ryusuke; Pantev, Christo

    2014-01-01

    Sudden sensorineural hearing loss is characterized by acute, idiopathic hearing deterioration. We report here the development and evaluation of “constraint-induced sound therapy”, which is based on a well-established neuro-rehabilitation approach, and which is characterized by the plugging of the intact ear (“constraint”) and the simultaneous, extensive stimulation of the affected ear with music. The sudden sensorineural hearing loss patients who received the constraint-induced sound therapy in addition to the standard corticosteroid therapy showed significantly better recovery of hearing function compared to those who had only received corticosteroid treatments. Additionally, the brain activity obtained in a subgroup of patients suggested that the constraint-induced sound therapy could have prevented maladaptive auditory cortex reorganization. Constraint-induced sound therapy thus appears to be an effective, practical, and safe treatment option for sudden sensorineural hearing loss. PMID:24473277

  13. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins.

    PubMed

    Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W; Skjærven, Lars; Traynor, John R; Sivaramakrishnan, Sivaraj; Grant, Barry J

    2016-02-26

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    PubMed

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  15. Reversible median nerve impairment after three weeks of repetitive work.

    PubMed

    Tabatabaeifar, Sorosh; Svendsen, Susanne Wulff; Johnsen, Birger; Hansson, Gert-Åke; Fuglsang-Frederiksen, Anders; Frost, Poul

    2017-03-01

    Objectives The aim of this study was to evaluate the development of impaired median nerve function in relation to hand-intensive seasonal work. We hypothesized that at end-season, median nerve conduction would be impaired and then recover within weeks. Methods Using nerve conduction studies (NCS), we examined median nerve conduction before, during, and after engaging in 22 days of mink skinning. For a subgroup, we used goniometry and surface electromyography to characterize occupational mechanical exposures. Questionnaire information on symptoms, disability, and lifestyle factors was obtained. Results The study comprised 11 male mink skinners with normal median nerve conduction at pre-season (mean age 35.7 years, mean number of seasons with skinning 8.9 years). Mink skinning was characterized by a median angle of wrist flexion/extension of 16º extension, a median velocity of wrist flexion/extension of 22 °/s, and force exertions of 11% of maximal voluntary electrical activity. At end-season, mean distal motor latency (DML) had increased 0.41 ms (P<0.001), mean sensory nerve conduction velocity (SNCV) digit 2 had decreased 6.3 m/s (P=0.004), and mean SNCV digit 3 had decreased 6.2 m/s (P=0.01); 9 mink skinners had decreases in nerve conduction, 5 fulfilled electrodiagnostic criteria and 4 fulfilled electrodiagnostic and clinical criteria (a positive Katz hand diagram) for carpal tunnel syndrome (CTS). Three to six weeks post-season, the changes had reverted to normal. Symptom and disability scores showed corresponding changes. Conclusions In this natural experiment, impaired median nerve conduction developed during 22 days of repetitive industrial work with moderate wrist postures and limited force exertion. Recovery occurred within 3-6 weeks post-season.

  16. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    PubMed

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions.

    PubMed

    Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P

    2017-01-01

    The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

  18. Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire

    PubMed Central

    Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George

    2014-01-01

    Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027

  19. A draft map of the mouse pluripotent stem cell spatial proteome

    PubMed Central

    Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.

    2016-01-01

    Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106

  20. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.

    1982-01-01

    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  1. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  2. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways

    PubMed Central

    Simons, Matias; Gloy, Joachim; Ganner, Athina; Bullerkotte, Axel; Bashkurov, Mikhail; Krönig, Corinna; Schermer, Bernhard; Benzing, Thomas; Cabello, Olga A; Jenny, Andreas; Mlodzik, Marek; Polok, Bozena; Driever, Wolfgang; Obara, Tomoko; Walz, Gerd

    2013-01-01

    Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells1. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure2. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. PMID:15852005

  3. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis

    PubMed Central

    Regan, Patrick M.; Langford, T. Dianne; Khalili, Kamel

    2015-01-01

    Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364

  4. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages

    PubMed Central

    Imanian, Behzad; Keeling, Patrick J

    2007-01-01

    Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1), cytochrome oxidase 2 (cox2), cytochrome oxidase 3 (cox3), cytochrome b (cob), and large subunit of ribosomal RNA (LSUrRNA) of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport. PMID:17892581

  5. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function

    PubMed Central

    Ungar, Daniel; Oka, Toshihiko; Brittle, Elizabeth E.; Vasile, Eliza; Lupashin, Vladimir V.; Chatterton, Jon E.; Heuser, John E.; Krieger, Monty; Waters, M. Gerard

    2002-01-01

    Multiprotein complexes are key determinants of Golgi apparatus structure and its capacity for intracellular transport and glycoprotein modification. Three complexes that have previously been partially characterized include (a) the Golgi transport complex (GTC), identified in an in vitro membrane transport assay, (b) the ldlCp complex, identified in analyses of CHO cell mutants with defects in Golgi-associated glycosylation reactions, and (c) the mammalian Sec34 complex, identified by homology to yeast Sec34p, implicated in vesicular transport. We show that these three complexes are identical and rename them the conserved oligomeric Golgi (COG) complex. The COG complex comprises four previously characterized proteins (Cog1/ldlBp, Cog2/ldlCp, Cog3/Sec34, and Cog5/GTC-90), three homologues of yeast Sec34/35 complex subunits (Cog4, -6, and -8), and a previously unidentified Golgi-associated protein (Cog7). EM of ldlB and ldlC mutants established that COG is required for normal Golgi morphology. “Deep etch” EM of purified COG revealed an ∼37-nm-long structure comprised of two similarly sized globular domains connected by smaller extensions. Consideration of biochemical and genetic data for mammalian COG and its yeast homologue suggests a model for the subunit distribution within this complex, which plays critical roles in Golgi structure and function. PMID:11980916

  6. Genomic organization and chromosomal localization of the gene TCF15 encoding the early mesodermal basic helix-loop-helix factor bHLH-EC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidai, H.; Quertermous, E.E.; Quertermous, T.

    1995-12-10

    bHLH-EC2 is a recently characterized member of a growing family of basic helix-loop-helix transcription factors. This family includes bHLH factors such as twist, which appear to be primarily involved in early mesodermal differentiation, and bHLH factors such as TAL-1, which have been characterized through their association with chromosomal breakpoints associated with T-cell leukemias. To provide for studies aimed at understanding the genetic regulation of bHLH-EC2, we have characterized the organization of this gene and conducted preliminary studies of the transcriptional activity of the upstream promoter region. The mouse bHLH-EC2 gene was found to consist of two exons separated by amore » 5-kb intron, an organization pattern similar to the mouse twist gene. The transcription initiation site was identified by RNase protection assay and primer extension analysis. Linked promoter-reporter gene transfection experiments in cultured cells indicated that while the identified upstream sequence can function to promote transcription, it does not function in a cell-specific fashion. To investigate the possible association of bHLH-EC2 with hematological malignancy, the chromosomal location of this gene in the human was mapped by fluorescence in situ hybridization and assigned to chromosome band 20p13. 16 refs., 3 figs.« less

  7. Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent.

    PubMed

    Sun, Yaning; Yolitz, Jason; Alberico, Thomas; Sun, Xiaoping; Zou, Sige

    2014-02-01

    Many nutraceuticals and pharmaceuticals have been shown to promote healthspan and lifespan. However, the mechanisms underlying the beneficial effects of prolongevity interventions and the time points at which interventions should be implemented to achieve beneficial effects are not well characterized. We have previously shown that a cranberry-containing nutraceutical can promote lifespan in worms and flies and delay age-related functional decline of pancreatic cells in rats. Here we investigated the mechanism underlying lifespan extension induced by cranberry and the effects of short-term or life stage-specific interventions with cranberry on lifespan in Drosophila. We found that lifespan extension induced by cranberry was associated with reduced phosphorylation of ERK, a component of oxidative stress response MAPK signaling, and slightly increased phosphorylation of AKT, a component of insulin-like signaling. Lifespan extension was also associated with a reduced level of 4-hydroxynonenal protein adducts, a biomarker of lipid oxidation. Moreover, lifespan extension induced by cranberry was partially suppressed by knockdown of SOD2, a major mitochondrial superoxide scavenger. Furthermore, cranberry supplementation was administered in three life stages of adult flies, health span (3-30 days), transition span (31-60 days) and senescence span (61 days to the end when all flies died). Cranberry supplementation during any of these life stages extended the remaining lifespan relative to the non-supplemented and life stage-matched controls. These findings suggest that cranberry supplementation is sufficient to promote longevity when implemented during any life stage, likely through reducing oxidative damage. Published by Elsevier Inc.

  8. Dynamics of entanglement in expanding quantum fields

    NASA Astrophysics Data System (ADS)

    Berges, Jürgen; Floerchinger, Stefan; Venugopalan, Raju

    2018-04-01

    We develop a functional real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfaces. The framework is applied to explore an expanding light cone geometry in the particular case of the Schwinger model for quantum electrodynamics in 1+1 space-time dimensions. We observe that the entanglement entropy becomes extensive in rapidity at early times and that the corresponding local reduced density matrix is a thermal density matrix for excitations around a coherent field with a time dependent temperature. Since the Schwinger model successfully describes many features of multiparticle production in e + e - collisions, our results provide an attractive explanation in this framework for the apparent thermal nature of multiparticle production even in the absence of significant final state scattering.

  9. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    PubMed Central

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  10. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest.

    PubMed

    Corradini, Claudio; Lantano, Claudia; Cavazza, Antonella

    2013-05-01

    Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and they are critically reviewed.

  11. Application of a Silicone Sheet in Negative-Pressure Wound Therapy to Treat an Abdominal Wall Defect after Necrotizing Fasciitis.

    PubMed

    Shin, Jin Su; Choi, Hwan Jun

    2017-01-01

    Necrotizing fasciitis (NF) is an aggressive soft-tissue infection involving the deep fascia and is characterized by extensive deterioration of the surrounding tissue. Immediate diagnosis and intensive treatment, including debridement and systemic antibiotics, represent the most important factors influencing the survival of NF patients. In this report, we present a case of NF in the abdomen due to an infection caused by a perforated small bowel after abdominal liposuction. It was successfully treated using negative-pressure wound therapy, in which a silicone sheet functioned as a barrier between the sponge and internal organs to protect the small bowel.

  12. The architecture of a video image processor for the space station

    NASA Technical Reports Server (NTRS)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  13. Dynamic Strain Aging of Nickel-Base Alloys 800H and 690

    NASA Astrophysics Data System (ADS)

    Moss, Tyler E.; Was, Gary S.

    2012-10-01

    The objective of the current investigation is to characterize the dynamic strain aging (DSA) behavior in alloys 800H and 690. Constant extension rate tests were conducted at strain rates in the range of 10-4 s-1 to 10-7 s-1and temperatures between 295 K and 673 K (22 °C and 400 °C), in an argon atmosphere. Maps for the occurrence of serrated flow as a function of strain rate and temperature were built for both alloys. The enthalpy of serrated flow appearance of alloy 800H was found to be 1.07 ± 0.30 eV.

  14. New Kid on the Block: LmbU Expands the Repertoire of Specialized Metabolic Regulators in Streptomyces.

    PubMed

    Ju, Kou-San; Zhang, Xiafei; Elliot, Marie A

    2018-01-15

    Streptomyces has an extensive natural product repertoire, including most of the naturally derived antibiotics. Understanding the control of natural product biosynthesis is central to antibiotic discovery and production optimization. Here, Hou et al. (J. Bacteriol. 200:00447-17, 2018, https://doi.org/10.1128/JB.00447-17) report the identification and characterization of a novel regulator-LmbU-that functions primarily as an activator of lincomycin production in Streptomyces lincolnensis Importantly, members of this new regulator family are associated with natural product biosynthetic clusters throughout the streptomycetes and their actinomycete relatives. Copyright © 2017 American Society for Microbiology.

  15. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  16. FlyBase: genes and gene models

    PubMed Central

    Drysdale, Rachel A.; Crosby, Madeline A.

    2005-01-01

    FlyBase (http://flybase.org) is the primary repository of genetic and molecular data of the insect family Drosophilidae. For the most extensively studied species, Drosophila melanogaster, a wide range of data are presented in integrated formats. Data types include mutant phenotypes, molecular characterization of mutant alleles and aberrations, cytological maps, wild-type expression patterns, anatomical images, transgenic constructs and insertions, sequence-level gene models and molecular classification of gene product functions. There is a growing body of data for other Drosophila species; this is expected to increase dramatically over the next year, with the completion of draft-quality genomic sequences of an additional 11 Drosphila species. PMID:15608223

  17. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    NASA Astrophysics Data System (ADS)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  18. Structural dynamics of the mitochondrial compartment.

    PubMed

    Thorsness, P E

    1992-09-01

    The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.

  19. Concept of Fractal Dimension use of Multifractal Cloud Liquid Models Based on Real Data as Input to Monte Carlo Radiation Models

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.

    1999-01-01

    The purpose of this paper is discuss the concept of fractal dimension; multifractal statistics as an extension of this; the use of simple multifractal statistics (power spectrum, structure function) to characterize cloud liquid water data; and to understand the use of multifractal cloud liquid water models based on real data as input to Monte Carlo radiation models of shortwave radiation transfer in 3D clouds, and the consequences of this in two areas: the design of aircraft field programs to measure cloud absorptance; and the explanation of the famous "Landsat scale break" in measured radiance.

  20. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system

    PubMed Central

    Kabouridis, Panagiotis S.; Pachnis, Vassilis

    2015-01-01

    The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell–intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function. Initial reports confirm this idea while further studies in this area promise new insights into ENS physiology and pathophysiology. PMID:25729852

  1. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  2. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea.

    PubMed

    Barberán, Sara; Martín-Durán, José M; Cebrià, Francesc

    2016-06-21

    The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we have performed an extensive search for the presence of EGFRs and EGF ligands in representative species of most major animal clades, with special focus on the planarian Schmidtea mediterranea. With the exception of placozoans and cnidarians, we found that the EGFR pathway is potentially present in all other analyzed animal groups, and has experienced frequent independent expansions. We further characterized the expression domains of the EGFR/EGF identified in S. mediterranea, revealing a wide variety of patterns and localization in almost all planarian tissues. Finally, functional experiments suggest an interaction between one of the previously described receptors, Smed-egfr-5, and the newly found ligand Smed-egf-6. Our findings provide the most comprehensive overview to date of the EGFR pathway, and indicate that the last common metazoan ancestor had an initial complement of one EGFR and one putative EGF ligand, which was often expanded or lost during animal evolution.

  3. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea

    PubMed Central

    Barberán, Sara; Martín-Durán, José M.; Cebrià, Francesc

    2016-01-01

    The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we have performed an extensive search for the presence of EGFRs and EGF ligands in representative species of most major animal clades, with special focus on the planarian Schmidtea mediterranea. With the exception of placozoans and cnidarians, we found that the EGFR pathway is potentially present in all other analyzed animal groups, and has experienced frequent independent expansions. We further characterized the expression domains of the EGFR/EGF identified in S. mediterranea, revealing a wide variety of patterns and localization in almost all planarian tissues. Finally, functional experiments suggest an interaction between one of the previously described receptors, Smed-egfr-5, and the newly found ligand Smed-egf-6. Our findings provide the most comprehensive overview to date of the EGFR pathway, and indicate that the last common metazoan ancestor had an initial complement of one EGFR and one putative EGF ligand, which was often expanded or lost during animal evolution. PMID:27325311

  4. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

    PubMed

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-11-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.

  5. Fast protein tertiary structure retrieval based on global surface shape similarity.

    PubMed

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  6. Accurate phylogenetic classification of DNA fragments based onsequence composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequencemore » characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.« less

  7. Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition.

    PubMed

    Meng, Xiangfeng; Pijning, Tjaard; Tietema, Martin; Dobruchowska, Justyna M; Yin, Huifang; Gerwig, Gerrit J; Kralj, Slavko; Dijkhuizen, Lubbert

    2017-02-15

    Exopolysaccharides produced by lactic acid bacteria are extensively used for food applications. Glucansucrase enzymes of lactic acid bacteria use sucrose to catalyze the synthesis of α-glucans with different linkage compositions, size and physico-chemical properties. Crystallographic studies of GTF180-ΔN show that at the acceptor binding sites +1 and +2, residue W1065 provides stacking interactions to the glucosyl moiety. However, the detailed functional roles of W1065 have not been elucidated. We performed random mutagenesis targeting residue W1065 of GTF180-ΔN, resulting in the generation of 10 mutant enzymes that were characterized regarding activity and product specificity. Characterization of mutant enzymes showed that residue W1065 is critical for the activity of GTF180-ΔN. Using sucrose, and sucrose (donor) plus maltose (acceptor) as substrates, the mutant enzymes synthesized polysaccharides and oligosaccharides with changed linkage composition. The stacking interaction of an aromatic residue at position 1065 is essential for polysaccharide synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  9. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection.

    PubMed

    Chandra, Saket; Singh, Dharmendra; Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.

  10. THE IMPORTANCE OF MICROSTRUCTURAL VARIATIONS ON THE FRACTURE TOUGHNESS OF HUMAN DENTIN

    PubMed Central

    Ivancik, J.; Arola, D.

    2012-01-01

    The crack growth resistance of human dentin was characterized as a function of relative distance from the DEJ and the corresponding microstructure. Compact tension specimens were prepared from the coronal dentin of caries-free 3rd molars. The specimens were sectioned from either the outer, middle or inner dentin. Stable crack extension was achieved under Mode I quasi-static loading, with the crack oriented in-plane with the tubules, and the crack growth resistance was characterized in terms of the initiation (Ko), growth (Kg) and plateau (Kp) toughness. A hybrid approach was also used to quantify the contribution of dominant mechanisms to the overall toughness. Results showed that human dentin exhibits increasing crack growth resistance with crack extension in all regions, and that the fracture toughness of inner dentin (2.2±0.5 MPa•m0.5) was significantly lower than that of middle (2.7±0.2 MPa•m0.5) and outer regions (3.4±0.3 MPa•m0.5). Extrinsic toughening, composed mostly of crack bridging, was estimated to cause an average increase in the fracture energy of 26% in all three regions. Based on these findings, dental restorations extended into deep dentin are much more likely to cause tooth fracture due to the greater potential for introduction of flaws and decrease in fracture toughness with depth. PMID:23131531

  11. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection

    PubMed Central

    Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. PMID:26840746

  12. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments

    PubMed Central

    Tefera, Tesfaye W.; Borges, Karin

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS. PMID:28119559

  13. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor.

    PubMed

    Wang, H B; Zhang, Y

    2001-06-15

    Dynamic changes in chromatin structure play an important role in transcription regulation. Recent studies have revealed two mechanisms that alter chromatin structure. One involves ATP-dependent chromatin remodeling, and the other involves acetylation of the core histone tails. We have previously purified and characterized a multi-subunit protein complex, NuRD, which possesses both nucleosome remodeling and histone deacetylase activities. Despite extensive biochemical characterization of the complex, little is known about the functions of its individual components. In this study, we focused on Mi2, a component of the NuRD complex. We found that, similar to the native NuRD complex, recombinant Mi2 is a DNA-dependent, nucleosome-stimulated ATPase. Kinetic analysis of the ATP hydrolysis reaction indicated that the differential stimulation of the Mi2 ATPase by DNA and nucleosomes were primarily due to their differential effects on the turnover number of the reaction. Furthermore, we demonstrated that recombinant Mi2 is an efficient nucleosome remodeling factor when compared to that of the native NuRD complex. Our results define the biochemical function of Mi2 and set the stage for understanding the mechanism of nucleosome remodeling in a defined reconstituted system.

  14. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor

    PubMed Central

    Wang, Heng-Bin; Zhang, Yi

    2001-01-01

    Dynamic changes in chromatin structure play an important role in transcription regulation. Recent studies have revealed two mechanisms that alter chromatin structure. One involves ATP-dependent chromatin remodeling, and the other involves acetylation of the core histone tails. We have previously purified and characterized a multi-subunit protein complex, NuRD, which possesses both nucleosome remodeling and histone deacetylase activities. Despite extensive biochemical characterization of the complex, little is known about the functions of its individual components. In this study, we focused on Mi2, a component of the NuRD complex. We found that, similar to the native NuRD complex, recombinant Mi2 is a DNA-dependent, nucleosome-stimulated ATPase. Kinetic analysis of the ATP hydrolysis reaction indicated that the differential stimulation of the Mi2 ATPase by DNA and nucleosomes were primarily due to their differential effects on the turnover number of the reaction. Furthermore, we demonstrated that recombinant Mi2 is an efficient nucleosome remodeling factor when compared to that of the native NuRD complex. Our results define the biochemical function of Mi2 and set the stage for understanding the mechanism of nucleosome remodeling in a defined reconstituted system. PMID:11410659

  15. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    PubMed Central

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-01-01

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282

  16. A new metal binding domain involved in cadmium, cobalt and zinc transport

    DOE PAGES

    Smith, Aaron T.; Barupala, Dulmini; Stemmler, Timothy L.; ...

    2015-07-20

    The P 1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P 1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. In this paper, we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P 1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd 2+, Co 2+ or Zn 2+ ions in distinctmore » and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Finally, taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P 1B-ATPases.« less

  17. RNA Structural Analysis by Evolving SHAPE Chemistry

    PubMed Central

    Spitale, Robert C.; Flynn, Ryan A.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2017-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2’-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2’ hydroxyl group flexibility. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (Selective 2’ Hydroxyl Acylation and Primer Extension). Herein we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being used to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merger of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function. PMID:25132067

  18. RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the Cork Oak Root Response to Drought

    PubMed Central

    Magalhães, Alexandre P.; Verde, Nuno; Reis, Francisca; Martins, Inês; Costa, Daniela; Lino-Neto, Teresa; Castro, Pedro H.; Tavares, Rui M.; Azevedo, Herlânder

    2016-01-01

    Quercus suber (cork oak) is a West Mediterranean species of key economic interest, being extensively explored for its ability to generate cork. Like other Mediterranean plants, Q. suber is significantly threatened by climatic changes, imposing the need to quickly understand its physiological and molecular adaptability to drought stress imposition. In the present report, we uncovered the differential transcriptome of Q. suber roots exposed to long-term drought, using an RNA-Seq approach. 454-sequencing reads were used to de novo assemble a reference transcriptome, and mapping of reads allowed the identification of 546 differentially expressed unigenes. These were enriched in both effector genes (e.g., LEA, chaperones, transporters) as well as regulatory genes, including transcription factors (TFs) belonging to various different classes, and genes associated with protein turnover. To further extend functional characterization, we identified the orthologs of differentially expressed unigenes in the model species Arabidopsis thaliana, which then allowed us to perform in silico functional inference, including gene network analysis for protein function, protein subcellular localization and gene co-expression, and in silico enrichment analysis for TFs and cis-elements. Results indicated the existence of extensive transcriptional regulatory events, including activation of ABA-responsive genes and ABF-dependent signaling. We were then able to establish that a core ABA-signaling pathway involving PP2C-SnRK2-ABF components was induced in stressed Q. suber roots, identifying a key mechanism in this species’ response to drought. PMID:26793200

  19. Direct synthesis of hydrophobic graphene-based nanosheets via chemical modification of exfoliated graphene oxide.

    PubMed

    Wang, Jigang; Wang, Yongsheng; He, Dawei; Liu, Zhiyong; Wu, Hongpeng; Wang, Haiteng; Zhao, Yu; Zhang, Hui; Yang, Bingyang; Xu, Haiteng; Fu, Ming

    2012-08-01

    Hydrophobic graphene-based material at the nanoscale was prepared by treatment of exfoliated graphene oxide with organic isocyanates. The lipophilic modified graphene oxide (LMGO) can then be exfoliated into the functionalized graphene nanoplatelets that can form a stable dispersion in polar aprotic solvents. AFM image shows the thickness of LMGO is approximately 1 nm. Characterization of LMGO by elemental analysis suggested that the chemical treatment results in the functionalization of the carboxyl and hydroxyl groups in GO via formation of amides and carbamate esters, respectively. The degree of GO functionalization can be controlled via either the reactivity of the isocyanate or the reaction time. Then we investigated the thermal properties of the SPFGraphene by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the TGA curve shows a greater weight loss of approximately 20% occurred indicating removal of functional groups from the LMGO sheets and an obvious exothermic peak at 176 degrees can be observed from 150 to 250 degrees. We also compared the structure of graphene oxide with the structure of chemical treated graphene oxide by FT-IR spectroscopy. The morphology and microstructure of the LMGO nanosheets were also characterized by SEM and XRD. Graphene can be used to fabricate a wide range of simple electronic devices such as field-effect transistors, resonators, quantum dots and some other extensive industrial manufacture such as super capacitor, li ion battery, solar cells and even transparent electrodes in device applications.

  20. Characterizing the evolution of climate networks

    NASA Astrophysics Data System (ADS)

    Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J.

    2014-06-01

    Complex network theory has been successfully applied to understand the structural and functional topology of many dynamical systems from nature, society and technology. Many properties of these systems change over time, and, consequently, networks reconstructed from them will, too. However, although static and temporally changing networks have been studied extensively, methods to quantify their robustness as they evolve in time are lacking. In this paper we develop a theory to investigate how networks are changing within time based on the quantitative analysis of dissimilarities in the network structure. Our main result is the common component evolution function (CCEF) which characterizes network development over time. To test our approach we apply it to several model systems, Erdős-Rényi networks, analytically derived flow-based networks, and transient simulations from the START model for which we control the change of single parameters over time. Then we construct annual climate networks from NCEP/NCAR reanalysis data for the Asian monsoon domain for the time period of 1970-2011 CE and use the CCEF to characterize the temporal evolution in this region. While this real-world CCEF displays a high degree of network persistence over large time lags, there are distinct time periods when common links break down. This phasing of these events coincides with years of strong El Niño/Southern Oscillation phenomena, confirming previous studies. The proposed method can be applied for any type of evolving network where the link but not the node set is changing, and may be particularly useful to characterize nonstationary evolving systems using complex networks.

  1. Intranasal Oxytocin and Vasopressin Modulate Divergent Brainwide Functional Substrates

    PubMed Central

    Galbusera, Alberto; De Felice, Alessia; Girardi, Stefano; Bassetto, Giacomo; Maschietto, Marta; Nishimori, Katsuhiko; Chini, Bice; Papaleo, Francesco; Vassanelli, Stefano; Gozzi, Alessandro

    2017-01-01

    The neuropeptides oxytocin (OXT) and vasopressin (AVP) have been identified as modulators of emotional social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction. Experimental and therapeutic use of OXT and AVP via the intranasal route is the subject of extensive clinical research. However, the large-scale functional substrates directly engaged by these peptides and their functional dynamics remain elusive. By using cerebral blood volume (CBV) weighted fMRI in the mouse, we show that intranasal administration of OXT rapidly elicits the transient activation of cortical regions and a sustained activation of hippocampal and forebrain areas characterized by high oxytocin receptor density. By contrast, intranasal administration of AVP produced a robust and sustained deactivation in cortico-parietal, thalamic and mesolimbic regions. Importantly, intravenous administration of OXT and AVP did not recapitulate the patterns of modulation produced by intranasal dosing, supporting a central origin of the observed functional changes. In keeping with this notion, hippocampal local field potential recordings revealed multi-band power increases upon intranasal OXT administration. We also show that the selective OXT-derivative TGOT reproduced the pattern of activation elicited by OXT and that the deletion of OXT receptors does not affect AVP-mediated deactivation. Collectively, our data document divergent modulation of brainwide neural systems by intranasal administration of OXT and AVP, an effect that involves key substrates of social and emotional behavior. The observed divergence calls for a deeper investigation of the systems-level mechanisms by which exogenous OXT and AVP modulate brain function and exert their putative therapeutic effects. PMID:27995932

  2. Calculating the n-point correlation function with general and efficient python code

    NASA Astrophysics Data System (ADS)

    Genier, Fred; Bellis, Matthew

    2018-01-01

    There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.

  3. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  4. Theory of reflectivity blurring in seismic depth imaging

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.

    2016-05-01

    A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar waves, but the extension to elasticity is foreseeable and we emphasize the separation of the overburden and survey-geometry blurring effects from the nature of the target scatterer.

  5. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics

    PubMed Central

    Rapicavoli, Nicole A; Qu, Kun; Zhang, Jiajing; Mikhail, Megan; Laberge, Remi-Martin; Chang, Howard Y

    2013-01-01

    Pseudogenes are thought to be inactive gene sequences, but recent evidence of extensive pseudogene transcription raised the question of potential function. Here we discover and characterize the sets of mouse lncRNAs induced by inflammatory signaling via TNFα. TNFα regulates hundreds of lncRNAs, including 54 pseudogene lncRNAs, several of which show exquisitely selective expression in response to specific cytokines and microbial components in a NF-κB-dependent manner. Lethe, a pseudogene lncRNA, is selectively induced by proinflammatory cytokines via NF-κB or glucocorticoid receptor agonist, and functions in negative feedback signaling to NF-κB. Lethe interacts with NF-κB subunit RelA to inhibit RelA DNA binding and target gene activation. Lethe level decreases with organismal age, a physiological state associated with increased NF-κB activity. These findings suggest that expression of pseudogenes lncRNAs are actively regulated and constitute functional regulators of inflammatory signaling. DOI: http://dx.doi.org/10.7554/eLife.00762.001 PMID:23898399

  6. Centromeres and kinetochores of Brassicaceae.

    PubMed

    Lermontova, Inna; Sandmann, Michael; Demidov, Dmitri

    2014-06-01

    The centromere-the primary constriction of monocentric chromosomes-is essential for correct segregation of chromosomes during mitosis and meiosis. Centromeric DNA varies between different organisms in sequence composition and extension. The main components of centromeric and pericentromeric DNA of Brassicaceae species are centromeric satellite repeats. Centromeric DNA initiates assembly of the kinetochore, the large protein complex where the spindle fibers attach during nuclear division to pull sister chromatids apart. Kinetochore assembly is initiated by incorporation of the centromeric histone H3 cenH3 into centromeric nucleosomes. The spindle assembly checkpoint acts during mitosis and meiosis at centromeres and maintains genome stability by preventing chromosome segregation before all kinetochores are correctly attached to microtubules. The function of the spindle assembly checkpoint in plants is still poorly understood. Here, we review recent advances of studies on structure and functional importance of centromeric DNA of Brassicaceae, assembly and function of cenH3 in Arabidopsis thaliana and characterization of core SAC proteins of A. thaliana in comparison with non-plant homologues.

  7. Shugoshins function as a guardian for chromosomal stability in nuclear division.

    PubMed

    Yao, Yixin; Dai, Wei

    2012-07-15

    Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.

  8. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    NASA Astrophysics Data System (ADS)

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.

  9. Different Cognitive Profiles of Patients with Severe Aphasia.

    PubMed

    Marinelli, Chiara Valeria; Spaccavento, Simona; Craca, Angela; Marangolo, Paola; Angelelli, Paola

    2017-01-01

    Cognitive dysfunction frequently occurs in aphasic patients and primarily compromises linguistic skills. However, patients suffering from severe aphasia show heterogeneous performance in basic cognition. Our aim was to characterize the cognitive profiles of patients with severe aphasia and to determine whether they also differ as to residual linguistic abilities. We examined 189 patients with severe aphasia with standard language tests and with the CoBaGA (Cognitive Test Battery for Global Aphasia), a battery of nonverbal tests that assesses a wide range of cognitive domains such as attention, executive functions, intelligence, memory, visual-auditory recognition, and visual-spatial abilities. Twenty patients were also followed longitudinally in order to assess their improvement in cognitive skills after speech therapy. Three different subgroups of patients with different types and severity of cognitive impairment were evidenced. Subgroups differed as to residual linguistic skills, in particular comprehension and reading-writing abilities. Attention, reasoning, and executive functions improved after language rehabilitation. This study highlights the importance of an extensive evaluation of cognitive functions in patients with severe aphasia.

  10. Kinematics of the anthropoid os centrale and the functional consequences of scaphoid-centrale fusion in African apes and hominins.

    PubMed

    Orr, Caley M

    2018-01-01

    In most primates, the os centrale is interposed between the scaphoid, trapezoid, trapezium, and head of the capitate, thus constituting a component of the wrist's midcarpal complex. Scaphoid-centrale fusion is among the clearest morphological synapomorphies of African apes and hominins. Although it might facilitate knuckle-walking by increasing the rigidity and stability of the radial side of the wrist, the exact functional significance of scaphoid-centrale fusion is unclear. If fusion acts to produce a more rigid radial wrist that stabilizes the hand and limits shearing stresses, then in taxa with a free centrale, it should anchor ligaments that check extension and radial deviation, but exhibit motion independent of the scaphoid. Moreover, because the centrale sits between the scaphoid and capitate (a major stabilizing articulation), scaphoid-centrale mobility should correlate with scaphocapitate mobility in extension and radial deviation. To test these hypotheses, the centrale's ligamentous binding was investigated via dissection in Pongo and Papio, and the kinematics of the centrale were quantified in a cadaveric sample of anthropoids (Pongo sp., Ateles geoffroyi, Colobus guereza, Macaca mulatta, and Papio anubis) using a computed-tomography-based method to track wrist-bone motion. Results indicate that the centrale rotates freely relative to the scaphoid in all taxa. However, centrale mobility is only correlated with scaphocapitate mobility during extension in Pongo-possibly due to differences in overall wrist configuration between apes and monkeys. If an extant ape-like wrist characterized early ancestors of African apes and hominins, then scaphoid-centrale fusion would have increased midcarpal rigidity in extension relative to the primitive condition. Although biomechanically consistent with a knuckle-walking hominin ancestor, this assumes that the trait evolved specifically for that biological role, which must be squared with contradictory interpretations of extant and fossil hominoid morphology. Regardless of its original adaptive significance, scaphoid-centrale fusion likely presented a constraint on early hominin midcarpal mobility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Late Miocene extension partitioning in the eastern Betics: from W- to E-directed extension between the Sorbas and Vera basins (SE Spain).

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, Jose Miguel; Azañon, Jose Miguel

    2014-05-01

    Late Miocene westward-directed extension in the Betics produced elongated core-complexes like Sierra Nevada and the Sierra de Filabres, tilted-block domains and associated basins. This extension represents the superficial manifestation of the rupture of the Tethyan slab and associated edge delamination along a lithospheric transform fault beneath the northern branch of the Gibraltar Arc orogenic system. However, crustal thinning at the eastern Betics occurs progressively towards the east suggesting an eastward-directed extension, probably related to the late Miocene opening of the Algero-Balearic basin. In order to define the kinematics and timing of such a heterogeneous extension at the eastern Betics we have carefully mapped a key area at the transition between the Sorbas and Vera basins. Field data indicate that extension in the area started at the southern margin of the Vera basin during the Serravallian (13.8 Ma) and continued until the Tortonian (approximately 8 Ma). This extension was characterized by a set of NE- to E-directed normal faults to the east, in the Vera basin, and a set of SW-directed normal faults to the west, towards the Sorbas basin. This opposite-directed extension is segmented by E-W to WNW-ESE strike-slip faults like the North Cabrera dextral transfer fault that accommodates NE- to E-directed extension to the north and SW-directed extension to the south. This structure resulted in westward tilted blocks that lead to Serravallian-Tortonian depocenters deepening towards the east at the Vera basin along the northern side of Sierra Cabrera. Meanwhile, at the western termination of Sierra Cabrera, westward-directed extension migrated SW-ward forming the Sorbas basin during the Tortonian (approximately 9-7.24 Ma). This extension was characterized by a listric fan of SW-directed normal faults highly segmented by E-W to NE-SW transfer. This extensional system produced tiled-blocks defining a Tortonian depocenter at the eastern margin of the Sorbas basin. This westward migration of extension followed very closely the apatite fission track cooling ages obtained from Nevado-Filabride samples exhumed at the Sierra de Filabres core-complex, to the north. These ages range between 15 and 11 Ma, to the east, and between 9.5 and 7.5 Ma, to the west. The westward migration of extension continued during the Messinian and the Quaternary affecting the Níjar basin where a SW-directed normal-fault system occurs. Heterogeneous extension in the region resulted in different extensional domains both in extension direction and style. These domains are separated by transfer faults as the North Cabrera dextral fault, which accommodated opposite tilted-block domains at the southern margin of the Vera basin. Similarly, the Carboneras sinistral fault separates the Níjar tilted-block domain, to the north, from the Cabo de Gata domain characterized by magmatic accretion upon previously thinned continental crust, to the south.

  12. Temporal Adaptive Changes in Contractility and Fatigability of Diaphragm Muscles from Streptozotocin-Diabetic Rats

    PubMed Central

    Brotto, Marco; Brotto, Leticia; Jin, J.-P.; Nosek, Thomas M.; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type. PMID:20467472

  13. Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats.

    PubMed

    Brotto, Marco; Brotto, Leticia; Jin, J-P; Nosek, Thomas M; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.

  14. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics.

    PubMed

    Goffin, Dorothee; Delzenne, Nathalie; Blecker, Christophe; Hanon, Emilien; Deroanne, Claude; Paquot, Michel

    2011-05-01

    This critical review article presents the current state of knowledge on isomalto-oligosaccharides, some well known functional oligosaccharides in Asia, to evaluate their potential as emergent prebiotics in the American and European functional food market. It includes first a unique inventory of the different families of compounds which have been considered as IMOs and their specific structure. A description has been given of the different production methods including the involved enzymes and their specific activities, the substrates, and the types of IMOs produced. Considering the structural complexity of IMO products, specific characterization methods are described, as well as purification methods which enable the body to get rid of digestible oligosaccharides. Finally, an extensive review of their techno-functional and nutritional properties enables placing IMOs inside the growing prebiotic market. This review is of particular interest considering that IMO commercialization in America and Europe is a topical subject due to the recent submission by Bioneutra Inc. (Canada) of a novel food file to the UK Food Standards Agency, as well as several patents for IMO production.

  15. Nanotopography-guided tissue engineering and regenerative medicine☆

    PubMed Central

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  16. Generalization and capacity of extensively large two-layered perceptrons.

    PubMed

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2002-09-01

    The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different.

  17. AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae

    PubMed Central

    Song, Giltae; Dickins, Benjamin J. A.; Demeter, Janos; Engel, Stacia; Dunn, Barbara; Cherry, J. Michael

    2015-01-01

    The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community. PMID:25781462

  18. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty: which measure is most closely associated with performance-based and self-reported function?

    PubMed

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben B; Bandholm, Thomas

    2013-02-01

    To investigate which of the 2 muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, was most closely associated with performance-based and self-reported measures of function shortly after total knee arthroplasty (TKA). Cross-sectional, exploratory study. Laboratory at a regional hospital. Individuals (N=39) with an average age ± SD of 65.5±10.3 years, who all had unilateral TKA 28 days prior. None. The patients performed maximal isometric knee extensions and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-meter fast speed walking- and 30-second chair stand tests were used to determine performance-based function, while the Western Ontario and McMaster Universities Osteoarthritis Index and Oxford Knee Scores were used to determine self-reported function. Normalized leg press power was more closely associated with both performance-based (r=.82, P<.001) and self-reported (r=.48, P=.002) measures of function compared with normalized knee extension strength (r=.51, P=.001 and r=.39, P=.015, respectively). Normalized leg press power was more closely associated with both performance-based and self-reported function early after TKA than normalized knee extension strength. It may be explained by the fact that performance-based measures of function are typically closed kinetic chain tasks, such as walking or rising from a chair, and self-reported measures of function typically include questions that address perceived difficulty with performing these same tasks. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Intubation biomechanics: laryngoscope force and cervical spine motion during intubation with Macintosh and Airtraq laryngoscopes.

    PubMed

    Hindman, Bradley J; Santoni, Brandon G; Puttlitz, Christian M; From, Robert P; Todd, Michael M

    2014-08-01

    Laryngoscopy and endotracheal intubation in the presence of cervical spine instability may put patients at risk of cervical cord injury. Nevertheless, the biomechanics of intubation (cervical spine motion as a function of applied force) have not been characterized. This study characterized and compared the relationship between laryngoscope force and cervical spine motion using two laryngoscopes hypothesized to differ in force. Fourteen adults undergoing elective surgery were intubated twice (Macintosh, Airtraq). During each intubation, laryngoscope force, cervical spine motion, and glottic view were recorded. Force and motion were referenced to a preintubation baseline (stage 1) and were characterized at three stages: stage 2 (laryngoscope introduction); stage 3 (best glottic view); and stage 4 (endotracheal tube in trachea). Maximal force and motion occurred at stage 3 and differed between the Macintosh and Airtraq: (1) force: 48.8 ± 15.8 versus 10.4 ± 2.8 N, respectively, P = 0.0001; (2) occiput-C5 extension: 29.5 ± 8.5 versus 19.1 ± 8.7 degrees, respectively, P = 0.0023. Between stages 2 and 3, the motion/force ratio differed between Macintosh and Airtraq: 0.5 ± 0.2 versus 2.0 ± 1.4 degrees/N, respectively; P = 0.0006. The relationship between laryngoscope force and cervical spine motion is: (1) nonlinear and (2) differs between laryngoscopes. Differences between laryngoscopes in motion/force relationships are likely due to: (1) laryngoscope-specific cervical extension needed for intubation, (2) laryngoscope-specific airway displacement/deformation needed for intubation, and (3) cervical spine and airway tissue viscoelastic properties. Cervical spine motion during endotracheal intubation is not directly proportional to force. Low-force laryngoscopes cannot be assumed to result in proportionally low cervical spine motion.

  20. Intubation Biomechanics: Laryngoscope force and cervical spine motion during intubation with Macintosh and Airtraq laryngoscopes

    PubMed Central

    Hindman, Bradley J.; Santoni, Brandon G.; Puttlitz, Christian M.; From, Robert P.; Todd, Michael M.

    2014-01-01

    Introduction Laryngoscopy and endotracheal intubation in the presence of cervical spine instability may put patients at risk of cervical cord injury. Nevertheless, the biomechanics of intubation (cervical spine motion as a function of applied force) have not been characterized. This study characterized and compared the relationship between laryngoscope force and cervical spine motion using two laryngoscopes hypothesized to differ in force. Methods Fourteen adults undergoing elective surgery were intubated twice (Macintosh, Airtraq). During each intubation, laryngoscope force, cervical spine motion, and glottic view were recorded. Force and motion were referenced to a pre-intubation baseline (stage 1) and were characterized at three stages: stage 2 (laryngoscope introduction); stage 3 (best glottic view); stage 4 (endotracheal tube in trachea). Results Maximal force and motion occurred at stage 3, and differed between the Macintosh and Airtraq: 1) Force: 48.8±15.8 vs. 10.4±2.8 N, respectively; P=0.0001; 2) occiput-C5 extension: 29.5±8.5 vs. 19.1±8.7 degrees, respectively; P=0.0023. Between stages -2 and -3, the motion/force ratio differed between Macintosh and Airtraq: 0.5±0.2 vs. 2.0±1.4 degrees/N, respectively; P=0.0006. Discussion The relationship between laryngoscope force and cervical spine motion is: 1) non-linear and 2) differs between laryngoscopes. Differences between laryngoscopes in motion/force relationships are likely due to: 1) laryngoscope-specific cervical extension needed for intubation, 2) laryngoscope-specific airway displacement/deformation needed for intubation, and 3) cervical spine and airway tissue viscoelastic properties. Cervical spine motion during endotracheal intubation is not directly proportional to force. Low force laryngoscopes cannot be assumed to result in proportionally low cervical spine motion. PMID:24739996

  1. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 4: PEP functional specification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The functional, performance, design, and test requirements for the Orbiter power extension package and its associated ground support equipment are defined. Both government and nongovernment standards and specifications are cited for the following subsystems: electrical power, structural/mechanical, avionics, and thermal control. Quality control assurance provisions and preparation for delivery are also discussed.

  2. Building the ECON extension: Functionality and lessons learned

    Treesearch

    Fred C. Martin

    2008-01-01

    The functionality of the ECON extension to FVS is described with emphasis on the ability to dynamically interact with all elements of the FVS simulation process. Like other extensions, ECON is fully integrated within FVS. This integration allows: (1) analysis of multiple alternative tree-removal actions within a single simulation without altering “normal” stand...

  3. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.

  4. Extension of many-body theory and approximate density functionals to fractional charges and fractional spins.

    PubMed

    Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J

    2013-09-14

    The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.

  5. Interactive Sonification Exploring Emergent Behavior Applying Models for Biological Information and Listening

    PubMed Central

    Choi, Insook

    2018-01-01

    Sonification is an open-ended design task to construct sound informing a listener of data. Understanding application context is critical for shaping design requirements for data translation into sound. Sonification requires methodology to maintain reproducibility when data sources exhibit non-linear properties of self-organization and emergent behavior. This research formalizes interactive sonification in an extensible model to support reproducibility when data exhibits emergent behavior. In the absence of sonification theory, extensibility demonstrates relevant methods across case studies. The interactive sonification framework foregrounds three factors: reproducible system implementation for generating sonification; interactive mechanisms enhancing a listener's multisensory observations; and reproducible data from models that characterize emergent behavior. Supramodal attention research suggests interactive exploration with auditory feedback can generate context for recognizing irregular patterns and transient dynamics. The sonification framework provides circular causality as a signal pathway for modeling a listener interacting with emergent behavior. The extensible sonification model adopts a data acquisition pathway to formalize functional symmetry across three subsystems: Experimental Data Source, Sound Generation, and Guided Exploration. To differentiate time criticality and dimensionality of emerging dynamics, tuning functions are applied between subsystems to maintain scale and symmetry of concurrent processes and temporal dynamics. Tuning functions accommodate sonification design strategies that yield order parameter values to render emerging patterns discoverable as well as rehearsable, to reproduce desired instances for clinical listeners. Case studies are implemented with two computational models, Chua's circuit and Swarm Chemistry social agent simulation, generating data in real-time that exhibits emergent behavior. Heuristic Listening is introduced as an informal model of a listener's clinical attention to data sonification through multisensory interaction in a context of structured inquiry. Three methods are introduced to assess the proposed sonification framework: Listening Scenario classification, data flow Attunement, and Sonification Design Patterns to classify sound control. Case study implementations are assessed against these methods comparing levels of abstraction between experimental data and sound generation. Outcomes demonstrate the framework performance as a reference model for representing experimental implementations, also for identifying common sonification structures having different experimental implementations, identifying common functions implemented in different subsystems, and comparing impact of affordances across multiple implementations of listening scenarios. PMID:29755311

  6. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems

    NASA Astrophysics Data System (ADS)

    Weigand, Maximilian; Kemna, Andreas

    2017-02-01

    A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (< 1 kHz)- electrical conduction- and polarization properties in an imaging framework. It is well established that cells and cell clusters exhibit an electrical polarization response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi-frequency imaging results, reveal systematic changes in the spatial and spectral electrical response of the root system. In particular, quantified mean relaxation times (of the order of 10 ms) indicate changes in the length scales on which the polarization processes took place in the root system, as a response to the prolonged induced stress situation. Our results demonstrate that broadband EIT is a capable, non-invasive method to image root system extension as well as to monitor changes associated with the root physiological processes. Given its applicability on both laboratory and field scales, our results suggest an enormous potential of the method for the structural and functional imaging of root systems for various applications. This particularly holds for the field scale, where corresponding methods are highly desired but to date are lacking.

  7. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  8. The alphabet of intrinsic disorder

    PubMed Central

    Theillet, Francois-Xavier; Kalmar, Lajos; Tompa, Peter; Han, Kyou-Hoon; Selenko, Philipp; Dunker, A. Keith; Daughdrill, Gary W.; Uversky, Vladimir N

    2013-01-01

    A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting. PMID:28516008

  9. Isolation of Human Innate Lymphoid Cells.

    PubMed

    Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M

    2018-06-29

    Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  10. Social cognitive theory: an agentic perspective.

    PubMed

    Bandura, A

    2001-01-01

    The capacity to exercise control over the nature and quality of one's life is the essence of humanness. Human agency is characterized by a number of core features that operate through phenomenal and functional consciousness. These include the temporal extension of agency through intentionality and forethought, self-regulation by self-reactive influence, and self-reflectiveness about one's capabilities, quality of functioning, and the meaning and purpose of one's life pursuits. Personal agency operates within a broad network of sociostructural influences. In these agentic transactions, people are producers as well as products of social systems. Social cognitive theory distinguishes among three modes of agency: direct personal agency, proxy agency that relies on others to act on one's behest to secure desired outcomes, and collective agency exercised through socially coordinative and interdependent effort. Growing transnational embeddedness and interdependence are placing a premium on collective efficacy to exercise control over personal destinies and national life.

  11. Functions of ocular surface mucins in health and disease

    PubMed Central

    Mantelli, Flavio; Argüeso, Pablo

    2009-01-01

    Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205

  12. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    PubMed

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  13. Extracorporeal circuit for Panton-Valentine leukocidin-producing Staphylococcus aureus necrotizing pneumonia.

    PubMed

    Lavoue, S; Le Gac, G; Gacouin, A; Revest, M; Sohier, L; Mouline, J; Jouneau, S; Flecher, E; Tattevin, P; Tadié, J-M

    2016-09-01

    To describe two cases of Panton-Valentine leukocidin-producing Staphylococcus aureus (PVL-SA) necrotizing pneumonia treated with ECMO, and complete pulmonary evaluation at six months. Retrospective analysis of two patients presenting with severe PVL-SA pneumonia who both underwent complete respiratory function testing and chest CT scan six months after hospital discharge. Indications for ECMO were refractory hypoxia and left ventricular dysfunction associated with right ventricular dilatation. Patients were weaned off ECMO after 52 and 5 days. No ECMO-related hemorrhagic complication was observed. Pulmonary function tests performed at six months were normal and the CT scan showed complete regression of pulmonary injuries. PVL-SA pneumonia is characterized by extensive parenchymal injuries, including necrotic and hemorrhagic complications. ECMO may be used as a salvage treatment without any associated hemorrhagic complication, provided anticoagulant therapy is carefully monitored, and may lead to complete pulmonary recovery at six months. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  15. Cardiac and pericardial tumors: A potential application of positron emission tomography-magnetic resonance imaging.

    PubMed

    Fathala, Ahmed; Abouzied, Mohei; AlSugair, Abdul-Aziz

    2017-07-26

    Cardiac and pericardial masses may be neoplastic, benign and malignant, non-neoplastic such as thrombus or simple pericardial cysts, or normal variants cardiac structure can also be a diagnostic challenge. Currently, there are several imaging modalities for diagnosis of cardiac masses; each technique has its inherent advantages and disadvantages. Echocardiography, is typically the initial test utilizes in such cases, Echocardiography is considered the test of choice for evaluation and detection of cardiac mass, it is widely available, portable, with no ionizing radiation and provides comprehensive evaluation of cardiac function and valves, however, echocardiography is not very helpful in many cases such as evaluation of extracardiac extension of mass, poor tissue characterization, and it is non diagnostic in some cases. Cross sectional imaging with cardiac computed tomography provides a three dimensional data set with excellent spatial resolution but utilizes ionizing radiation, intravenous iodinated contrast and relatively limited functional evaluation of the heart. Cardiac magnetic resonance imaging (CMR) has excellent contrast resolution that allows superior soft tissue characterization. CMR offers comprehensive evaluation of morphology, function, tissue characterization. The great benefits of CMR make CMR a highly useful tool in the assessment of cardiac masses. (Fluorine 18) fluorodeoxygluocse (FDG) positron emission tomography (PET) has become a corner stone in several oncological application such as tumor staging, restaging, treatment efficiency, FDG is a very useful imaging modality in evaluation of cardiac masses. A recent advance in the imaging technology has been the development of integrated PET-MRI system that utilizes the advantages of PET and MRI in a single examination. FDG PET-MRI provides complementary information on evaluation of cardiac masses. The purpose of this review is to provide several clinical scenarios on the incremental value of PET and MRI in the evaluation of cardiac masses.

  16. Alcohol hangover: type and time-extension of motor function impairments.

    PubMed

    Karadayian, Analía G; Cutrera, Rodolfo A

    2013-06-15

    Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (p<0.001). Hangover mice exhibited a reduced motor performance during the next 16 h (p<0.01). Motor function was recovered 20 h after hangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (p<0.05). Moreover, mice suffering from a hangover, exhibited a significant decrease in neuromuscular strength during 16 h (p<0.001). Averaged speed and total distance traveled in the open field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (p<0.05). Our findings demonstrate a time-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini*

    PubMed Central

    Vuorenpää, Anne; Jørgensen, Trine N.; Newman, Amy H.; Madsen, Kenneth L.; Scheinin, Mika

    2016-01-01

    The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the “long loop” recycling marker Rab11, whereas less overlap was seen with the “short loop” recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function. PMID:26786096

  18. Characteristics of sound radiation from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  19. Development of CdS Nanostructures by Thermal Decomposition of Aminocaproic Acid-Mixed Cd-Thiourea Complex Precursor: Structural, Optical and Photocatalytic Characterization.

    PubMed

    Patel, Jayesh D; Mighri, Frej; Ajji, Abdellah; Chaudhuri, Tapas K

    2015-04-01

    The present work deals with two different CdS nanostructures produced via hydrothermal and solvothermal decompositions of aminocaproic acid (ACA)-mixed Cd-thiourea complex precursor at 175 °C. Both nanostructures were extensively characterized for their structural, morphological and optical properties. The powder X-ray diffraction characterization showed that the two CdS nanostructures present a wurtzite morphology. Scanning electron microscopy and energy-dispersive X-ray characterizations revealed that the hydrothermal decomposition produced well-shaped CdS flowers composed of six dendritic petals, and the solvothermal decomposition produced CdS microspheres with close stoichiometric chemical composition. The UV-vis absorption and photoluminescence spectra of CdS dendritic flowers and microsphere nanostructures showed that both nanostructures present a broad absorption between 200 and 700 nm and exhibit strong green emissions at 576 and 520 nm upon excitations at 290 nm and 260 nm, respectively. The transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) characterizations confirmed that CdS microspheres were mesoporous and were composed of small nanocrystals. A possible growth mechanism in the formation of the CdS nanostructures was proposed based on morphology evolution as a function of the reaction time. Furthermore, the as-synthesized CdS nanostructures were found to exhibit highly efficient photocatalytic activities for the degradation of methyl orange (MeO) and rhodamine B (RhB) dyes.

  20. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    PubMed Central

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  1. Using the Human Eye to Characterize Displays

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer; Larimer, James

    2001-01-01

    Monitor characterization has taken on new importance for non-professional users, who are not usually equipped to make photometric measurements. Our purpose was to examine some of the visual judgments used in characterization schemes that have been proposed for web users. We studied adjusting brightness to set the black level, banding effects due to digitization, and gamma estimation in the light and in the dark, and a color-matching task in the light, on a desktop CRT and a laptop LCD. Observers demonstrated the sensitivity of the visual system for comparative judgments in black-level adjustment, banding visibility, and gamma estimation. The results of the color-matching task were ambiguous. In the brightness adjustment task, the action of the adjustment was not as presumed; however, perceptual judgments were as expected under the actual conditions. When the gamma estimates of observers were compared to photometric measurements, problems with the definition of gamma were identified. Information about absolute light levels that would be important for characterizing a display, given the shortcomings of gamma in measuring apparent contrast, are not measurable by eye alone. The LCD was not studied as extensively as the CRT because of viewing-angle problems, and its transfer function did not follow a power law, rendering gamma estimation meaningless.

  2. Cerebral energy metabolism and the brain's functional network architecture: an integrative review.

    PubMed

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-09-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.

  3. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions

    PubMed Central

    Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.

    2017-01-01

    ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484

  4. VETA x ray data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.

    1992-01-01

    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

  5. Fixed gain and adaptive techniques for rotorcraft vibration control

    NASA Technical Reports Server (NTRS)

    Roy, R. H.; Saberi, H. A.; Walker, R. A.

    1985-01-01

    The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.

  6. Understanding Parkinson Disease: A Complex and Multifaceted Illness.

    PubMed

    Gopalakrishna, Apoorva; Alexander, Sheila A

    2015-12-01

    Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.

  7. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita

    PubMed Central

    McCarter, James P; Dautova Mitreva, Makedonka; Martin, John; Dante, Mike; Wylie, Todd; Rao, Uma; Pape, Deana; Bowers, Yvette; Theising, Brenda; Murphy, Claire V; Kloek, Andrew P; Chiapelli, Brandi J; Clifton, Sandra W; Bird, David Mck; Waterston, Robert H

    2003-01-01

    Background Plant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita. Results From these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases. Conclusions With sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses. PMID:12702207

  8. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia

    PubMed Central

    2010-01-01

    Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene. Results The coding region of eleven NDV isolates fusion (F) gene and carboxyl terminal region of haemagglutinin-neuraminidase (HN) gene including extensions were amplified by reverse transcriptase PCR and directly sequenced. All the isolates have shown to have non-synonymous to synonymous base substitution rate ranging between 0.081 - 0.264 demonstrating presence of negative selection. Analysis based on F gene showed the characterized isolates possess three different types of protease cleavage site motifs; namely 112RRQKRF117, 112RRRKRF117 and 112GRQGRL117 and appear to show maximum identities with isolates in the region such as cockatoo/14698/90 (Indonesia), Ch/2000 (China), local isolate AF2240 indicating the high similarity of isolates circulating in the South East Asian countries. Meanwhile, one of the isolates resembles commonly used lentogenic vaccine strains. On further characterization of the HN gene, Malaysian isolates had C-terminus extensions of 0, 6 and 11 amino acids. Analysis of the phylogenetic tree revealed that the existence of three genetic groups; namely, genotype II, VII and VIII. Conclusions The study concluded that the occurrence of three types of NDV genotypes and presence of varied carboxyl terminus extension lengths among Malaysian isolates incriminated for sporadic cases. PMID:20691110

  9. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia.

    PubMed

    Berhanu, Ayalew; Ideris, Aini; Omar, Abdul R; Bejo, Mohd Hair

    2010-08-08

    Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene. The coding region of eleven NDV isolates fusion (F) gene and carboxyl terminal region of haemagglutinin-neuraminidase (HN) gene including extensions were amplified by reverse transcriptase PCR and directly sequenced. All the isolates have shown to have non-synonymous to synonymous base substitution rate ranging between 0.081 - 0.264 demonstrating presence of negative selection. Analysis based on F gene showed the characterized isolates possess three different types of protease cleavage site motifs; namely 112RRQKRF117, 112RRRKRF117 and 112GRQGRL117 and appear to show maximum identities with isolates in the region such as cockatoo/14698/90 (Indonesia), Ch/2000 (China), local isolate AF2240 indicating the high similarity of isolates circulating in the South East Asian countries. Meanwhile, one of the isolates resembles commonly used lentogenic vaccine strains. On further characterization of the HN gene, Malaysian isolates had C-terminus extensions of 0, 6 and 11 amino acids. Analysis of the phylogenetic tree revealed that the existence of three genetic groups; namely, genotype II, VII and VIII. The study concluded that the occurrence of three types of NDV genotypes and presence of varied carboxyl terminus extension lengths among Malaysian isolates incriminated for sporadic cases.

  10. Occlusion and Temporomandibular Function among Subjects with Mandibular Distal Extension Removable Partial Dentures

    PubMed Central

    Creugers, N. H. J.; Witter, D. J.; Van 't Spijker, A.; Gerritsen, A. E.; Kreulen, C. M.

    2010-01-01

    Objective. To quantify effects on occlusion and temporomandibular function of mandibular distal extension removable partial dentures in shortened dental arches. Methods. Subjects wearing mandibular extension removable partial dentures (n = 25) were compared with subjects with shortened dental arches without extension (n = 74) and with subjects who had worn a mandibular extension removable partial denture in the past (n = 19). Subjects with complete dentitions (n = 72) were controls. Data were collected at baseline and at 3-, 6-, and 9-year observations. Results. Occlusal activity in terms of reported awareness of bruxism and occlusal tooth wear of lower anterior teeth did not differ significantly between the groups. In contrast, occlusal tooth wear of premolars in shortened dental arches with or without extension dentures was significantly higher than in the controls. Differences amongst groups with respect to signs and symptoms related to temporomandibular disorders were not found. Occlusal support of the dentures did not influence anterior spatial relationship. Occlusal contacts of the denture teeth decreased from 70% for second premolars via 50% for first molars, to 30% for second molars. Conclusions. Mandibular distal extension removable partial dentures in moderate shortened dental arches had no effects on occlusion and temporomandibular function. PMID:20671961

  11. Untied Efforts: The Challenges for Improved Research, Extension and Education Linkages

    ERIC Educational Resources Information Center

    Eneyew, Adugna

    2013-01-01

    Ethiopian agriculture is characterized by smallholders farming whose access to modern technology and basic education is very limited. Research, extension, education and farmers are the main pillars of agricultural knowledge systems and their effectiveness largely depends on strong linkage among each other. However, the existing…

  12. Direct Coaptation of the Phrenic Nerve With the Posterior Division of the Lower Trunk to Restore Finger and Elbow Extension Function in Patients With Total Brachial Plexus Injuries.

    PubMed

    Wang, Shu-feng; Li, Peng-cheng; Xue, Yun-hao; Zou, Ji-yao; Li, Wen-jun; Li, Yucheng

    2016-02-01

    To overcome the mismatch in nerve sizes in phrenic nerve transfer to the radial nerve for elbow and finger extension reanimation for patients with total brachial plexus injuries (TBPI), a selective neurotization procedure was designed. To investigate the long-term results of phrenic nerve transfer to the posterior division of the lower trunk with direct coaptation in restoring elbow and finger extension after TBPI. Phrenic nerve was transferred to and directly coapted with the posterior division of the lower trunk in 27 patients with TBPI. Seven patients were <18 years old (adolescent group), and the remaining 20 patients ≥18 years (adult group). Postoperative mean follow-up period was 54 ± 9 months (range, 48-85 months). The motor function attained M3 or greater in 81.5% of patients for elbow extension and in 48% of patients for finger extension. The percentage of patients who regained M3 or greater muscle power of finger extension in the adolescent group and the adult group was 71.4%, and 40%, respectively. Meanwhile, 85.7% in the adolescent group and 80% in the adult group achieved M3 or greater muscle power of elbow extension. There were no significant differences between the 2 groups. The elbow extension and finger extension were synchronous contractions and did not become independent of respiratory effort. This procedure simultaneously and effectively restores the function of elbow and finger extension in patients after TBPI. However, the patients could not do elbow and finger extension separately.

  13. Near real-time measurement of forces applied by an optical trap to a rigid cylindrical object

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Hoeprich, David; Resnick, Andrew

    2014-07-01

    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance.

  14. Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking

    PubMed Central

    Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.

    2013-01-01

    Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662

  15. Evidence of nonextensive statistical physics behavior in the watershed distribution in active tectonic areas: examples from Greece

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Kouli, Maria

    2013-08-01

    The Digital Elevation Model (DEM) for the Crete Island with a resolution of approximately 20 meters was used in order to delineate watersheds by computing the flow direction and using it in the Watershed function. The Watershed function uses a raster of flow direction to determine contributing area. The Geographic Information Systems routine procedure was applied and the watersheds as well as the streams network (using a threshold of 2000 cells, i.e. the minimum number of cells that constitute a stream) were extracted from the hydrologically corrected (free of sinks) DEM. A number of a few thousand watersheds were delineated, and their areal extent was calculated. From these watersheds a number of 300 was finally selected for further analysis as the watersheds of extremely small area were excluded in order to avoid possible artifacts. Our analysis approach is based on the basic principles of Complexity theory and Tsallis Entropy introduces in the frame of non-extensive statistical physics. This concept has been successfully used for the analysis of a variety of complex dynamic systems including natural hazards, where fractality and long-range interactions are important. The analysis indicates that the statistical distribution of watersheds can be successfully described with the theoretical estimations of non-extensive statistical physics implying the complexity that characterizes the occurrences of them.

  16. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck

    PubMed Central

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-01-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level. PMID:21841170

  17. Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Elizabeth A.; Fleming, Christopher D.; Mesecar, Andrew D.

    2010-09-30

    4-Oxalocrotonate tautomerase (4-OT) isozymes play prominent roles in the bacterial utilization of aromatic hydrocarbons as sole carbon sources. These enzymes catalyze the conversion of 2-hydroxy-2,4-hexadienedioate (or 2-hydroxymuconate) to 2-oxo-3-hexenedioate, where Pro-1 functions as a general base and shuttles a proton from the 2-hydroxyl group of the substrate to the C-5 position of the product. 4-OT, a homohexamer from Pseudomonas putida mt-2, is the most extensively studied 4-OT isozyme and the founding member of the tautomerase superfamily. A search of five thermophilic bacterial genomes identified a coded amino acid sequence in each that had been annotated as a tautomerase-like protein butmore » lacked Pro-1. However, a nearby sequence has Pro-1, but the sequence is not annotated as a tautomerase-like protein. To characterize this group of proteins, two genes from Chloroflexus aurantiacus J-10-fl were cloned, and the corresponding proteins were expressed. Kinetic, biochemical, and X-ray structural analyses show that the two expressed proteins form a functional heterohexamer 4-OT (hh4-OT), composed of three {alpha}{beta} dimers. Like the P. putida enzyme, hh4-OT requires the amino-terminal proline and two arginines for the conversion of 2-hydroxymuconate to the product, implicating an analogous mechanism. In contrast to 4-OT, hh4-OT does not exhibit the low-level activity of another tautomerase superfamily member, the heterohexamer trans-3-chloroacrylic acid dehalogenase (CaaD). Characterization of hh4-OT enables functional assignment of the related enzymes, highlights the diverse ways the {beta}-{alpha}-{beta} building block can be assembled into an active enzyme, and provides further insight into the molecular basis of the low-level CaaD activity in 4-OT.« less

  18. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family.

    PubMed

    Nguyen, Vi N; Park, Annsea; Xu, Anting; Srouji, John R; Brenner, Steven E; Kirsch, Jack F

    2016-12-01

    The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74-compound library of known Nudix enzyme substrates. We found substrates for four enzymes with k cat /K m values >10,000 M -1  s -1 : Q92EH0_LISIN of Listeria innocua serovar 6a against ADP-ribose, Q5LBB1_BACFN of Bacillus fragilis against 5-Me-CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8-oxo-dATP and 3'-dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty-two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported k cat /K m values exhibited against these canonical substrates are well under 10 5 M -1  s -1 . By contrast, several Nudix enzymes show much larger k cat /K m values (in the range of 10 5 to >10 7 M -1  s -1 ) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810-1822. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. [Testing methods for the characterization of catheter balloons and lumina].

    PubMed

    Werner, C; Rössler, K; Deckert, F

    1995-10-01

    The present paper reports on the characterization of catheter balloons and lumina on the basis of such known parameters as residual volume, compliance, burst pressure and flow rate, with the aim of developing standards, test methods and testing equipment as well as standards. These are becoming ever more important with the coming into force of the EC directive on medical products [7] and the law governing medical products in Germany [13], which requires manufacturers to specify the properties of their products. Our testing concept is based on a commercially available machine that subjects materials to alternating extension and compression forces over the long-term, to which we added a special hydraulic module. Using the multimedia technology we achieved a real time superimposition of the volume-diameter curve on the balloon. The function of the testing device and method is demonstrated on dilatation catheters. Our initial results reveal compatibility with the requirements of the 1% accuracy class. Use of this methodology for comparative testing of catheters and quality evaluation is recommended.

  20. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts

    DOE PAGES

    Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; ...

    2016-09-19

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here in this paper, we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x) on reducible oxide supports (TiO 2more » and Nb 2O 5) that induce oxygen-vacancy formation in the support and cause HCO x-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2-reduction selectivity.« less

  1. A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Tiejun; Song, Xueyu

    A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less

  2. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    PubMed

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  3. Characterization of new regulatory elements within the Drosophila bithorax complex.

    PubMed

    Pérez-Lluch, Sílvia; Cuartero, Sergi; Azorín, Fernando; Espinàs, M Lluïsa

    2008-12-01

    The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.

  4. A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model

    DOE PAGES

    Xiao, Tiejun; Song, Xueyu

    2017-12-06

    A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less

  5. A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model

    NASA Astrophysics Data System (ADS)

    Xiao, Tiejun; Song, Xueyu

    2017-12-01

    A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.

  6. A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model.

    PubMed

    Xiao, Tiejun; Song, Xueyu

    2017-12-07

    A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.

  7. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciani, A.; Kewish, C. M.; Guizar-Sicairos, M.

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been outmore » of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.« less

  8. Lignin dimers: Structures, distribution, and potential geochemical applications

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1992-11-01

    An extensive suite of thirty lignin-derived phenolic dimers and fourteen additional monomers has been identified among the CuO reaction products of twenty-four different vascular plant tissues. The various lignin dimers are characterized by five different types of linkages between phenolic units, including direct 5,5'-ring-ring bonding, as well as β,1-diketone, α,1-monoketone, α,5-monoketone, and α,2-methyl sidechain-ring couplings. The new lignin-derived monomeric CuO reaction products include vanillyl and syringyl glyoxalic acids and vanillyl phenols with formyl and carboxyl functional groups attached at various ring positions. The distribution of all these novel compounds in twenty-four different vascular plant tissues indicates important differences in the structure and chemical composition of the lignin macromolecule among these sources. The abundances of these compounds in a selected set of sedimentary samples suggest that the lignin dimers and novel lignin monomers can characterize the ultrastructure, sources, and diagenetic state of sedimentary lignin in ways not possible from the routinely utilized lignin monomers alone.

  9. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy

    PubMed Central

    Zhong, Qian; Yin, Nai-Ning; Karsai, Arpad; da Rocha, Sandro R. P.; Liu, Gang-yu

    2015-01-01

    Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG), whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM) and scanning tunneling microscopy (STM), this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles. PMID:25685559

  10. Flame Structure and Dynamics for an Array of Premixed Methane-Air Jets

    NASA Astrophysics Data System (ADS)

    Nigam, Siddharth P.; Lapointe, Caelan; Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Rieker, Gregory B.; Hamlington, Peter E.

    2017-11-01

    Premixed flames have been studied extensively, both experimentally and computationally, and their properties are reasonably well characterized for a range of conditions and configurations. However, the premixed combustion process is potentially much more difficult to predict when many such flames are arranged in a closely spaced array. These arrays must be better understood, in particular, for the design of industrial burners used in chemical and heat treatment processes. Here, the effects of geometric array parameters (e.g., angle and diameter of jet inlets, number of inlets and their respective orientation) and operating conditions (e.g., jet velocities, fuel-air ratio) on flame structure and dynamics are studied using large eddy simulations (LES). The simulations are performed in OpenFOAM using multi-step chemistry for a methane-air mixture, and temperature and chemical composition fields are characterized for a variety of configurations as functions of height above the array. Implications of these results for the design and operation of industrial burners are outlined.

  11. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons

    PubMed Central

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X.Z. Shawn

    2016-01-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation has been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins, whose functions are largely unknown. Here, we characterize C. elegans TMC-1 which was suggested to form a Na+-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9 which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  12. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target

    PubMed Central

    Gothai, Sivapragasam; Ganesan, Palanivel; Park, Shin-Young; Fakurazi, Sharida; Choi, Dong-Kug; Arulselvan, Palanisamy

    2016-01-01

    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products’ derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications. PMID:27527213

  13. Anti-inflammatory and antioxidant properties of Piper species: a perspective from screening to molecular mechanisms.

    PubMed

    Kumar, Sarvesh; Malhotra, Shashwat; Prasad, Ashok K; Van der Eycken, Erik V; Bracke, Marc E; Stetler-Stevenson, William G; Parmar, Virinder S; Ghosh, Balaram

    2015-01-01

    Identifying novel therapeutic agents from natural sources and their possible intervention studies has been one of the major areas in biomedical research in recent years. Piper species are highly important - commercially, economically and medicinally. Our groups have been working for more than two decades on the identification and characterization of novel therapeutic lead molecules from Piper species. We have extensively studied the biological activities of various extracts of Piper longum and Piper galeatum, and identified and characterized novel molecules from these species. Using synthetic chemistry, various functional groups of the lead molecules were modified and structure activity relationship (SAR) studies identified synthetic molecules with better efficacy and lower IC50 values. Moreover, the mechanisms of actions of some of these molecules were studied at the molecular level. The objective of this review is to summarize experimental data published from our laboratories and others on antioxidant and anti-inflammatory potentials of Piper species and their chemical constituents.

  14. Wastewater characterization survey, Edwards Air Force Base, California. Final report, 17-28 February 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, R.P.

    1992-08-01

    A wastewater characterization survey was conducted at Edwards Air Force Base from 17-28 February 1992 by personnel from the Water Quality Function of Armstrong Laboratory. Extensive sampling of the treatment plant influent wastewater and sludge beds was performed as well as sampling at nine other sites in the base cantonment area. Some sampling of an Imhoff tank on North Base, five evaporation ponds and the lakebed was also conducted. Low levels of organic contamination were found in the influent and industrial sites downstream of Site 7. Site 7 is a manhole located in an identified Installation Restoration Program (IRP) site.more » Corrective actions were recommended to prevent organic soil contaminants from intruding into this site prior to the operation of a planned tertiary treatment plant. Organic and inorganic contaminants discharged at other industrial sites were found to be in low concentrations and indicated that good shop practices were followed in minimizing contamination of the wastewater with industrial chemicals.« less

  15. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    NASA Astrophysics Data System (ADS)

    Ciani, A.; Guizar-Sicairos, M.; Diaz, A.; Holler, M.; Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E.; Kewish, C. M.

    2016-01-01

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  16. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    PubMed

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  17. RNA Sequencing Reveals Differences between the Global Transcriptomes of Salmonella enterica Serovar Enteritidis Strains with High and Low Pathogenicities

    PubMed Central

    2014-01-01

    Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis. PMID:24271167

  18. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.

    PubMed

    Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I

    2018-04-14

    Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins.

    PubMed

    Palmieri, Ferdinando; Agrimi, Gennaro; Blanco, Emanuela; Castegna, Alessandra; Di Noia, Maria A; Iacobazzi, Vito; Lasorsa, Francesco M; Marobbio, Carlo M T; Palmieri, Luigi; Scarcia, Pasquale; Todisco, Simona; Vozza, Angelo; Walker, John

    2006-01-01

    The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.

  20. Understanding the Cellular Function of TRPV2 Channel through Generation of Specific Monoclonal Antibodies

    PubMed Central

    Cohen, Matthew R.; Huynh, Kevin W.; Cawley, Daniel; Moiseenkova-Bell, Vera Y.

    2013-01-01

    Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable nonselective cation channel proposed to play a critical role in a wide array of cellular processes. Although TRPV2 surface expression was originally determined to be sensitive to growth factor signaling, regulated trafficking of TRPV2 has remained controversial. TRPV2 has proven difficult to study due to the lack of specific pharmacological tools to modulate channel activity; therefore, most studies of the cellular function of TRPV2 rely on immuno-detection techniques. Polyclonal antibodies against TRPV2 have not been properly validated and characterized, which may contribute to conflicting results regarding its function in the cell. Here, we developed monoclonal antibodies using full-length TRPV2 as an antigen. Extensive characterization of these antibodies and comparison to commonly used commercially available TRPV2 antibodies revealed that while monoclonal antibodies generated in our laboratory were suitable for detection of endogenous TRPV2 by western blot, immunoprecipitation and immunocytochemistry, the commercially available polyclonal antibodies we tested were not able to recognize endogenous TRPV2. We used our newly generated and validated TRPV2 antibodies to determine the effects of insulin-like growth factor 1 (IGF-1) on TRPV2 surface expression in heterologous and endogenous expression systems. We found that IGF-1 had little to no effect on trafficking and plasma membrane expression of TRPV2. Overall, these new TRPV2 monoclonal antibodies served to dispel the controversy of the effects of IGF-1 on TRPV2 plasma membrane expression and will clarify the role TRPV2 plays in cellular function. Furthermore, our strategy of using full-length tetrameric TRP channels may allow for the generation of antibodies against other TRP channels of unclear function. PMID:24392006

  1. Understanding the cellular function of TRPV2 channel through generation of specific monoclonal antibodies.

    PubMed

    Cohen, Matthew R; Huynh, Kevin W; Cawley, Daniel; Moiseenkova-Bell, Vera Y

    2013-01-01

    Transient receptor potential vanilloid 2 (TRPV2) is a Ca(2+)-permeable nonselective cation channel proposed to play a critical role in a wide array of cellular processes. Although TRPV2 surface expression was originally determined to be sensitive to growth factor signaling, regulated trafficking of TRPV2 has remained controversial. TRPV2 has proven difficult to study due to the lack of specific pharmacological tools to modulate channel activity; therefore, most studies of the cellular function of TRPV2 rely on immuno-detection techniques. Polyclonal antibodies against TRPV2 have not been properly validated and characterized, which may contribute to conflicting results regarding its function in the cell. Here, we developed monoclonal antibodies using full-length TRPV2 as an antigen. Extensive characterization of these antibodies and comparison to commonly used commercially available TRPV2 antibodies revealed that while monoclonal antibodies generated in our laboratory were suitable for detection of endogenous TRPV2 by western blot, immunoprecipitation and immunocytochemistry, the commercially available polyclonal antibodies we tested were not able to recognize endogenous TRPV2. We used our newly generated and validated TRPV2 antibodies to determine the effects of insulin-like growth factor 1 (IGF-1) on TRPV2 surface expression in heterologous and endogenous expression systems. We found that IGF-1 had little to no effect on trafficking and plasma membrane expression of TRPV2. Overall, these new TRPV2 monoclonal antibodies served to dispel the controversy of the effects of IGF-1 on TRPV2 plasma membrane expression and will clarify the role TRPV2 plays in cellular function. Furthermore, our strategy of using full-length tetrameric TRP channels may allow for the generation of antibodies against other TRP channels of unclear function.

  2. Carbohydrate recognition by the antiviral lectin cyanovirin-N

    PubMed Central

    Fujimoto, Yukiji K.; Green, David F.

    2012-01-01

    Cyanovirin-N is a cyanobacterial lectin with potent antiviral activity, and has been the focus of extensive pre-clinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and Molecular-Mechanics/ Poisson–Boltzmann/Surface-Area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wildtype CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein–carbohydrate complexes. PMID:23057413

  3. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    NASA Astrophysics Data System (ADS)

    King, W. R.; Johnson, B. L., III

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.

  4. Molecular Evolutionary Characterization of a V1R Subfamily Unique to Strepsirrhine Primates

    PubMed Central

    Yoder, Anne D.; Chan, Lauren M.; dos Reis, Mario; Larsen, Peter A.; Campbell, C. Ryan; Rasoloarison, Rodin; Barrett, Meredith; Roos, Christian; Kappeler, Peter; Bielawski, Joseph; Yang, Ziheng

    2014-01-01

    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available. PMID:24398377

  5. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.

    PubMed

    Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G L; Fletcher-Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R; Wade-Martins, Richard; Cowley, Sally A; Talbot, Kevin

    2016-08-01

    An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons, decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis, reduced levels of the antiapoptotic protein Bcl-2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063-2078. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Early life stress is associated with default system integrity and emotionality during infancy.

    PubMed

    Graham, Alice M; Pfeifer, Jennifer H; Fisher, Philip A; Carpenter, Samuel; Fair, Damien A

    2015-11-01

    Extensive animal research has demonstrated the vulnerability of the brain to early life stress (ELS) with consequences for emotional development and mental health. However, the influence of moderate and common forms of stress on early human brain development is less well-understood and precisely characterized. To date, most work has focused on severe forms of stress, and/or on brain functioning years after stress exposure. In this report we focused on conflict between parents (interparental conflict), a common and relatively moderate form of ELS that is highly relevant for children's mental health outcomes. We used resting state functional connectivity MRI to examine the coordinated functioning of the infant brain (N = 23; 6-12-months-of-age) in the context of interparental conflict. We focused on the default mode network (DMN) due to its well-characterized developmental trajectory and implications for mental health. We further examined DMN strength as a mediator between conflict and infants' negative emotionality. Higher interparental conflict since birth was associated with infants showing stronger connectivity between two core DMN regions, the posterior cingulate cortex (PCC) and the anterior medial prefrontal cortex (aMPFC). PCC to amygdala connectivity was also increased. Stronger PCC-aMPFC connectivity mediated between higher conflict and higher negative infant emotionality. The developing DMN may be an important marker for effects of ELS with relevance for emotional development and subsequent mental health. Increasing understanding of the associations between common forms of family stress and emerging functional brain networks has potential to inform intervention efforts to improve mental health outcomes. © 2015 Association for Child and Adolescent Mental Health.

  7. Early life stress is associated with default system integrity and emotionality during infancy

    PubMed Central

    Graham, Alice M.; Pfeifer, Jennifer H.; Fisher, Philip A.; Carpenter, Samuel; Fair, Damien A.

    2015-01-01

    Background Extensive animal research has demonstrated the vulnerability of the brain to early life stress (ELS) with consequences for emotional development and mental health. However, the influence of moderate and common forms of stress on early human brain development is less well understood and precisely characterized. To date, most work has focused on severe forms of stress, and/or on brain functioning years after stress exposure. Methods In this report we focused on conflict between parents (interparental conflict), a common and relatively moderate form of ELS that is highly relevant for children's mental health outcomes. We used resting state functional connectivity MRI to examine the coordinated functioning of the infant brain (N=23; 6–12-months-of-age) in the context of interparental conflict. We focused on the default mode network (DMN) due to its well characterized developmental trajectory and implications for mental health. We further examined DMN strength as a mediator between conflict and infants’ negative emotionality. Results Higher interparental conflict since birth was associated with infants showing stronger connectivity between two core DMN regions, the posterior cingulate cortex (PCC) and the anterior medial prefrontal cortex (aMPFC). PCC to amygdala connectivity was also increased. Stronger PCC-aMPFC connectivity mediated between higher conflict and higher negative infant emotionality. Conclusions The developing DMN may be an important marker for effects of ELS with relevance for emotional development and subsequent mental health. Increasing understanding of the associations between common forms of family stress and emerging functional brain networks has potential to inform intervention efforts to improve mental health outcomes. PMID:25809052

  8. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays)

    PubMed Central

    Wang, Guifeng; Zhong, Mingyu; Wang, Gang; Song, Rentao

    2014-01-01

    The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses. PMID:24363426

  9. 3D numerical simulations of multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.

  10. Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster.

    PubMed

    Rui, Zhe; Ye, Min; Wang, Shuoguo; Fujikawa, Kaori; Akerele, Bankole; Aung, May; Floss, Heinz G; Zhang, Wenjun; Yu, Tin-Wein

    2012-09-21

    Phenazine-type metabolites arise from either phenazine-1-carboxylic acid (PCA) or phenazine-1,6-dicarboxylic acid (PDC). Although the biosynthesis of PCA has been studied extensively, PDC assembly remains unclear. Esmeraldins and saphenamycin, the PDC originated products, are antimicrobial and antitumor metabolites isolated from Streptomyces antibioticus Tü 2706. Herein, the esmeraldin biosynthetic gene cluster was identified on a dispensable giant plasmid. Twenty-four putative esm genes were characterized by bioinformatics, mutagenesis, genetic complementation, and functional protein expressions. Unlike enzymes involved in PCA biosynthesis, EsmA1 and EsmA2 together decisively promoted the PDC yield. The resulting PDC underwent a series of conversions to give 6-acetylphenazine-1-carboxylic acid, saphenic acid, and saphenamycin through a unique one-carbon extension by EsmB1-B5, a keto reduction by EsmC, and an esterification by EsmD1-D3, the atypical polyketide sythases, respectively. Two transcriptional regulators, EsmT1 and EsmT2, are required for esmeraldin production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    DTIC Science & Technology

    2016-01-05

    regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an interesting...regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an...analysis of thin film coatings, bulk materials, powders and nanoparticles . The instrument is extensively used to characterize advanced electrochemical and

  12. Development of a supercritical fluid chromatography method with ultraviolet and mass spectrometry detection for the characterization of biomass fast pyrolysis bio oils.

    PubMed

    Crepier, Julien; Le Masle, Agnès; Charon, Nadège; Albrieux, Florian; Heinisch, Sabine

    2017-08-11

    The characterization of complex mixtures is a challenging issue for the development of innovative processes dedicated to biofuels and bio-products production. The huge number of compounds present in biomass fast pyrolysis oils combined with the large diversity of chemical functions represent a bottleneck as regards analytical technique development. For the extensive characterization of complex samples, supercritical fluid chromatography (SFC) can be alternative to usual separation techniques such as gas (GC) or liquid chromatography (LC). In this study, an approach is proposed to define the best conditions for the SFC separation of a fast pyrolysis bio-oil. This approach was based on SFC data obtained directly from the bio-oil itself instead of selecting model compounds as usually done. SFC conditions were optimized by using three specific, easy-to-use and quantitative criteria aiming at maximizing the separation power. Polar stationary phases (ethylpyridine bonded silica) associated to a mix of acetonitrile and water as polarity modifier provided the best results, with more than 120 peaks detected in SFC-UV. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  14. Morpho-functional characterization of the systemic venous pole of the reptile heart.

    PubMed

    Jensen, Bjarke; Vesterskov, Signe; Boukens, Bastiaan J; Nielsen, Jan M; Moorman, Antoon F M; Christoffels, Vincent M; Wang, Tobias

    2017-07-27

    Mammals evolved from reptile-like ancestors, and while the mammalian heart is driven by a distinct sinus node, a sinus node is not apparent in reptiles. We characterized the myocardial systemic venous pole, the sinus venosus, in reptiles to identify the dominant pacemaker and to assess whether the sinus venosus remodels and adopts an atrium-like phenotype as observed in mammals. Anolis lizards had an extensive sinus venosus of myocardium expressing Tbx18. A small sub-population of cells encircling the sinuatrial junction expressed Isl1, Bmp2, Tbx3, and Hcn4, homologues of genes marking the mammalian sinus node. Electrical mapping showed that hearts of Anolis lizards and Python snakes were driven from the sinuatrial junction. The electrical impulse was delayed between the sinus venosus and the right atrium, allowing the sinus venosus to contract and aid right atrial filling. In proximity of the systemic veins, the Anolis sinus venosus expressed markers of the atrial phenotype Nkx2-5 and Gja5. In conclusion, the reptile heart is driven by a pacemaker region with an expression signature similar to that of the immature sinus node of mammals. Unlike mammals, reptiles maintain a sinuatrial delay of the impulse, allowing the partly atrialized sinus venosus to function as a chamber.

  15. Fish community-based measures of estuarine ecological quality and pressure-impact relationships

    NASA Astrophysics Data System (ADS)

    Fonseca, Vanessa F.; Vasconcelos, Rita P.; Gamito, Rita; Pasquaud, Stéphanie; Gonçalves, Catarina I.; Costa, José L.; Costa, Maria J.; Cabral, Henrique N.

    2013-12-01

    Community-based responses of fish fauna to anthropogenic pressures have been extensively used to assess the ecological quality of estuarine ecosystems. Several methodologies have been developed recently combining metrics reflecting community structure and function. A fish community facing significant environmental disturbances will be characterized by a simplified structure, with lower diversity and complexity. However, estuaries are naturally dynamic ecosystems exposed to numerous human pressures, making it difficult to distinguish between natural and anthropogenic-induced changes to the biological community. In the present work, the variability of several fish metrics was assessed in relation to different pressures in estuarine sites. The response of a multimetric index (Estuarine Fish Assessment Index) was also analysed. Overall, fish metrics and the multimetric index signalled anthropogenic stress, particularly environmental chemical pollution. The fish assemblage associated with this type of pressure was characterized by lower species diversity, lower number of functional guilds, lower abundance of marine migrants and of piscivorous individuals, and higher abundance of estuarine resident species. A decreased ecological quality status, based on the EFAI, was also determined for sites associated with this pressure group. Ultimately, the definition of each pressure groups favoured a stressor-specific analysis, evidencing pressure patterns and accounting for multiple factors in a highly dynamic environment.

  16. Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme.

    PubMed

    Koshani, Roya; Aminlari, Mahmoud

    2017-10-01

    The purpose of this study was to prepare, characterize and investigate physiochemical and functional attributes of hen egg white lysozyme (LZM) cross-linked with ultrasonic-treated tragacanth (US-treated TGC) under mild Maillard reactions conditions. FT-IR spectroscopy together with OPA assay revealed that covalent attachment of LZM with TCG's. Under optimum condition (pH=8.5, 60°C, RH=79%, 8 days), only one of the free amino group of LZM was blocked by TGC whereas under the same condition, US treated-TGC's blocked about three amino groups. The thermal stability of the LZM-TGC conjugates differed depending on the lengths of the main and branch chains. The microstructure of LZM-TGC conjugates was characterized by scanning electron microscopy. US-treated TGC-LZM exhibited improved solubility, emulsion properties, foam capacity and stability as compared with the native LZM. Since this gum is extensively used in food industry and application of LZM as a natural antimicrobial agents in different food systems is recommended and practiced in some countries, the results of this study indicates that a conjugated product of these two polymers combines different properties into one macromolecule and improves the property of each. These properties may make the conjugate an attractive food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of Ricin and R. communis Agglutinin Reference Materials.

    PubMed

    Worbs, Sylvia; Skiba, Martin; Söderström, Martin; Rapinoja, Marja-Leena; Zeleny, Reinhard; Russmann, Heiko; Schimmel, Heinz; Vanninen, Paula; Fredriksson, Sten-Åke; Dorner, Brigitte G

    2015-11-26

    Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon "gold standards" are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization-time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.

  18. The transcription factor SKN7 regulates conidiation, thermotolerance, apoptotic-like cell death and parasitism in the nematode endoparasitic fungus Hirsutella minnesotensis

    PubMed Central

    Hussain, Muzammil; Hamid, M. Imran; Wang, Niuniu; Bin, Lin; Xiang, Meichun; Liu, Xingzhong

    2016-01-01

    The transcription factor SKN7 is a highly conserved protein among fungi and was initially recognized as a response regulator that protects cells from oxidative stress and maintains cell wall integrity in yeast. Orthologs of SKN7 are extensively present in biocontrol agents of plant pathogens, but they had not been functionally characterized. Here, we identified and characterized the transcription factor SKN7 in the nematode endoparasitic fungus Hirsutella minnesotensis. Null mutant lacking HIM-SKN7 (HIM_03620), which was generated by a gene disruption strategy, demonstrated reduced conidiation, increased sensitivity to high temperature, hydrogen peroxide, mannitol and ethanol, and reduced fungal resistance to farnesol. However, over-expression mutant showed increased conidial production, thermotolerance and resistance to farnesol, suggesting that HIM-SKN7 regulates antiapoptotic-like cell death in H. minnesotensis. Moreover, the results showed that in null mutant, H. minnesotensis had decreased endoparasitic ability as compared to wild type and over-expression strain. During the infection process, the relative expression of the HIM-SKN7 gene was significantly induced in the wild type and over-expression strain. The results of the present study advance our understanding of the functions of the SKN7 gene in biocontrol agents, in particular, nematode endoparasitic fungi. PMID:27436205

  19. Functional and biochemical properties of Mal de Río Cuarto virus (Fijivirus, Reoviridae) P9-1 viroplasm protein show further similarities to animal reovirus counterparts.

    PubMed

    Maroniche, Guillermo A; Mongelli, Vanesa C; Peralta, Andrea V; Distéfano, Ana J; Llauger, Gabriela; Taboga, Oscar A; Hopp, Esteban H; del Vas, Mariana

    2010-09-01

    Mal de Río Cuarto virus (MRCV) is a plant virus of the genus Fijivirus within the family Reoviridae that infects several monocotyledonous species and is transmitted by planthoppers in a persistent and propagative manner. Other members of the family replicate in viral inclusion bodies (VIBs) termed viroplasms that are formed in the cytoplasm of infected plant and insect cells. In this study, the protein coded by the first ORF of MRCV segment S9 (P9-1) was shown to establish cytoplasmic inclusion bodies resembling viroplasms after transfection of Spodoptera frugiperda insect cells. In accordance, MRCV P9-1 self-associates giving rise to high molecular weight complexes when expressed in bacteria. Strong self-interaction was also evidenced by yeast two-hybrid assays. Furthermore, biochemical characterization showed that MRCV P9-1 bound single stranded RNA and had ATPase activity. Finally, the MRCV P9-1 region required for the formation of VIB-like structures was mapped to the protein carboxy-terminal half. This extensive functional and biochemical characterization of MRCV P9-1 revealed further similarities between plant and animal reovirus viroplasm proteins. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio).

    PubMed

    Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.

  1. Characterization of Ricin and R. communis Agglutinin Reference Materials

    PubMed Central

    Worbs, Sylvia; Skiba, Martin; Söderström, Martin; Rapinoja, Marja-Leena; Zeleny, Reinhard; Russmann, Heiko; Schimmel, Heinz; Vanninen, Paula; Fredriksson, Sten-Åke; Dorner, Brigitte G.

    2015-01-01

    Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon “gold standards” are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization–time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test. PMID:26703723

  2. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp. PMID:27058731

  3. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span

    PubMed Central

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-01-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabdtitis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new therapeutic strategies for addressing age-related degenerative changes. PMID:26918946

  4. Long-term supratentorial brain structure and cognitive function following cerebellar tumour resections in childhood.

    PubMed

    Moberget, T; Andersson, S; Lundar, T; Due-Tønnessen, B J; Heldal, A; Endestad, T; Westlye, L T

    2015-03-01

    The cerebellum is connected to extensive regions of the cerebrum, and cognitive deficits following cerebellar lesions may thus be related to disrupted cerebello-cerebral connectivity. Moreover, early cerebellar lesions could affect distal brain development, effectively inducing long-term changes in brain structure and cognitive function. Here, we characterize supratentorial brain structure and cognitive function in 20 adult patients treated for cerebellar tumours in childhood (mean age at surgery: 7.1 years) and 26 matched controls. Relative to controls, patients showed reduced cognitive function and increased grey matter density in bilateral cingulum, left orbitofrontal cortex and the left hippocampus. Within the patient group, increased grey matter density in these regions was associated with decreased performance on tests of processing speed and executive function. Further, diffusion tensor imaging revealed widespread alterations in white matter microstructure in patients. While current ventricle volume (an index of previous hydrocephalus severity it patients) was associated with grey matter density and white matter microstructure in patients, this could only partially account for the observed group differences in brain structure and cognitive function. In conclusion, our results show distal effects of cerebellar lesions on cerebral integrity and wiring, likely caused by a combination of neurodegenerative processes and perturbed neurodevelopment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 42 CFR 485.703 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Public health agency. An official agency established by a State or local government, the primary function... the primary site. The extension location is part of the rehabilitation agency. The extension location... function or activity and that— (1) Includes initial direction and periodic observation of the actual...

  6. 42 CFR 485.703 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Public health agency. An official agency established by a State or local government, the primary function... the primary site. The extension location is part of the rehabilitation agency. The extension location... function or activity and that— (1) Includes initial direction and periodic observation of the actual...

  7. 42 CFR 485.703 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Public health agency. An official agency established by a State or local government, the primary function... the primary site. The extension location is part of the rehabilitation agency. The extension location... function or activity and that— (1) Includes initial direction and periodic observation of the actual...

  8. 42 CFR 485.703 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Public health agency. An official agency established by a State or local government, the primary function... the primary site. The extension location is part of the rehabilitation agency. The extension location... function or activity and that— (1) Includes initial direction and periodic observation of the actual...

  9. 42 CFR 485.703 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Public health agency. An official agency established by a State or local government, the primary function... the primary site. The extension location is part of the rehabilitation agency. The extension location... function or activity and that— (1) Includes initial direction and periodic observation of the actual...

  10. Increasing accuracy in the interval analysis by the improved format of interval extension based on the first order Taylor series

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yan Long

    2018-05-01

    When the dependence of the function on uncertain variables is non-monotonic in interval, the interval of function obtained by the classic interval extension based on the first order Taylor series will exhibit significant errors. In order to reduce theses errors, the improved format of the interval extension with the first order Taylor series is developed here considering the monotonicity of function. Two typical mathematic examples are given to illustrate this methodology. The vibration of a beam with lumped masses is studied to demonstrate the usefulness of this method in the practical application, and the necessary input data of which are only the function value at the central point of interval, sensitivity and deviation of function. The results of above examples show that the interval of function from the method developed by this paper is more accurate than the ones obtained by the classic method.

  11. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives.

    PubMed

    Sun, Jirun; Petersen, Elijah J; Watson, Stephanie S; Sims, Christopher M; Kassman, Alexander; Frukhtbeyn, Stanislav; Skrtic, Drago; Ok, Meryem T; Jacobs, Debbie S; Reipa, Vytas; Ye, Qiang; Nelson, Bryant C

    2017-04-15

    It is demonstrated that carboxylic acid-functionalized titanium dioxide (TiO 2 ) NPs produce significantly higher levels of reactive oxygen species (ROS) after visible light irradiation (400-800nm, 1600mW/cm 2 ) in comparison to nonfunctionalized TiO 2 NPs. The level of ROS produced under these irradiation conditions was not capable of generating oxidatively induced DNA damage in a cell-free system for TiO 2 concentrations of 0.5mg/L or 5mg/L. In addition, specific incorporation of the acrylic acid-functionalized TiO 2 NPs into dental composites allowed us to utilize the generated ROS to enhance photopolymerization (curing and degree of vinyl conversion (DC)) of resin adhesives and create mechanically superior and biocompatible materials for dental applications. Incorporation of the TiO 2 NPs into selected dental composites increased the mean DC values by ≈7%. The modified TiO 2 materials and dental composite materials were extensively characterized using thermogravimetric analysis, electron microscopy, Fourier transform infrared spectroscopy, and electron paramagnetic resonance. Notably, dental adhesives incorporated with acrylic acid-functionalized TiO 2 NPs produced stronger bonds to human teeth following visible light curing in comparison to traditional dental adhesives not containing NPs with an increase in the shear bond strength of ≈29%. In addition, no leaching of the incorporated NPs was detectable from the dental adhesives after 2500 thermal cycles using inductively coupled plasma-optical emission spectroscopy, indicating that biocompatibility of the adhesives was not compromised after extensive aging. These findings suggest that NP-induced ROS may be useful to produce enhanced nanocomposite materials for selected applications in the medical device field. Titanium dioxide nanoparticles (TiO 2 NPs) have unique photocatalytic, antibacterial and UV-absorbing properties that make them beneficial additives in adhesives and composites. However, there is concern that the reactive oxygen species (ROS) produced by photoactivated TiO 2 NPs might pose toxicological risks. We demonstrate that it is possible to incorporate acid-functionalized TiO 2 NPs into dental resins which can be applied as dental adhesives to human teeth. The ROS generated by these NPs through visible-light irradiation may be utilized to increase the degree of vinyl conversion of resins, leading to adhesives that have an enhanced shear-bond strength to human teeth. Investigation into the potential genotoxicity of the NPs and their potential for release from dental composites indicated a low risk of genotoxic effects. Published by Elsevier Ltd.

  12. Extensions of PDZ domains as important structural and functional elements.

    PubMed

    Wang, Conan K; Pan, Lifeng; Chen, Jia; Zhang, Mingjie

    2010-08-01

    'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.

  13. The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed Central

    de la Cruz, Jesús; Lacombe, Thierry; Deloche, Olivier; Linder, Patrick; Kressler, Dieter

    2004-01-01

    Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele. PMID:15126390

  14. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  15. Cortical maturation and myelination in healthy toddlers and young children.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan

    2015-07-15

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development. Copyright © 2015. Published by Elsevier Inc.

  16. Phytophthora parasitica Effector PpRxLR2 Suppresses Nicotiana benthamiana Immunity.

    PubMed

    Dalio, R J D; Maximo, H J; Oliveira, T S; Dias, R O; Breton, M C; Felizatti, H; Machado, M

    2018-04-01

    Phytophthora species secrete several classes of effector proteins during interaction with their hosts. These proteins can have multiple functions including modulation of host physiology and immunity. The RxLR effectors have the ability to enter plant cells using the plant machinery. Some of these effectors have been characterized as immunity suppressors; however, very little is known about their functions in the interaction between Phytophthora parasitica and its hosts. Using a bioinformatics pipeline, we have identified 172 candidate RxLR effectors (CREs) in the isolate IAC 01_95 of P. parasitica. Of these 172 CREs, 93 were found to be also present in eight other genomes of P. parasitica, isolated from different hosts and continents. After transcriptomics and gene expression analysis, we have found five CREs to be up-regulated in in-vitro and in-planta samples. Subsequently, we selected three CREs for functional characterization in the model plant Nicotiana benthamiana. We show that PpRxLR2 is able to completely suppress INF-1-induced cell death, whereas PpRxLR3 and PpRxLR5 moderately suppressed N. benthamiana immunity in a less-extensive manner. Moreover, we confirmed the effector-triggered susceptibility activity of these proteins after transient transformation and infection of N. benthamiana plants. All three CREs enhanced virulence of P. parasitica during the interaction with N. benthamiana. These effectors, in particular PpRxLR2, can be targeted for the development of biotechnology-based control strategies of P. parasitica diseases.

  17. On the role of self-adjointness in the continuum formulation of topological quantum phases

    NASA Astrophysics Data System (ADS)

    Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak

    2016-11-01

    Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.

  18. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC.

    PubMed

    Totten, Sarah M; Feasley, Christa L; Bermudez, Abel; Pitteri, Sharon J

    2017-03-03

    Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655.

  19. Breeding objectives for pigs in Kenya. I: bio-economic model development and application to smallholder production systems.

    PubMed

    Mbuthia, Jackson M; Rewe, Thomas O; Kahi, Alexander K

    2015-02-01

    A deterministic bio-economic model was developed and applied to evaluate biological and economic variables that characterize smallholder pig production systems in Kenya. Two pig production systems were considered namely, semi-intensive (SI) and extensive (EX). The input variables were categorized into biological variables including production and functional traits, nutritional variables, management variables and economic variables. The model factored the various sow physiological systems including gestation, farrowing, lactation, growth and development. The model was developed to evaluate a farrow to finish operation, but the results were customized to account for a farrow to weaner operation for a comparative analysis. The operations were defined as semi-intensive farrow to finish (SIFF), semi-intensive farrow to weaner (SIFW), extensive farrow to finish (EXFF) and extensive farrow to weaner (EXFW). In SI, the profits were the highest at KES. 74,268.20 per sow per year for SIFF against KES. 4026.12 for SIFW. The corresponding profits for EX were KES. 925.25 and KES. 626.73. Feed costs contributed the major part of the total costs accounting for 67.0, 50.7, 60.5 and 44.5 % in the SIFF, SIFW, EXFF and EXFW operations, respectively. The bio-economic model developed could be extended with modifications for use in deriving economic values for breeding goal traits for pigs under smallholder production systems in other parts of the tropics.

  20. Roles of NHERF Family of PDZ-Binding Proteins in Regulating GPCR Functions.

    PubMed

    Broadbent, David; Ahmadzai, Mohammad M; Kammala, Ananth K; Yang, Canchai; Occhiuto, Christopher; Das, Rupali; Subramanian, Hariharan

    2017-01-01

    Multicellular organisms are equipped with an array of G-protein-coupled receptors (GPCRs) that mediate cell-cell signaling allowing them to adapt to environmental cues and ultimately survive. This is mechanistically possible through complex intracellular GPCR machinery that encompasses a vast network of proteins. Within this network, there is a group called scaffolding proteins that facilitate proper localization of signaling proteins for a quick and robust GPCR response. One protein family within this scaffolding group is the PSD-95/Dlg/ZO-1 (PDZ) family which is important for GPCR localization, internalization, recycling, and downstream signaling. Although the PDZ family of proteins regulate the functions of several receptors, this chapter focuses on a subfamily within the PDZ protein family called the Na + /H + exchanger regulatory factors (NHERFs). Here we extensively review the predominantly characterized roles of NHERFs in renal phosphate absorption, intestinal ion regulation, cancer progression, and immune cell functions. Finally, we discuss the future perspectives and possible clinical application of targeting NHERFs in several disorders. © 2017 Elsevier Inc. All rights reserved.

  1. PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer.

    PubMed

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Matteoni, Silvia; Sacconi, Andrea; De Luca, Teresa; Bazzichetto, Chiara; Corbo, Vincenzo; Simbolo, Michele; Sperduti, Isabella; Benfante, Antonina; Del Curatolo, Anais; Cesta Incani, Ursula; Malusa, Federico; Eramo, Adriana; Sette, Giovanni; Scarpa, Aldo; Konopleva, Marina; Andreeff, Michael; McCubrey, James Andrew; Blandino, Giovanni; Todaro, Matilde; Stassi, Giorgio; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Ciuffreda, Ludovica

    2017-02-21

    Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies.

  2. PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Matteoni, Silvia; Sacconi, Andrea; De Luca, Teresa; Bazzichetto, Chiara; Corbo, Vincenzo; Simbolo, Michele; Sperduti, Isabella; Benfante, Antonina; Del Curatolo, Anais; Cesta Incani, Ursula; Malusa, Federico; Eramo, Adriana; Sette, Giovanni; Scarpa, Aldo; Konopleva, Marina; Andreeff, Michael; McCubrey, James Andrew; Blandino, Giovanni; Todaro, Matilde; Stassi, Giorgio; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Ciuffreda, Ludovica

    2017-01-01

    Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies. PMID:28220839

  3. Synthetic plant virology for nanobiotechnology and nanomedicine.

    PubMed

    Steele, John F C; Peyret, Hadrien; Saunders, Keith; Castells-Graells, Roger; Marsian, Johanna; Meshcheriakova, Yulia; Lomonossoff, George P

    2017-07-01

    Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website. © 2017 John Innes Centre. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology Published by Wiley Periodicals, Inc.

  4. Characterization of the Asian citrus psyllid transcriptome

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (Diaphorina citri Kuwayama) and other psyllids are important agricultural pests that cause extensive economic damage by feeding and as vectors of plant pathogens. No psyllid genomes have been characterized, and little is known about the composition of psyllid genomes or the ...

  5. A hydrostatic stress-dependent anisotropic model of viscoplasticity

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Tao, Q.; Verrilli, M. J.

    1994-01-01

    A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).

  6. Inhibitory control is not lateralized in Parkinson's patients.

    PubMed

    Mirabella, G; Fragola, M; Giannini, G; Modugno, N; Lakens, Daniel

    2017-07-28

    Parkinson's disease (PD) is often characterized by asymmetrical symptoms, which are more prominent on the side of the body contralateral to the most extensively affected brain hemisphere. Therefore, lateralized PD presents an opportunity to examine the effects of asymmetric subcortical dopamine deficiencies on cognitive functioning. As it has been hypothesized that inhibitory control relies upon a right-lateralized pathway, we tested whether left-dominant PD (LPD) patients suffered from a more severe deficit in this key executive function than right-dominant PD patients (RPD). To this end, via a countermanding task, we assessed both proactive and reactive inhibition in 20 LPD and 20 RPD patients, and in 20 age-matched healthy subjects. As expected, we found that PD patients were significantly more impaired in both forms of inhibitory control than healthy subjects. However, there were no differences either in reactive or proactive inhibition between LPD and RPD patients. All in all, these data support the idea that brain regions affected by PD play a fundamental role in subserving inhibitory function, but do not sustain the hypothesis according to which this executive function is predominantly or solely computed by the brain regions of the right hemisphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nanotopography-guided tissue engineering and regenerative medicine.

    PubMed

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2013-04-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    PubMed

    Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling

    2015-01-01

    Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  9. EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Hillebrand, Arjan; Cuccu, Lorenza; Porcu, Silvia; di Stefano, Francesca; Puligheddu, Monica; Floris, Gianluca; Borghero, Giuseppe; Marrosu, Francesco

    2016-12-01

    Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, which is known to affect upper and lower motor neurons. In contrast to the classical tenet that ALS represents the outcome of extensive and progressive impairment of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast non-motor connections. Here, we hypothesised that functional network topology is perturbed in ALS, and that this reorganization is associated with disability. We tested this hypothesis in 21 patients affected by ALS at several stages of impairment using resting-state electroencephalography (EEG) and compared the results to 16 age-matched healthy controls. We estimated functional connectivity using the Phase Lag Index (PLI), and characterized the network topology using the minimum spanning tree (MST). We found a significant difference between groups in terms of MST dissimilarity and MST leaf fraction in the beta band. Moreover, some MST parameters (leaf, hierarchy and kappa) significantly correlated with disability. These findings suggest that the topology of resting-state functional networks in ALS is affected by the disease in relation to disability. EEG network analysis may be of help in monitoring and evaluating the clinical status of ALS patients.

  10. Molecular Characterization of LubX: Functional Divergence of the U-Box Fold by Legionella pneumophila.

    PubMed

    Quaile, Andrew T; Urbanus, Malene L; Stogios, Peter J; Nocek, Boguslaw; Skarina, Tatiana; Ensminger, Alexander W; Savchenko, Alexei

    2015-08-04

    LubX is part of the large arsenal of effectors in Legionella pneumophila that are translocated into the host cytosol during infection. Despite such unique features as the presence of two U-box motifs and its targeting of another effector SidH, the molecular basis of LubX activity remains poorly understood. Here we show that the N terminus of LubX is able to activate an extended number of ubiquitin-conjugating (E2) enzymes including UBE2W, UBEL6, and all tested members of UBE2D and UBE2E families. Crystal structures of LubX alone and in complex with UBE2D2 revealed drastic molecular diversification between the two U-box domains, with only the N-terminal U-box retaining E2 recognition features typical for its eukaryotic counterparts. Extensive mutagenesis followed by functional screening in a yeast model system captured functionally important LubX residues including Arg121, critical for interactions with SidH. Combined, these data provide a new molecular insight into the function of this unique pathogenic factor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    PubMed

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  12. An object oriented extension to CLIPS

    NASA Technical Reports Server (NTRS)

    Sobkowicz, Clifford

    1990-01-01

    A presentation of software sub-system developed to augment C Language Production Systems (CLIPS) with facilities for object oriented Knowledge representation. Functions are provided to define classes, instantiate objects, access attributes, and assert object related facts. This extension is implemented via the CLIPS user function interface and does not require modification of any CLIPS code. It does rely on internal CLIPS functions for memory management and symbol representation.

  13. An Overview of Agricultural Extension Systems: The Territory, Recent Developments and Recommended Directions.

    ERIC Educational Resources Information Center

    Rivera, William M.

    This overview is composed of four major sections. Part I is a map of agricultural extension's "territory," that is, the definitions and systems. It discusses extension functions in agricultural production institutions and varying institutional settings, describes types of extension systems, and considers farmers' degree of influence on extension…

  14. On the origin of heavy-tail statistics in equations of the Nonlinear Schrödinger type

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Proment, Davide; El, Gennady; Randoux, Stephane; Suret, Pierre

    2016-09-01

    We study the formation of extreme events in incoherent systems described by the Nonlinear Schrödinger type of equations. We consider an exact identity that relates the evolution of the normalized fourth-order moment of the probability density function of the wave envelope to the rate of change of the width of the Fourier spectrum of the wave field. We show that, given an initial condition characterized by some distribution of the wave envelope, an increase of the spectral bandwidth in the focusing/defocusing regime leads to an increase/decrease of the probability of formation of rogue waves. Extensive numerical simulations in 1D+1 and 2D+1 are also performed to confirm the results.

  15. A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation.

    PubMed

    Ganey, Timothy M; Meisel, Hans Joerg

    2002-10-01

    Lower back pain and disc degeneration negatively affect quality of life and impose an enormous financial burden. An extensive body of scientific work has evolved that characterizes the disc, demonstrating spinal anatomy and morphology that contribute to risk and likely promote failure. Ultimately, matrix failure is responsible for mechanical failure, which in turn results in spinal compromise anatomically and subsequent pain. One intervening approach to breaking this sequence has been to repopulate the anatomy with autologous disc chondrocytes--cells capable of restoring the matrix and retaining the mechanical balance by which the disc functions. This strategy has been implemented both in patients and in animal models, and early results, although preliminary, support the premise as a positive approach.

  16. Influence of TESG layer viscoelasticity on the imaging properties of microlenses

    NASA Astrophysics Data System (ADS)

    Vasiljević, Darko; Murić, Branka; Pantelić, Dejan; Panić, Bratimir

    2012-05-01

    Microlenses were produced by the irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) with laser light (second harmonic Nd:YAG, 532 nm). For this research, eight microlenses were written on a dog-bone-shaped TESG layer. After production, microlenses were uniaxially stretched on a tensile testing machine. Each microlens had different amounts of strain (0, 30, 60, 80, 120, 140, 180 and 240% strain). The influence of TESG layer extensibility on the imaging properties of microlenses was characterized by calculating the root mean square wavefront aberration, the modulation transfer function and the geometrical spot diagram. All microlenses had very good imaging properties and the microlens with 0% strain had diffraction-limited performance.

  17. Axons take a dive

    PubMed Central

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  18. Rapid Monte Carlo Simulation of Gravitational Wave Galaxies

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2015-01-01

    With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.

  19. Xi-CAM v1.2.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PANDOLFI, RONALD; KUMAR, DINESH; VENKATAKRISHNAN, SINGANALLUR

    Xi-CAM aims to provide a community driven platform for multimodal analysis in synchrotron science. The platform core provides a robust plugin infrastructure for extensibility, allowing continuing development to simply add further functionality. Current modules include tools for characterization with (GI)SAXS, Tomography, and XAS. This will continue to serve as a development base as algorithms for multimodal analysis develop. Seamless remote data access, visualization and analysis are key elements of Xi-CAM, and will become critical to synchrotron data infrastructure as expectations for future data volume and acquisition rates rise with continuously increasing throughputs. The highly interactive design elements of Xi-cam willmore » similarly support a generation of users which depend on immediate data quality feedback during high-throughput or burst acquisition modes.« less

  20. Geometric error analysis for shuttle imaging spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.

    1984-01-01

    The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

  1. Bubble deformations and segmented flows in corrugated microchannels at large capillary numbers

    NASA Astrophysics Data System (ADS)

    Sauzade, Martin; Cubaud, Thomas

    2018-03-01

    We experimentally investigate the interaction between individual bubble deformations and collective distortions of segmented flows in nonlinear microfluidic geometries. Using highly viscous carrier fluids, we study the evolution of monodisperse trains of gas bubbles from a square to a smoothly corrugated microchannel characterized with a series of extensions and constrictions along the flow path. The hysteresis in the bubble shape between accelerating and decelerating flow fields is shown to increase with the capillary number. Measurements of instantaneous bubble velocities reveal the presence of a capillary pull that produces a nonmonotonic behavior for the front velocity in accelerating flow regions. Functional relationships are developed for predicting the morphology and dynamics of viscous multiphase flow patterns at the pore scale.

  2. Eddy current characterization of magnetic treatment of materials

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1992-01-01

    Eddy current impedance measuring methods have been applied to study the effect that magnetically treated materials have on service life extension. Eddy current impedance measurements have been performed on Nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in a material's electromagnetic properties and does exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic-field processing effect on machine tool service life.

  3. Dissection of C. elegans behavioral genetics in 3-D environments

    PubMed Central

    Kwon, Namseop; Hwang, Ara B.; You, Young-Jai; V. Lee, Seung-Jae; Ho Je, Jung

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments. PMID:25955271

  4. Sleep Extension Improves Neurocognitive Functions in Chronically Sleep-Deprived Obese Individuals

    PubMed Central

    Lucassen, Eliane A.; Piaggi, Paolo; Dsurney, John; de Jonge, Lilian; Zhao, Xiong-ce; Mattingly, Megan S.; Ramer, Angela; Gershengorn, Janet; Csako, Gyorgy; Cizza, Giovanni

    2014-01-01

    Background Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals. Objective To characterize neurocognitive functions and assess its reversibility. Design Prospective cohort study. Setting Tertiary Referral Research Clinical Center. Patients A cohort of 121 short-sleeping (<6.5 h/night) obese (BMI 30–55 kg/m2) men and pre-menopausal women. Intervention Sleep extension (468±88 days) with life-style modifications. Measurements Neurocognitive functions, sleep quality and sleep duration. Results At baseline, 44% of the individuals had an impaired global deficit score (t-score 0–39). Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02), and lower urinary dopamine levels (p = 0.001). Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74), subjective sleep quality improved by 24% (p<0.001), self-reported sleep duration increased by 11% by questionnaires (p<0.001) and by 4% by diaries (p = 0.04), and daytime sleepiness tended to improve (p = 0.10). Global cognitive function and attention improved by 7% and 10%, respectively (both p = 0.001), and memory and executive functions tended to improve (p = 0.07 and p = 0.06). Serum cortisol increased by 17% (p = 0.02). In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function. Limitations Drop-out rate. Conclusions Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population. Trail registration www.ClinicalTrials.gov NCT00261898. NIDDK protocol 06-DK-0036 PMID:24482677

  5. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  6. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.

    PubMed

    Pasta, Saloni Yatin; Raman, Bakthisaran; Ramakrishna, Tangirala; Rao, Ch Mohan

    2002-11-29

    Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.

  7. Research Area 3: Mathematical Sciences: 3.4, Discrete Mathematics and Computer Science

    DTIC Science & Technology

    2015-06-10

    013-0043-1 Charles Chui, Hrushikesh Mhaskar. MRA contextual-recovery extension of smooth functions on manifolds, Applied and Computational Harmonic...753507. International Society for Optics and Photonics, 2010. [5] C. K. Chui and H. N. Mhaskar. MRA contextual-recovery extension of smooth functions on

  8. Inertial subsystem functional and design requirements for the orbiter (Phase B extension baseline)

    NASA Technical Reports Server (NTRS)

    Flanders, J. H.; Green, J. P., Jr.

    1972-01-01

    The design requirements use the Phase B extension baseline system definition. This means that a GNC computer is specified for all command control functions instead of a central computer communicating with the ISS through a databus. Forced air cooling is used instead of cold plate cooling.

  9. Molecular characterization of a clinical Bordetella bronchiseptica strain isolated from a cystic fibrosis patient

    USDA-ARS?s Scientific Manuscript database

    While not considered a human pathogen, B. bronchiseptica infections in humans are reported and demonstrate zoonotic transmission into humans. An extensive characterization of these strains is needed to better understand the genetic and phenotypic traits associated with these zoonotic transmission ev...

  10. Characterization And Dissolution Properties Of Ruthenium Oxides

    EPA Science Inventory

    Ruthenium oxides (RuO2•1.10H2O and RuO2) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation ...

  11. Assessment of personality-related levels of functioning: a pilot study of clinical assessment of the DSM-5 level of personality functioning based on a semi-structured interview.

    PubMed

    Thylstrup, Birgitte; Simonsen, Sebastian; Nemery, Caroline; Simonsen, Erik; Noll, Jane Fjernestad; Myatt, Mikkel Wanting; Hesse, Morten

    2016-08-25

    The personality disorder categories in the Diagnostic and Statistical Manual of Mental Disorders IV have been extensively criticized, and there is a growing consensus that personality pathology should be represented dimensionally rather than categorically. The aim of this pilot study was to test the Clinical Assessment of the Level of Personality Functioning Scale, a semi-structured clinical interview, designed to assess the Level of Personality Functioning Scale of the DSM-5 (Section III) by applying strategies similar to what characterizes assessments in clinical practice. The inter-rater reliability of the assessment of the four domains and the total impairment in the Level of Personality Functioning Scale were measured in a patient sample that varied in terms of severity and type of pathology. Ratings were done independently by the interviewer and two experts who watched a videotaped Clinical Assessment of the Level of Personality Functioning Scale interview. Inter-rater reliability coefficients varied between domains and were not sufficient for clinical practice, but may support the use of the interview to assess the dimensions of personality functioning for research purposes. While designed to measure the Level of Personality Functioning Scale with a high degree of similarity to clinical practice, the Clinical Assessment of the Level of Personality Functioning Scale had weak reliabilities and a rating based on a single interview should not be considered a stand-alone assessment of areas of functioning for a given patient.

  12. Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine

    DOE PAGES

    Tykvart, Jan; Bařinka, Cyril; Svoboda, Michal; ...

    2015-03-09

    N-acetylated α-linked acidic dipeptidase-like protein (NAALADase L), encoded by the NAALADL1 gene, is a close homolog of glutamate carboxypeptidase II, a metallopeptidase that has been intensively studied as a target for imaging and therapy of solid malignancies and neuropathologies. However, neither the physiological functions nor structural features of NAALADase L are known at present. In this paper, we report a thorough characterization of the protein product of the human NAALADL1 gene, including heterologous overexpression and purification, structural and biochemical characterization, and analysis of its expression profile. By solving the NAALADase L x-ray structure, we provide the first experimental evidence thatmore » it is a zinc-dependent metallopeptidase with a catalytic mechanism similar to that of glutamate carboxypeptidase II yet distinct substrate specificity. A proteome-based assay revealed that the NAALADL1 gene product possesses previously unrecognized aminopeptidase activity but no carboxy- or endopeptidase activity. These findings were corroborated by site-directed mutagenesis and identification of bestatin as a potent inhibitor of the enzyme. Analysis of NAALADL1 gene expression at both the mRNA and protein levels revealed the small intestine as the major site of protein expression and points toward extensive alternative splicing of the NAALADL1 gene transcript. Taken together, our data imply that the NAALADL1 gene product's primary physiological function is associated with the final stages of protein/peptide digestion and absorption in the human digestive system. Finally, based on these results, we suggest a new name for this enzyme: human ileal aminopeptidase (HILAP).« less

  13. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.

    PubMed

    Theek, Benjamin; Gremse, Felix; Kunjachan, Sijumon; Fokong, Stanley; Pola, Robert; Pechar, Michal; Deckers, Roel; Storm, Gert; Ehling, Josef; Kiessling, Fabian; Lammers, Twan

    2014-05-28

    The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of <0.02. These findings indicate that ceUS can be used to characterize and predict EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia.

    PubMed

    Zhang, Jiaqi; Guo, Cong; Liu, Guofeng; Li, Zhineng; Li, Xiaomei; Bao, Manzhu

    2011-03-01

    Flower development has been extensively characterized in the model species Arabidopsis thaliana and Antirrhinum majus. However, there have been few studies in woody species. Here, we report the isolation and characterization of five PISTILLATA (PI) homoeologous genes (PaPI1-to-5) from the London Plane tree (Platanus acerifolia Willd). PaPI1 and PaPI2 show a similar genomic structure to other known PI homoeologs, but PaPI3/4/5 lack intron sequences. In addition, PaPI5 lacks the third, fourth and fifth exons which encode the K-domain. These altered gene copies may have originated as 'processed' retrogenes. PaPI2 appears micro-regulated by alternative splicing, displaying three splice forms (PaPI2a, PaPI2b and PaPI2c). RT-PCR analysis showed different expression profiles and transcript abundance for the five PaPI genes. PaPI transcripts encoding full-length polypeptides were expressed predominantly in male/female inflorescences and PaPI2a was the most abundant transcript (59%) indicating that PaPI2 may be the major functional PI-homoeolog in London Plane. Phenotypic characterization in a heterologous expression system demonstrated that the full-length PaPI product functions as a B class gene. By contrast the PaPI5 form, which lacks the K-domain, had no apparent effect on flower development. In vitro studies also demonstrated that the K-domain is required to form PaPI/PaAP3 heterodimers. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  16. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  17. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed Central

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-01-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392

  18. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-11-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.

  19. Structure-function relationships between aldolase C/zebrin II expression and complex spike synchrony in the cerebellum.

    PubMed

    Tsutsumi, Shinichiro; Yamazaki, Maya; Miyazaki, Taisuke; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu; Kitamura, Kazuo

    2015-01-14

    Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals. Copyright © 2015 the authors 0270-6474/15/350843-10$15.00/0.

  20. Structural Feature Ions for Distinguishing N- and O-Linked Glycan Isomers by LC-ESI-IT MS/MS

    NASA Astrophysics Data System (ADS)

    Everest-Dass, Arun V.; Abrahams, Jodie L.; Kolarich, Daniel; Packer, Nicolle H.; Campbell, Matthew P.

    2013-06-01

    Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.

  1. Principal Physicochemical Methods Used to Characterize Dendrimer Molecule Complexes Used as Genetic Therapy Agents, Nanovaccines or Drug Carriers.

    PubMed

    Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Manuel Jonathan, Fragoso Vázquez; José, Correa Basurto

    2017-08-30

    Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic aciddendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. BBSome function is required for both the morphogenesis and maintenance of the photoreceptor outer segment

    PubMed Central

    Hsu, Ying; Kim, Gunhee; Zhang, Qihong; Datta, Poppy; Seo, Seongjin

    2017-01-01

    Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated. PMID:29049287

  3. Scrutinizing human MHC polymorphism: Supertype analysis using Poisson-Boltzmann electrostatics and clustering.

    PubMed

    Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R

    2017-10-01

    Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    PubMed

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  5. Chloride Channelopathies of ClC-2

    PubMed Central

    Bi, Miao Miao; Hong, Sen; Zhou, Hong Yan; Wang, Hong Wei; Wang, Li Na; Zheng, Ya Juan

    2014-01-01

    Chloride channels (ClCs) have gained worldwide interest because of their molecular diversity, widespread distribution in mammalian tissues and organs, and their link to various human diseases. Nine different ClCs have been molecularly identified and functionally characterized in mammals. ClC-2 is one of nine mammalian members of the ClC family. It possesses unique biophysical characteristics, pharmacological properties, and molecular features that distinguish it from other ClC family members. ClC-2 has wide organ/tissue distribution and is ubiquitously expressed. Published studies consistently point to a high degree of conservation of ClC-2 function and regulation across various species from nematodes to humans over vast evolutionary time spans. ClC-2 has been intensively and extensively studied over the past two decades, leading to the accumulation of a plethora of information to advance our understanding of its pathophysiological functions; however, many controversies still exist. It is necessary to analyze the research findings, and integrate different views to have a better understanding of ClC-2. This review focuses on ClC-2 only, providing an analytical overview of the available literature. Nearly every aspect of ClC-2 is discussed in the review: molecular features, biophysical characteristics, pharmacological properties, cellular function, regulation of expression and function, and channelopathies. PMID:24378849

  6. Replicability of time-varying connectivity patterns in large resting state fMRI samples.

    PubMed

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D

    2017-12-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Replicability of time-varying connectivity patterns in large resting state fMRI samples

    PubMed Central

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L.; Stephen, Julia M.; Claus, Eric D.; Mayer, Andrew R.; Calhoun, Vince D.

    2018-01-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. PMID:28916181

  8. Effect of Liver Disease on Hepatic Transporter Expression and Function.

    PubMed

    Thakkar, Nilay; Slizgi, Jason R; Brouwer, Kim L R

    2017-09-01

    Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.

    PubMed

    Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis

    2015-02-01

    Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. © 2014 Wiley Periodicals, Inc.

  10. Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.

    PubMed

    Gibbons, John G; Rokas, Antonis

    2009-03-01

    Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.

  11. Type Safe Extensible Programming

    NASA Astrophysics Data System (ADS)

    Chae, Wonseok

    2009-10-01

    Software products evolve over time. Sometimes they evolve by adding new features, and sometimes by either fixing bugs or replacing outdated implementations with new ones. When software engineers fail to anticipate such evolution during development, they will eventually be forced to re-architect or re-build from scratch. Therefore, it has been common practice to prepare for changes so that software products are extensible over their lifetimes. However, making software extensible is challenging because it is difficult to anticipate successive changes and to provide adequate abstraction mechanisms over potential changes. Such extensibility mechanisms, furthermore, should not compromise any existing functionality during extension. Software engineers would benefit from a tool that provides a way to add extensions in a reliable way. It is natural to expect programming languages to serve this role. Extensible programming is one effort to address these issues. In this thesis, we present type safe extensible programming using the MLPolyR language. MLPolyR is an ML-like functional language whose type system provides type-safe extensibility mechanisms at several levels. After presenting the language, we will show how these extensibility mechanisms can be put to good use in the context of product line engineering. Product line engineering is an emerging software engineering paradigm that aims to manage variations, which originate from successive changes in software.

  12. The XML approach to implementing space link extension service management

    NASA Technical Reports Server (NTRS)

    Tai, W.; Welz, G. A.; Theis, G.; Yamada, T.

    2001-01-01

    A feasibility study has been conducted at JPL, ESOC, and ISAS to assess the possible applications of the eXtensible Mark-up Language (XML) capabilities to the implementation of the CCSDS Space Link Extension (SLE) Service Management function.

  13. Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi; Langston, Charles A.; Ammon, Charles J.; Simiyu, Silas

    2005-01-01

    Crustal structure in Kenya and Ethiopia has been investigated using receiver function analysis of broadband seismic data to determine the extent to which the Cenozoic rifting and magmatism has modified the thickness and composition of the Proterozoic crust in which the East African rift system developed. Data for this study come from broadband seismic experiments conducted in Ethiopia between 2000 and 2002 and in Kenya between 2001 and 2002. Two methods have been used to analyze the receiver functions, the H-κ method, and direct stacks of the waveforms, yielding consistent results. Crustal thickness to the east of the Kenya rift varies between 39 and 42 km, and Poisson's ratios for the crust vary between 0.24 and 0.27. To the west of the Kenya rift, Moho depths vary between 37 and 38 km, and Poisson's ratios vary between 0.24 and 0.27. These findings support previous studies showing that crust away from the Kenya rift has not been modified extensively by Cenozoic rifting and magmatism. Beneath the Ethiopian Plateau on either side of the Main Ethiopian Rift, crustal thickness ranges from 33 to 44 km, and Poisson's ratios vary from 0.23 to 0.28. Within the Main Ethiopian Rift, Moho depths vary from 27 to 38 km, and Poisson's ratios range from 0.27 to 0.35. A crustal thickness of 25 km and a Poisson's ratio of 0.36 were obtained for a single station in the Afar Depression. These results indicate that the crust beneath the Ethiopian Plateau has not been modified significantly by the Cenozoic rifting and magmatism, even though up to a few kilometers of flood basalts have been added, and that the crust beneath the rifted regions in Ethiopia has been thinned in many places and extensively modified by the addition of mafic rock. The latter finding is consistent with models for rift evolution, suggesting that magmatic segments with the Main Ethiopian Rift, characterized by dike intrusion and Quaternary volcanism, act now as the locus of extension rather than the rift border faults.

  14. Determining Interest in YouTube Topics for Extension-Authored Video Development

    ERIC Educational Resources Information Center

    Parish, Jane A.; Karisch, Brandi B.

    2013-01-01

    With an audience of over 1 billion users per month, YouTube is an attractive medium for delivering Extension programming. Amidst growing competition for viewership, determining content that is in demand by Extension clientele on YouTube is a daunting challenge that Extension educators face. The YouTube Search function of Google Trends and…

  15. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues. © 2016 Elsevier Inc. All rights reserved.

  16. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    PubMed

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites.

  17. A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies.

    PubMed

    Umehara, Kenta; Sun, Yuchen; Hiura, Satoshi; Hamada, Koki; Itoh, Motoyuki; Kitamura, Keita; Oshima, Motohiko; Iwama, Atsushi; Saito, Kosuke; Anzai, Naohiko; Chiba, Kan; Akita, Hidetaka; Furihata, Tomomi

    2018-07-01

    While pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology. Herein, we report on the development of a new human brain pericyte cell line, hereafter referred to as the human brain pericyte/conditionally immortalized clone 37 (HBPC/ci37). Developed via the cell conditionally immortalization method, these cells exhibited excellent proliferative ability at 33 °C. However, when cultured at 37 °C, HBPC/ci37 cells showed a differentiated phenotype that was marked by morphological alterations and increases in several pericyte-enriched marker mRNA levels, such as platelet-derived growth factor receptor β. It was also found that HBPC/ci37 cells possessed the facilitative ability of in vitro BBB formation and differentiation into a neuronal lineage. Furthermore, HBPC/ci37 cells exhibited the typical "reactive" features of brain pericytes in response to pro-inflammatory cytokines. To summarize, our results clearly demonstrate that HBPC/ci37 cells possess the ability to perform several key brain pericyte functions while also showing the capacity for extensive and continuous proliferation. Based on these findings, it can be expected that, as a unique human brain pericyte model, HBPC/ci37 cells have the potential to contribute to significant advances in the understanding of human brain pericyte physiology and pathophysiology.

  18. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    PubMed Central

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  19. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms

    PubMed Central

    Mascheretti, S; De Luca, A; Trezzi, V; Peruzzo, D; Nordio, A; Marino, C; Arrigoni, F

    2017-01-01

    Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging–genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging–genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging–genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of ‘biologically at-risk’ children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach. PMID:28045463

  20. Ole e 13 is the unique food allergen in olive: Structure-functional, substrates docking, and molecular allergenicity comparative analysis.

    PubMed

    Jimenez-Lopez, J C; Robles-Bolivar, P; Lopez-Valverde, F J; Lima-Cabello, E; Kotchoni, S O; Alché, J D

    2016-05-01

    Thaumatin-like proteins (TLPs) are enzymes with important functions in pathogens defense and in the response to biotic and abiotic stresses. Last identified olive allergen (Ole e 13) is a TLP, which may also importantly contribute to food allergy and cross-allergenicity to pollen allergen proteins. The goals of this study are the characterization of the structural-functionality of Ole e 13 with a focus in its catalytic mechanism, and its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering a) functional-regulatory motifs, b) comparative study of linear sequence, 2-D and 3D structural homology modeling, c) molecular docking with two different β-D-glucans, d) conservational and evolutionary analysis, e) catalytic mechanism modeling, and f) IgE-binding, B- and T-cell epitopes identification and comparison to other allergenic TLPs. Sequence comparison, structure-based features, and phylogenetic analysis identified Ole e 13 as a thaumatin-like protein. 3D structural characterization revealed a conserved overall folding among plants TLPs, with mayor differences in the acidic (catalytic) cleft. Molecular docking analysis using two β-(1,3)-glucans allowed to identify fundamental residues involved in the endo-1,3-β-glucanase activity, and defining E84 as one of the conserved residues of the TLPs responsible of the nucleophilic attack to initiate the enzymatic reaction and D107 as proton donor, thus proposing a catalytic mechanism for Ole e 13. Identification of IgE-binding, B- and T-cell epitopes may help designing strategies to improve diagnosis and immunotherapy to food allergy and cross-allergenic pollen TLPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae

    PubMed Central

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-01-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites. PMID:25860149

  2. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time

    PubMed Central

    Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.

    2016-01-01

    Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia. PMID:27242415

  3. Mapping copy number variation by population-scale genome sequencing.

    PubMed

    Mills, Ryan E; Walter, Klaudia; Stewart, Chip; Handsaker, Robert E; Chen, Ken; Alkan, Can; Abyzov, Alexej; Yoon, Seungtai Chris; Ye, Kai; Cheetham, R Keira; Chinwalla, Asif; Conrad, Donald F; Fu, Yutao; Grubert, Fabian; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Iakoucheva, Lilia M; Iqbal, Zamin; Kang, Shuli; Kidd, Jeffrey M; Konkel, Miriam K; Korn, Joshua; Khurana, Ekta; Kural, Deniz; Lam, Hugo Y K; Leng, Jing; Li, Ruiqiang; Li, Yingrui; Lin, Chang-Yun; Luo, Ruibang; Mu, Xinmeng Jasmine; Nemesh, James; Peckham, Heather E; Rausch, Tobias; Scally, Aylwyn; Shi, Xinghua; Stromberg, Michael P; Stütz, Adrian M; Urban, Alexander Eckehart; Walker, Jerilyn A; Wu, Jiantao; Zhang, Yujun; Zhang, Zhengdong D; Batzer, Mark A; Ding, Li; Marth, Gabor T; McVean, Gil; Sebat, Jonathan; Snyder, Michael; Wang, Jun; Ye, Kenny; Eichler, Evan E; Gerstein, Mark B; Hurles, Matthew E; Lee, Charles; McCarroll, Steven A; Korbel, Jan O

    2011-02-03

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.

  4. Periplasmic quality control in biogenesis of outer membrane proteins.

    PubMed

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  5. Comprehensive proteomic analysis of the human spliceosome

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaolan; Licklider, Lawrence J.; Gygi, Steven P.; Reed, Robin

    2002-09-01

    The precise excision of introns from pre-messenger RNA is performed by the spliceosome, a macromolecular machine containing five small nuclear RNAs and numerous proteins. Much has been learned about the protein components of the spliceosome from analysis of individual purified small nuclear ribonucleoproteins and salt-stable spliceosome `core' particles. However, the complete set of proteins that constitutes intact functional spliceosomes has yet to be identified. Here we use maltose-binding protein affinity chromatography to isolate spliceosomes in highly purified and functional form. Using nanoscale microcapillary liquid chromatography tandem mass spectrometry, we identify ~145 distinct spliceosomal proteins, making the spliceosome the most complex cellular machine so far characterized. Our spliceosomes comprise all previously known splicing factors and 58 newly identified components. The spliceosome contains at least 30 proteins with known or putative roles in gene expression steps other than splicing. This complexity may be required not only for splicing multi-intronic metazoan pre-messenger RNAs, but also for mediating the extensive coupling between splicing and other steps in gene expression.

  6. Nonlinear transport for a dilute gas in steady Couette flow

    NASA Astrophysics Data System (ADS)

    Garzó, V.; López de Haro, M.

    1997-03-01

    Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients (steady planar Couette flow) are determined. The results are obtained from the so-called ellipsoidal statistical (ES) kinetic model, which is an extension of the well-known BGK kinetic model to account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate. A comparison with previous results derived from a perturbative solution of the Boltzmann equation as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions are in better agreement with the Boltzmann results than those of the other approximations. In addition, the velocity distribution function is also computed. Although the shear rates required for observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here may be relevant for analyzing computer results.

  7. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    PubMed

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  8. Nucleation and growth of a bacterial functional amyloid at single fiber resolution

    PubMed Central

    Feuillie, Cécile; Jonckheere, Wim; Valotteau, Claire; Dufrêne, Yves F.; Remaut, Han

    2017-01-01

    Curli are functional amyloids produced by proteobacteria like Escherichia coli, as part of the extracellular matrix that holds cells together into biofilms. The molecular events during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single fiber level, we show that curli display polar growth, and detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process, where monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation. PMID:28628096

  9. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    PubMed

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  10. Images as drivers of progress in cardiac computational modelling

    PubMed Central

    Lamata, Pablo; Casero, Ramón; Carapella, Valentina; Niederer, Steve A.; Bishop, Martin J.; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente

    2014-01-01

    Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved. PMID:25117497

  11. Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabnani, L.; Skumanich, A.; Ryabova, E.

    There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics,more » and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.« less

  12. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    PubMed

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature.

  13. Robust subspace clustering via joint weighted Schatten-p norm and Lq norm minimization

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Tang, Zhenmin; Liu, Qing

    2017-05-01

    Low-rank representation (LRR) has been successfully applied to subspace clustering. However, the nuclear norm in the standard LRR is not optimal for approximating the rank function in many real-world applications. Meanwhile, the L21 norm in LRR also fails to characterize various noises properly. To address the above issues, we propose an improved LRR method, which achieves low rank property via the new formulation with weighted Schatten-p norm and Lq norm (WSPQ). Specifically, the nuclear norm is generalized to be the Schatten-p norm and different weights are assigned to the singular values, and thus it can approximate the rank function more accurately. In addition, Lq norm is further incorporated into WSPQ to model different noises and improve the robustness. An efficient algorithm based on the inexact augmented Lagrange multiplier method is designed for the formulated problem. Extensive experiments on face clustering and motion segmentation clearly demonstrate the superiority of the proposed WSPQ over several state-of-the-art methods.

  14. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    PubMed Central

    Sas, Wojciech; Głuchowski, Andrzej; Gabryś, Katarzyna; Soból, Emil; Szymański, Alojzy

    2016-01-01

    Recycled concrete aggregate (RCA) is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr) as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law. PMID:28773905

  16. Nanoparticles in Higher-Order Multimodal Imaging

    NASA Astrophysics Data System (ADS)

    Rieffel, James Ki

    Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.

  17. Norrie disease gene: characterization of deletions and possible function.

    PubMed

    Chen, Z Y; Battinelli, E M; Hendriks, R W; Powell, J F; Middleton-Price, H; Sims, K B; Breakefield, X O; Craig, I W

    1993-05-01

    Positional cloning experiments have resulted recently in the isolation of a candidate gene for Norrie disease (pseudoglioma; NDP), a severe X-linked neurodevelopmental disorder. Here we report the isolation and analysis of human genomic DNA clones encompassing the NDP gene. The gene spans 28 kb and consists of 3 exons, the first of which is entirely contained within the 5' untranslated region. Detailed analysis of genomic deletions in Norrie patients shows that they are heterogeneous, both in size and in position. By PCR analysis, we found that expression of the NDP gene was not confined to the eye or to the brain. An extensive DNA and protein sequence comparison between the human NDP gene and related genes from the database revealed homology with cysteine-rich protein-binding domains of immediate--early genes implicated in the regulation of cell proliferation. We propose that NDP is a molecule related in function to these genes and may be involved in a pathway that regulates neural cell differentiation and proliferation.

  18. Intracellular production of hydrogels and synthetic RNA granules by multivalent enhancers

    PubMed Central

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allison; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; DeRose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Non-membrane bound, hydrogel-like entities, such as RNA granules, nucleate essential cellular functions through their unique physico-chemical properties. However, these intracellular hydrogels have not been as extensively studied as their extracellular counterparts, primarily due to technical challenges in probing these materials in situ. Here, by taking advantage of a chemically inducible dimerization paradigm, we developed iPOLYMER, a strategy for rapid induction of protein-based hydrogels inside living cells. A series of biochemical and biophysical characterizations, in conjunction with computational modeling, revealed that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that behaves as a size-dependent molecular sieve. We studied several properties of the gel and functionalized it with RNA binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. Therefore, we here demonstrate that iPOLYMER presents a unique and powerful approach to synthetically reconstitute hydrogel-like structures including RNA granules in intact cells. PMID:29115293

  19. Characterizing the recovery trajectories of knee range of motion for one year after total knee replacement.

    PubMed

    Mehta, Saurabh; Rigney, Andrew; Webb, Kyle; Wesney, Jacob; Stratford, Paul W; Shuler, Franklin D; Oliashirazi, Ali

    2018-06-13

    Retrospective analysis of routinely collected clinical data. This study modeled the recovery in knee flexion and extension range of motion (ROM) over 1 year after total knee replacement (TKR). Recovery after TKR has been characterized for self-reported pain and functional status. Literature describing target knee ROM at different follow-up periods after TKR is scarce. Data were extracted for patients who had undergone TKR at a tertiary care hospital at 2, 8, 12, 26, and 52 weeks after TKR. A linear mixed-effects growth model was constructed that investigated the following covariates age, sex, pre-TKR range, body mass index, duration of symptoms, and their interaction with weeks post TKR. Of the 559 patients included (age 64.8 ± 8.5 years), 370 were women and 189 were men. Knee ROM showed the greatest change during the first 12 weeks after TKR, plateauing by 26 weeks. For an average patient, knee flexion increased from approximately 100º 2 weeks post TKR to 117º 52 weeks post TKR. Knee extension increased from approximately 3º knee flexion 2 weeks post TKR to 1º flexion 52 weeks post TKR. The results showed that the maximum gains in knee ROM should be expected within the first 12 weeks with small changes occurring up to 26 weeks after TKR. In addition, age and presurgery knee ROM are associated with the gains in knee ROM and should be factored into the estimation of expected knee ROM at a given follow-up interval after TKR.

  20. Power law analysis of the human microbiome.

    PubMed

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  1. Requirement for Serratia marcescens Cytolysin in a Murine Model of Hemorrhagic Pneumonia

    PubMed Central

    González-Juarbe, Norberto; Mares, Chris A.; Hinojosa, Cecilia A.; Medina, Jorge L.; Cantwell, Angelene; Dube, Peter H.; Bergman, Molly A.

    2014-01-01

    Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 106 CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 106 CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen. PMID:25422267

  2. Teaching Students with Asperger Syndrome (and Other Disabilities) in the College Classroom: Creating an Inclusive Learning Environment

    ERIC Educational Resources Information Center

    Langford-Von Glahn, Sara J.; Zakrajsek, Todd; Pletcher-Rood, Susie

    2008-01-01

    Asperger Syndrome (AS) is a developmental disorder characterized by poor social skills and restricted interests, but also by extensive knowledge in specific areas and an extensive vocabulary, thereby giving college students with AS specific abilities that are desirable in academe. In fact, young individuals with AS are often referred to as "little…

  3. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  4. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aponte, C.I.

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Evenmore » after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.« less

  5. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregationmore » propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.« less

  6. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer.

    PubMed

    Ross, Breyan; Krapp, Stephan; Augustin, Martin; Kierfersauer, Reiner; Arciniega, Marcelino; Geiss-Friedlander, Ruth; Huber, Robert

    2018-02-13

    Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one β-propeller and α/β hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.

  7. Mid-Career Extension Graduates' Perceptions of the Impact of a Demand-Driven, Extension Curriculum in Ghana

    ERIC Educational Resources Information Center

    Kwarteng, Joseph A.; Boateng, Samuel Akuamoah

    2012-01-01

    One of the major challenges facing Africa today is ensuring that extension practitioners are well trained to enable them function effectively as facilitators of change at the farmers' level. The purpose of this study was to examine the effectiveness of a mid-career B. Sc. Agricultural Extension Curriculum in meeting the educational needs of…

  8. Smisc - A collection of miscellaneous functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon Sego, PNNL

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less

  9. Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP)

    NASA Technical Reports Server (NTRS)

    Carnright, Robert; Stodden, David; Coggi, John

    2008-01-01

    An extension to the SOAP software allows users to work with tri-axial ellipsoid-based representations of planetary bodies, primarily for working with small, natural satellites, asteroids, and comets. SOAP is a widely used tool for the visualization and analysis of space missions. The small body extension provides the same visualization and analysis constructs for use with small bodies. These constructs allow the user to characterize satellite path and instrument cover information for small bodies in both 3D display and numerical output formats. Tri-axial ellipsoids are geometric shapes the diameters of which are different in each of three principal x, y, and z dimensions. This construct provides a better approximation than using spheres or oblate spheroids (ellipsoids comprising two common equatorial diameters as a distinct polar diameter). However, the tri-axial ellipsoid is considerably more difficult to work with from a modeling perspective. In addition, the SOAP small-body extensions allow the user to actually employ a plate model for highly irregular surfaces. Both tri-axial ellipsoids and plate models can be assigned to coordinate frames, thus allowing for the modeling of arbitrary changes to body orientation. A variety of features have been extended to support tri-axial ellipsoids, including the computation and display of the spacecraft sub-orbital point, ground trace, instrument footprints, and swathes. Displays of 3D instrument volumes can be shown interacting with the ellipsoids. Longitude/latitude grids, contour plots, and texture maps can be displayed on the ellipsoids using a variety of projections. The distance along an arbitrary line of sight can be computed between the spacecraft and the ellipsoid, and the coordinates of that intersection can be plotted as a function of time. The small-body extension supports the same visual and analytical constructs that are supported for spheres and oblate spheroids in SOAP making the implementation of the more complex algorithms largely transparent to the user.

  10. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-02-11

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro.

  11. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    PubMed

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.

    PubMed

    Selcho, Mareike; Mühlbauer, Barbara; Hensgen, Ronja; Shiga, Sakiko; Wegener, Christian; Yasuyama, Kouji

    2018-06-01

    The peptidergic Pigment-dispersing factor (PDF)-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. As a first step to understand the role of these neurons, we here characterize the anatomy of the PDF-Tri neurons. In addition, we describe a further set of peptidergic neurons that have been associated with eclosion behavior, eclosion hormone (EH), and crustacean cardioactive peptide (CCAP) neurons, to single cell level in the pharate adult brain. PDF-Tri neurons as well as CCAP neurons co-express a classical transmitter indicated by the occurrence of small clear vesicles in addition to dense-core vesicles containing the peptides. In the tritocerebrum, gnathal ganglion and the superior protocerebrum PDF-Tri neurites contain peptidergic varicosities and both pre- and postsynaptic sites, suggesting that the PDF-Tri neurons represent modulatory rather than pure interneurons that connect the subesophageal zone with the superior protocerebrum. The extensive overlap of PDF-Tri arborizations with neurites of CCAP- and EH-expressing neurons in distinct brain regions provides anatomical evidence for a possible function of the PDF-Tri neurons in eclosion behavior. © 2018 Wiley Periodicals, Inc.

  13. Proteomic Analysis of Interactions between a Deep-Sea Thermophilic Bacteriophage and Its Host at High Temperature ▿ †

    PubMed Central

    Wei, Dahai; Zhang, Xiaobo

    2010-01-01

    The virus-host interaction is essential to understanding the role that viruses play in ecological and geochemical processes in deep-sea vent ecosystems. Virus-induced changes in cellular gene expression and host physiology have been studied extensively. However, the molecular mechanism of interaction between a bacteriophage and its host at high temperature remains poorly understood. In the present study, the virus-induced gene expression profile of Geobacillus sp. E263, a thermophile isolated from a deep-sea hydrothermal ecosystem, was characterized. Based on proteomic analysis and random arbitrarily primed PCR (RAP-PCR) of Geobacillus sp. E263 cultured under non-bacteriophage GVE2 infection and GVE2 infection conditions, there were two types of protein/gene profiles in response to GVE2 infection. Twenty differentially expressed genes and proteins were revealed that could be grouped into 3 different categories based on cellular function, suggesting a coordinated response to infection. These differentially expressed genes and proteins were further confirmed by Northern blot analysis. To characterize the host proteins in response to virus infection, aspartate aminotransferase (AST) was inactivated to construct the AST mutant of Geobacillus sp. E263. The results showed that the AST protein was essential in virus infection. Thus, transcriptional and proteomic analyses and functional analysis revealed previously unknown host responses to deep-sea thermophilic virus infection. PMID:20015994

  14. Characterization of domain-specific interaction of synthesized dye with serum proteins by spectroscopic and docking approaches along with determination of in vitro cytotoxicity and antiviral activity.

    PubMed

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Patel, Biman Kumar; Paul, Suvendu; Mahapatra, Ambikesh

    2017-11-20

    The interaction between a synthesized dye with proteins, bovine, and human serum albumin (BSA, HSA, respectively) under physiological conditions has been characterized in detail, by means of steady-state and time-resolved fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. An extensive time-resolved fluorescence spectroscopic characterization of the quenching process has been undertaken in conjugation with temperature-dependent fluorescence quenching studies to divulge the actual quenching mechanism. From the thermodynamic observations, it is clear that the binding process is a spontaneous molecular interaction, in which van der Waals and hydrogen bonding interactions play the major roles. The UV-vis absorption and CD results confirm that the dye can induce conformational and micro-environmental changes of both the proteins. In addition, the dye binding provokes the functionality of the native proteins in terms of esterase-like activity. The average binding distance (r) between proteins and dye has been calculated using FRET. Cytotoxicity and antiviral effects of the dye have been found using Vero cell and HSV-1F virus by performing MTT assay. The AutoDock-based docking simulation reveals the probable binding location of dye within the sub-domain IIA of HSA and IB of BSA.

  15. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    PubMed

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry andmore » elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.« less

  17. Characterization of lithium fluoride windows at 450 K for shock wave experiments: Hugoniot curves and refractive index at 532 nm

    NASA Astrophysics Data System (ADS)

    Fraizier, E.; Antoine, P.; Godefroit, J.-L.; Lanier, G.; Roy, G.; Voltz, C.

    Lithium fluoride (LiF) windows are extensively used in traditional shock wave experiments because of their transparency beyond 100 GPa along [100] axis. A correct knowledge of the optical and mechanical properties of these windows is essential in order to analyze the experimental data and to determine the equation of state on a large variety of metals. This in mind, the windows supply is systematically characterized in order to determine the density, the thermal expansion and the crystalline orientation. Furthermore, an experimental campaign is conducted in order to characterize the windows properties under shock loading at 300 K and preheated conditions (450 K). This article describes the experiments, details the analysis and presents the results. Particle velocity measurements are carried out at the interface of a multiple windows stack using interferometer diagnostic (VISAR and IDL) at 532 nm wavelength. Shock velocity is calculated as a function of the time of flight through each window. The optical correction is calculated as the ratio of the apparent velocity gap and the particle velocity at the free surface. To go further, the Rankine-Hugoniot relations are applied to calculate the pressure and the density. Then, the results and uncertainties are presented and compared with literature data.

  18. Towards shared patient records: an architecture for using routine data for nationwide research.

    PubMed

    Knaup, Petra; Garde, Sebastian; Merzweiler, Angela; Graf, Norbert; Schilling, Freimut; Weber, Ralf; Haux, Reinhold

    2006-01-01

    Ubiquitous information is currently one of the most challenging slogans in medical informatics research. An adequate architecture for shared electronic patient records is needed which can use data for multiple purposes and which is extensible for new research questions. We introduce eardap as architecture for using routine data for nationwide clinical research in a multihospital environment. eardap can be characterized as terminology-based. Main advantage of our approach is the extensibility by new items and new research questions. Once the definition of items for a research question is finished, a consistent, corresponding database can be created without any informatics skills. Our experiences in pediatric oncology in Germany have shown the applicability of eardap. The functions of our core system were in routine clinical use in several hospitals. We validated the terminology management system (TMS) and the module generation tool with the basic data set of pediatric oncology. The multiple usability depends mainly on the quality of item planning in the TMS. High quality harmonization will lead to a higher amount of multiply used data. When using eardap, special emphasis is to be placed on interfaces to local hospital information systems and data security issues.

  19. Marginal Fisher analysis and its variants for human gait recognition and content- based image retrieval.

    PubMed

    Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang

    2007-11-01

    Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.

  20. Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Petković, Aleksandra; Wiese, Kay Jörg

    2012-06-01

    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean-field Alessandro-Beatrice- Bertotti-Montorsi (ABBM) model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress, we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m=6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.

  1. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Gupta, Umesh

    2016-01-01

    Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.

  2. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae.

    PubMed

    Sood, Sakshi; Steinmetz, Heinrich; Beims, Hannes; Mohr, Kathrin I; Stadler, Marc; Djukic, Marvin; von der Ohe, Werner; Steinert, Michael; Daniel, Rolf; Müller, Rolf

    2014-09-05

    The bacterium Paenibacillus larvae has been extensively studied as it is an appalling honey bee pathogen. In the present work, we screened crude extracts derived from fermentations of P. larvae genotypes ERIC I and II for antimicrobial activity, following the detection of four putative secondary metabolite gene clusters that show high sequence homology to known biosynthetic gene clusters for the biosynthesis of antibiotics. Low molecular weight metabolites produced by P. larvae have recently been shown to have toxic effects on honey bee larvae. Moreover, a novel tripeptide, sevadicin, was recently characterized from laboratory cultures of P. larvae. In this study, paenilarvins, which are iturinic lipopeptides exhibiting strong antifungal activities, were obtained by bioassay-guided fractionation from cultures of P. larvae, genotype ERIC II. Their molecular structures were determined by extensive 2D NMR spectroscopy, high resolution mass spectrometry, and other methods. Paenilarvins are the first antifungal secondary metabolites to be identified from P. larvae. In preliminary experiments, these lipopeptides also affected honey bee larvae and might thus play a role in P. larvae survival and pathogenesis. However, further studies are needed to investigate their function. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integrated Analysis of Flow, Form, and Function for River Management and Design Testing

    NASA Astrophysics Data System (ADS)

    Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.

    2017-12-01

    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.

  4. Pervasive Transcription of a Herpesvirus Genome Generates Functionally Important RNAs

    PubMed Central

    Canny, Susan P.; Reese, Tiffany A.; Johnson, L. Steven; Zhang, Xin; Kambal, Amal; Duan, Erning; Liu, Catherine Y.; Virgin, Herbert W.

    2014-01-01

    ABSTRACT Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. PMID:24618256

  5. An Extensive Description of the Peptidomic Repertoire of the Hen Egg Yolk Plasma.

    PubMed

    Arena, Simona; Scaloni, Andrea

    2018-03-28

    Hen egg is a raw material widely used for the preparation of food,  pharmaceutical and cosmetoceutical products. Dedicated proteomic studies were accomplished on eggshell membrane, egg white, and yolk, identifying the most abundant proteins. No similar peptidomic studies have been performed so far. Only preliminary investigations on bioactive peptides in egg fractions and digestates were accomplished through functional screening assays, characterizing antioxidant, antibacterial, antiviral, immunomodulatory, and antihypertensive preparations and isolated components. This study fills this gap and provides a comprehensive picture of the peptides present in the yolk plasma of different hen egg types after 24 and 264 h of laying, taking advantage of a procedure based on a two-step fractionation followed by combined MALDI-TOF-TOF-MS- and nanoLC-ESI-Q-Orbitrap-MS/MS-based analysis. Six hundred and twenty-eight peptides were characterized as deriving from the proteolytic processing of larger protein components after the physiological action of chicken chymotrypsin-like and pepsin-like enzymes. Structural details on their post-translational modifications were also provided. Identified peptides were subjected to bioinformatic analysis and further compared with available data from the literature, ascertaining 198 peptides associable with putative antihypertensive, antimicrobial, anticancer, antiviral, antibiofilm, anorectic, calcium-binding, and anti-inflammatory activities. This analysis was often confirmative of previous experimental evidence on functional properties of unfractionated preparations or isolated molecules. These results further emphasize the bioactive action of yolk-derived peptides as related to egg consumption, and the potential use of these molecules as additive ingredients in the preparation of functional foods and cosmetics.

  6. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormone-secreting adrenal phaeochromocytoma: review of the literature and report of a case

    PubMed Central

    Ruggeri, R.M.; Ferraù, F.; Campennì, A.; Simone, A.; Barresi, V.; Giuffrè, G.; Tuccari, G.; Baldari, S.; Trimarchi, F.

    2009-01-01

    Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffin-embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.

  7. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormone- secreting adrenal phaeochromocytoma: review of the literature and report of a case.

    PubMed

    Ruggeri, Rosaria M; Ferraù, F; Campennì, A; Simone, A; Barresi, V; Giuffrè, G; Tuccari, G; Baldari, S; Trimarchi, F

    2009-01-01

    Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochro-mocytoma,causing ectopic Cushing's syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous,9-cm mass in the right adrenal gland,and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region,corresponding to the adrenal mass.The patient underwent laparoscopic surgery and formalin-fixed and paraffin embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed.Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma,which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing's disease was dependent on CRH overproduction by the pheochromocytoma,in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas,and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas,suggesting that these tumours may represent potential target for octreotide treatment.

  8. Relating conformation to function in integrin α5β1.

    PubMed

    Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2016-07-05

    Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.

  9. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L. K.; Vogel, R. M.

    2015-11-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.

  10. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  11. Extension of chronological lifespan by ScEcl1 depends on mitochondria in Saccharomyces cerevisiae.

    PubMed

    Azuma, Kenko; Ohtsuka, Hokuto; Murakami, Hiroshi; Aiba, Hirofumi

    2012-01-01

    Ecl1, a product of the YGR146C gene in Saccharomyces cerevisiae, was identified as a factor involved in chronological lifespan. In this study we found evidence that the function of Ecl1 in the extension of chronological lifespan is dependent on mitochondrial function. The respiratory activity of cells increased when Ecl1 was overexpressed or cells were grown under calorie restriction, but there was no additive effect of calorie restriction and Ecl1 overexpression on increases in respiratory activity or on the extension of chronological lifespan. Based on these results, we propose that overexpression of Ecl1 has same effect as caloric restriction and that its function also depends on mitochondria, just like caloric restriction.

  12. Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Delač Marion, Ida; Čapeta, Davor; Pielić, Borna; Faraguna, Fabio; Gallardo, Aurelio; Pou, Pablo; Biel, Blanca; Vujičić, Nataša; Kralj, Marko

    2018-07-01

    MoS2 monolayer samples were synthesized on a SiO2/Si wafer and transferred to Ir(111) for nano-scale characterization. The samples were extensively characterized during every step of the transfer process, and MoS2 on the final substrate was examined down to the atomic level by scanning tunneling microscopy (STM). The procedures conducted yielded high-quality monolayer MoS2 of milimeter-scale size with an average defect density of 2 × 1013 cm–2. The lift-off from the growth substrate was followed by a release of the tensile strain, visible in a widening of the optical band gap measured by photoluminescence. Subsequent transfer to the Ir(111) surface led to a strong drop of this optical signal but without further shifts of characteristic peaks. The electronic band gap was measured by scanning tunneling spectroscopy (STS), revealing n-doping and lateral nano-scale variations. The combined use of STM imaging and density functional theory (DFT) calculations allows us to identify the most recurring point-like defects as S vacancies.

  13. Landsat sensor performance: history and current status

    USGS Publications Warehouse

    Markham, B.L.; Storey, James C.; Williams, Darrel L.; Irons, J.R.

    2004-01-01

    The current Thematic Mapper (TM) class of Landsat sensors began with Landsat-4, which was launched in 1982. This series continued with the nearly identical sensor on Landsat-5, launched in 1984. The final sensor in the series was the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), which was carried into orbit in 1999. Varying degrees of effort have been devoted to the characterization of these instruments and data over the past 22 years. Extensive short-lived efforts early in the history, very limited efforts in the middle years, and now a systematic program for continuing characterization of all three systems are apparent. Currently, both the Landsat-5 TM and the Landsat-7 ETM+ are operational and providing data. Despite 20+ years of operation, the TM on Landsat-5 is fully functional, although downlinks for the data are limited. Landsat-7 ETM+ experienced a failure of its Scan Line Corrector mechanism in May 2003. Although there are gaps in the data coverage, the data remain of equivalent quality to prefailure data. Data products have been developed to fill these gaps using other ETM+ scenes.

  14. Characterization of the expression, localization, and secretion of PANDER in alpha-cells.

    PubMed

    Carnegie, Jason R; Robert-Cooperman, Claudia E; Wu, Jianmei; Young, Robert A; Wolf, Bryan A; Burkhardt, Brant R

    2010-08-30

    The novel islet-specific protein PANcreatic DERived Factor (PANDER; FAM3B) has been extensively characterized with respect to the beta-cell, and these studies suggest a potential function for PANDER in the regulation of glucose homeostasis. Little is known regarding PANDER in pancreatic -cells, which are critically involved in maintaining euglycemia. Here we present the first report elucidating the expression and regulation of PANDER within the alpha-cell. Pander mRNA and protein are detected in alpha-cells, with primary localization to a glucagon-negative granular cytosolic compartment. PANDER secretion from alpha-cells is nutritionally and hormonally regulated by l-arginine and insulin, demonstrating similarities and differences with glucagon. Signaling via the insulin receptor (IR) through the PI3K and Akt/PKB node is required for insulin-stimulated PANDER release. The separate localization of PANDER and glucagon is consistent with their differential regulation, and the effect of insulin suggests a paracrine/endocrine effect on PANDER release. This provides further insight into the potential glucose-regulatory role of PANDER. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  15. The reduction in fatigue crack growth resistance of dentin with depth.

    PubMed

    Ivancik, J; Neerchal, N K; Romberg, E; Arola, D

    2011-08-01

    The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.

  16. Synthesis and structural characterization of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.

    2009-08-01

    Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.

  17. Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer.

    PubMed

    Delač Marion, Ida; Čapeta, Davor; Pielić, Borna; Faraguna, Fabio; Gallardo, Aurelio; Pou, Pablo; Biel, Blanca; Vujičić, Nataša; Kralj, Marko

    2018-07-27

    MoS 2 monolayer samples were synthesized on a SiO 2 /Si wafer and transferred to Ir(111) for nano-scale characterization. The samples were extensively characterized during every step of the transfer process, and MoS 2 on the final substrate was examined down to the atomic level by scanning tunneling microscopy (STM). The procedures conducted yielded high-quality monolayer MoS 2 of milimeter-scale size with an average defect density of 2 × 10 13 cm -2 . The lift-off from the growth substrate was followed by a release of the tensile strain, visible in a widening of the optical band gap measured by photoluminescence. Subsequent transfer to the Ir(111) surface led to a strong drop of this optical signal but without further shifts of characteristic peaks. The electronic band gap was measured by scanning tunneling spectroscopy (STS), revealing n-doping and lateral nano-scale variations. The combined use of STM imaging and density functional theory (DFT) calculations allows us to identify the most recurring point-like defects as S vacancies.

  18. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    PubMed

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  19. Detection of outer membrane vesicles in Synechocystis PCC 6803

    PubMed Central

    Pardo, Yehudah A.; Florez, Catalina; Baker, Kristopher M.; Schertzer, Jeffrey W.; Mahler, Gretchen J.

    2015-01-01

    It has been well established that many species of Gram-negative bacteria release nanoscale outer membrane vesicles (OMVs) during normal growth. Furthermore, the roles of these structures in heterotrophic bacteria have been extensively characterized. However, little is known about the existence or function of OMVs in photoautotrophs. In the present study, we report for the first time the production of OMVs by the model photosynthetic organism Synechocystis sp. PCC 6803, a species of biotechnological importance. We detected extracellular proteins and lipids in cell-free supernatants derived from Synechocystis culture, yet the cytoplasmic and thylakoid membrane markers NADH oxidase and chlorophyll were absent. This indicated that the extracellular proteins and lipids derived from the outer membrane, and not from cell lysis. Furthermore, we identified spherical structures within the expected size range of OMVs in Synechocystis culture using scanning electron microscopy. Taken together, these results suggest that the repertoire of Gram-negative bacteria that are known to produce OMVs may be expanded to include Synechocystis PCC6803. Because of the considerable genetic characterization of Synechocystis in particular, our discovery has the potential to support novel biotechnological applications as well. PMID:26363014

  20. Wake Cycle Robustness of the Mars Science Laboratory Flight Software

    NASA Technical Reports Server (NTRS)

    Whitehill, Robert

    2011-01-01

    The Mars Science Laboratory (MSL) is a spacecraft being developed by the Jet Propulsion Laboratory (JPL) for the purpose of in-situ exploration on the surface of Mars. The objective of MSL is to explore and quantitatively assess a local region on the Martian surface as a habitat for microbial life, past or present. This objective will be accomplished through the assessment of the biological potential of at least one target environment, the characterization of the geology and geochemistry of the landing region, an investigation of the planetary process relevant to past habitability, and a characterization of surface radiation. For this purpose, MSL incorporates a total of ten scientific instruments for which functions are to include, among others, atmospheric and descent imaging, chemical composition analysis, and radiation measurement. The Flight Software (FSW) system is responsible for all mission phases, including launch, cruise, entry-descent-landing, and surface operation of the rover. Because of the essential nature of flight software to project success, each of the software modules is undergoing extensive testing to identify and correct errors.

Top