ERIC Educational Resources Information Center
Skeist, Irving, Ed.
The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…
Smart apps for the smart plastic surgeon
Venkataram, Aniketh; Ellur, Sunderraj; Kujur, Abha Rani; Joseph, Vijay
2015-01-01
Smartphones have the ability to benefit plastic surgeons in all aspects of patient care and education. With the sheer number of applications available and more being created everyday, it is easy to miss out on apps which could be of great relevance. Moreover, the range of android applications available has not been extensively discussed in the literature. To this end, we have compiled an exhaustive list of android smartphone applications, which we feel can help our day to day functioning. The apps have been extensively reviewed and neatly described along with all their potential uses. In addition, we have made an effort to highlight ‘non-medical’ or efficiency apps which can improve departmental functioning. These apps have not been described in prior articles, and their functionality might not be known to all. We believe that the technology savvy plastic surgeon can make maximum use of these apps to his benefit. PMID:25991890
2016-01-01
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning. PMID:27403348
T-type calcium channels in synaptic plasticity
Lambert, Régis C.
2017-01-01
ABSTRACT The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus. PMID:27653665
Design principles of electrical synaptic plasticity.
O'Brien, John
2017-09-08
Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.
Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss
Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde
2015-01-01
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
The kinematic recovery process of rhesus monkeys after spinal cord injury.
Wei, Rui-Han; Zhao, Can; Rao, Jia-Sheng; Zhao, Wen; Zhou, Xia; Tian, Peng-Yu; Song, Wei; Ji, Run; Zhang, Ai-Feng; Yang, Zhao-Yang; Li, Xiao-Guang
2018-05-16
After incomplete spinal cord injury (SCI), neural circuits may be plastically reconstructed to some degree, resulting in extensive functional locomotor recovery. The present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs and compare the recovery degrees of different hindlimb parts, thus revealing the recovery process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection injury. The hindlimb locomotor performance of these animals was recorded before surgery, as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints showed no obvious recovery. Generally, different parts of a monkey hindlimb had different spontaneous recovery processes; specifically, the closer the part was to the distal end, the more extensive was the locomotor function recovery. Therefore, we speculate that locomotor recovery may be attributed to plastic reconstruction of the motor circuits that are mainly composed of corticospinal tract. This would help to further understand the plasticity of motor circuits after spinal cord injury.
Beyond the Sensorimotor Plasticity: Cognitive Expansion of Prism Adaptation in Healthy Individuals.
Michel, Carine
2015-01-01
Sensorimotor plasticity allows us to maintain an efficient motor behavior in reaction to environmental changes. One of the classical models for the study of sensorimotor plasticity is prism adaptation. It consists of pointing to visual targets while wearing prismatic lenses that shift the visual field laterally. The conditions of the development of the plasticity and the sensorimotor after-effects have been extensively studied for more than a century. However, the interest taken in this phenomenon was considerably increased since the demonstration of neglect rehabilitation following prism adaptation by Rossetti et al. (1998). Mirror effects, i.e., simulation of neglect in healthy individuals, were observed for the first time by Colent et al. (2000). The present review focuses on the expansion of prism adaptation to cognitive functions in healthy individuals during the last 15 years. Cognitive after-effects have been shown in numerous tasks even in those that are not intrinsically spatial in nature. Altogether, these results suggest the existence of a strong link between low-level sensorimotor plasticity and high-level cognitive functions and raise important questions about the mechanisms involved in producing unexpected cognitive effects following prism adaptation. Implications for the functional mechanisms and neuroanatomical network of prism adaptation are discussed to explain how sensorimotor plasticity may affect cognitive processes.
Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.
Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard
2015-05-05
The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.
Beyond the Sensorimotor Plasticity: Cognitive Expansion of Prism Adaptation in Healthy Individuals
Michel, Carine
2016-01-01
Sensorimotor plasticity allows us to maintain an efficient motor behavior in reaction to environmental changes. One of the classical models for the study of sensorimotor plasticity is prism adaptation. It consists of pointing to visual targets while wearing prismatic lenses that shift the visual field laterally. The conditions of the development of the plasticity and the sensorimotor after-effects have been extensively studied for more than a century. However, the interest taken in this phenomenon was considerably increased since the demonstration of neglect rehabilitation following prism adaptation by Rossetti et al. (1998). Mirror effects, i.e., simulation of neglect in healthy individuals, were observed for the first time by Colent et al. (2000). The present review focuses on the expansion of prism adaptation to cognitive functions in healthy individuals during the last 15 years. Cognitive after-effects have been shown in numerous tasks even in those that are not intrinsically spatial in nature. Altogether, these results suggest the existence of a strong link between low-level sensorimotor plasticity and high-level cognitive functions and raise important questions about the mechanisms involved in producing unexpected cognitive effects following prism adaptation. Implications for the functional mechanisms and neuroanatomical network of prism adaptation are discussed to explain how sensorimotor plasticity may affect cognitive processes. PMID:26779088
Global change and the evolution of phenotypic plasticity in plants.
Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando
2010-09-01
Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.
Brain plasticity and motor practice in cognitive aging.
Cai, Liuyang; Chan, John S Y; Yan, Jin H; Peng, Kaiping
2014-01-01
For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.
Siegel, Chad S.; Fink, Kathren L.; Strittmatter, Stephen M.
2015-01-01
Axons in the adult CNS fail to regenerate after injury, and therefore recovery from spinal cord injury (SCI) is limited. Although full recovery is rare, a modest degree of spontaneous recovery is observed consistently in a broad range of clinical and nonclinical situations. To define the mechanisms mediating spontaneous recovery of function after incomplete SCI, we created bilaterally complete medullary corticospinal tract lesions in adult mice, eliminating a crucial pathway for voluntary skilled movement. Anatomic and pharmacogenetic tools were used to identify the pathways driving spontaneous functional recovery in wild-type and plasticity-sensitized mice lacking Nogo receptor 1. We found that plasticity-sensitized mice recovered 50% of normal skilled locomotor function within 5 weeks of lesion. This significant, yet incomplete, spontaneous recovery was accompanied by extensive sprouting of intact rubrofugal and rubrospinal projections with the emergence of a de novo circuit between the red nucleus and the nucleus raphe magnus. Transient silencing of this rubro–raphe circuit in vivo via activation of the inhibitory DREADD (designer receptor exclusively activated by designer drugs) receptor hM4di abrogated spontaneous functional recovery. These data highlight the pivotal role of uninjured motor circuit plasticity in supporting functional recovery after trauma, and support a focus of experimental strategies on enhancing intact circuit rearrangement to promote functional recovery after SCI. PMID:25632122
The origin and function of mirror neurons: the missing link.
Lingnau, Angelika; Caramazza, Alfonso
2014-04-01
We argue, by analogy to the neural organization of the object recognition system, that demonstration of modulation of mirror neurons by associative learning does not imply absence of genetic adaptation. Innate connectivity defines the types of processes mirror neurons can participate in while allowing for extensive local plasticity. However, the proper function of these neurons remains to be worked out.
Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Kveton, A.; Tomsa, J.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Patil, M.; Sarkar, T.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Sekmen, S.; Medvedeva, T.; Rumerio, P.; Adiguzel, A.; Bakirci, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dölek, F.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Işik, C.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Atakisi, I. O.; Gülmez, E.; Kaya, M.; Kaya, O.; Koseyan, O. K.; Ozcelik, O.; Ozkorucuklu, S.; Tekten, S.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Flacher, H.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Buccilli, A.; Cooper, S. I.; Henderson, C.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Yu, D. R.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Nguyen, T.; Spiropulu, M.; Winn, D.; Abdullin, S.; Apresyan, A.; Apyan, A.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Calderon, J. D.; Eno, S. C.; Feng, Y. B.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Yang, Z. S.; Yao, Y.; Brandt, S.; D'Alfonso, M.; Hu, M.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Amouzegar, M.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.
2018-01-01
We study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing for blue and green scintillators.
Cortical network reorganization guided by sensory input features.
Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca
2002-12-01
Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.
Schrom, Edward C; Graham, Andrea L
2017-12-01
Over recent years, extensive phenotypic variability and plasticity have been revealed among the T-helper cells of the mammalian adaptive immune system, even within clonal lineages of identical antigen specificity. This challenges the conventional view that T-helper cells assort into functionally distinct subsets following differential instruction by the innate immune system. We argue that the adaptive value of coping with uncertainty can reconcile the 'instructed subset' framework with T-helper variability and plasticity. However, we also suggest that T-helper cells might better be understood as agile swarms engaged in collective decision-making to promote host fitness. With rigorous testing, the 'agile swarms' framework may illuminate how variable and plastic individual T-helper cells interact to create coherent immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam
Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.; ...
2018-01-05
Here, we study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing formore » blue and green scintillators.« less
Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.
Here, we study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing formore » blue and green scintillators.« less
Rong, Li; Lan, Shi-Jie; Zhang, Duo; Wang, Wang-Shu; Liu, Chao; Peng, Wei-Hai
2014-09-01
In the repair of extensive lower lip and chin defects, the reconstruction of vermilion at the same time is a great challenge to plastic surgeons. We describe a novel method for the reconstruction of lower vermilion with musculomucosal flap from the upper lip in the repair of extensive lower lip and chin defects. Two patients underwent extensive lower lip and chin reconstruction together with vermilion reconstruction. This technique used 3 basic components: musculomucosal flap from the upper lip, buccal mucosal advancement flap, and cutaneous rotational flap from the neck. All the flaps survived without significant complications. Labial function in the motions of expression and speaking was maintained. The patients could basically close their mouths completely, and there were no drooping or small-mouth deformities postoperatively. Functional and cosmetically acceptable lower-lip and chin reconstructions in both patients were achieved.
Athermal brittle-to-ductile transition in amorphous solids.
Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques
2011-10-01
Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.
Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C
2014-01-01
Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.
Anderson, Jill T; Gezon, Zachariah J
2015-04-01
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low-elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2-3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco-evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates. © 2014 John Wiley & Sons Ltd.
Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood
Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.
2014-01-01
Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556
Maiguy-Foinard, Aurélie; Blanchemain, Nicolas; Barthélémy, Christine; Odou, Pascal
2016-01-01
Purpose Plastic materials such as polyurethane (PUR), polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) are widely used in double-lumen extension tubing. The purposes of our study were to 1) compare in vitro drug delivery through the double extension tubes available on the market 2) assess the plastic properties of PUR in infusion devices and their impact on drug delivery. Methods The study compared eight double-lumen extension tubes in PUR, co-extruded (PE/PVC) plastic and plasticised PVC from different manufacturers. Isosorbide dinitrate and diazepam were used as model compounds to evaluate their sorption on the internal surface of the infusion device. Control experiments were performed using norepinephrine known not to absorb to plastics. Drug concentrations delivered at the egress of extension tubes were determined over time by an analytical spectrophotometric UV-Vis method. The main characteristics of plastics were also determined. Results Significant differences in the sorption phenomenon were observed among the eight double-lumen extension tubes and between pairs of extension tubes. Mean concentrations of isosorbide dinitrate delivered at the egress of double-lumen extension tubes after a 150-minute infusion (mean values ± standard deviation in percentage of the initial concentrations in the prepared syringes) ranged between 80.53 ± 1.66 (one of the PUR tubes) and 92.84 ± 2.73 (PE/PVC tube). The same parameters measured during diazepam infusion ranged between 48.58 ± 2.88 (one of the PUR tubes) and 85.06 ± 3.94 (PE/PVC tube). The double-lumen extension tubes in PUR were either thermosetting (resin) or thermoplastic according to reference. Conclusions Clinicians must be aware of potential drug interactions with extension tube materials and so must consider their nature as well as the sterilisation method used before selecting an infusion device. PMID:27153224
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril
2016-07-01
Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor control in this musculoskeletal condition. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Microglia promote learning-dependent synapse formation through BDNF
Parkhurst, Christopher N.; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N.; Yates, John R.; Lafaille, Juan J.; Hempstead, Barbara L.; Littman, Dan R.; Gan, Wen-Biao
2014-01-01
SUMMARY Microglia are the resident macrophages of the central nervous system and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1CreER mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1CreER to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia show deficits in multiple learning tasks and a significant reduction in motor learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal TrkB phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal important physiological functions of microglia in learning and memory by promoting learning-related synapse formation through BDNF signaling. PMID:24360280
Improving the performance of the amblyopic visual system
Levi, Dennis M.; Li, Roger W.
2008-01-01
Experience-dependent plasticity is closely linked with the development of sensory function; however, there is also growing evidence for plasticity in the adult visual system. This review re-examines the notion of a sensitive period for the treatment of amblyopia in the light of recent experimental and clinical evidence for neural plasticity. One recently proposed method for improving the effectiveness and efficiency of treatment that has received considerable attention is ‘perceptual learning’. Specifically, both children and adults with amblyopia can improve their perceptual performance through extensive practice on a challenging visual task. The results suggest that perceptual learning may be effective in improving a range of visual performance and, importantly, the improvements may transfer to visual acuity. Recent studies have sought to explore the limits and time course of perceptual learning as an adjunct to occlusion and to investigate the neural mechanisms underlying the visual improvement. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia. PMID:19008199
Simmons, Aaron B.; Bloomsburg, Samuel J.; Sukeena, Joshua M.; Miller, Calvin J.; Ortega-Burgos, Yohaniz; Borghuis, Bart G.
2017-01-01
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam−/− OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina. PMID:29114051
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Bags from Thailand: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative... Thailand. See Antidumping Duty Order: Polyethylene Retail Carrier Bags From Thailand, 69 FR 48204 (August 9... Co., Ltd., Landblue (Thailand) Co., Ltd., Sahachit Watana Plastics Ind. Co., Ltd., Thai Plastic Bags...
Senter, Rebecca K.; Ghoshal, Ayan; Walker, Adam G.; Xiang, Zixiu; Niswender, Colleen M.; Conn, P. Jeffrey
2016-01-01
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SC-CA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders. PMID:27296640
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong
2013-01-01
In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Information Collection; Comment Request: Clothing Textiles, Vinyl Plastic Film AGENCY: Consumer Product Safety... Clothing Textiles (16 CFR part 1610) and the Standard for the Flammability of Vinyl Plastic Film (16 CFR... vinyl plastic film and vinyl plastic film intended for use in clothing (except children's sleepwear in...
Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.
Wagner, Andreas
2014-02-18
Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Roviello, Valentina; Sabbah, Mohammed
2017-01-01
Bitter vetch protein films containing positively charged spermidine, alone or with low amounts of glycerol, showed high tensile strength that progressively decreased by increasing the plasticizer concentration. Accordingly, lower film elongation at break and higher Young’s module values were detected in the presence of the polyamine without or with small amounts of glycerol. These data suggest that spermidine not only acts as a plasticizer itself by ionically interacting with proteins, but that it also facilitates glycerol-dependent reduction of the intermolecular forces along the protein chains, consequently improving the film flexibility and extensibility. Thus, spermidine may be considered not only as a primary, but also as a secondary plasticizer because of its ability to enhance glycerol plasticizing performance. Such double behavior of the polyamine was confirmed by the film permeability tests, since spermidine increased the barrier properties to gases and water vapor, while glycerol emphasized this effect at low concentrations but led to its marked reversal at high concentrations. Film microscopic images also substantiated these findings, showing more compact, cohesive, and homogeneous matrices in all spermidine-containing films. PMID:29292733
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in LS-DYNA(Registered Trademark) is under development. In particular, the material model, which is being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both plasticity and damage within the material model, utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength), and is able to analyze the response of composites composed with a variety of fiber architectures. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The onset of material failure, and thus element deletion, is being developed to be a function of the stresses and plastic strains in the various coordinate directions. Systematic procedures are being developed to generate the required input parameters based on the results of experimental tests.
Biodegradation of plastics: current scenario and future prospects for environmental safety.
Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher
2018-03-01
Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.
Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.
Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio
2015-01-01
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.
Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon
A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterizemore » the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).« less
Radtke, C; Calliess, T; Windhagen, H; Vogt, P
2015-03-01
Interdisciplinary collaboration between orthopedic and plastic surgeons is indicated in reconstructive surgery of the extremities for both traumatic orthopedic fractures with extensive soft tissue damage and musculoskeletal tumor resection. We want to emphasize the need for close cooperation starting in the preoperative planning for reconstruction after tumor resection in order to discuss and establish a unified approach. This is particularly important to establish a joint approach with special consideration of possibly necessary adjuvant therapies. One collaborative approach is for the orthopedic surgeon to resect the tumor and the plastic surgeon to carry out the defect reconstruction for exclusive soft tissue coverage including flap surgery as well as for functional reconstruction depending on the location and extent of tumor resection. Thus, careful preoperative and postoperative communication on the precise location, extent of tumor resection and the therapy timing between the orthopedic surgeon and the plastic surgeon will allow the most effective subsequent repair of the resection site.
Garay, Paula A.; McAllister, A. Kimberley
2010-01-01
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522
Limited distal organelles and synaptic function in extensive monoaminergic innervation.
Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2017-08-01
Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Mcadam, D J; Mebs, R W
1940-01-01
A general discussion is given of the relationships between stress, strain, and permanent set. From stress-set curves are derived proof stresses based on five different percentages of permanent set. The influence of prior plastic extension on these values is illustrated and discussed. A discussion is given of the influence of work-hardening, rest interval, and internal stress on the form of the proof stress-extension curve.
Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.
Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis
2015-02-01
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. © 2014 Wiley Periodicals, Inc.
Grinding model and material removal mechanism of medical nanometer zirconia ceramics.
Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao
2014-01-01
Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.
Some general remarks on hyperplasticity modelling and its extension to partially saturated soils
NASA Astrophysics Data System (ADS)
Lei, Xiaoqin; Wong, Henry; Fabbri, Antonin; Bui, Tuan Anh; Limam, Ali
2016-06-01
The essential ideas and equations of classic plasticity and hyperplasticity are successively recalled and compared, in order to highlight their differences and complementarities. The former is based on the mathematical framework proposed by Hill (The mathematical theory of plasticity. Oxford University Press, Oxford, 1950), whereas the latter is founded on the orthogonality hypothesis of Ziegler (An introduction to thermomechanics. Elsevier, North-Holland, 1983). The main drawback of classic plasticity is the possibility of violating the second principle of thermodynamics, while the relative ease to conjecture the yield function in order to approach experimental results is its main advantage. By opposition, the a priori satisfaction of thermodynamic principles constitutes the chief advantage of hyperplasticity theory. Noteworthy is also the fact that this latter approach allows a finer energy partition; in particular, the existence of frozen energy emerges as a natural consequence from its theoretical formulation. On the other hand, the relative difficulty to conjecture an efficient dissipation function to produce accurate predictions is its main drawback. The two theories are thus better viewed as two complementary approaches. Following this comparative study, a methodology to extend the hyperplasticity approach initially developed for dry or saturated materials to the case of partially saturated materials, accounting for interface energies and suction effects, is developed. A particular example based on the yield function of modified Cam-Clay model is then presented. It is shown that the approach developed leads to a model consistent with other existing works.
For the Classroom: "Plastic" Jellyfish.
ERIC Educational Resources Information Center
Current: The Journal of Marine Education, 1989
1989-01-01
Describes an activity in which students monitor the plastic waste production in their households, research its effects on freshwater and marine life, and propose ways to lessen the problem. Provides objectives, background information, materials, procedures, extension activities, and an evaluation for students. (Author/RT)
Towards the effective plastic waste management in Bangladesh: a review.
Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain
2017-12-01
The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.
Kessels, Michael M; Qualmann, Britta
2015-09-01
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.
Improving the Plasticity of LIMS Implementation: LIMS Extension through Microsoft Excel
NASA Technical Reports Server (NTRS)
Culver, Mark
2017-01-01
A Laboratory Information Management System (LIMS) is a databasing software with many built-in tools ideal for handling and documenting most laboratory processes in an accurate and consistent manner, making it an indispensable tool for the modern laboratory. However, a lot of LIMS end users will find that in the performance of analyses that have unique considerations such as standard curves, multiple stages incubations, or logical considerations, a base LIMS distribution may not ideally suit their needs. These considerations bring about the need for extension languages, which can extend the functionality of a LIMS. While these languages do provide the implementation team the functionality required to accommodate these special laboratory analyses, they are usually too complex for the end user to modify to compensate for natural changes in laboratory operations. The LIMS utilized by our laboratory offers a unique and easy-to-use choice for an extension language, one that is already heavily relied upon not only in science but also in most academic and business pursuits: Microsoft Excel. The validity of Microsoft Excel as a pseudo programming language and its usability and versatility as a LIMS extension language will be discussed. The NELAC implications and overall drawbacks of this LIMS configuration will also be discussed.
Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.
2016-12-01
Differences in the elevated temperature mechanical properties of cast Mar-M247 and forged LSHR make it difficult to produce sound joints of these alloys by inertia friction welding (IFW). While extensive plastic upset occurs on the LSHR side, only a small upset is typically developed on the Mar-M247 side. The limited plastic flow of Mar-M247 thus restricts the extent of "self-cleaning" and mechanical mixing of the mating surfaces, so that defects remain at the bond line after welding. In the present work, the effect of local preheating of Mar-M247 immediately prior to IFW on the welding behavior of Mar-M247/LSHR couples was determined. An increase in the preheat temperature enhanced the plastic flow of Mar-M247 during IFW, which resulted in extensive mechanical mixing with LSHR at the weld interface, the formation of extensive flash on both the Mar-M247 and LSHR sides, and a sound bond. Performed in parallel with the experimental work, finite-element-method (FEM) simulations showed that higher temperatures are achieved within the preheated sample during IFW relative to its non-preheated counterpart, and plastic flow is thus facilitated within it. Microstructure and post-weld mechanical properties of the welded samples were also established.
Methods for Assessment of Biodegradability of Plastic Films in Soil †
Yabannavar, Asha V.; Bartha, Richard
1994-01-01
Traditional and novel techniques were tested and compared for their usefulness in evaluating biodegrad-ability claims made for newly formulated “degradable” plastic film products. Photosensitized polyethylene (PE), starch-PE, extensively plasticized polyvinyl chloride (PVC), and polypropylene (PP) films were incorporated into aerobic soil. Biodegradation was measured for 3 months under generally favorable conditions. Carbon dioxide evolution, residual weight recovery, and loss of tensile strength measurements were supplemented, for some films, by gas chromatographic measurements of plasticizer loss and gel permeation chromatographic (GPC) measurement of polymer molecular size distribution. Six- and 12-week sunlight exposures of photosensitized PE films resulted in extensive photochemical damage that failed to promote subsequent mineralization in soil. An 8% starch-PE film and the plasticized PVC film evolved significant amounts of CO2 in biodegradation tests and lost residual weight and tensile strength, but GPC measurements demonstrated that all these changes were confined to the additives and the PE and PVC polymers were not degraded. Carbon dioxide evolution was found to be a useful screening tool for plastic film biodegradation, but for films with additives, polymer biodegradation needs to be confirmed by GPC. Photochemical cross-linking of polymer strands reduces solubility and may interfere with GPC measurements of polymer degradation. PMID:16349408
Paprottka, Felix J.; Klimas, Dalius; Hebebrand, Detlev
2018-01-01
Large and ulcerating skin tumors have become a rarity in the modern Western world. However, these conditions can cause serious life-threatening complications. The case of a 60-year-old male Caucasian patient is reported, who had suffered from an extensive basal cell carcinoma in the right shoulder region for several years. The patient kept the lesion secret from his friends and family and delayed presentation to health care services. After an episode of tumor-related heavy bleeding, the patient was referred to our clinic and received a radical surgical tumor resection—followed by defect coverage with a latissimus dorsi myocutaneous flap. An alternative treatment option that could be offered to the patient would have been a mutilating surgical procedure with an arm amputation. By using this plastic reconstructive surgical technique, the main function of the shoulder joint was conserved. The presented case demonstrates options for defect coverage of problematic wounds in anatomically complex body regions—like the shoulder—by using a functional reconstruction using myocutaneous flaps. PMID:29896564
Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives
Massé-Alarie, Hugo; Schneider, Cyril
2016-01-01
Chronic low back pain (CLBP) is a recurrent debilitating condition that costs billions to society. Refractoriness to conventional treatment, lack of improvement, and associated movement disorders could be related to the extensive brain plasticity present in this condition, especially in the sensorimotor cortices. This narrative review on corticomotor plasticity in CLBP will try to delineate how interventions such as training and neuromodulation can improve the condition. The review recommends subgrouping classification in CLBP owing to brain plasticity markers with a view of better understanding and treating this complex condition. PMID:27618123
Transgenerational Effects Alter Plant Defense and Resistance in Nature
Colicchio, Jack
2017-01-01
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defense. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defense for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of inter-annual variation in herbivore density and the high cost of plant defense makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. PMID:28102915
Interfacial interactions between plastic particles in plastics flotation.
Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian
2015-12-01
Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functional genomics of physiological plasticity and local adaptation in killifish.
Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish
Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107
Effects of flow rate on the migration of different plasticizers from PVC infusion medical devices
Eljezi, Teuta; Clauson, Hélène; Lambert, Céline; Bouattour, Yassine; Chennell, Philip; Pereira, Bruno; Sautou, Valérie
2018-01-01
Infusion medical devices (MDs) used in hospitals are often made of plasticized polyvinylchloride (PVC). These plasticizers may leach out into infused solutions during clinical practice, especially during risk-situations, e.g multiple infusions in Intensive Care Units and thus may enter into contact with the patients. The migrability of the plasticizers is dependent of several clinical parameters such as temperature, contact time, nature of the simulant, etc… However, no data is available about the influence of the flow rate at which drug solutions are administrated. In this study, we evaluated the impact of different flow rates on the release of the different plasticizers during an infusion procedure in order to assess if they could expose the patients to more toxic amounts of plasticizers. Migration assays with different PVC infusion sets and extension lines were performed with different flow rates that are used in clinical practice during 1h, 2h, 4h, 8h and 24h, using a lipophilic drug simulant. From a clinical point of view, the results showed that, regardless of the plasticizer, the faster the flow rate, the higher the infused volume and the higher the quantities of plasticizers released, both from infusion sets and extension lines, leading to higher patient exposure. However, physically, there was no significant difference of the migration kinetics linked to the flow rate for a same medical device, reflecting complex interactions between the PVC matrix and the simulant. The migration was especially dependent on the nature and the composition of the medical device. PMID:29474357
Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte
2012-07-01
Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had significantly greater survivorship in very dry soil than did seedlings with no history of drought. These findings show that plastic responses to naturalistic resource stresses experienced by grandparents and parents can "preadapt" offspring for functioning under the same stresses in ways that measurably influence realized fitness. Possible implications of these environmentally-induced, inherited adaptations are discussed with respect to ecological distribution, persistence under novel stresses, and evolution in natural populations.
VITELLOGENIN GENE EXPRESSION IN MALE FATHEAD MINNOWS EXPOSED TO DI(2-ETHYLHEXYL)PHTHALATE
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer used extensively in the plastics industry. DEHP has been shown to be ubiquitous in the environment and has been detected in ground and surface waters, sediment sludge and at several Superfund sites. Previous studies using rats ...
Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning
ERIC Educational Resources Information Center
Freeman, John H.; Steinmetz, Adam B.
2011-01-01
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…
Prediction of recovery of motor function after stroke.
Stinear, Cathy
2010-12-01
Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and neurophysiological assessment of neural plasticity. The development of algorithms to guide the sequential combinations of these assessments could also further increase accuracy, in addition to improving rehabilitation planning and outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of Gibberellic Acid on the Plasticity and Elasticity of Avena Stem Segments 1
Adams, Paul A.; Montague, Michael J.; Tepfer, Mark; Rayle, David L.; Ikuma, Hiroshi; Kaufman, Peter B.
1975-01-01
Extensibility characteristics of Avena stem segments treated with gibberellic acid (GA) were investigated in living internodes using a microgrowth method and in partially extracted cell walls subjected to Instron extensometer analysis. Both techniques showed that treatment with GA greatly increases internodal plasticity, but has virtually no effect on internodal elasticity. The increase in plasticity occurred 1 to 2 hours after the initiation of hormone treatment, which is similar to the time of onset of GA-enhanced growth and cell wall synthesis. Cycloheximide was shown to inhibit the effect of GA on plasticity. PMID:16659388
Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia.
Stokowska, Anna; Atkins, Alison L; Morán, Javier; Pekny, Tulen; Bulmer, Linda; Pascoe, Michaela C; Barnum, Scott R; Wetsel, Rick A; Nilsson, Jonas A; Dragunow, Mike; Pekna, Marcela
2017-02-01
Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.
Shelef, Yaniv; Bar-On, Benny
2017-09-01
The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
Burbank, Kendra S
2015-12-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
Burbank, Kendra S.
2015-01-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645
NASA Technical Reports Server (NTRS)
James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim
2017-01-01
Recently proposed modifications to ASTM E399 would provide a new size-insensitive approach to analyzing the force-displacement test record. The proposed size-insensitive linear-elastic fracture toughness, KIsi, targets a consistent 0.5mm crack extension for all specimen sizes by using an offset secant that is a function of the specimen ligament length. The KIsi evaluation also removes the Pmax/PQ criterion and increases the allowable specimen deformation. These latter two changes allow more plasticity at the crack tip, prompting the review undertaken in this work to ensure the validity of this new interpretation of the force-displacement curve. This paper provides a brief review of the proposed KIsi methodology and summarizes a finite element study into the effects of increased crack tip plasticity on the method given the allowance for additional specimen deformation. The study has two primary points of investigation: the effect of crack tip plasticity on compliance change in the force-displacement record and the continued validity of linear-elastic fracture mechanics to describe the crack front conditions. The analytical study illustrates that linear-elastic fracture mechanics assumptions remain valid at the increased deformation limit; however, the influence of plasticity on the compliance change in the test record is problematic. A proposed revision to the validity criteria for the KIsi test method is briefly discussed.
Stability of surface plastic flow in large strain deformation of metals
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan
We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.
Synaptic plasticity in drug reward circuitry.
Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T
2002-11-01
Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.
Assessment of floating plastic debris in surface water along the Seine River.
Gasperi, Johnny; Dris, Rachid; Bonin, Tiffany; Rocher, Vincent; Tassin, Bruno
2014-12-01
This study is intended to examine the quality and quantity of floating plastic debris in the River Seine through use of an extensive regional network of floating debris-retention booms; it is one of the first attempts to provide reliable information on such debris at a large regional scale. Plastic debris represented between 0.8% and 5.1% of total debris collected by weight. A significant proportion consisted of food wrappers/containers and plastic cutlery, probably originating from voluntary or involuntary dumping, urban discharges and surface runoff. Most plastic items are made of polypropylene, polyethylene and, to a lesser extent, polyethylene terephthalate. By extrapolation, some 27 tons of floating plastic debris are intercepted annually by this network; corresponding to 2.3 g per Parisian inhabitant per year. Such data could serve to provide a first evaluation of floating plastic inputs conveyed by rivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet
NASA Technical Reports Server (NTRS)
Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.
1994-01-01
Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.
Evaluation of flaws in carbon steel piping. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahoor, A.; Gamble, R.M.; Mehta, H.S.
1986-10-01
The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less
Evaluation of biodegradable plastics for rubber seedling applications
NASA Astrophysics Data System (ADS)
Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa
2015-08-01
The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.
Study of the plastic zone around the ligament of thin sheet D.E.N.T specimen subjected to tensile
NASA Astrophysics Data System (ADS)
Djebali, S.; Larbi, S.; Bilek, A.
2015-03-01
One of the assumptions of Cotterell and Reddel's method of the essential work of fracture determination is the existence of a fracture process zone surrounded by an outer plastic zone extending to the whole ligament before crack initiation. To verify this hypothesis we developed a method based on micro hardness. The hardness values measured in the domain surrounding the tensile fracture area of ST-37-2 steel sheet D.E.N.T specimens confirm the existence of the two plastic zones. The extension of the plastic deformations to the whole ligament before the crack initiation and the circular shape of the outer plastic zone are revealed by the brittle coating method.
Restoring voluntary control of locomotion after paralyzing spinal cord injury.
van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire
2012-06-01
Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.
NASA Astrophysics Data System (ADS)
Keiser, Gerd; Liu, Hao-Yu; Lu, Shao-Hsi; Devi Pukhrambam, Puspa
2012-07-01
Low-cost multimode glass and plastic optical fibers are attractive for high-capacity indoor telecom networks. Many existing buildings already have glass multimode fibers installed for local area network applications. Future indoor applications will use combinations of glass multimode fibers with plastic optical fibers that have low losses in the 850-nm-1,310-nm range. This article examines real-world link losses when randomly interconnecting glass and plastic fiber segments having factory-installed connectors. Potential interconnection issues include large variations in connector losses among randomly selected fiber segments, asymmetric link losses in bidirectional links, and variations in bandwidths among different types of fibers.
Biophysical constraints on leaf expansion in a tall conifer.
Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian
2008-01-01
The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...
ERIC Educational Resources Information Center
Sharma, Shiv K.; Carew, Thomas J.
2004-01-01
Synaptic plasticity is thought to contribute to memory formation. Serotonin-induced facilitation of sensory-motor (SN-MN) synapses in "Aplysia" is an extensively studied cellular analog of memory for sensitization. Serotonin, a modulatory neurotransmitter, is released in the CNS during sensitization training, and induces three temporally and…
Convection-driven tectonics on Venus
NASA Astrophysics Data System (ADS)
Phillips, R. J.
1990-02-01
An analysis is presented of convective stress coupling to an elastic lithosphere as applied to Venus. Theoretical solutions are introduced for the response of a mathematically thick elastic plate overlying a Newtonian viscous medium with an exponential depth dependence of viscosity, and a Green's function solution is obtained for the viscous flow driven by a harmonic density distribution at a specified depth. An elastic-plastic analysis is carried out for the deformation of a model Venus lithosphere. The results predict that dynamic uplift of Venusian topography must be accompanied by extensive brittle failure and viscous flow in the lithosphere.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Pyrolysis of plastic waste for liquid fuel production as prospective energy resource
NASA Astrophysics Data System (ADS)
Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.
2018-03-01
The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.
Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells
Fasano, Caroline; Rocchetti, Jill; Pietrajtis, Katarzyna; Zander, Johannes-Friedrich; Manseau, Frédéric; Sakae, Diana Y.; Marcus-Sells, Maya; Ramet, Lauriane; Morel, Lydie J.; Carrel, Damien; Dumas, Sylvie; Bolte, Susanne; Bernard, Véronique; Vigneault, Erika; Goutagny, Romain; Ahnert-Hilger, Gudrun; Giros, Bruno; Daumas, Stéphanie; Williams, Sylvain; El Mestikawy, Salah
2017-01-01
Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network. PMID:28559797
Hippo signaling controls cell cycle and restricts cell plasticity in planarians
de Sousa, Nídia; Rodríguez-Esteban, Gustavo; Rojo-Laguna, Jose Ignacio; Saló, Emili
2018-01-01
The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell–based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation. PMID:29357350
NASA Astrophysics Data System (ADS)
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.
The complete process of large elastic-plastic deflection of a cantilever
NASA Astrophysics Data System (ADS)
Wu, Xiaoqiang; Yu, Tongxi
1986-11-01
An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.
The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence
d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo
2016-01-01
Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559
Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo
2016-07-01
Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Classical and sequential limit analysis revisited
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi
2018-04-01
Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.
In vivo imaging of Dauer-specific neuronal remodeling in C. elegans.
Schroeder, Nathan E; Flatt, Kristen M
2014-09-04
The mechanisms controlling stress-induced phenotypic plasticity in animals are frequently complex and difficult to study in vivo. A classic example of stress-induced plasticity is the dauer stage of C. elegans. Dauers are an alternative developmental larval stage formed under conditions of low concentrations of bacterial food and high concentrations of a dauer pheromone. Dauers display extensive developmental and behavioral plasticity. For example, a set of four inner-labial quadrant (IL2Q) neurons undergo extensive reversible remodeling during dauer formation. Utilizing the well-known environmental pathways regulating dauer entry, a previously established method for the production of crude dauer pheromone from large-scale liquid nematode cultures is demonstrated. With this method, a concentration of 50,000 - 75,000 nematodes/ml of liquid culture is sufficient to produce a highly potent crude dauer pheromone. The crude pheromone potency is determined by a dose-response bioassay. Finally, the methods used for in vivo time-lapse imaging of the IL2Qs during dauer formation are described.
Synaptic plasticity functions in an organic electrochemical transistor
NASA Astrophysics Data System (ADS)
Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.
2015-12-01
Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.
Understanding mental retardation in Down's syndrome using trisomy 16 mouse models.
Galdzicki, Z; Siarey, R J
2003-06-01
Mental retardation in Down's syndrome, human trisomy 21, is characterized by developmental delays, language and memory deficits and other cognitive abnormalities. Neurophysiological and functional information is needed to understand the mechanisms of mental retardation in Down's syndrome. The trisomy mouse models provide windows into the molecular and developmental effects associated with abnormal chromosome numbers. The distal segment of mouse chromosome 16 is homologous to nearly the entire long arm of human chromosome 21. Therefore, mice with full or segmental trisomy 16 (Ts65Dn) are considered reliable animal models of Down's syndrome. Ts65Dn mice demonstrate impaired learning in spatial tests and abnormalities in hippocampal synaptic plasticity. We hypothesize that the physiological impairments in the Ts65Dn mouse hippocampus can model the suboptimal brain function occuring at various levels of Down's syndrome brain hierarchy, starting at a single neuron, and then affecting simple and complex neuronal networks. Once these elements create the gross brain structure, their dysfunctional activity cannot be overcome by extensive plasticity and redundancy, and therefore, at the end of the maturation period the mind inside this brain remains deficient and delayed in its capabilities. The complicated interactions that govern this aberrant developmental process cannot be rescued through existing compensatory mechanisms. In summary, overexpression of genes from chromosome 21 shifts biological homeostasis in the Down's syndrome brain to a new less functional state.
Gilaie-Dotan, Sharon
2016-03-01
A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring
Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.
2015-01-01
The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits. PMID:25874621
Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates
NASA Astrophysics Data System (ADS)
Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.
2015-12-01
Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (
Scott E. Hamel; John C. Hermanson; Steven M. Cramer
2012-01-01
The thermoplastics within woodâplastic composites (WPCs) are known to experience significant time-dependent deformation or creep. In some formulations, creep deformation can be twice as much as the initial quasi-static strain in as little as 4 days. While extensive work has been done on the creep behavior of pure polymers, little information is available on the...
Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory
Robert H. White; Nicole M. Stark; Nadir Ayrilmis
2011-01-01
For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....
Murphy, Jennifer E; Burns, Jean H; Fougère-Danezan, Marie; Drenovsky, Rebecca E
2016-12-01
Functional trait plasticity in resource capture traits has been suggested as an underlying mechanism promoting invasive species establishment and spread. Earlier studies on this mechanism treat invasiveness as a discrete characteristic (i.e., invasive vs. noninvasive) and do not consider the potential impacts of evolutionary history. In the present study, we used a continuous measure of invasiveness and a phylogenetic framework to quantify the relationship between functional trait expression, plasticity, and invasiveness in Rosa. In a manipulative greenhouse experiment, we evaluated how light availability affects functional traits and their plasticity in Rosa sp. and the out-group species, Potentilla recta, which vary in their invasiveness. Across functional traits, we found no significant relationship between plasticity and invasiveness. However, more invasive roses demonstrated an ability to produce a more branched plant architecture, promoting optimal light capture. Invasiveness also was linked with lower photosynthetic and stomatal conductance rates, leading to increased water-use efficiency (WUE) in more invasive roses. Our results suggest that functional trait values, rather than plasticity, promote invasive rose success, counter to earlier predictions about the role of plasticity in invasiveness. Furthermore, our study indicates that invasive roses demonstrate key functional traits, such as increased WUE, to promote their success in the high-light, edge habitats they commonly invade. © 2016 Botanical Society of America.
Cognitive Neuroscience of Sleep
Poe, Gina R.; Walsh, Christine M.; Bjorness, Theresa E.
2014-01-01
Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity (long-term potentiation (LTP) and its reversal, depotentiation). Thus, REM sleep provides a novel neural environment in which the synaptic remodeling essential to learning and cognition can occur, at least within the hippocampal complex. During nonREM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta nonREM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This nonREM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of cortical circuits that activate in the ~50% of delta-coincident reactivation events that do not appear in their waking firing sequence. The chapter reviews the results of manipulation studies, typically total sleep or REM sleep deprivation, that serve to underscore the functional significance of the phenomenological associations. Finally, the implications of sleep neurophysiology for learning and memory will be considered from a larger perspective in which the association of specific sleep states with both potentiation or depotentiation is integrated into mechanistic models of cognition. PMID:21075230
A review of developments in the theory of elasto-plastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1973-01-01
The theory of elasto-plastic flow is developed so that it may accommodate features such as work-hardening, anisotropy, plastic compressibility, non-continuous loading including local or global unloading, and others. A complete theory is given in quasi-linear form; as a result, many useful attributes are accessible. Several integral theorems may be written, finite deformations may be incorporated, and efficient methods for solving problems may be developed; these and other aspects are described in some detail. The theory is reduced to special forms for 2-space, and extensive experience in solving such problems is cited.
Code of Federal Regulations, 2010 CFR
2010-10-01
... product descriptions authorizing material substitutions, extensions of shelf-life, and process improvements. (7) Promote the use of biobased products. (8) Purchase only plastic ring carriers that are...
Sleep and vestibular adaptation: implications for function in microgravity
NASA Technical Reports Server (NTRS)
Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.
1998-01-01
Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.
Cózar, Andrés; Martí, Elisa; Duarte, Carlos M.; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J.; Eguíluz, Victor M.; González-Gordillo, J. Ignacio; Pedrotti, Maria L.; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier
2017-01-01
The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris. PMID:28439534
Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier
2017-04-01
The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.
Improved Modeling of Side-Chain–Base Interactions and Plasticity in Protein–DNA Interface Design
Thyme, Summer B.; Baker, David; Bradley, Philip
2012-01-01
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed “motifs”) was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein–DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. PMID:22426128
Improved modeling of side-chain--base interactions and plasticity in protein--DNA interface design.
Thyme, Summer B; Baker, David; Bradley, Philip
2012-06-08
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed "motifs") was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein-DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. Published by Elsevier Ltd.
Grain boundary engineering: fatigue fracture
NASA Astrophysics Data System (ADS)
Das, Arpan
2017-04-01
Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.
Deformation fields near a steady fatigue crack with anisotropic plasticity
Gao, Yanfei
2015-11-30
In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less
Deformation fields near a steady fatigue crack with anisotropic plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei
In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less
The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2
NASA Astrophysics Data System (ADS)
Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.
1984-09-01
The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}<1¯011>.
Biology of Bony Fish Macrophages
Hodgkinson, Jordan W.; Grayfer, Leon; Belosevic, Miodrag
2015-01-01
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation. PMID:26633534
Biology of Bony Fish Macrophages.
Hodgkinson, Jordan W; Grayfer, Leon; Belosevic, Miodrag
2015-11-30
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Plasticity in skeletal characteristics of nursery-raised staghorn coral, Acropora cervicornis
Kuffner, Ilsa B.; Bartels, Erich; Stathakopoulos, Anastasios; Enochs, Ian C.; Kolodziej, Graham; Toth, Lauren; Manzello, Derek P.
2017-01-01
Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef restoration efforts to date. We compared linear extension, calcification rate, and skeletal density of nursery-raised A. cervicornis branches reared for 6 months either on blocks attached to substratum or hanging from PVC trees in the water column. We demonstrate that branches grown on the substratum had significantly higher skeletal density, measured using computerized tomography, and lower linear extension rates compared to water-column fragments. Calcification rates determined with buoyant weighing were not statistically different between the two grow-out methods, but did vary among coral genotypes. Whereas skeletal density and extension rates were plastic traits that depended on grow-out method, calcification rate was conserved. Our results show that the two rearing methods generate the same amount of calcium carbonate skeleton but produce colonies with different skeletal characteristics and suggest that there is genetically based variability in coral calcification performance.
Plasticity in skeletal characteristics of nursery-raised staghorn coral, Acropora cervicornis
NASA Astrophysics Data System (ADS)
Kuffner, Ilsa B.; Bartels, Erich; Stathakopoulos, Anastasios; Enochs, Ian C.; Kolodziej, G.; Toth, Lauren T.; Manzello, Derek P.
2017-09-01
Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef restoration efforts to date. We compared linear extension, calcification rate, and skeletal density of nursery-raised A. cervicornis branches reared for 6 months either on blocks attached to substratum or hanging from PVC trees in the water column. We demonstrate that branches grown on the substratum had significantly higher skeletal density, measured using computerized tomography, and lower linear extension rates compared to water-column fragments. Calcification rates determined with buoyant weighing were not statistically different between the two grow-out methods, but did vary among coral genotypes. Whereas skeletal density and extension rates were plastic traits that depended on grow-out method, calcification rate was conserved. Our results show that the two rearing methods generate the same amount of calcium carbonate skeleton but produce colonies with different skeletal characteristics and suggest that there is genetically based variability in coral calcification performance.
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinson’s Disease
Kishore, Asha; Meunier, Sabine; Popa, Traian
2014-01-01
Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD. PMID:24834063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boisvert, Annie; Jones, Steven; Issop, Leeyah
Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates targetmore » mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health. - Highlights: • Phthalate plasticizers exert toxic effects on male reproduction. • Reproductive toxicity of new plasticizers was assessed by functional assays. • Mouse Leydig and germ cell lines, and rat perinatal testis cultures were used. • Survival, proliferation, steroidogenesis, abnormal germ cell formation were examined. • Reproductive toxic and innocuous plasticizer candidates were identified.« less
Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces
1993-12-31
non - dimensional plastic dissipationdensity with distance from the crack plane, y. Preliminary Analysis of Plastic Dissipation Associated with Crack...basis for emplaced in the bonding fixture, subject to a pressure finite element analysis of crack extension along the of - I MPa. The bonding fixture is... finite element analysis has been used to calculate stresses in the vicinity of a crack and the results rationalizd on the basis of low and high
Lynch, Kyle J.; Skalli, Omar
2017-01-01
Fundamental understanding and characterization of neural response to substrate topography is essential in the development of next generation biomaterials for nerve repair. Aerogels are a new class of materials with great potential as a biomaterial. In this work, we examine the extension of neurites by PC12 cells plated on matrigel-coated and collagen-coated mesoporous aerogel surfaces. We have successfully established the methodology for adhesion and growth of PC12 cells on polyurea crosslinked silica aerogels. Additionally, we have quantified neurite behaviors and compared their response on aerogel substrates with their behavior on tissue culture (TC) plastic, and polydimethylsiloxane (PDMS). We found that, on average, PC12 cells extend longer neurites on crosslinked silica aerogels than on tissue culture plastic, and, that the average number of neurites per cluster is lower on aerogels than on tissue culture plastic. Aerogels are an attractive candidate for future development of smart neural implants and the work presented here creates a platform for future work with this class of materials as a substrate for bioelectronic interfacing. PMID:29049304
Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh
2017-01-01
Fundamental understanding and characterization of neural response to substrate topography is essential in the development of next generation biomaterials for nerve repair. Aerogels are a new class of materials with great potential as a biomaterial. In this work, we examine the extension of neurites by PC12 cells plated on matrigel-coated and collagen-coated mesoporous aerogel surfaces. We have successfully established the methodology for adhesion and growth of PC12 cells on polyurea crosslinked silica aerogels. Additionally, we have quantified neurite behaviors and compared their response on aerogel substrates with their behavior on tissue culture (TC) plastic, and polydimethylsiloxane (PDMS). We found that, on average, PC12 cells extend longer neurites on crosslinked silica aerogels than on tissue culture plastic, and, that the average number of neurites per cluster is lower on aerogels than on tissue culture plastic. Aerogels are an attractive candidate for future development of smart neural implants and the work presented here creates a platform for future work with this class of materials as a substrate for bioelectronic interfacing.
Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan
2015-07-20
Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants' competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change.
Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan
2015-01-01
Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745
Availability of a containerless polymer gel detector and a gelatin container
NASA Astrophysics Data System (ADS)
Tominaga, Takahiro; Yoshioka, Munenori; Hayashi, Shin-ichiro; Usui, Shuji; Tada, Mitsutoshi
2015-01-01
We considered an availability of the polymer gel detector without container but with a plastic wrap under assumption of the low oxygen transmissivity of a sheet of plastic wrap. And a gelatin container was also examined for a gel detector. These samples can be made easily and this containerless polymer gel detector well works without any artifacts by means of wrapping with a thin plastic sheet. Nevertheless, there is still room for improvement on preventing oxygen contamination. Combination with a gelatin container and a polymer gel detector and/or Gafchromic films has a various potential for extension of 3D dosimetry.
Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr
2014-10-01
We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.
Dissecting the Components of Long-Term Potentiation
Blundon, Jay A.; Zakharenko, Stanislav S.
2009-01-01
The formation of memories relies on plastic changes at synapses between neurons. Although the mechanisms of synaptic plasticity have been studied extensively over several decades, many aspects of this process remain controversial. The cellular locus of expression of long-term potentiation (LTP), a major form of synaptic plasticity, is one of the most important unresolved phenomena. In this article, we summarize some recent advances in this area made possible by the development of new imaging tools. These studies have demonstrated that LTP is compound in nature and consists of both presynaptic and postsynaptic components. We also review some features of presynaptic and postsynaptic changes during compound LTP. PMID:18940785
75 FR 66649 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0070 and 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... investigation revealed that the cause of the MLG extension problem was the (partially) blocked hydraulic return line from the MLG selector valve by pieces of hard plastic. These were identified as parts of the... extension problem was the (partially) blocked hydraulic return line from the MLG selector valve by pieces of...
Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation
NASA Astrophysics Data System (ADS)
Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion
2012-05-01
Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}<110>) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} < {1bar{1}0} > to {114} < {1bar{1}0} > to {112} < {1bar{1}0} > ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.
Structural plasticity in the language system related to increased second language proficiency.
Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Strik, Werner; Wiest, Roland; Brandeis, Daniel; Dierks, Thomas
2012-04-01
While functional changes linked to second language learning have been subject to extensive investigation, the issue of learning-dependent structural plasticity in the fields of bilingualism and language comprehension has so far received less notice. In the present study we used voxel-based morphometry to monitor structural changes occurring within five months of second language learning. Native English-speaking exchange students learning German in Switzerland were examined once at the beginning of their stay and once about five months later, when their German language skills had significantly increased. We show that structural changes in the left inferior frontal gyrus are correlated with the increase in second language proficiency as measured by a paper-and-pencil language test. Contrary to the increase in proficiency and grey matter, the absolute values of grey matter density and second language proficiency did not correlate (neither on first nor on second measurement). This indicates that the individual amount of learning is reflected in brain structure changes, regardless of absolute proficiency. Copyright © 2010 Elsevier Srl. All rights reserved.
[Application and development of free composite tissue flap in plastic surgery].
Lu, Kaihua; Han, Yan; Guo, Shuzhong
2007-09-01
To summarize and review the development and experience of anastomosis vascular pedicle free composite tissue flap. From July 1987 to March 2007, 321 patients with complete records were treated. Fourteen tissue flaps were applied for the repair of trauma or tumor excision defects of the body, and for organ reconstruction. Vascular crisis occurred in 20 patients within 48 hours postoperatively. Necrosis occurred at flap end in 6 patients. The total survival rate was 94.8%. The main experience was: (1) Training to grasp the basic micro-vascular anastomosis technique was very important starting up period for surgeons. The basic technique should be often practiced to ensure the safty of clinical application. (2) Restoring appearance and function were equally important in practice. (3) Utilizing the minimal invasive methods and decreasing the loss of function of donor site were important for improvement of reconstruction quality. The purpose was to achieve functional and esthetic restoration in the condition of lowest donor site scarification. The application of free composite tissue flap is important for the development of plastic surgery. There are extensive applications for free flap, especially for those critical patients. The application of free flap could decrease the mobility rate, shorten the treatment period, ease the pain of patients and improve the reconstruction effect. The experience of donor site selection, the strategy of poor recipient site condition, the advantages and disadvantages of muscle flap, the applications time, infections wound treatment and application, are helpful for the future application.
Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems
NASA Technical Reports Server (NTRS)
Estes, Lynda
2011-01-01
This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in such a way that will result in the screening out of polycarbonates. It is acknowledged that many polycarbonates can perform the functions of Category D, such as piloting and imagery with lens with apertures up to 25mm, without performance issues. Therefore, this forward warns users that certain requirements, such as birefringence and wavefront, for Category D plastics need to be revised to allow those polycarbonates that perform adequately in Category D to be accepted, while at the same time, screen out those materials that do not perform up to par. At the time of document release, the requirements in question have been identified by a TBD beside the proposed requirement criteria (which is based upon acrylic performance). Vehicles that are designed with acrylic materials for windowpanes are encouraged to use the values presented in this document for all requirements, in order to ensure adequate optical performance.
Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy
2017-09-13
The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.
Harnessing plasticity for the treatment of neurosurgical disorders: an overview.
Chen, H Isaac; Attiah, Mark; Baltuch, Gordon; Smith, Douglas H; Hamilton, Roy H; Lucas, Timothy H
2014-11-01
Plasticity is fundamental to normal central nervous system function and its response to injury. Understanding this adaptive capacity is central to the development of novel surgical approaches to neurologic disease. These innovative interventions offer the promise of maximizing functional recovery for patients by harnessing targeted plasticity. Developing novel therapies will require the unprecedented integration of neuroscience, bioengineering, molecular biology, and physiology. Such synergistic approaches will create therapeutic options for patients previously outside of the scope of neurosurgery, such as those with permanent disability after traumatic brain injury or stroke. In this review, we synthesize the rapidly evolving field of plasticity and explore ways that neurosurgeons may enhance functional recovery in the future. We conclude that understanding plasticity is fundamental to modern neurosurgical education and practice. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, John T.; Bomarito, Geoffrey F.
2016-01-01
This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.
Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.
Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D
2014-12-01
In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.
Fracture mechanics validity limits
NASA Technical Reports Server (NTRS)
Lambert, Dennis M.; Ernst, Hugo A.
1994-01-01
Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in detail, and then data is presented and the various schemes for establishing a limit of the validity are compared. The selected limiting parameter is applied to a set of fracture data showing the improvement of correlation gained.
How musical expertise shapes speech perception: evidence from auditory classification images.
Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel
2015-09-24
It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.
Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk
2009-03-01
Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.
Biophysical constraints on leaf expansion in a tall conifer.
Meinzer, Frederick C; Bond, Barbara J; Karanian, Jennifer A
2008-02-01
The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water (Psi(L)) and osmotic (Psi(pi)) potential, bulk tissue yield threshold and final needle length were characterized along a height gradient in crowns of > 50-m-tall trees during the period between bud break and full expansion (May to June). Although needle length decreased with increasing height, there was no height-related trend in leaf plastic extensibility, which was highest immediately after bud break (2.9%) and declined rapidly to a stable minimum value (0.3%) over a 3-week period during which leaf expansion was completed. There was a significant positive linear relationship between needle elongation rates and plastic extensibility. Yield thresholds were consistently lower at the upper and middle crown sampling heights. The mean yield threshold across all sampling heights was 0.12 +/- 0.03 MPa on June 8, rising to 0.34 +/- 0.03 MPa on June 15 and 0.45 +/- 0.05 MPa on June 24. Bulk leaf Psi(pi) decreased linearly with increasing height at a rate of 0.004 MPa m(-1) during the period of most rapid needle elongation, but the vertical osmotic gradient was not sufficient to fully compensate for the 0.015 MPa m(-1) vertical gradient in Psi(L), implying that bulk leaf turgor declined at a rate of about 0.011 MPa m(-1) increase in height. Although height-dependent reductions in turgor appeared to constrain leaf expansion, it is possible that the impact of reduced turgor was mitigated by delayed phenological development with increasing height, which resulted in an increase with height in the temperature during leaf expansion.
Are functional fillers improving environmental behavior of plastics? A review on LCA studies.
Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere
2018-06-01
The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.
Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress
Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.
2014-01-01
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645
Gelbmann, C M; Ratiu, N L; Rath, H C; Rogler, G; Lock, G; Schölmerich, J; Kullmann, F
2004-08-01
Extensive anastomotic leaks after esophageal resection and esophageal perforations are a therapeutic challenge. The aim of the present study was to assess the potential of the self-expandable Polyflex plastic stent for the treatment of these conditions. Between January 2002 and March 2003, nine patients were treated with a self-expandable Polyflex plastic stent for sealing of thoracic esophagoenteric anastomotic leaks following surgical resection (n = 5) or esophageal perforation (n = 4). In all patients the stents were inserted successfully without technical problems. In all but two patients complete sealing of the leak was achieved as demonstrated by radiography with water-soluble contrast media. The stent migration rate was 30 % and repositioning of the migrated stents was possible in all cases. Complete mucosal healing of the esophageal leaks and stent extraction was achieved in six patients. The stents were in situ for an average period of 135 +/- 78 days. Two critically ill patients with anastomotic leaks died in spite of stent insertion due to sepsis and one patient with esophageal perforation died due to the underlying malignant disease. Our preliminary experience with the self-expanding and removable Polyflex plastic stent for the sealing of anastomotic leaks and esophageal perforations suggests that this stent is a feasible treatment option, in particular, for more extensive esophageal defects, patients with co-morbid conditions, and critically ill patients.
Yamazaki, Yoshihiko; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Xu, Ming; Ikenaka, Kazuhiro; Fujii, Satoshi; Tanaka, Kenji F
2014-08-01
Plastic changes in white matter have received considerable attention in relation to normal cognitive function and learning. Oligodendrocytes and myelin, which constitute the white matter in the central nervous system, can respond to neuronal activity with prolonged depolarization of membrane potential and/or an increase in the intracellular Ca(2+) concentration. Depolarization of oligodendrocytes increases the conduction velocity of an action potential along axons myelinated by the depolarized oligodendrocytes, indicating that white matter shows functional plasticity, as well as structural plasticity. However, the properties and mechanism of oligodendrocyte depolarization-induced functional plastic changes in white matter are largely unknown. Here, we investigated the functional plasticity of white matter in the hippocampus using mice with oligodendrocytes expressing channelrhodopsin-2. Using extracellular recordings of compound action potentials at the alveus of the hippocampus, we demonstrated that light-evoked depolarization of oligodendrocytes induced early- and late-onset facilitation of axonal conduction that was dependent on the magnitude of oligodendrocyte depolarization; the former lasted for approximately 10 min, whereas the latter continued for up to 3 h. Using whole-cell recordings from CA1 pyramidal cells and recordings of antidromic action potentials, we found that the early-onset short-lasting component included the synchronization of action potentials. Moreover, pharmacological analysis demonstrated that the activation of Ba(2+) -sensitive K(+) channels was involved in early- and late-onset facilitation, whereas 4-aminopyridine-sensitive K(+) channels were only involved in the early-onset component. These results demonstrate that oligodendrocyte depolarization induces short- and long-term functional plastic changes in the white matter of the hippocampus and plays active roles in brain functions. © 2014 Wiley Periodicals, Inc.
Phenological plasticity will not help all species adapt to climate change.
Duputié, Anne; Rutschmann, Alexis; Ronce, Ophélie; Chuine, Isabelle
2015-08-01
Concerns are rising about the capacity of species to adapt quickly enough to climate change. In long-lived organisms such as trees, genetic adaptation is slow, and how much phenotypic plasticity can help them cope with climate change remains largely unknown. Here, we assess whether, where and when phenological plasticity is and will be adaptive in three major European tree species. We use a process-based species distribution model, parameterized with extensive ecological data, and manipulate plasticity to suppress phenological variations due to interannual, geographical and trend climate variability, under current and projected climatic conditions. We show that phenological plasticity is not always adaptive and mostly affects fitness at the margins of the species' distribution and climatic niche. Under current climatic conditions, phenological plasticity constrains the northern range limit of oak and beech and the southern range limit of pine. Under future climatic conditions, phenological plasticity becomes strongly adaptive towards the trailing edges of beech and oak, but severely constrains the range and niche of pine. Our results call for caution when interpreting geographical variation in trait means as adaptive, and strongly point towards species distribution models explicitly taking phenotypic plasticity into account when forecasting species distribution under climate change scenarios. © 2015 John Wiley & Sons Ltd.
Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.
Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A
2003-08-01
This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.
Liu, Tina T; Behrmann, Marlene
2017-10-01
Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further. Copyright © 2017 Elsevier Ltd. All rights reserved.
Orthotropic elastic-plastic behavior of AS4/APC-2 thermoplastic composite at elevated temperatures
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1989-01-01
Inelastic and strength properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the strength can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1988-01-01
Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.
2010-01-01
Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity
Merrill, Liana; Girard, Beatrice M.; May, Victor; Vizzard, Margaret A.
2013-01-01
These studies examined transcriptional and translational plasticity of three transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) with established neuronal and non-neuronal expression and functional roles in the lower urinary tract. Mechanosensor and nociceptor roles in either physiological or pathological lower urinary tract states have been suggested for TRPA1, TRPV1 and TRPV4. We have previously demonstrated neurochemical, organizational and functional plasticity in micturition reflex pathways following induction of urinary bladder inflammation using the antineoplastic agent, cyclophosphamide (CYP). More recently, we have characterized similar plasticity in micturition reflex pathways in a transgenic mouse model with chronic urothelial overexpression (OE) of nerve growth factor (NGF) and in a transgenic mouse model with deletion of vasoactive intestinal polypeptide (VIP). In addition, the micturition reflex undergoes postnatal maturation that may also reflect plasticity in urinary bladder TRP channel expression. Thus, we examined plasticity in urinary bladder TRP channel expression in diverse contexts using a combination of quantitative, real-time PCR and western blotting approaches. We demonstrate transcriptional and translational plasticity of urinary bladder TRPA1, TRPV1 and TRVP4 expression. Although the functional significance of urinary bladder TRP channel plasticity awaits further investigation, these studies demonstrate context-(inflammation, postnatal development, NGF-OE, VIP deletion) and tissue-dependent (urothelium + suburothelium, detrusor) plasticity. PMID:22865090
Liu, Yong; Yang, Ying; Dong, Hui; Cutler, Roy G; Strong, Randy; Mattson, Mark P
2016-01-01
A high calorie diet (HCD) can impair hippocampal synaptic plasticity and cognitive function in animal models. Mitochondrial thioredoxin 2 (TRX-2) is critical for maintaining intracellular redox status, but whether it can protect against HCD-induced impairment of synaptic plasticity is unknown. We found that levels of TRX-2 are reduced in the hippocampus of wild type mice maintained for 8 months on a HCD, and that the mice on the HCD exhibit impaired hippocampal synaptic plasticity (long-term potentiation at CA1 synapses) and cognitive function (novel object recognition). Transgenic mice overexpressing human TRX-2 (hTRX-2) exhibit increased resistance to diquat-induced oxidative stress in peripheral tissues. However, neither the HCD nor hTRX-2 overexpression affected levels of lipid peroxidation products (F2 isoprostanes) in the hippocampus, and hTRX-2 transgenic mice were not protected against the adverse effects of the HCD on hippocampal synaptic plasticity and cognitive function. Our findings indicate that TRX-2 overexpression does not mitigate adverse effects of a HCD on synaptic plasticity, and also suggest that oxidative stress may not be a pivotal factor in the impairment of synaptic plasticity and cognitive function caused by HCDs. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Li, Qingda; Hua, Guomin; Lu, Hao; Yu, Bin; Li, D. Y.
2018-05-01
The elastic modulus of materials is usually treated as a constant in engineering applications. However, plastic deformation may result in changes in the elastic modulus of metallic materials. Using brass, aluminum, and low-carbon steel as sample materials, it is demonstrated that plastic deformation decreased the elastic modulus of the materials by 10% to 20%. A percolation model incorporating the electron work function is proposed to correlate such plastic-strain-induced variations in the elastic modulus to corresponding changes in the electron work function. Efforts are made to understand the observed phenomenon on an electronic basis. The obtained experimental results are consistent with the theoretical analysis.
The neuromodulator of exploration: A unifying theory of the role of dopamine in personality
DeYoung, Colin G.
2013-01-01
The neuromodulator dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in dopaminergic function appear to be associated with variations in personality, but exactly which traits are influenced by dopamine remains an open question. This paper proposes a theory of the role of dopamine in personality that organizes and explains the diversity of findings, utilizing the division of the dopaminergic system into value coding and salience coding neurons (Bromberg-Martin et al., 2010). The value coding system is proposed to be related primarily to Extraversion and the salience coding system to Openness/Intellect. Global levels of dopamine influence the higher order personality factor, Plasticity, which comprises the shared variance of Extraversion and Openness/Intellect. All other traits related to dopamine are linked to Plasticity or its subtraits. The general function of dopamine is to promote exploration, by facilitating engagement with cues of specific reward (value) and cues of the reward value of information (salience). This theory constitutes an extension of the entropy model of uncertainty (EMU; Hirsh et al., 2012), enabling EMU to account for the fact that uncertainty is an innate incentive reward as well as an innate threat. The theory accounts for the association of dopamine with traits ranging from sensation and novelty seeking, to impulsivity and aggression, to achievement striving, creativity, and cognitive abilities, to the overinclusive thinking characteristic of schizotypy. PMID:24294198
Mohanty, P K; Dugad, S R; Gupta, S K
2012-04-01
A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent. © 2012 American Institute of Physics
Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa
2016-01-01
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659
Eller, Franziska; Skálová, Hana; Caplan, Joshua S; Bhattarai, Ganesh P; Burger, Melissa K; Cronin, James T; Guo, Wen-Yong; Guo, Xiao; Hazelton, Eric L G; Kettenring, Karin M; Lambertini, Carla; McCormick, Melissa K; Meyerson, Laura A; Mozdzer, Thomas J; Pyšek, Petr; Sorrell, Brian K; Whigham, Dennis F; Brix, Hans
2017-01-01
Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO 2 ; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences.
Length of Acupuncture Training and Structural Plastic Brain Changes in Professional Acupuncturists
Dong, Minghao; Zhao, Ling; Yuan, Kai; Zeng, Fang; Sun, Jinbo; Liu, Jixin; Yu, Dahua; von Deneen, Karen M.; Liang, Fanrong; Qin, Wei; Tian, Jie
2013-01-01
Background The research on brain plasticity has fascinated researchers for decades. Use/training serves as an instrumental factor to influence brain neuroplasticity. Parallel to acquisition of behavioral expertise, extensive use/training is concomitant with substantial changes of cortical structure. Acupuncturists, serving as a model par excellence to study tactile-motor and emotional regulation plasticity, receive intensive training in national medical schools following standardized training protocol. Moreover, their behavioral expertise is corroborated during long-term clinical practice. Although our previous study reported functional plastic brain changes in the acupuncturists, whether or not structural plastic changes occurred in acupuncturists is yet elusive. Methodology/Principal Findings Cohorts of acupuncturists (N = 22) and non-acupuncturists (N = 22) were recruited. Behavioral tests were delivered to assess the acupuncturists’ behavioral expertise. The results confirmed acupuncturists’ tactile-motor skills and emotion regulation proficiency compared to non-acupuncturists. Using the voxel-based morphometry technique, we revealed larger grey matter volumes in acupuncturists in the hand representation of the contralateral primary somatosensory cortex (SI), the right lobule V/VI and the bilateral ventral anterior cingulate cortex/ventral medial prefrontal cortex. Grey matter volumes of the SI and Lobule V/VI positively correlated with the duration of acupuncture practice. Conclusions To our best knowledge, this study provides first evidence for the anatomical alterations in acupuncturists, which would possibly be the neural correlates underlying acupuncturists’ exceptional skills. On one hand, we suggest our findings may have ramifications for tactile-motor rehabilitation. On the other hand, our results in emotion regulation domain may serve as a target for our future studies, from which we can understand how modulations of aversive emotions elicited by empathic pain develop in the context of expertise. Future longitudinal study is necessary to establish the presence and direction of a causal link between practice/use and brain anatomy. PMID:23840505
The alphabet of intrinsic disorder
Theillet, Francois-Xavier; Kalmar, Lajos; Tompa, Peter; Han, Kyou-Hoon; Selenko, Philipp; Dunker, A. Keith; Daughdrill, Gary W.; Uversky, Vladimir N
2013-01-01
A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting. PMID:28516008
Kulén, Martina; Lindgren, Marie; Hansen, Sabine; Cairns, Andrew G; Grundström, Christin; Begum, Afshan; van der Lingen, Ingeborg; Brännström, Kristoffer; Hall, Michael; Sauer, Uwe H; Johansson, Jörgen; Sauer-Eriksson, A Elisabeth; Almqvist, Fredrik
2018-05-10
Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (A I ), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-A I selective PrfA inhibitors with potent antivirulence properties.
Lovinger, David M.; Kash, Thomas L.
2015-01-01
Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction. Two brain regions subject to alcohol’s effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol’s actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder. PMID:26259092
Gurunluoglu, Raffi; Glasgow, Mark; Williams, Susan A; Gurunluoglu, Aslin; Antrobus, Jarod; Eusterman, Vincent
2012-10-01
Reconstruction of total full-thickness lower lip defects combined with extensive composite mandibular defects particularly in the setting of close-range high-energy ballistic injury presents a formidable challenge for the reconstructive plastic surgeon. While the fibular flap has been widely accepted for its usefulness in the reconstruction of composite mandibular defects, to date, there is no definitive widely established method of total lower lip reconstruction. The article presents authors' approach using innervated gracilis muscle flap for total lower lip reconstruction in the setting of high-energy gunshot injuries to the face. Three patients underwent composite mandibular defect reconstruction using fibular osteocutaneous flap and functional lower lip reconstruction using innervated gracilis muscle flap. Lip lining was reconstructed using the skin paddle of the fibular flap. The external surface of the gracilis muscle was skin-grafted. Facial artery myomucosal flap provided vermilion reconstruction in two patients. All fibular (n=3) and gracilis flap transfers (n=3) were viable. An electromyographic study at 1 year postoperatively demonstrated successful re-innervation of the gracilis muscle. Starting at about 10 weeks postoperatively, patients exhibited voluntary lip movements and oral competence. In addition, all patients achieved near-normal speech, evidence of recovered protective sensitivity and satisfactory appearance. The mean follow-up was 16.1 months. Our preliminary report in three patients demonstrated that innervated gracilis muscle transfer combined with fibular flap provides a successful reconstruction of extensive composite mandibular and total lower lip defects resulting from gunshot injuries to the face. Oral continence was achieved by combination of regained tonicity and voluntary movement of the gracilis muscle following re-innervation and assistance of the cheek muscles on the gracilis muscle. The described technique was reliable and the results were promising. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Application of a substructuring technique to the problem of crack extension and closure
NASA Technical Reports Server (NTRS)
Armen, H., Jr.
1974-01-01
A substructuring technique, originally developed for the efficient reanalysis of structures, is incorporated into the methodology associated with the plastic analysis of structures. An existing finite-element computer program that accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing kinematic constraint conditions - crack growth and intermittent contact of crack surfaces in two dimensional regions. Application of the analysis is presented for a problem of a centercrack panel to demonstrate the efficiency and accuracy of the technique.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.
Brain without mind: Computer simulation of neural networks with modifiable neuronal interactions
NASA Astrophysics Data System (ADS)
Clark, John W.; Rafelski, Johann; Winston, Jeffrey V.
1985-07-01
Aspects of brain function are examined in terms of a nonlinear dynamical system of highly interconnected neuron-like binary decision elements. The model neurons operate synchronously in discrete time, according to deterministic or probabilistic equations of motion. Plasticity of the nervous system, which underlies such cognitive collective phenomena as adaptive development, learning, and memory, is represented by temporal modification of interneuronal connection strengths depending on momentary or recent neural activity. A formal basis is presented for the construction of local plasticity algorithms, or connection-modification routines, spanning a large class. To build an intuitive understanding of the behavior of discrete-time network models, extensive computer simulations have been carried out (a) for nets with fixed, quasirandom connectivity and (b) for nets with connections that evolve under one or another choice of plasticity algorithm. From the former experiments, insights are gained concerning the spontaneous emergence of order in the form of cyclic modes of neuronal activity. In the course of the latter experiments, a simple plasticity routine (“brainwashing,” or “anti-learning”) was identified which, applied to nets with initially quasirandom connectivity, creates model networks which provide more felicitous starting points for computer experiments on the engramming of content-addressable memories and on learning more generally. The potential relevance of this algorithm to developmental neurobiology and to sleep states is discussed. The model considered is at the same time a synthesis of earlier synchronous neural-network models and an elaboration upon them; accordingly, the present article offers both a focused review of the dynamical properties of such systems and a selection of new findings derived from computer simulation.
Wäger, Patrick A; Hischier, Roland
2015-10-01
Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. Copyright © 2015 Elsevier B.V. All rights reserved.
Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin
2017-02-01
Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.
Behavior of plastic sand confinement grids
DOT National Transportation Integrated Search
1986-01-01
The concept of improving the load carrying ability of unbound aggregates, particularly sand, by lateral confinement has been investigated for some time. Extensive full-scale testing of the trafficability of confined beach sand pavement layers has bee...
Patterns of brittle deformation under extension on Venus
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Zuber, M. T.
1994-01-01
The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.
Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury
Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.
2012-01-01
Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID:23087647
Age-Dependent Glutamate Induction of Synaptic Plasticity in Cultured Hippocampal Neurons
ERIC Educational Resources Information Center
Ivenshitz, Miriam; Segal, Menahem; Sapoznik, Stav
2006-01-01
A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in…
Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.
2015-01-01
During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232
Monday, Hannah R; Younts, Thomas J; Castillo, Pablo E
2018-04-25
Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
NASA Astrophysics Data System (ADS)
Abdollahi, Soheila; Bahmanabadi, Mahmud; Pezeshkian, Yousef; Mortazavi Moghaddam, Saba
2016-03-01
The first phase of the Alborz Observatory Array (Alborz-I) consists of 20 plastic scintillation detectors each one with surface area of 0.25 m2spread over an area of 40 × 40 m2 realized to the study of Extensive Air Showers around the knee at the Sharif University of Technology campus. The first stage of the project including construction and operation of a prototype system has now been completed and the electronics that will be used in the array instrument has been tested under field conditions. In order to achieve a realistic estimate of the array performance, a large number of simulated CORSIKA showers have been used. In the present work, theoretical results obtained in the study of different array layouts and trigger conditions are described. Using Monte Carlo simulations of showers the rate of detected events per day and the trigger probability functions, i.e., the probability for an extensive air shower to trigger a ground based array as a function of the shower core distance to the center of array are presented for energies above 1 TeV and zenith angles up to 60°. Moreover, the angular resolution of the Alborz-I array is obtained.
NASA Astrophysics Data System (ADS)
Ballarin, Cristina; Bagnoli, Paola; Peruffo, Antonella; Cozzi, Bruno
2018-04-01
The rigid structure of the mammalian trachea is functional to maintain constant patency and airflow during breathing, but no gas exchange takes place through its walls. The structure of the organ in dolphins shows increased rigidity of the tracheal cartilaginous rings and the presence of vascular lacunae in the submucosa. However, no actual comparison was ever made between the size and capacity of the vascular lacunae of the dolphin trachea and the potentially homologous structures of terrestrial mammals. In the present study, the extension of the lacunae has been compared between the bottlenose dolphin and the bovine, a closely related terrestrial Cetartiodactyla. Our results indicate that the extension of the blood spaces in the submucosa of dolphins is over 12 times larger than in the corresponding structure of the bovines. Furthermore, a microscopic analysis revealed the presence of valve-like structures in the walls of the cetacean lacunae. The huge difference in size suggests that the lacunae are not merely a product of individual physiological plasticity, but may constitute a true adaptive evolutionary character, functional to life in the aquatic environment. The presence of valve-like structures may be related to the regulation of blood flow, and curtail excessive compression under baric stress at depth.
Shameem, K M Muhammed; Choudhari, Khoobaram S; Bankapur, Aseefhali; Kulkarni, Suresh D; Unnikrishnan, V K; George, Sajan D; Kartha, V B; Santhosh, C
2017-05-01
Classification of plastics is of great importance in the recycling industry as the littering of plastic wastes increases day by day as a result of its extensive use. In this paper, we demonstrate the efficacy of a combined laser-induced breakdown spectroscopy (LIBS)-Raman system for the rapid identification and classification of post-consumer plastics. The atomic information and molecular information of polyethylene terephthalate, polyethylene, polypropylene, and polystyrene were studied using plasma emission spectra and scattered signal obtained in the LIBS and Raman technique, respectively. The collected spectral features of the samples were analyzed using statistical tools (principal component analysis, Mahalanobis distance) to categorize the plastics. The analyses of the data clearly show that elemental information and molecular information obtained from these techniques are efficient for classification of plastics. In addition, the molecular information collected via Raman spectroscopy exhibits clearly distinct features for the transparent plastics (100% discrimination), whereas the LIBS technique shows better spectral feature differences for the colored samples. The study shows that the information obtained from these complementary techniques allows the complete classification of the plastic samples, irrespective of the color or additives. This work further throws some light on the fact that the potential limitations of any of these techniques for sample identification can be overcome by the complementarity of these two techniques. Graphical Abstract ᅟ.
Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.
2014-01-01
Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791
NASA Astrophysics Data System (ADS)
Nakano, Hayato; Hakoyama, Tomoyuki; Kuwabara, Toshihiko
2017-10-01
Hole expansion forming of a cold rolled steel sheet is investigated both experimentally and analytically to clarify the effects of material models on the predictive accuracy of finite element analyses (FEA). The multiaxial plastic deformation behavior of a cold rolled steel sheet with a thickness of 1.2 mm was measured using a servo-controlled multiaxial tube expansion testing machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the contours of plastic work in stress space up to a reference plastic strain of 0.24 along with the directions of plastic strain rates. The anisotropic parameters and exponent of the Yld2000-2d yield function (Barlat et al., 2003) were optimized to approximate the contours of plastic work and the directions of plastic strain rates. The hole expansion forming simulations were performed using the different model identifications based on the Yld2000-2d yield function. It is concluded that the yield function best capturing both the plastic work contours and the directions of plastic strain rates leads to the most accurate predicted FEA.
Insect Cuticular Hydrocarbons as Dynamic Traits in Sexual Communication
Ingleby, Fiona C.
2015-01-01
Recent research has demonstrated extensive within-species variation in pheromone expression in insect species, contrary to the view that pheromones are largely invariant within species. In fact, many studies on insect cuticular hydrocarbons (CHCs) show that pheromones can be highly dynamic traits that can express significant short-term plasticity across both abiotic and social environments. It is likely that this variability in CHC expression contributes to their important role in sexual signaling and mate choice. In this review, I discuss CHC plasticity and how this might influence sexual communication. I also highlight two important avenues for future research: examining plasticity in how individuals respond to CHC signals, and testing how sexual communication varies across abiotic and social environments. PMID:26463413
Neuner, Matthias; Gamnitzer, Peter; Hofstetter, Günter
2017-01-01
The aims of the present paper are (i) to briefly review single-field and multi-field shotcrete models proposed in the literature; (ii) to propose the extension of a damage-plasticity model for concrete to shotcrete; and (iii) to evaluate the capabilities of the proposed extended damage-plasticity model for shotcrete by comparing the predicted response with experimental data for shotcrete and with the response predicted by shotcrete models, available in the literature. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated shotcrete models and they will serve as a basis for the design of a new lab test program, complementing the existing ones. PMID:28772445
Bonansco, Christian; Fuenzalida, Marco
2016-01-01
Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.
Bonansco, Christian; Fuenzalida, Marco
2016-01-01
Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834
Role of the visual experience-dependent nascent proteome in neuronal plasticity
Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R
2018-01-01
Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.
Grand, Jacob H.G.; Stawski, Robert S.; MacDonald, Stuart W.S.
2016-01-01
Introduction Recent theorizing differentiates key constraints on cognition, including one’s current range of processing efficiency (i.e., flexibility or inconsistency) as well as the capacity to expand flexibility over time (i.e., plasticity). The present study uses intensive assessment of response time data to examine the interplay between markers of intraindividual variability (inconsistency) and gains across biweekly retest sessions (plasticity) in relation to age-related cognitive function. Method Participants included 304 adults (aged 64 to 92 years: M=74.02, SD=5.95) from Project MIND, a longitudinal burst design study assessing performance across micro and macro intervals (response latency trials, weekly bursts, annual retests). For two reaction time measures (choice RT and one-back choice RT), baseline measures of response time (RT) inconsistency (intraindividual standard deviation (ISD) across-trials at the first testing session) and plasticity (within-person performance gains in average RT across the 5 biweekly burst sessions) were computed, and then employed in linear mixed models as predictors of individual differences in cognitive function and longitudinal (6 year) rates of cognitive change. Results Independent of chronological age and years of education, higher RT inconsistency was associated uniformly with poorer cognitive function at baseline and with increased cognitive decline for measures of episodic memory and crystallized verbal ability. In contrast, predictive associations for plasticity were more modest for baseline cognitive function and were absent for 6-year cognitive change. Conclusions These findings underscore the potential utility of response times for articulating inconsistency and plasticity as dynamic predictors of cognitive function in older adults. PMID:26898536
Grand, Jacob H G; Stawski, Robert S; MacDonald, Stuart W S
2016-01-01
Recent theorizing differentiates key constraints on cognition, including one's current range of processing efficiency (i.e., flexibility or inconsistency) as well as the capacity to expand flexibility over time (i.e., plasticity). The present study uses intensive assessment of response time data to examine the interplay between markers of intraindividual variability (inconsistency) and gains across biweekly retest sessions (plasticity) in relation to age-related cognitive function. Participants included 304 adults (aged 64 to 92 years: M = 74.02, SD = 5.95) from Project MIND, a longitudinal burst design study assessing performance across micro and macro intervals (response latency trials, weekly bursts, annual retests). For two reaction time (RT) measures (choice RT and one-back choice RT), baseline measures of RT inconsistency (intraindividual standard deviation, ISD, across trials at the first testing session) and plasticity (within-person performance gains in average RT across the 5 biweekly burst sessions) were computed and were then employed in linear mixed models as predictors of individual differences in cognitive function and longitudinal (6-year) rates of cognitive change. Independent of chronological age and years of education, higher RT inconsistency was associated uniformly with poorer cognitive function at baseline and with increased cognitive decline for measures of episodic memory and crystallized verbal ability. In contrast, predictive associations for plasticity were more modest for baseline cognitive function and were absent for 6-year cognitive change. These findings underscore the potential utility of response times for articulating inconsistency and plasticity as dynamic predictors of cognitive function in older adults.
Search for tachyons associated with extensive air showers in the ground level cosmic radiation
NASA Technical Reports Server (NTRS)
Masjed, H. F.; Ashton, F.
1985-01-01
Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.
Using data logging to measure Young’s modulus
NASA Astrophysics Data System (ADS)
Richardson, David
2018-03-01
Historically the Young’s modulus of a material is measured by increasing the applied force to a wire and measuring the extension. The cross sectional area and original length allow this to be plotted as a graph of stress versus strain. This article describes how data logging sensors can be used to measure how the force changes with extension, allowing a strain versus stress graph to be plotted into the region of plastic deformation.
Extensive piano practicing has regionally specific effects on white matter development.
Bengtsson, Sara L; Nagy, Zoltán; Skare, Stefan; Forsman, Lea; Forssberg, Hans; Ullén, Fredrik
2005-09-01
Using diffusion tensor imaging, we investigated effects of piano practicing in childhood, adolescence and adulthood on white matter, and found positive correlations between practicing and fiber tract organization in different regions for each age period. For childhood, practicing correlations were extensive and included the pyramidal tract, which was more structured in pianists than in non-musicians. Long-term training within critical developmental periods may thus induce regionally specific plasticity in myelinating tracts.
Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord
Huie, J. Russell
2016-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996
Learning and memory deficits in mice lacking protease activated receptor-1
Almonte, Antoine G.; Hamill, Cecily E.; Chhatwal, Jasmeer P.; Wingo, Thomas S.; Barber, Jeremy A.; Lyuboslavsky, Polina N.; Sweatt, J. David; Ressler, Kerry J.; White, David A.; Traynelis, Stephen F.
2007-01-01
The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally-motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1−/− animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally-motivated learning. PMID:17544303
Auditory Sensory Substitution is Intuitive and Automatic with Texture Stimuli
Stiles, Noelle R. B.; Shimojo, Shinsuke
2015-01-01
Millions of people are blind worldwide. Sensory substitution (SS) devices (e.g., vOICe) can assist the blind by encoding a video stream into a sound pattern, recruiting visual brain areas for auditory analysis via crossmodal interactions and plasticity. SS devices often require extensive training to attain limited functionality. In contrast to conventional attention-intensive SS training that starts with visual primitives (e.g., geometrical shapes), we argue that sensory substitution can be engaged efficiently by using stimuli (such as textures) associated with intrinsic crossmodal mappings. Crossmodal mappings link images with sounds and tactile patterns. We show that intuitive SS sounds can be matched to the correct images by naive sighted participants just as well as by intensively-trained participants. This result indicates that existing crossmodal interactions and amodal sensory cortical processing may be as important in the interpretation of patterns by SS as crossmodal plasticity (e.g., the strengthening of existing connections or the formation of new ones), especially at the earlier stages of SS usage. An SS training procedure based on crossmodal mappings could both considerably improve participant performance and shorten training times, thereby enabling SS devices to significantly expand blind capabilities. PMID:26490260
Eichenlaub-Ritter, Ursula; Pacchierotti, Francesca
2015-01-01
Bisphenol A (BPA), originally developed as a synthetic oestrogen, is nowadays extensively used in the production of polymeric plastics. Under harsh conditions, these plastics may release BPA, which then can leach into the environment. Detectable concentrations of BPA have been measured in most analysed samples of human serum, plasma, or urine, as well as in follicular fluid, foetal serum, and amniotic fluid. Here we summarize the evidence about adverse BPA effects on the genetic and epigenetic integrity of mammalian oocytes. We conclude that increasing evidence supports the notion that low BPA concentrations adversely affect the epigenome of mammalian female germ cells, with functional consequences on gene expression, chromosome dynamics in meiosis, and oocyte development. Specific time windows, during which profound chromatin remodelling occurs and maternal imprints are established or protected, appear particularly vulnerable to epigenetic deregulation by BPA. Transgenerational effects have been also observed in the offspring of BPA-treated rodents, although the epigenetic mechanisms of inheritance still need to be clarified. The relevance of these findings for human health protection still needs to be fully assessed, but they warrant further investigation in both experimental models and humans. PMID:26339634
[Involvement of aquaporin-4 in synaptic plasticity, learning and memory].
Wu, Xin; Gao, Jian-Feng
2017-06-25
Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.
Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E
2018-04-01
Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Adult cortical plasticity following injury: Recapitulation of critical period mechanisms?
Nahmani, Marc; Turrigiano, Gina G.
2014-01-01
A primary goal of research on developmental critical periods is the recapitulation of a juvenile-like state of malleability in the adult brain that might enable recovery from injury. These ambitions are often framed in terms of the simple reinstatement of enhanced plasticity in the growth-restricted milieu of an injured adult brain. Here, we provide an analysis of the similarities and differences between deprivation-induced and injury-induced cortical plasticity, to provide for a nuanced comparison of these remarkably similar processes. As a first step, we review the factors that drive ocular dominance plasticity in the primary visual cortex of the uninjured brain during the critical period (CP) and in adults, to highlight processes that might confer adaptive advantage. In addition, we directly compare deprivation-induced cortical plasticity during the CP and plasticity following acute injury or ischemia in mature brain. We find that these two processes display a biphasic response profile following deprivation or injury: an initial decrease in GABAergic inhibition and synapse loss transitions into a period of neurite expansion and synaptic gain. This biphasic response profile emphasizes the transition from a period of cortical healing to one of reconnection and recovery of function. Yet while injury-induced plasticity in adult shares several salient characteristics with deprivation-induced plasticity during the CP, the degree to which the adult injured brain is able to functionally rewire, and the time required to do so, present major limitations for recovery. Attempts to recapitulate a measure of CP plasticity in an adult injury context will need to carefully dissect the circuit alterations and plasticity mechanisms involved while measuring functional behavioral output to assess their ultimate success. PMID:24791715
Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea
2017-10-23
Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.
Perceptual learning and adult cortical plasticity.
Gilbert, Charles D; Li, Wu; Piech, Valentin
2009-06-15
The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.
Concepts in local treatment of extensive paediatric burns.
Ungureanu, M
2014-06-15
There is a wide variety of local therapeutical methods for extensive burns. This article aims to be a general overview of the most common methods used in the local treatment for extensive burns, both in our clinic and globally. Clinical examples are shown from our clinic; cases of the last 8 years. None of the less there is no such thing as the "perfect method of treatment" but a thin balance between the clinical experience of plastic surgeons, every case particularities and specified characteristics, meaning advantages, disadvantages and limited indications of local topics or methods of skin covering.
Concepts in local treatment of extensive paediatric burns
Ungureanu, M
2014-01-01
Abstract There is a wide variety of local therapeutical methods for extensive burns. This article aims to be a general overview of the most common methods used in the local treatment for extensive burns, both in our clinic and globally. Clinical examples are shown from our clinic; cases of the last 8 years. None of the less there is no such thing as the "perfect method of treatment" but a thin balance between the clinical experience of plastic surgeons, every case particularities and specified characteristics, meaning advantages, disadvantages and limited indications of local topics or methods of skin covering. PMID:25408723
Liparulo, Valeria; Pica, Alessandra; Guarro, Giuseppe; Alfano, Carmine; Puma, Francesco
2017-01-01
Background Chest wall resection and reconstruction (CWRR) is quite challenging in surgery, due to evolution in techniques. Neoplasms of the chest wall, primary or secondary, have been considered inoperable for a long time. Thanks to evolving surgical techniques, reconstruction after extensive chest wall resection is possible with good functional and aesthetic results. Methods In our single-center experience, seven cases of extensive CWRR for tumors were performed with a multidisciplinary approach by both thoracic and plastic surgeons. Patients have been retrospective analyzed. Results Acceptable clinical and aesthetical results have been recorded, with a smooth post-operative course and a low rate of post-surgical complications. Two early complications and one late complication (asymptomatic bone allograft fracture on the site of the bar implant) were recorded. Neither postoperative deaths nor local recurrences were registered after a median follow-up period of 13 months. Conclusions Surgical planning is most effective when it is tailored to the patient. Specifically, in the treatment of selected chest wall tumors, the multidisciplinary approach is considered mandatory when an extensive demolition is required. Indeed, here, the radical wide en-bloc resection can lead to good results provided that the extent of resection is not influenced by any anticipated problem in reconstruction. PMID:29312715
Derivation of a variational principle for plane strain elastic-plastic silk biopolymers
NASA Astrophysics Data System (ADS)
He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.
2014-01-01
Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.
MacRae, T H
2000-06-01
Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.
Activity-dependent plasticity in spinal cord injury
Lynskey, James V.; Belanger, Adam; Jung, Ranu
2008-01-01
The adult mammalian central nervous system (CNS) is capable of considerable plasticity, both in health and disease. After spinal neurotrauma, the degrees and extent of neuroplasticity and recovery depend on multiple factors, including the level and extent of injury, postinjury medical and surgical care, and rehabilitative interventions. Rehabilitation strategies focus less on repairing lost connections and more on influencing CNS plasticity for regaining function. Current evidence indicates that strategies for rehabilitation, including passive exercise, active exercise with some voluntary control, and use of neuroprostheses, can enhance sensorimotor recovery after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies. PMID:18566941
Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB)
NASA Astrophysics Data System (ADS)
Farris, Giuseppe; Cinelli, Patrizia; Anguillesi, Irene; Salvadori, Sara; Coltelli, Maria-Beatrice; Lazzeri, Andrea
2014-05-01
Polyhydroxybutyrate (PHB) based materials were prepared by melt extrusion by using different plasticizers, such as poly(ethylene glycol)s (PEG)s having different molecular weight (400, 1500 and 4000). The plasticizers content was varied in the range 10-20% by weight versus the PHB polymeric matrix. The variation of tensile properties of the different samples was monitored as a function of time of ageing to study the stability of the material. The elastic modulus and tensile strength increased as a function of time, whereas the strain at break decreased. The experimental results were explained by considering both the demixing of the plasticizers and the occurring of secondary crystallization. Moreover the variation in mechanical properties was correlated to the structure and concentration of the different plasticizers employed.
Function-selective domain architecture plasticity potentials in eukaryotic genome evolution
Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai
2015-01-01
To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317
Pharmacologic approaches to cerebral aging and neuroplasticity: insights from the stroke model.
Chollet, François
2013-03-01
Brain plasticity is an intrinsic characteristic of the nervous system that allows continuous remodeling of brain functions in pathophysiological conditions. Although normal aging is associated with morphological modifications and decline of cerebral functions, brain plasticity is at least partially preserved in elderly individuals. A growing body of evidence supports the notion that cognitive enrichment and aerobic training induce a dynamic reorganization of higher cerebral functions, thereby helping to maintain operational skills in the elderly and reducing the incidence of dementia. The stroke model clearly shows that spontaneous brain plasticity exists after a lesion, even in old patients, and that it can be modulated through external factors like rehabilitation and drugs. Whether drugs can be used with the aim of modulating the effects of physical training or cognitive stimulation in healthy aged people has not been addressed until now. The risk:benefit ratio will be the key question with regard to the ethical aspect of this challenge. We review in this article the main aspects of human brain plasticity as shown in patients with stroke, the drug modulation of brain plasticity and its consequences on recovery, and finally we address the question of the influence of aging on brain plasticity.
2015-10-01
AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord...3. DATES COVERED (From - To) 30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite this fact
Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap
Dias, Gisele Pereira
2014-01-01
Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924
Data-driven in computational plasticity
NASA Astrophysics Data System (ADS)
Ibáñez, R.; Abisset-Chavanne, E.; Cueto, E.; Chinesta, F.
2018-05-01
Computational mechanics is taking an enormous importance in industry nowadays. On one hand, numerical simulations can be seen as a tool that allows the industry to perform fewer experiments, reducing costs. On the other hand, the physical processes that are intended to be simulated are becoming more complex, requiring new constitutive relationships to capture such behaviors. Therefore, when a new material is intended to be classified, an open question still remains: which constitutive equation should be calibrated. In the present work, the use of model order reduction techniques are exploited to identify the plastic behavior of a material, opening an alternative route with respect to traditional calibration methods. Indeed, the main objective is to provide a plastic yield function such that the mismatch between experiments and simulations is minimized. Therefore, once the experimental results just like the parameterization of the plastic yield function are provided, finding the optimal plastic yield function can be seen either as a traditional optimization or interpolation problem. It is important to highlight that the dimensionality of the problem is equal to the number of dimensions related to the parameterization of the yield function. Thus, the use of sparse interpolation techniques seems almost compulsory.
Practicability of hygienic wrapping of touchscreen operated mobile devices in a clinical setting.
Hammon, Matthias; Kunz, Bernd; Dinzl, Veronika; Kammerer, Ferdinand J; Schwab, Siegfried A; Bogdan, Christian; Uder, Michael; Schlechtweg, Philipp M
2014-01-01
To prove effectiveness of wrapping tablet computers in order to reduce microbiological contamination and to evaluate whether a plastic bag-covered tablet leads to impaired user satisfaction or touchscreen functionality. Within a period of 11 days 115 patients were provided with a tablet computer while waiting for their magnetic resonance imaging examination. Every day the contamination of the surface of the tablet was determined before the first and after the final use. Before the device was handed over to a patient, it was enclosed in a customized single-use plastic bag, which was analyzed for bacterial contamination after each use. A questionnaire was applied to determine whether the plastic bag impairs the user satisfaction and the functionality of the touchscreen. Following the use by patients the outside of the plastic bags was found to be contaminated with various bacteria (657.5 ± 368.5 colony forming units/day); some of them were potentially pathogenic. In contrast, the plastic bag covered surface of the tablet was significantly less contaminated (1.7 ± 1.9 colony forming units/day). Likewise, unused plastic bags did not show any contamination. 11% of the patients reported problems with the functionality of the touchscreen. These patients admitted that they had never used a tablet or a smartphone before. Tablets get severely contaminated during usage in a clinical setting. Wrapping with a customized single-use plastic bag significantly reduces microbiological contamination of the device, protects patients from the acquisition of potentially pathogenic bacteria and hardly impairs the user satisfaction and the functionality of the touchscreen.
Practicability of Hygienic Wrapping of Touchscreen Operated Mobile Devices in a Clinical Setting
Hammon, Matthias; Kunz, Bernd; Dinzl, Veronika; Kammerer, Ferdinand J.; Schwab, Siegfried A.; Bogdan, Christian; Uder, Michael; Schlechtweg, Philipp M.
2014-01-01
Background To prove effectiveness of wrapping tablet computers in order to reduce microbiological contamination and to evaluate whether a plastic bag-covered tablet leads to impaired user satisfaction or touchscreen functionality. Materials and Methods Within a period of 11 days 115 patients were provided with a tablet computer while waiting for their magnetic resonance imaging examination. Every day the contamination of the surface of the tablet was determined before the first and after the final use. Before the device was handed over to a patient, it was enclosed in a customized single-use plastic bag, which was analyzed for bacterial contamination after each use. A questionnaire was applied to determine whether the plastic bag impairs the user satisfaction and the functionality of the touchscreen. Results Following the use by patients the outside of the plastic bags was found to be contaminated with various bacteria (657.5 ± 368.5 colony forming units/day); some of them were potentially pathogenic. In contrast, the plastic bag covered surface of the tablet was significantly less contaminated (1.7 ± 1.9 colony forming units/day). Likewise, unused plastic bags did not show any contamination. 11% of the patients reported problems with the functionality of the touchscreen. These patients admitted that they had never used a tablet or a smartphone before. Conclusions Tablets get severely contaminated during usage in a clinical setting. Wrapping with a customized single-use plastic bag significantly reduces microbiological contamination of the device, protects patients from the acquisition of potentially pathogenic bacteria and hardly impairs the user satisfaction and the functionality of the touchscreen. PMID:25180580
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in various coordinate directions. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Genetic Rescue of Functional Senescence in Synaptic and Behavioral Plasticity
Donlea, Jeffrey M.; Ramanan, Narendrakumar; Silverman, Neal; Shaw, Paul J.
2014-01-01
Study Objectives: Aging has been linked with decreased neural plasticity and memory formation in humans and in laboratory model species such as the fruit fly, Drosophila melanogaster. Here, we examine plastic responses following social experience in Drosophila as a high-throughput method to identify interventions that prevent these impairments. Patients or Participants: Wild-type and transgenic Drosophila melanogaster. Design and Interventions: Young (5-day old) or aged (20-day old) adult female Drosophila were housed in socially enriched (n = 35-40) or isolated environments, then assayed for changes in sleep and for structural markers of synaptic terminal growth in the ventral lateral neurons (LNVs) of the circadian clock. Measurements and Results: When young flies are housed in a socially enriched environment, they exhibit synaptic elaboration within a component of the circadian circuitry, the LNVs, which is followed by increased sleep. Aged flies, however, no longer exhibit either of these plastic changes. Because of the tight correlation between neural plasticity and ensuing increases in sleep, we use sleep after enrichment as a high-throughput marker for neural plasticity to identify interventions that prolong youthful plasticity in aged flies. To validate this strategy, we find three independent genetic manipulations that delay age-related losses in plasticity: (1) elevation of dopaminergic signaling, (2) over-expression of the transcription factor blistered (bs) in the LNVs, and (3) reduction of the Imd immune signaling pathway. These findings provide proof-of-principle evidence that measuring changes in sleep in flies after social enrichment may provide a highly scalable assay for the study of age-related deficits in synaptic plasticity. Conclusions: These studies demonstrate that Drosophila provides a promising model for the study of age-related loss of neural plasticity and begin to identify genes that might be manipulated to delay the onset of functional senescence. Citation: Donlea JM, Ramanan N, Silverman N, Shaw PJ. Genetic rescue of functional senescence in synaptic and behavioral plasticity. SLEEP 2014;37(9):1427-1437. PMID:25142573
Automotive Manufacturing Processes. Volume IV - Metal Stamping and Plastic Forming Processes
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Abstract Background: Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient’s motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. Objective: To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. Methods: 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Results: Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. Conclusions: ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction. PMID:26410207
Greenhalgh, Richard; Greenhalgh, Malcolm; Alshareef, Fadwa; Robson, Geoffrey D
2017-10-01
Industrial antimicrobials have been extensively used to control unwanted microbial growth by incorporation into a variety of products such as plastics and paints, reducing biodeterioration and biofouling and extending the lifespan of the product. Industrial antimicrobials generally have broad sites of action affecting core cellular functions such as central metabolism, enzyme function, cell wall or DNA synthesis and can either be biocidal or biostatic. In addition, susceptibility can be affected by the metabolic state of the microbe, with metabolically inactive cells generally more resistant than metabolically active cells. Previously it was demonstrated that cytosolically expressed green fluorescent protein could be used as a real-time viability indicator in the yeast Aureobasidium pullulans based on the pH dependent fluorescence of GFP and the collapse of the proton gradient across the cell membrane during cell death. In this study we report on the development and validation of an equivalent GFP fluorescence viability assay in Escherichia coli and used this assay to study the effect of five antimicrobials commonly used in plastics; 4,5-dichloro-2-octyl-isothiazol-3-one (DCOIT), sodium pyrithione, 1,2-benzisothiazol-3-one (BIT), 2-octyl-isothiazol-3-one (OIT) and n-butyl-1,2-benzisothiazol-3-one (BBIT). The results demonstrate broad differences amongst the antimicrobials in both relative efficacy, rate of effect and for some antimicrobials, marked differences in sensitivity toward growing and non-growing cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex
Sajo, Mari
2016-01-01
Dendritic spine turnover becomes limited in the adult cerebral cortex. Identification of specific aspects of spine dynamics that can be unmasked in adulthood and its regulatory molecular mechanisms could provide novel therapeutic targets for inducing plasticity at both the functional and structural levels for robust recovery from brain disorders and injuries in adults. Lynx1, an endogenous inhibitor of nicotinic acetylcholine receptors, was previously shown to increase its expression in adulthood and thus to limit functional ocular dominance plasticity in adult primary visual cortex (V1). However, the role of this “brake” on spine dynamics is not known. We examined the contribution of Lynx1 on dendritic spine turnover before and after monocular deprivation (MD) in adult V1 with chronic in vivo imaging using two-photon microscopy and determined the spine turnover rate of apical dendrites of layer 5 (L5) and L2/3 pyramidal neurons in adult V1 of Lynx1 knock-out (KO) mice. We found that the deletion of Lynx1 doubled the baseline spine turnover rate, suggesting that the spine dynamics in the adult cortex is actively limited by the presence of Lynx1. After MD, adult Lynx1-KO mice selectively exhibit higher rate of spine loss with no difference in gain rate in L5 neurons compared with control wild-type counterparts, revealing a key signature of spine dynamics associated with robust functional plasticity in adult V1. Overall, Lynx1 could be a promising therapeutic target to induce not only functional, but also structural plasticity at the level of spine dynamics in the adult brain. SIGNIFICANCE STATEMENT Dendritic spine turnover becomes limited in the adult cortex. In mouse visual cortex, a premier model of experience-dependent plasticity, we found that the deletion of Lynx1, a nicotinic “brake” for functional plasticity, doubled the baseline spine turnover in adulthood, suggesting that the spine dynamics in the adult cortex is actively limited by Lynx1. After visual deprivation, spine loss, but not gain rate, remains higher in adult Lynx1 knock-out mice than in control wild-type mice, revealing a key signature of spine dynamics associated with robust functional plasticity. Lynx1 would be a promising target to induce not only functional, but also structural plasticity at the level of spine dynamics in adulthood. PMID:27605620
Academic Status of Plastic Surgery in the United States and the Relevance of Independence.
Liu, P; Singh, M; Eriksson, E
2016-04-01
The basic administrative structures at most academic institutions were implemented more than 50 years ago and have remained largely unchanged. Since the surgical specialties were in nascent stages during that time, they were clubbed together within the department of surgery. There has been extensive growth in the breadth and depth of plastic surgery over the past few decades and current administrative structures might not truly reflect the current standing of plastic surgery. The goal of this article was to review the academic status of Plastic Surgery in the United States and assess the relevance of independence from the department of surgery. A national survey of 94 hospitals with plastic surgery residency training programs in the United States was conducted to investigate the academic status of plastic surgery. 25 out of those 94 programs had department status with their respective hospitals while another 9 programs were actively planning on transitioning to department status. Out of the 25 plastic surgery hospital departments, 17 programs were also University departments. The number of plastic surgery departments has more than doubled over the past 10 years and continues to rise as more plastic surgery divisions seek department status. There are multiple advantages to seeking department status such as financial and administrative autonomy, ability to participate in medical school curricula, easier access to interdepartmental institutes and faculties, parity with other specialties, and increased control of resident education. There has been concerted advocacy for separating from surgery departments and seeking independent departmental status for plastic surgery. However, the transition from a division to department is a slow and demanding process and requires a well-planned strategy. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
Li, Xiaotong; Shi, Liangen; Dai, Xiangping; Chen, Yajie; Xie, Hongqing; Feng, Min; Chen, Yuyin; Wang, Huabing
2018-05-12
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimise the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-Deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order; whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects, and located around the 1-DNJ binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of non-digestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim
2017-01-01
The proposed size-independent linear-elastic fracture toughness, K (sub Isi), for potential inclusion in ASTM E399 targets a consistent 0.5 millimeters crack extension for all specimen sizes through an offset secant that is a function of the specimen ligament length. The K (sub Isi) method also includes an increase in allowable deformation, and the removal of the P (sub max)/P (sub Q) criterion. A finite element study of the K (sub Isi) test method confirms the viability of the increased deformation limit, but has also revealed a few areas of concern. Findings: 1. The deformation limit, b (sub o) greater than or equal to 1.1 times (K (sub I) divided by delta (sub ys) squared) maintains a K-dominant crack tip field with limited plastic contribution to the fracture energy; 2. The three dimensional effects on compliance and the shape of the force versus CMOD (Crack-Mouth Opening Displacement) trace are significant compared to a plane strain assumption; 3. The non-linearity in the force versus CMOD trace at deformations higher than the current limit of 2.5 times (K (sub I) divided by delta (sub ys) squared) is sufficient to introduce error or even "false calls" regarding crack extension when using a constant offset secant line. This issue is more significant for specimens with W (width) greater than or equal to 2 inches; 4. A non-linear plasticity correction factor in the offset secant may improve the viability of the method at deformations between 2.5 times (K (sub I) divided by delta (sub ys) squared) and 1.1 times (K (sub I) divided by delta (sub ys) squared).
Structural and Functional Plasticity in the Maternal Brain Circuitry
ERIC Educational Resources Information Center
Pereira, Mariana
2016-01-01
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…
Mechanics and energetics in tool manufacture and use: a synthetic approach.
Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya
2014-11-06
Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Mechanics and energetics in tool manufacture and use: a synthetic approach
Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya
2014-01-01
Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. PMID:25209405
NASA Astrophysics Data System (ADS)
Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan
2013-12-01
Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei
2011-01-01
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943
Development of crayfish bio-based plastic materials processed by small-scale injection moulding.
Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio
2015-03-15
Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.
Modification of the semitransparent Prunus serrula bark film: Making rubber out of bark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X.; Zaremba, C.; Stucky, G.D.
1998-11-01
The authors report an extensive structural and mechanical characterization of the semitransparent bark of Prunus serrula. Variations in the properties were observed. Mechanical properties along the fiber axis of these films are strongly related to the cell dimensions. Several trends can be seen with increasing cell length: tensile strength and Young`s modulus increase; ductility decreases. Perpendicular to the fiber axis, similar radial dimensions of the bark cells contributes to similar mechanical properties. Plasticization not only shrinks the dimension of the bulk films along the tangential axis, which is unique, but also dramatically changes the mechanical properties. The authors have shown,more » for the first time, that the mechanical properties of the Prunus serrula bark can be effectively tailored with different plasticization and modification agents. The plastic bark can be successfully converted to rubberlike material either temporally or permanently, or it can be strengthened by tensile deformation of the plasticized bark.« less
Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.
Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki
2017-01-01
Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.
Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2017-09-01
Rice stubble is agricultural waste consisting of cellulose which can be converted to carboxymethyl cellulose from rice stubble (CMCr) as a potential biomaterial. Plasticizer types (glycerol and olive oil) and their contents were investigated to provide flexibility for use as food packaging material. Glycerol content enhanced extensibility, while olive oil content improved the moisture barrier of films. Additionally, CMCr showed potential as a replacement for up to 50% of commercial CMC without any changes in mechanical and permeability properties. A mixture of plasticizers (10% glycerol and 10% olive oil) provided blended film with good water barrier and mechanical properties comparable with 20% individual plasticizer. Principle component (PC) analysis with 2 PCs explained approximately 81% of the total variance, was a useful tool to select a suitable plasticizer ratio for blended film production. Therefore, CMCr can be used to form edible film and coating as a renewable environmentally friendly packaging material. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grain-size-independent plastic flow at ultrahigh pressures and strain rates.
Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T
2015-02-13
A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (∼10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2008-01-01
Area array packages (AAPs) with 1.27 mm pitch have been the packages of choice for commercial applications; they are now starting to be implemented for use in military and aerospace applications. Thermal cycling characteristics of plastic ball grid array (PBGA) and chip scale package assemblies, because of their wide usage for commercial applications, have been extensively reported on in literature. Thermal cycling represents the on-off environmental condition for most electronic products and therefore is a key factor that defines reliability.However, very limited data is available for thermal cycling behavior of ceramic packages commonly used for the aerospace applications. For high reliability applications, numerous AAPs are available with an identical design pattern both in ceramic and plastic packages. This paper compares assembly reliability of ceramic and plastic packages with the identical inputs/outputs(I/Os) and pattern. The ceramic package was in the form of ceramic column grid array (CCGA) with 560 I/Os peripheral array with the identical pad design as its plastic counterpart.
Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui
2015-01-01
Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828
An Evolutionary Computation Approach to Examine Functional Brain Plasticity.
Roy, Arnab; Campbell, Colin; Bernier, Rachel A; Hillary, Frank G
2016-01-01
One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength of functional relationship between DMN and ECN for TBI subjects, which is consistent with prior findings in the TBI-literature. The EC-approach also allowed us to separate sub-regional-pairs contributing to positive and negative plasticity; the detected sub-regional-pairs significantly overlap across runs thus highlighting the reliability of the EC-approach. These sub-regional-pairs may be useful in performing nuanced analyses of brain-behavior relationships during recovery from TBI.
Plastic Surgery Intervention with Down Syndrome Persons: Summary of a Conference.
ERIC Educational Resources Information Center
Exceptional Parent, 1983
1983-01-01
The article discusses the role of plastic surgery for persons with Down Syndrome, as considered in a recent conference. The functions of team plastic surgery, importance of intensive speech therapy, and the question of ultimate therapeutic value are among questions considered. (CL)
NASA Astrophysics Data System (ADS)
1990-01-01
The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.
Garelick, Michael G.; Kennedy, Brian K.
2012-01-01
Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to lifespan extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer s disease, Parkinson s disease, and polyglutamine expansion syndromes such as Huntington s disease. PMID:20849946
Prentice Award Lecture 2011: Removing the Brakes on Plasticity in the Amblyopic Brain
Levi, Dennis M.
2012-01-01
Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the “brakes” that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to re-consider our notions about neural plasticity in amblyopia. PMID:22581119
Thermodynamically consistent relations involving plasticity, internal energy and thermal effects.
Schreyer, H L; Maudlin, P J
2005-11-15
Experimental data associated with plastic deformations indicate that the temperature is less than that predicted from dissipation based on plastic work. To obtain reasonable correlation between theoretical and experimental results, the plastic work is often multiplied by a constant beta. This paper provides an alternative thermodynamic framework in which it is proposed that there is an additional internal energy associated with dislocation pile-up or increase in dislocation density. The form of this internal energy follows from experimental data that relates flow stress to dislocation density and to equivalent plastic strain. The result is that beta is not a constant but a derived function. Representative results for beta and temperature as functions of effective plastic strain are provided for both an uncoupled and a coupled thermoplastic theory. In addition to providing features that are believed to be representative of many metals, the formulation can be used as a basis for more advanced theories such as those needed for large deformations and general forms of internal energy.
Kong, Junjun; Li, Yi; Bai, Yungang; Li, Zonglin; Cao, Zengwen; Yu, Yancun; Han, Changyu; Dong, Lisong
2018-06-01
A novel polyester poly(diethylene glycol succinate) (PDEGS) was synthesized and evaluated as a plasticizer for polylactide (PLA) in this study. Meanwhile, an effective sustainable filler, functionalized eggshell powder (FES) with a surface layer of calcium phenyphosphonate was also prepared. Then, PLA biocomposites were prepared from FES and PDEGS using a facile melt blending process. The addition of 15 wt% PDEGS as plasticizer showed good miscibility with PLA macromolecules and increased the chain mobility of PLA. The crystallization kinetics of PLA composites revealed that the highly effective nucleating FES significantly improved the crystallization ability of PLA at both of non-isothermal and isothermal conditions. In addition, the effective plasticizer and well-dispersed FES increased the elongation at break from 6% of pure PLA to over 200% for all of the plasticized PLA composites. These biodegradable PLA biocomposites, coupled with excellent crystallization ability and tunable mechanical properties, demonstrate their potential as alternatives to traditional commodity plastics. Copyright © 2018 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2013-11-01
Metal and plastic pipes have been used extensively as storm sewers and buried drainage structures in transportation projects. Metal pipes have : high strength and stiffness but are susceptible to corrosion from wastewaters containing acid, and from a...
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.
Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H
2014-08-21
Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Simis, K J; Verhulst, F C; Koot, H M
2001-07-01
This study addressed three questions: (1) Do adolescents undergoing plastic surgery have a realistic view of their body? (2) How urgent is the psychosocial need of adolescents to undergo plastic surgery? (3) Which relations exist between bodily attitudes and psychosocial functioning and personality? From 1995 to 1997, 184 plastic surgical patients aged 12 to 22, and a comparison group of 684 adolescents and young adults from the general population aged 12 to 22 years, and their parents, were interviewed and completed questionnaires and standardised rating scales. Adolescents accepted for plastic surgery had realistic appearance attitudes and were psychologically healthy overall. Patients were equally satisfied with their overall appearance as the comparison group, but more dissatisfied with the specific body parts concerned for operation, especially when undergoing corrective operations. Patients had measurable appearance-related psychosocial problems. Patient boys reported less self-confidence on social areas than all other groups. There were very few patient-comparison group differences in correlations between bodily and psychosocial variables, indicating that bodily attitudes and satisfaction are not differentially related to psychosocial functioning and self-perception in patients than in peers. We concluded that adolescents accepted for plastic surgery have considerable appearance-related psychosocial problems, patients in the corrective group reporting more so than in the reconstructive group. Plastic surgeons may assume that these adolescents in general have a realistic attitude towards their appearance. are psychologically healthy, and are mainly dissatisfied about the body parts concerned for operation. corrective patients more so than reconstructive patients. Introverted patients may need more attention from plastic surgeons during the psychosocial assessment.
Pulmonary functions in plastic factory workers: a preliminary study.
Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam
2011-01-01
Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.
Astronaut Rhea Seddon works on flyswatter-like snagging device
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut Rhea Seddon begins works on flyswatter-like snagging device to be used as an extension to the remote manipulator system (RMS) arm on Discovery for an attempt to trip a lever on the troubled Syncom-IV satellite. She is seated on the floor of the aft flight deck with a pair of scissors in her mouth. She is using an exacto knife to cut the extension out of plastic. Her jacket is floating in the bottom right edge of the frame.
Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films
NASA Astrophysics Data System (ADS)
Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping
2012-02-01
Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.
Reorganization of neuronal circuits of the central olfactory system during postprandial sleep
Yamaguchi, Masahiro; Manabe, Hiroyuki; Murata, Koshi; Mori, Kensaku
2013-01-01
Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals' life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB) throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep), a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC) along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal circuits in the brain. PMID:23966911
Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun
2016-05-01
Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.
Computational Nanomechanics of Carbon Nanotubes and Composites
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2002-01-01
Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.
Deng, Pan-Yue; Sojka, David; Klyachko, Vitaly A
2011-07-27
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS.
Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype.
Welldon, Katie J; Atkins, Gerald J; Howie, Donald W; Findlay, David M
2008-03-01
Porous tantalum (Ta) has found application in orthopedics, although the interaction of human osteoblasts (HOB) with this material has not been reported. The aim of this study was to investigate the interaction of primary HOB with porous tantalum, using 5-mm thick discs of porous tantalum. Comparison was made with discs of solid tantalum and tissue culture plastic. Confocal microscopy was used to investigate the attachment and growth of cells on porous Ta, and showed that HOB attached successfully to the metal "trabeculae," underwent extensive cell division, and penetrated into the Ta pores. The maturation of HOB on porous Ta was determined in terms of cell expression of the osteoblast phenotypic markers, STRO-1, and alkaline phosphatase. Despite some donor-dependent variation in STRO-1/AlkPhos expression, growth of cells grown on porous Ta either promoted, or did not impede, the maturation of HOB. In addition, the expression of key osteoblastic genes was investigated after 14 days of culture. The relative levels of mRNA encoding osteocalcin, osteopontin and receptor activator of NFkappaB ligand (RANKL) was not different between porous or solid Ta or plastic, although these genes were expressed differently by cells of different donors. However, bone sialoprotein and type I collagen mRNA species showed a decreased expression on porous Ta compared with expression on plastic. No substrate-dependent differences were seen in the extent of in vitro mineralization by HOB. These results indicate that porous Ta is a good substrate for the attachment, growth, and differentiated function of HOB. (c) 2007 Wiley Periodicals, Inc.
TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus
Hurtado-Zavala, Joaquin I.; Ramachandran, Binu; Ahmed, Saheeb; Halder, Rashi; Bolleyer, Christiane; Awasthi, Ankit; Stahlberg, Markus A.; Wagener, Robin J.; Anderson, Kristin; Drenan, Ryan M.; Lester, Henry A.; Miwa, Julie M.; Staiger, Jochen F.; Fischer, Andre; Dean, Camin
2017-01-01
TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity. PMID:28722015
Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster
Dunn, Joshua G; Foo, Catherine K; Belletier, Nicolette G; Gavis, Elizabeth R; Weissman, Jonathan S
2013-01-01
Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001 PMID:24302569
Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations
2013-04-16
to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the...resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the calculation of the soil mechanics model
Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys
NASA Technical Reports Server (NTRS)
Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.
2017-01-01
Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network
Malvaut, Sarah; Saghatelyan, Armen
2016-01-01
The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709
Selector function of MHC I molecules is determined by protein plasticity
NASA Astrophysics Data System (ADS)
Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim
2015-10-01
The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background
Glabinski, Andrzej
2015-01-01
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689
Cortical plasticity and preserved function in early blindness
Renier, Laurent; De Volder, Anne G.; Rauschecker, Josef P.
2013-01-01
The “neural Darwinism” theory predicts that when one sensory modality is lacking, as in congenital blindness, the target structures are taken over by the afferent inputs from other senses that will promote and control their functional maturation (Edelman, 1993). This view receives support from both cross-modal plasticity experiments in animal models and functional imaging studies in man, which are presented here. PMID:23453908
Postnatal development under conditions of simulated weightlessness and space flight
NASA Technical Reports Server (NTRS)
Walton, K.
1998-01-01
The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.
Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex
USDA-ARS?s Scientific Manuscript database
The genus Diaporthe comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Cryptic diversification, phenotypic plasticity and extensive host associations have long complicated accurate identifications of species in this genus. The delimitation of the ge...
DOT National Transportation Integrated Search
2013-11-01
Metal and plastic pipes have been used extensively as storm sewers and buried drainage structures in transportation projects. Metal pipes have high strength and stiffness but are susceptible to corrosion from wastewaters containing acid, and from agg...
Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.
Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M
2006-01-01
Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.
Schneider, Ralf F; Li, Yuanhao; Meyer, Axel; Gunter, Helen M
2014-09-01
Phenotypic plasticity is the ability of organisms with a given genotype to develop different phenotypes according to environmental stimuli, resulting in individuals that are better adapted to local conditions. In spite of their ecological importance, the developmental regulatory networks underlying plastic phenotypes often remain uncharacterized. We examined the regulatory basis of diet-induced plasticity in the lower pharyngeal jaw (LPJ) of the cichlid fish Astatoreochromis alluaudi, a model species in the study of adaptive plasticity. Through raising juvenile A. alluaudi on either a hard or soft diet (hard-shelled or pulverized snails) for between 1 and 8 months, we gained insight into the temporal regulation of 19 previously identified candidate genes during the early stages of plasticity development. Plasticity in LPJ morphology was first detected between 3 and 5 months of diet treatment. The candidate genes, belonging to various functional categories, displayed dynamic expression patterns that consistently preceded the onset of morphological divergence and putatively contribute to the initiation of the plastic phenotypes. Within functional categories, we observed striking co-expression, and transcription factor binding site analysis was used to examine the prospective basis of their coregulation. We propose a regulatory network of LPJ plasticity in cichlids, presenting evidence for regulatory crosstalk between bone and muscle tissues, which putatively facilitates the development of this highly integrated trait. Through incorporating a developmental time-course into a phenotypic plasticity study, we have identified an interconnected, environmentally responsive regulatory network that shapes the development of plasticity in a key innovation of East African cichlids. © 2014 John Wiley & Sons Ltd.
Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall.
Kim, Il Hwan; Wang, Hong; Soderling, Scott H; Yasuda, Ryohei
2014-07-08
Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors such as learning and memory are not well understood. Here we report that postnatal forebrain deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but instead significantly impaired remote memory recall. Together these results indicate that the postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, which contribute to the capacity for remote memory recall.
Plasticity of gastro-intestinal vagal afferent endings.
Kentish, Stephen J; Page, Amanda J
2014-09-01
Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
Management of facial soft tissue injuries in children.
Vasconez, Henry C; Buseman, Jason L; Cunningham, Larry L
2011-07-01
Pediatric facial trauma can present a challenge to even the more experienced plastic surgeon. Injuries to the head and neck may involve bone and soft tissues with an assortment of specialized organs and tissue elements involved. Because of the active nature of children, facial soft tissue injuries can be diverse and extensive as well as some of the more common injuries a plastic surgeon is asked to treat. In 2007, approximately 800,000 patients younger than 15 years presented to emergency departments around the country with significant open wounds of the head that required treatment.In this review, we present the different types and regions of pediatric soft tissue facial trauma, as well as treatment options and goals of plastic surgery wound management. Special aspects, such as bite wounds, burns, pediatric analgesia, and antibiotic therapy, are also discussed.
Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview
2018-01-01
Di-2-ethylhexyl phthalate (DEHP) is extensively used as a plasticizer in many products, especially medical devices, furniture materials, cosmetics, and personal care products. DEHP is noncovalently bound to plastics, and therefore, it will leach out of these products after repeated use, heating, and/or cleaning of the products. Due to the overuse of DEHP in many products, it enters and pollutes the environment through release from industrial settings and plastic waste disposal sites. DEHP can enter the body through inhalation, ingestion, and dermal contact on a daily basis, which has raised some concerns about its safety and its potential effects on human health. The main aim of this review is to give an overview of the endocrine, testicular, ovarian, neural, hepatotoxic, and cardiotoxic effects of DEHP on animal models and humans in vitro and in vivo. PMID:29682520
Dislocation dynamics in hexagonal close-packed crystals
Aubry, S.; Rhee, M.; Hommes, G.; ...
2016-04-14
Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less
Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex
Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.
2015-01-01
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.; ...
2017-04-25
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
Unger, Scott R; Hottle, Troy A; Hobbs, Shakira R; Thiel, Cassandra L; Campion, Nicole; Bilec, Melissa M; Landis, Amy E
2017-01-01
Background While petroleum-based plastics are extensively used in health care, recent developments in biopolymer manufacturing have created new opportunities for increased integration of biopolymers into medical products, devices and services. This study compared the environmental impacts of single-use disposable devices with increased biopolymer content versus typically manufactured devices in hysterectomy. Methods A comparative life cycle assessment of single-use disposable medical products containing plastic(s) versus the same single-use medical devices with biopolymers substituted for plastic(s) at Magee-Women's Hospital (Magee) in Pittsburgh, PA and the products used in four types of hysterectomies that contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching hospital, which performs approximately 1400 hysterectomies annually. Results There are life cycle environmental impact tradeoffs when substituting biopolymers for petroplastics in procedures such as hysterectomies. The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. Conversely, biopolymers reduced life cycle human health impacts, acidification and cumulative energy demand for the four hysterectomy procedures. The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects. However, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts of products and devices made using biopolymers. Conclusions The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects; however, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts.
Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro
2011-01-01
Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837
Intravital imaging of dendritic spine plasticity
Sau Wan Lai, Cora
2014-01-01
Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511
Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*
Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert
2016-01-01
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams. PMID:26598641
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako
2014-09-01
We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis atmore » 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased immunoreactive neurons for Arc, Fos or Jun. • The results suggest that 28-day glycidol treatment suppressed neuronal plasticity.« less
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Visual Cortex Plasticity: A Complex Interplay of Genetic and Environmental Influences
Maya-Vetencourt, José Fernando; Origlia, Nicola
2012-01-01
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. PMID:22852098
Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.
2014-01-01
Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550
Polystyrene Foam EOS as a Function of Porosity and Fill Gas
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2009-06-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.
Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages
Stout, Robert D.; Watkins, Stephanie K.; Suttles, Jill
2009-01-01
The extent to which the functional heterogeneity of Mϕs is dependent on the differentiation of functional sublineages remains unresolved. One alternative hypothesis proposes that Mϕs are functionally plastic cells, which are capable of altering their functional activities progressively in response to progressively changing signaling molecules generated in their microenvironment. This “functional plasticity” hypothesis predicts that the functionally polarized Mϕs in chronic pathologies do not represent Mϕ sublineages but rather, are mutable phenotypes sustained by chronic signaling from the pathological environment. Solid TAMϕs are chronically polarized to provide activities that support tumor growth and metastasis and suppress adaptive immune responses. In support of the functional plasticity hypothesis, administration of slow-release microsphere-encapsulated IL-12 successfully reprogrammed TAMϕs in situ, reducing Mϕ support of tumor growth and metastasis and enhancing Mϕ proimmunogenic activities. Increased knowledge of how Mϕ function is regulated and how polarized Mϕs can be reprogrammed in situ will increase our ability to control Mϕ function in a variety of pathological states, including cancer and chronic inflammatory disease. PMID:19605698
Silvestre, Frédéric; Gillardin, Virginie; Dorts, Jennifer
2012-11-01
Nowadays, the unprecedented rates of anthropogenic changes in ecosystems suggest that organisms have to migrate to new distributional ranges or to adapt commensurately quickly to new conditions to avoid becoming extinct. Pollution and global warming are two of the most important threats aquatic organisms will have to face in the near future. If genetic changes in a population in response to natural selection are extensively studied, the role of acclimation through phenotypic plasticity (the property of a given genotype to produce different phenotypes in response to particular environmental conditions) in a species to deal with new environmental conditions remains largely unknown. Proteomics is the extensive study of the protein complement of a genome. It is dynamic and depends on the specific tissue, developmental stage, and environmental conditions. As the final product of gene expression, it is subjected to several regulatory steps from gene transcription to the functional protein. Consequently, there is a discrepancy between the abundance of mRNA and the abundance of the corresponding protein. Moreover, proteomics is closer to physiology and gives a more functional knowledge of the regulation of gene expression than does transcriptomics. The study of protein-expression profiles, however, gives a better portrayal of the cellular phenotype and is considered as a key link between the genotype and the organismal phenotype. Under new environmental conditions, we can observe a shift of the protein-expression pattern defining a new cellular phenotype that can possibly improve the fitness of the organism. It is now necessary to define a proteomic norm of reaction for organisms acclimating to environmental stressors. Its link to fitness will give new insights into how organisms can evolve in a changing environment. The proteomic literature bearing on chronic exposure to pollutants and on acclimation to heat stress in aquatic organisms, as well as potential application of proteomics in evolutionary issues, are outlined. While the transcriptome responses are commonly investigated, proteomics approaches now need to be intensified, with the new perspective of integrating the cellular phenotype with the organismal phenotype and with the mechanisms of the regulation of gene expression, such as epigenetics.
Greer, Justin B; Khuri, Sawsan; Fieber, Lynne A
2017-01-11
The neurotransmitter L-Glutamate (L-Glu) acting at ionotropic L-Glu receptors (iGluR) conveys fast excitatory signal transmission in the nervous systems of all animals. iGluR-dependent neurotransmission is a key component of the synaptic plasticity that underlies learning and memory. During learning, two subtypes of iGluR, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and N-methyl-D-aspartate receptors (NMDAR), are dynamically regulated postsynaptically in vertebrates. Invertebrate organisms such as Aplysia californica (Aplysia) are well-studied models for iGluR-mediated function, yet no studies to date have analyzed the evolutionary relationships between iGluR genes in these species and those in vertebrates, to identify genes that may mediate plasticity. We conducted a thorough phylogenetic analysis spanning Bilateria to elucidate these relationships. The expression status of iGluR genes in the Aplysia nervous system was also examined. Our analysis shows that ancestral genes for both NMDAR and AMPAR subtypes were present in the common bilaterian ancestor. NMDAR genes show very high conservation in motifs responsible for forming the conductance pore of the ion channel. The number of NMDAR subunits is greater in vertebrates due to an increased number of splice variants and an increased number of genes, likely due to gene duplication events. AMPAR subunits form an orthologous group, and there is high variability in the number of AMPAR genes in each species due to extensive taxon specific gene gain and loss. qPCR results show that all 12 Aplysia iGluR subunits are expressed in all nervous system ganglia. Orthologous NMDAR subunits in all species studied suggests conserved function across Bilateria, and potentially a conserved mechanism of neuroplasticity and learning. Vertebrates display an increased number of NMDAR genes and splice variants, which may play a role in their greater diversity of physiological responses. Extensive gene gain and loss of AMPAR genes may result in different physiological properties that are taxon specific. Our results suggest a significant role for L-Glu mediated responses throughout the Aplysia nervous system, consistent with L-Glu's role as the primary excitatory neurotransmitter.
Antonietti, Alberto; Casellato, Claudia; Garrido, Jesús A; Luque, Niceto R; Naveros, Francisco; Ros, Eduardo; D' Angelo, Egidio; Pedrocchi, Alessandra
2016-01-01
In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.
Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis
NASA Astrophysics Data System (ADS)
Fazlioglu, Fatih; Bonser, Stephen P.
2016-11-01
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.
Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S
2014-02-01
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr
2013-02-15
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less
Zafar, Urooj; Houlden, Ashley; Robson, Geoffrey D
2013-12-01
Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.
Physical basis for altered stem elongation rates in internode length mutants of Pisum
NASA Technical Reports Server (NTRS)
Behringer, F. J.; Cosgrove, D. J.; Reid, J. B.; Davies, P. J.
1990-01-01
Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.
Zafar, Urooj; Houlden, Ashley
2013-01-01
Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469
DEFORMATION PROCESSES IN MATERIALS. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washburn, J.; Parker, E.R.; Tinder, R.F.
1962-08-01
It was found that irreversible plastic deformation occurs in polycrystaliine specimens of zinc, copper and its dilute alloys, and aluminum at room temperature, beginning at stresses indetectably above zero applied stress. Neither Frank-Read source generation nor simple bowing of dislocations between fixed nodes can explain the irreversible plastic behavior observed at small stresses in the metals studied. More extensive rearrangements of the dislocation substructure that probably involve glide of nodes and formation of new nodes seem to be required. Prestrained specimens of copper and its dilute alloys often exhibited bursts of plastic deformation which could possibly be due to cooperativemore » rearrangement of the dislocation substructure in one or a few grains. The introduction, by particle bombardment, of new lengths of dislocations into the gage section surface of specimens of copper and its dilute alloys produced extensive irreversible plastic flow beginning at stresses indetectably above zero applied stress. The effect of prestraln on the shape of the loading and unloading curves for zinc shows that dislocation rearrangements that cause forward and reverse strain can occur simultaneously. The net strain rate can be the algebraic sum of the strain recovery rate and the forward creep rate. The present quantitative theories of the Peierls-Nabarro stress are insufficient to permit an estimate of its magnitude from the results of this investigation. In dilute copper alloys containing up to 0.1 at.% impurity, there were many dislocations in the grown-in networks that were not locked by segregation of the foreign atoms. The study of creep behavior over a range of temperatures and at the same strain sensitivity used in these experiments combined with dislocation etch pit observations of dislocation substructure appears to be a particularly fruitful field for further investigation. (auth)« less
Female genital cosmetic and plastic surgery: a review.
Goodman, Michael P
2011-06-01
This review studies rationale and outcome of vulvovaginal aesthetic surgery. Discuss procedures designed to alter genital appearance and function; investigate sexual, philosophical, and ethical issues; examine outcomes. (i) Medline search of the existing literature utilizing terms labiaplasty, clitoral hood reduction, hymenoplasty (HP), vaginoplasty (VP), perineoplasty (PP), female genital surgery, sexual satisfaction/body image, and anterior/posterior colporrhaphy; (ii) references from bibliographies of papers found through the literature search and in the author's reading of available literature. (i) Demographics and psychosexual dynamics of women requesting female genital plastic/cosmetic surgery; (ii) overall and sexual satisfaction of subjects undergoing these procedures. The majority of studies regarding patient satisfaction and sexual function after vaginal aesthetic and functional plastic procedures report beneficial results, with overall patient satisfaction in the 90-95% range, sexual satisfaction over 80-85%. These data are supported by outcome data from nonelective vaginal support procedures. Complications appear minor and acceptable to patients. There are little data available regarding outcomes and satisfaction of HP, or function during the rigors of subsequent vaginal childbirth, although the literature contains no case reports of labiaplasty disruption during parturition. Women requesting labiaplasty and reduction of their clitoral hoods do so for both cosmetic and functional (chafing, interference with coitus, interference with athletic activities, etc.) reasons, while patients requesting VP and/or PP do so in order to increase friction and sexual satisfaction, occasionally for aesthetic reasons. Patients appear generally happy with outcomes. The majority of patients undergoing genital plastic surgery report overall satisfaction and subjective enhancement of sexual function and body image, but the literature is retrospective. Female genital plastic surgery procedures appear to fulfill the majority of patient's desires for cosmetic and functional improvement, as well as enhancement of the sexual experience. Little information is available regarding HP outcomes. © 2011 International Society for Sexual Medicine.
SKILLED BIMANUAL TRAINING DRIVES MOTOR CORTEX PLASTICITY IN CHILDREN WITH UNILATERAL CEREBRAL PALSY
Friel, Kathleen M.; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L.; Brandão, Marina; Carmel, Jason B.; Bleyenheuft, Yannick; Gowatsky, Jaimie L.; Stanford, Arielle D.; Rowny, Stefan B.; Luber, Bruce; Bassi, Bruce; Murphy, David LK; Lisanby, Sarah H.; Gordon, Andrew M.
2015-01-01
Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n=10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP. PMID:26867559
Forthergillian Lecture. Imaging human brain function.
Frackowiak, R S
The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning plastic change. Other models of plastic change, such as normal visuospatial learning or re-establishing speech comprehension after cochlear implantation in the deaf illustrate how patterns of brain function adapt over time. Limitations of the scanning techniques and prospects for the future are discussed in relation to new developments in the neuroimaging field.
Motor Learning Induces Plasticity in the Resting Brain-Drumming Up a Connection.
Amad, Ali; Seidman, Jade; Draper, Stephen B; Bruchhage, Muriel M K; Lowry, Ruth G; Wheeler, James; Robertson, Andrew; Williams, Steven C R; Smith, Marcus S
2017-03-01
Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity
ERIC Educational Resources Information Center
Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues
2007-01-01
The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…
Diet and cognition: interplay between cell metabolism and neuronal plasticity.
Gomez-Pinilla, Fernando; Tyagi, Ethika
2013-11-01
To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.
The negotiated equilibrium model of spinal cord function.
Wolpaw, Jonathan R
2018-04-16
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione
2016-01-01
Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357
Neural and cognitive plasticity: from maps to minds.
Mercado, Eduardo
2008-01-01
Some species and individuals are able to learn cognitive skills more flexibly than others. Learning experiences and cortical function are known to contribute to such differences, but the specific factors that determine an organism's intellectual capacities remain unclear. Here, an integrative framework is presented suggesting that variability in cognitive plasticity reflects neural constraints on the precision and extent of an organism's stimulus representations. Specifically, it is hypothesized that cognitive plasticity depends on the number and diversity of cortical modules that an organism has available as well as the brain's capacity to flexibly reconfigure and customize networks of these modules. The author relates this framework to past proposals on the neural mechanisms of intelligence, including (a) the relationship between brain size and intellectual capacity; (b) the role of prefrontal cortex in cognitive control and the maintenance of stimulus representations; and (c) the impact of neural plasticity and efficiency on the acquisition and performance of cognitive skills. The proposed framework provides a unified account of variability in cognitive plasticity as a function of species, age, and individual, and it makes specific predictions about how manipulations of cortical structure and function will impact intellectual capacity. Copyright (c) 2008 APA.
Pavlopoulos, Elias; Trifilieff, Pierre; Chevaleyre, Vivien; Fioriti, Luana; Zairis, Sakellarios; Pagano, Andrew; Malleret, Gaël; Kandel, Eric R
2011-12-09
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation. Copyright © 2011 Elsevier Inc. All rights reserved.
Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective
Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim
2013-01-01
Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505
Root plasticity buffers competition among plants: theory meets experimental data.
Schiffers, Katja; Tielbörger, Katja; Tietjen, Britta; Jeltsch, Florian
2011-03-01
Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.
Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation
Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.
2013-01-01
“Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but also in the aging population. PMID:23871744
Hsu, Ying; Kim, Gunhee; Zhang, Qihong; Datta, Poppy; Seo, Seongjin
2017-01-01
Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated. PMID:29049287
Johnston, David G.; Denizet, Marie; Mostany, Ricardo
2013-01-01
Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity. PMID:22499800
Johnston, David G; Denizet, Marie; Mostany, Ricardo; Portera-Cailliau, Carlos
2013-04-01
Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity.
Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.
2014-01-01
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306
Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso
2013-01-01
Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210
Reconfiguration of parietal circuits with cognitive tutoring in elementary school children
Jolles, Dietsje; Supekar, Kaustubh; Richardson, Jennifer; Tenison, Caitlin; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod
2016-01-01
Cognitive development is shaped by brain plasticity during childhood, yet little is known about changes in large-scale functional circuits associated with learning in academically relevant cognitive domains such as mathematics. Here, we investigate plasticity of intrinsic brain circuits associated with one-on-one math tutoring and its relation to individual differences in children’s learning. We focused on functional circuits associated with the intraparietal sulcus (IPS) and angular gyrus (AG), cytoarchitectonically distinct subdivisions of the human parietal cortex with different roles in numerical cognition. Tutoring improved performance and strengthened IPS connectivity with the lateral prefrontal cortex, ventral temporal-occipital cortex, and hippocampus. Crucially, increased IPS connectivity was associated with individual performance gains, highlighting the behavioral significance of plasticity in IPS circuits. Tutoring-related changes in IPS connectivity were distinct from those of the adjacent AG, which did not predict performance gains. Our findings provide new insights into plasticity of functional brain circuits associated with the development of specialized cognitive skills in children. PMID:27618765
Reconfiguration of parietal circuits with cognitive tutoring in elementary school children.
Jolles, Dietsje; Supekar, Kaustubh; Richardson, Jennifer; Tenison, Caitlin; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod
2016-10-01
Cognitive development is shaped by brain plasticity during childhood, yet little is known about changes in large-scale functional circuits associated with learning in academically relevant cognitive domains such as mathematics. Here, we investigate plasticity of intrinsic brain circuits associated with one-on-one math tutoring and its relation to individual differences in children's learning. We focused on functional circuits associated with the intraparietal sulcus (IPS) and angular gyrus (AG), cytoarchitectonically distinct subdivisions of the human parietal cortex with different roles in numerical cognition. Tutoring improved performance and strengthened IPS connectivity with the lateral prefrontal cortex, ventral temporal-occipital cortex, and hippocampus. Crucially, increased IPS connectivity was associated with individual performance gains, highlighting the behavioral significance of plasticity in IPS circuits. Tutoring-related changes in IPS connectivity were distinct from those of the adjacent AG, which did not predict performance gains. Our findings provide new insights into plasticity of functional brain circuits associated with the development of specialized cognitive skills in children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generation of sonic power during welding
NASA Technical Reports Server (NTRS)
Mc Campbell, W. M.
1969-01-01
Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.
DOT National Transportation Integrated Search
1982-08-01
This study summarizes extensive information collected over a two-year period (October 1978 to 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study was to ...
Aerial sampling of emissions from biomass pile burns in ...
Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.
Hamlin, Heather J; Marciano, Kathleen; Downs, Craig A
2015-11-01
Nonylphenol (NP) is a non-ionic surfactant used extensively in industrial applications, personal care products, and many plastics. We exposed marine orchid dottybacks (Pseudochromis fridmani) for 48h to either glass, Teflon, or two bags labeled as FDA food-grade polyethylene (PE1 and PE2) from different manufacturers. The PE2 bags leached high levels of NP into the contact water, which were taken up by the fish, and decreased short and long-term survival. Concentrations of NP that leached from the bags were consistent with 96h LC50 values determined in this study, indicating NP is the likely toxic agent. Despite being similarly labeled, the NP concentrations that leached from the bags and the resultant toxicity to the fish varied dramatically between manufacturers. This study highlights that some plastics, labeled as food-safe, can be highly toxic to aquatic animals, and could pose a greater threat to humans than previously realized. This study also highlights risks for aquatic animals exposed to increasing quantities of plastic waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharony, Zach; Eldor, Liron; Klein, Yuval; Ramon, Yitzchak; Rissin, Yaron; Berger, Yosef; Lerner, Alexander; Ullmann, Yehuda
2009-01-01
During the 2006 war between Israel and Lebanon, 282 Israeli soldiers were evacuated to Rambam Health Care Campus. Of these, 210 were admitted for observation or treatment, and 15 of these were admitted to the Department of Plastic and Reconstructive Surgery. Thirty-five other soldiers, hospitalized in other departments, required the care of Plastic Surgeons, either for conservative or surgical treatment. The injury profile observed was consistent with data from previous low-intensity warfare, which demonstrated that over 80% of injuries were produced by fragmentation weapons, such as artillery, mortarshells, rockets, and missiles. It differs, however, from our experience in previous wars and our expectations regarding burn wounds, both in incidence and severity, which were significantly lower as compared with the past. This article presents our management of extensive soft tissue injuries, and details 3 representative cases. It highlights the role of the Plastic Surgeon as part of the whole treatment in this type of injury and helps to predict the needs of the medical system in preparation for the future.
Myelination: an overlooked mechanism of synaptic plasticity?
Fields, R Douglas
2005-12-01
Myelination of the brain continues through childhood into adolescence and early adulthood--the question is, Why? Two new articles provide intriguing evidence that myelination may be an underappreciated mechanism of activity-dependent nervous system plasticity: one study reported increased myelination associated with extensive piano playing, another indicated that rats have increased myelination of the corpus callosum when raised in environments providing increased social interaction and cognitive stimulation. These articles make it clear that activity-dependent effects on myelination cannot be considered strictly a developmental event. They raise the question of whether myelination is an overlooked mechanism of activity-dependent plasticity, extending in humans until at least age 30. It has been argued that regulating the speed of conduction across long fiber tracts would have a major influence on synaptic response, by coordinating the timing of afferent input to maximize temporal summation. The increase in synaptic amplitude could be as large as neurotransmitter-based mechanisms of plasticity, such as LTP. These new findings raise a larger question: How did the oligodendrocytes know they were practicing the piano or that their environment was socially complex?
Modulation of hippocampal neural plasticity by glucose-related signaling.
Mainardi, Marco; Fusco, Salvatore; Grassi, Claudio
2015-01-01
Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.
Flexibility of movement organization in piano performance.
Furuya, Shinichi; Altenmüller, Eckart
2013-01-01
Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice.
Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP
NASA Technical Reports Server (NTRS)
Peters, P. W. M.
1982-01-01
The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.
Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors
NASA Astrophysics Data System (ADS)
Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio
2013-09-01
The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.
[Two French pioneers of plastic surgery: François Dubois and Raymond Passot].
Derquenne, François
2015-01-01
After World War, especially during the interwar years, new plastic surgical techniques were highly developed by I two French surgeons: Dr Raymond Passot, a pupil of Pr Hippolyte Morestin, Head of surgery department in Val-de-Grâce military hospital, Father of the Gueules cassées and Dr François Dubois, a pupil of Pr Sébileau, head of ear nose throat disorders department at Lariboisière Hospital in Paris. By the way of papers, publications and interviews to media, they described new French cosmetic techniques (rhitidectomy, sutures, liposuccion) and extensively developed this outpatient surgery. They used to renove famous actresse's and actors' face and nose and those of hundreds of patients. They participate to French societies of plastic surgery meetings and publications. Their enthusiastic dare largely participated to the current success of cosmetic surgery in France.
Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.
Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena
2016-12-01
The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.
[Sleep-wake cycle and memory consolidation].
Baratti, Carlos M; Boccia, Mariano M; Blake, Mariano G; Acosta, Gabriela B
2007-01-01
Although several hypothesis and theories have been advanced as explanations for the functions of sleep, a unified theory of sleep function remains elusive. Sleep has been implicated in the plastic cerebral changes that underlie learning and memory, in particular those related to memory consolidation of recently acquired new information. Despite steady accumulations of positive findings over the last ten years, the precise role of sleep in memory and brain plasticity is unproven at all. This situation might be solved by more integrated approaches that combine behavioral and neurophysiological measurements in well described in vivo models of neuronal activity and brain plasticity.
Knowledge, attitudes and practices relating to plastic containers for food and drinks.
Kasemsup, Rachada; Neesanan, Naiyana
2011-08-01
Plastic is widely used in daily life especially as food and drink containers. If these containers are used inappropriately, some chemicals such as bisphenol A, phthalate, and styrene from plastic may accumulate and impair organ function. To assess knowledge, attitudes, and practices relating to plastic containers for food and drinks among parents and health personnel. 100 parents and 100 health personnel from Queen Sirikit National Institute of Child Health are included in the present study. The questionnaires which contained 6 parts measuring knowledge, attitudes and practices about plastic containers for food and drinks are used to collect the data. There are no differences in knowledge, attitudes and practices relating to plastic containers between parents and health personnel. Even though, 80 percent of participants usually use plastic containers for food and drinks, their knowledge about plastic is inadequate. Parents and health personnel are aware of health effects of plastic containers, but they do not know how to use and purchase plastics properly.
Yield surfaces for frictional sphere assemblages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddard, J.D.; Didwania, A.K.
1995-12-31
By means of a recently developed computer algorithm for simulation of the quasi-static I mechanics of sphere assemblages, we have performed extensive computations of the dilatancy and plasticity of such systems for various proportional loading histories. We have investigated the effect of initial packing density or void ratio, size polydispersity, friction coefficient and plastic strain on the evolution of the yield surface. We find that all the yield surfaces tend to an asymptotic form which is well represented by the Lade-Duncan yield surface, developed originally for sand, suggesting that the Lade-Duncan form may reflect some universality in the behavior ofmore » assemblages of rigid frictional particles.« less
An unusual case of intraorbital foreign body and its management
Mukherjee, Bipasha; Goel, Shubhra; Subramanian, Nirmala
2011-01-01
Intraorbital foreign bodies are usually the result of accidental trauma and can lead to considerable morbidity. We report an unusual case of an industrial injury in a plastic manufacuring unit wherein hot molten plastic splashed and solidified inside the orbit. The resultant increased intraorbital pressure led to loss of vision in that eye. The extreme temperature of the foreign body caused extensive thermal damage to the surrounding adnexal structures. Staged reconstructive surgery was undertaken to repair the damage, with an acceptable final cosmetic outcome. Employment of protective eye wear to prevent such accidents in high-risk occupations should be made mandatory. PMID:21157077
Optimizing the patient for surgical treatment of the wound.
Myers, Wesley T; Leong, Mimi; Phillips, Linda G
2007-10-01
Plastic surgeons are consulted often to close wounds that fail or are difficult to heal. Optimizing the patient's medical condition before surgical closure of a wound can mean the difference between a successful outcome and an undesirable one. It is imperative that plastic surgeons have an extensive knowledge of the modifiable risk factors affecting the wound-healing process and their subsequent complications. This knowledge allows the surgeon to tailor the treatment options and intervene when appropriate to optimize outcomes for successful surgical closure of a wound. Whether the impairments to wound healing and closure are local or systemic, they must be addressed appropriately.
Defect-induced solid state amorphization of molecular crystals
NASA Astrophysics Data System (ADS)
Lei, Lei; Carvajal, Teresa; Koslowski, Marisol
2012-04-01
We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.
Neuromodulatory influence of norepinephrine during developmental experience-dependent plasticity.
Golovin, Randall M; Ward, Nicholas J
2016-07-01
Critical periods represent phases of development during which neuronal circuits and their responses can be readily shaped by stimuli. Experience-dependent plasticity that occurs within these critical periods can be influenced in many ways; however, Shepard et al. (J Neurosci 35: 2432-2437, 2015) recently singled out norepinephrine as an essential driver of this plasticity within the auditory cortex. This work provides novel insight into the mechanisms of critical period plasticity and challenges previous conceptions that a functional redundancy exists between noradrenergic and cholinergic influences on cortical plasticity. Copyright © 2016 the American Physiological Society.
Coupled thermal stresses analysis in the composite elastic-plastic cylinder
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Dats, E. P.
2018-04-01
The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.
Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain
ERIC Educational Resources Information Center
Kolb, Bryan; Muhammad, Arif; Gibb, Robbin
2011-01-01
Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…
ERIC Educational Resources Information Center
Demir, Ozlem Ece; Levine, Susan C.; Goldin-Meadow, Susan
2010-01-01
Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions…
Ferguson, V L
2009-08-01
The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior patterns that would otherwise be hidden within a more complex set of material property parameters.
Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall
Kim, Il Hwan; Wang, Hong; Soderling, Scott H; Yasuda, Ryohei
2014-01-01
Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors such as learning and memory are not well understood. Here we report that postnatal forebrain deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but instead significantly impaired remote memory recall. Together these results indicate that the postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, which contribute to the capacity for remote memory recall. DOI: http://dx.doi.org/10.7554/eLife.02839.001 PMID:25006034
Gap junction plasticity as a mechanism to regulate network-wide oscillations
Nicola, Wilten; Clopath, Claudia
2018-01-01
Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex. PMID:29529034
Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease
Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.
2015-01-01
SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365
Mouldable all-carbon integrated circuits
NASA Astrophysics Data System (ADS)
Sun, Dong-Ming; Timmermans, Marina Y.; Kaskela, Antti; Nasibulin, Albert G.; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I.; Ohno, Yutaka
2013-08-01
A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027cm2V-1s-1 and an ON/OFF ratio of 105. The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.
Mouldable all-carbon integrated circuits.
Sun, Dong-Ming; Timmermans, Marina Y; Kaskela, Antti; Nasibulin, Albert G; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I; Ohno, Yutaka
2013-01-01
A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027 cm(2) V(-1) s(-1) and an ON/OFF ratio of 10(5). The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.
Plasticity-related genes in brain development and amygdala-dependent learning.
Ehrlich, D E; Josselyn, S A
2016-01-01
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
[Cognitive plasticity in Alzheimer's disease patients receiving cognitive stimulation programs].
Zamarrón Cassinello, Ma Dolores; Tárraga Mestre, Luis; Fernández-Ballesteros, Rocío
2008-08-01
The main purpose of this article is to examine whether cognitive plasticity increases after cognitive training in Alzheimer's disease patients. Twenty six patients participated in this study, all of them diagnosed with mild Alzheimer's disease, 17 of them received a cognitive training program during 6 months, and the other 9 were assigned to the control group. Participants were assigned to experimental or control conditions for clinical reasons. In order to assess cognitive plasticity, all patients were assessed before and after treatment with three subtests from the "Bateria de Evaluación de Potencial de Aprendizaje en Demencias" [Assessment Battery of Learning Potential in Dementia] (BEPAD). After treatment, Alzheimer's disease patients improved their performance in all the tasks assessing cognitive plasticity: viso-spatial memory, audio-verbal memory and verbal fluency. However, the cognitive plasticity scores of the patients in the control group decreased. In conclusion, this study showed that cognitive stimulation programs can improve cognitive functioning in mildly demented patients, and patients who do not receive any cognitive interventions may reduce their cognitive functioning.
Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua
2015-12-23
To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials.
Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning.
Costa, Rui Ponte; Froemke, Robert C; Sjöström, P Jesper; van Rossum, Mark Cw
2015-08-26
Although it is well known that long-term synaptic plasticity can be expressed both pre- and postsynaptically, the functional consequences of this arrangement have remained elusive. We show that spike-timing-dependent plasticity with both pre- and postsynaptic expression develops receptive fields with reduced variability and improved discriminability compared to postsynaptic plasticity alone. These long-term modifications in receptive field statistics match recent sensory perception experiments. Moreover, learning with this form of plasticity leaves a hidden postsynaptic memory trace that enables fast relearning of previously stored information, providing a cellular substrate for memory savings. Our results reveal essential roles for presynaptic plasticity that are missed when only postsynaptic expression of long-term plasticity is considered, and suggest an experience-dependent distribution of pre- and postsynaptic strength changes.
Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition
Mody, Istvan
2005-01-01
Plasticity of ligand-gated ion channels plays a critical role in nervous system development, circuit formation and refinement, and pathological processes. Recent advances have mainly focused on the plasticity of channels gated by excitatory amino acids, including their acclaimed role in learning and memory. These receptors, together with voltage-gated ion channels, have also been known to be subjected to a homeostatic form of plasticity that prevents destabilization of the neurone's function and that of the network during various physiological processes. To date, the plasticity of GABAA receptors has been examined mainly from a developmental and a pathological point of view. Little is known about homeostatic mechanisms governing their plasticity. This review summarizes some of the findings on the homeostatic plasticity of tonic and phasic inhibitory activity. PMID:15528237
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Brain plasticity and rehabilitation in stroke patients.
Hara, Yukihiro
2015-01-01
In recent years, our understanding of motor learning, neuroplasticity and functional recovery after the occurrence of brain lesion has grown significantly. Novel findings in basic neuroscience have provided an impetus for research in motor rehabilitation. The brain reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its neural circuits. This brain plasticity can lead to an extreme degree of spontaneous recovery and rehabilitative training may modify and boost the neuronal plasticity processes. Animal studies have extended these findings, providing insight into a broad range of underlying molecular and physiological events. Neuroimaging studies in human patients have provided observations at the systems level that often parallel findings in animals. In general, the best recoveries are associated with the greatest return toward the normal state of brain functional organization. Reorganization of surviving central nervous system elements supports behavioral recovery, for example, through changes in interhemispheric lateralization, activity of association cortices linked to injured zones, and organization of cortical representational maps. Evidence from animal models suggests that both motor learning and cortical stimulation alter intracortical inhibitory circuits and can facilitate long-term potentiation and cortical remodeling. Current researches on the physiology and use of cortical stimulation animal models and in humans with stroke related hemiplegia are reviewed in this article. In particular, electromyography (EMG) -controlled electrical muscle stimulation improves the motor function of the hemiparetic arm and hand. A multi-channel near-infrared spectroscopy (NIRS) studies in which the hemoglobin levels in the brain were non-invasively and dynamically measured during functional activity found that the cerebral blood flow in the injured sensory-motor cortex area is greatest during an EMG-controlled FES session. Only a few idea is, however, known for the optimal timing of the different processes and therapeutic interventions and for their interactions in detail. Finding optimal rehabilitation paradigms requires an optimal organization of the internal processes of neural plasticity and the therapeutic interventions in accordance with defined plastic time windows. In this review the mechanisms of spontaneous plasticity after stroke and experimental interventions to enhance plasticity are summarized, with an emphasis on functional electrical stimulation therapy.
Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set.
Law, Kara Lavender; Morét-Ferguson, Skye E; Goodwin, Deborah S; Zettler, Erik R; Deforce, Emelia; Kukulka, Tobias; Proskurowski, Giora
2014-05-06
We present an extensive survey of floating plastic debris in the eastern North and South Pacific Oceans from more than 2500 plankton net tows conducted between 2001 and 2012. From these data we defined an accumulation zone (25 to 41 °N, 130 to 180 °W) in the North Pacific subtropical gyre that closely corresponds to centers of accumulation resulting from the convergence of ocean surface currents predicted by several oceanographic numerical models. Maximum plastic concentrations from individual surface net tows exceeded 10(6) pieces km(-2), with concentrations decreasing with increasing distance from the predicted center of accumulation. Outside the North Pacific subtropical gyre the median plastic concentration was 0 pieces km(-2). We were unable to detect a robust temporal trend in the data set, perhaps because of confounded spatial and temporal variability. Large spatiotemporal variability in plastic concentration causes order of magnitude differences in summary statistics calculated over short time periods or in limited geographic areas. Utilizing all available plankton net data collected in the eastern Pacific Ocean (17.4 °S to 61.0 °N; 85.0 to 180.0 °W) since 1999, we estimated a minimum of 21,290 t of floating microplastic.
Kwon, Bum Gun; Chung, Seon-Yong; Park, Seung-Shik; Saido, Katsuhiko
2018-03-01
The objective of this study is to investigate the qualitative contribution of internal and external factors of the area contaminated by polystyrene (PS) in coastal marine environments. This study is based on the extensive results of monitoring the styrene oligomers (SOs) present in sand and seawater samples along various coastlines of the Pacific Ocean. Here, anthropogenic SOs is derived from PS during manufacture and use, and can provide clues about the origin of SOs by PS pollution. The monitoring results showed that, if the concentration of SOs in water is higher than those concentrations in beach sand, this area could be affected by PS plastic caused by an external factor. On the other hand, if the concentration of SOs is higher in the beach sand, the region can be mainly influenced by PS plastic derived from its own area. Unlike the case of an external factor, in this case (internal influence), it is possible to take policy measures of the area itself for the PS plastic problem. Thus, this study is motivated by the need of policy measures to establish a specific alternative to the problems of PS plastic pollution in ocean environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brain Plasticity and Disease: A Matter of Inhibition
Baroncelli, Laura; Braschi, Chiara; Spolidoro, Maria; Begenisic, Tatjana; Maffei, Lamberto; Sale, Alessandro
2011-01-01
One major goal in Neuroscience is the development of strategies promoting neural plasticity in the adult central nervous system, when functional recovery from brain disease and injury is limited. New evidence has underscored a pivotal role for cortical inhibitory circuitries in regulating plasticity both during development and in adulthood. This paper summarizes recent findings showing that the inhibition-excitation balance controls adult brain plasticity and is at the core of the pathogenesis of neurodevelopmental disorders like autism, Down syndrome, and Rett syndrome. PMID:21766040
Leach, Heather; Wise, John C; Isaacs, Rufus
2017-12-01
High tunnels are large protective structures used for season extension of many crops, including raspberries. These structures are often covered in plastic films to reduce and diffuse ultraviolet light transmission for pest and disease control, but this may also affect the photodegradation and efficacy of pesticides applied under these tunnels. We compared the residue levels of ten insecticides under three tunnel plastics with varying levels of UV transmission and open field conditions. Raspberry plants placed in research-scale tunnels were treated with insecticides and residues on fruit and foliage were monitored for one or two weeks in early 2015 and early and late 2016. Plastics that reduce UV transmission resulted in 50% greater residues of some insecticides compared to transparent plastics, and 60% compared to uncovered tunnels. This increased persistence of residues was evident within 1 day and remained consistently higher for up to 14 days. This pattern was demonstrated for multiple insecticides, including bifenthrin, esfenvalerate, imidacloprid, thiamethoxam, and spinosad. In contrast, the insecticide malathion degraded rapidly regardless of the plastic treatment, indicating less sensitivity to photodegradation. Bioassays using insecticide-treated leaves that were under UV-blocking plastic revealed higher mortality of the invasive fruit pest, Drosophila suzukii, compared to leaves that were uncovered. This indicates that the activity of pesticides under high tunnels covered in UV-reducing plastics may be prolonged, allowing for fewer insecticide applications and longer intervals between sprays. This information can be used to help optimize pest control in protected culture berry production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Somatosensory cortical plasticity in carpal tunnel syndrome--a cross-sectional fMRI evaluation.
Napadow, Vitaly; Kettner, Norman; Ryan, Angela; Kwong, Kenneth K; Audette, Joseph; Hui, Kathleen K S
2006-06-01
Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first, second, and third digits. We hypothesize that aberrant afferent input in CTS will lead to cortical plasticity. Functional MRI (fMRI) and neurophysiological testing were performed on CTS patients and healthy adults. Median nerve innervated digit 2 (D2), and digit 3 (D3) and ulnar nerve innervated digit 5 (D5) were stimulated during fMRI. Surface-based and ROI-based analyses consistently demonstrated more extensive and stronger contralateral sensorimotor cortical representations of D2 and D3 for CTS patients as compared to healthy adults (P < 0.05). Differences were less profound for D5. Moreover, D3 fMRI activation in both the contralateral SI and motor cortex correlated positively with the D3 sensory conduction latency. Analysis of somatotopy suggested that contralateral SI representations for D2 and D3 were less separated for CTS patients (3.8 +/- 1.0 mm) than for healthy adults (7.5 +/- 1.2 mm). Furthermore, the D3/D2 separation distance correlated negatively with D2 sensory conduction latency-the greater the latency, the closer the D2/D3 cortical representations (r = -0.79, P < 0.05). Coupled with a greater extent of SI representation for these CTS affected digits, the closer cortical representations can be interpreted as a blurred somatotopic arrangement for CTS affected digits. These findings provide further evidence that CTS is not manifest in the periphery alone. Our results are consistent with Hebbian plasticity mechanisms, as our cohort of CTS patients had predominant paresthesias, which produce more temporally coherent afferent signaling from affected digits.
Kasumovic, Michael M; Chen, Zhiliang; Wilkins, Marc R
2016-10-24
Ecological and evolutionary model organisms have provided extensive insight into the ecological triggers, adaptive benefits, and evolution of life-history driven developmental plasticity. Despite this, we still have a poor understanding of the underlying genetic changes that occur during shifts towards different developmental trajectories. The goal of this study is to determine whether we can identify underlying gene expression patterns that can describe the different life-history trajectories individuals follow in response to social cues of competition. To do this, we use the Australian black field cricket (Teleogryllus commodus), a species with sex-specific developmental trajectories moderated by the density and quality of calls heard during immaturity. In this study, we manipulated the social information males and females could hear by rearing individuals in either calling or silent treatments. We next used RNA-Seq to develop a reference transcriptome to study changes in brain gene expression at two points prior to sexual maturation. We show accelerated development in both sexes when exposed to calling; changes were also seen in growth, lifespan, and reproductive effort. Functional relationships between genes and phenotypes were apparent from ontological enrichment analysis. We demonstrate that increased investment towards traits such as growth and reproductive effort were often associated with the expression of a greater number of genes with similar effect, thus providing a suite of candidate genes for future research in this and other invertebrate organisms. Our results provide interesting insight into the genomic underpinnings of developmental plasticity and highlight the potential of a genomic exploration of other evolutionary theories such as condition dependence and sex-specific developmental strategies.
‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China
NASA Astrophysics Data System (ADS)
Liu, E. K.; He, W. Q.; Yan, C. R.
2014-09-01
Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.
Dissociable Effects on Birdsong of Androgen Signaling in Cortex-Like Brain Regions of Canaries
2017-01-01
The neural basis of how learned vocalizations change during development and in adulthood represents a major challenge facing cognitive neuroscience. This plasticity in the degree to which learned vocalizations can change in both humans and songbirds is linked to the actions of sex steroid hormones during ontogeny but also in adulthood in the context of seasonal changes in birdsong. We investigated the role of steroid hormone signaling in the brain on distinct features of birdsong using adult male canaries (Serinus canaria), which show extensive seasonal vocal plasticity as adults. Specifically, we bilaterally implanted the potent androgen receptor antagonist flutamide in two key brain regions that control birdsong. We show that androgen signaling in the motor cortical-like brain region, the robust nucleus of the arcopallium (RA), controls syllable and trill bandwidth stereotypy, while not significantly affecting higher order features of song such syllable-type usage (i.e., how many times each syllable type is used) or syllable sequences. In contrast, androgen signaling in the premotor cortical-like brain region, HVC (proper name), controls song variability by increasing the variability of syllable-type usage and syllable sequences, while having no effect on syllable or trill bandwidth stereotypy. Other aspects of song, such as the duration of trills and the number of syllables per song, were also differentially affected by androgen signaling in HVC versus RA. These results implicate androgens in regulating distinct features of complex motor output in a precise and nonredundant manner. SIGNIFICANCE STATEMENT Vocal plasticity is linked to the actions of sex steroid hormones, but the precise mechanisms are unclear. We investigated this question in adult male canaries (Serinus canaria), which show extensive vocal plasticity throughout their life. We show that androgens in two cortex-like vocal control brain regions regulate distinct aspects of vocal plasticity. For example, in HVC (proper name), androgens regulate variability in syntax but not phonology, whereas androgens in the robust nucleus of the arcopallium (RA) regulate variability in phonology but not syntax. Temporal aspects of song were also differentially affected by androgen signaling in HVC versus RA. Thus, androgen signaling may reduce vocal plasticity by acting in a nonredundant and precise manner in the brain. PMID:28821656
Kantrowitz, Joshua T.; Epstein, Michael L.; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M.; Revheim, Nadine; Lehrfeld, Nayla P.; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C.
2016-01-01
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time–frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908. Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia. PMID:27913408
Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory
Klann, Eric
2011-01-01
Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473
Response variance in functional maps: neural darwinism revisited.
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.
Response Variance in Functional Maps: Neural Darwinism Revisited
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population. PMID:23874733
[Functional magnetic resonance imaging. What are the benefits expected in hand surgery?].
Moutet, F; Delon-Martin, C; Martin, O; Sirigu, A; Delaquaize, F; Benali, H; Masquelet, A-C
2013-06-01
Functional MRI (fMRI) allowed considerable advances upon understanding of cerebral functioning. Cortical plasticity, which allows the voluntary command of a restored function by a transferred muscle remains to be investigated in its intimacy. The authors present here the round table held at the 48th annual meeting of the French Society for Surgery of the Hand on December 22nd, 2012. It tries to review the analysis of the phenomenon observed during multiple tendinous transfers for restoration of proximal radial nerve palsy. Were successively approached: 1) Methods of acquisition and analysis of the signals (C. D-M.); 2) Movement reorganization (O.M.); 3) Motor plasticity after hand allograft (A. S.); 4) The potential interest of the fMRI in hand rehabilitation (F. D.); 5) The analysis of cerebral plasticity in general (H. B.). A rather philosophical conclusion opens other fields to f MRI (A.M.). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Endocannabinoid signaling and synaptic function
Castillo, Pablo E.; Younts, Thomas J.; Chávez, Andrés E.; Hashimotodani, Yuki
2012-01-01
Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a non-retrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. Synaptic endocannabinoid signaling is thus mechanistically more complex and diverse than originally thought. In this review, we focus on new advances in endocannabinoid signaling and highlight their role as potent regulators of synaptic function in the mammalian brain. PMID:23040807
GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors
Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E.; Wang, Tao; Huganir, Richard L.
2017-01-01
Summary Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescues spine loss in hippocampal CA1 neurons of Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders. PMID:28285821
Physical transport properties of marine microplastic pollution
NASA Astrophysics Data System (ADS)
Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.
2012-12-01
Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.
Calero-García, M J; Calero, M D; Navarro, E; Ortega, A R
2015-01-01
Bone fractures in older adults involve hospitalization and surgical intervention, aspects that have been related to loss of autonomy and independence. Several variables have been studied as moderators of how these patients recover. However, the implications of cognitive plasticity for functional recovery have not been studied to date. The present study analyzes the relationship between cognitive plasticity--defined as the capacity for learning or improved performance under conditions of training or performance optimization--and functional recovery in older adults hospitalized following a bone fracture. The study comprised 165 older adults who underwent surgery for bone fractures at a hospital in southern Spain. Participants were evaluated at different time points thereafter, with instruments that measure activities of daily life (ADL), namely the Barthel Index (BI) and the Lawton Index, as well as with a learning potential (cognitive plasticity) assessment test (Auditory Verbal Learning Test of Learning Potential, AVLT-LP). Results show that most of the participants have improved their level of independence 3 months after the intervention. However, some patients continue to have medium to high levels of dependency and this dependency is related to cognitive plasticity. The results of this study reveal the importance of the cognitive plasticity variable for evaluating older adults hospitalized for a fracture. They indicate a possible benefit to be obtained by implementing programs that reduce the degree of long-term dependency or decrease the likelihood of it arising.
Neuron-glia metabolic coupling and plasticity.
Magistretti, Pierre J
2006-06-01
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.
Srinivasa, Narayan; Jiang, Qin
2013-01-01
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex. PMID:23450808
Development and characterization of a disposable plastic microarray printhead.
Griessner, Matthias; Hartig, Dave; Christmann, Alexander; Pohl, Carsten; Schellhase, Michaela; Ehrentreich-Förster, Eva
2011-06-01
During the last decade microarrays have become a powerful analytical tool. Commonly microarrays are produced in a non-contact manner using silicone printheads. However, silicone printheads are expensive and not able to be used as a disposable. Here, we show the development and functional characterization of 8-channel plastic microarray printheads that overcome both disadvantages of their conventional silicone counterparts. A combination of injection-molding and laser processing allows us to produce a high quantity of cheap, customizable and disposable microarray printheads. The use of plastics (e.g., polystyrene) minimizes the need for surface modifications required previously for proper printing results. Time-consuming regeneration processes, cleaning procedures and contaminations caused by residual samples are avoided. The utilization of plastic printheads for viscous liquids, such as cell suspensions or whole blood, is possible. Furthermore, functional parts within the plastic printhead (e.g., particle filters) can be included. Our printhead is compatible with commercially available TopSpot devices but provides additional economic and technical benefits as compared to conventional TopSpot printheads, while fulfilling all requirements demanded on the latter. All in all, this work describes how the field of traditional microarray spotting can be extended significantly by low cost plastic printheads.
Diet and cognition: interplay between cell metabolism and neuronal plasticity
Gomez-Pinilla, Fernando; Tyagi, Ethika
2014-01-01
Purpose of Study To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Recent Findings Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long term neuronal plasticity. Summary The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid DHA, disrupting neuronal signaling. Thus, dietary DHA seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor (BDNF) in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation. PMID:24071781
NASA Astrophysics Data System (ADS)
Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk
2017-10-01
A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.
Measurements of response functions of EJ-299-33A plastic scintillator for fast neutrons
NASA Astrophysics Data System (ADS)
Hartman, J.; Barzilov, A.; Peters, E. E.; Yates, S. W.
2015-12-01
Monoenergetic neutron response functions were measured for an EJ-299-33A plastic scintillator. The 7-MV Van de Graaff accelerator at the University of Kentucky Accelerator Laboratory was used to produce proton and deuteron beams for reactions with gaseous tritium and deuterium targets, yielding monoenergetic neutrons by means of the 3H(p,n)3He, 2H(d,n)3He, and 3H(d,n)4He reactions. The neutron energy was selected by tuning the charged-particle's energy and using the angular dependence of the neutron emission. The resulting response functions were measured for 0.1-MeV steps in neutron energy from 0.1 MeV to 8.2 MeV and from 12.2 MeV to 20.2 MeV. Experimental data were processed using a procedure for digital pulse-shape discrimination, which allowed characterization of the response functions of the plastic scintillator to neutrons only. The response functions are intended for use in neutron spectrum unfolding methods.
Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert
2018-06-01
Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gainey, Melanie A; Aman, Joseph W; Feldman, Daniel E
2018-04-20
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 day whisker deprivation drives rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing E-I conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, associated with an increase in low-threshold, voltage activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation were precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex. SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1-day) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex. Copyright © 2018 the authors.
Coal as a Substitute for Carbon Black
NASA Technical Reports Server (NTRS)
Kushida, R. O.
1982-01-01
New proposal shows sprayed coal powder formed by extrusion of coal heated to plastic state may be inexpensive substitute for carbon black. Carbon black is used extensively in rubber industry as reinforcing agent in such articles as tires and hoses. It is made from natural gas and petroleum, both of which are in short supply.
Bio-Based Nanocomposites: An Alternative to Traditional Composites
ERIC Educational Resources Information Center
Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri
2009-01-01
Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…
Ultraviolet (UV)-absorbing chemicals are widely used in cosmetics, sunscreens, and plastics to block UV radiation from the sun. Parabens are preservatives and are used extensively in cosmetics, pharmaceuticals, and foods to prevent microbial growth and preserve a product’s inte...
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
NASA Astrophysics Data System (ADS)
Aïdi, B.; Bertrand, C.; Viltange, M.; Dimitrov, O.
1993-09-01
The influence of plastic deformation, by extension at room temperature, on electrical resistivity has been determined in four austenitic Fe-Cr-Ni alloys with 16 wt% Cr and 20, 25, 45 or 75 wt% Ni, in two different states of local order. Two experimental methods have been used (4.2 K resistance measurements before and after deformation, continuous resistance measurements during room-temperature extension tests); the possibilities of the second method and the corrections to be applied are particularly discussed. Resistivity is found to slightly increase at the beginning of deformation ( e < 0.05), then to strongly decrease. The amplitude of the observed effects increases with the nickel content, and with the initial degree of local order. In the high deformation range ( e = 0.15), the resistivity decrease varies linearly with the initial contribution of local order to electrical resistivity. These effects are attributed to a destruction of the local order existing in the solid solutions, by the glide of dislocations during plastic deformation.
NASA Astrophysics Data System (ADS)
Panthi, Krishna Kanta; Shrestha, Pawan Kumar
2018-06-01
Total plastic deformation in tunnels passing through weak and schistose rock mass consists of both time-independent and time-dependent deformations. The extent of this total deformation is heavily influenced by the rock mass deformability properties and in situ stress condition prevailing in the area. If in situ stress is not isotropic, the deformation magnitude is not only different along the longitudinal alignment but also along the periphery of the tunnel wall. This manuscript first evaluates the long-term plastic deformation records of three tunnel projects from the Nepal Himalaya and identifies interlink between the time-independent and time-dependent deformations using the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech 24(3):145-154, 1987a, Int J Rock Mech Min Sci Geomech 24(3):155-164, 1987b). Secondly, the manuscript attempts to establish a correlation between plastic deformations (tunnel strain) and rock mass deformable properties, support pressure and in situ stress conditions. Finally, patterns of time-independent and time-dependent plastic deformations are also evaluated and discussed. The long-term plastic deformation records of 24 tunnel sections representing four different rock types of three different headrace tunnel cases from Nepal Himalaya are extensively used in this endeavor. The authors believe that the proposed findings will be a step further in analysis of plastic deformations in tunnels passing through weak and schistose rock mass and along the anisotropic stress conditions.
Osinga, R; Mazzone, L; Meuli, M; Meuli-Simmen, C; von Campe, A
2014-08-01
The latissimus dorsi flap (LDF) has been employed very successfully over decades to cover large soft-tissue defects. Its donor-site morbidity has been extensively investigated in adults - but not in children - and is considered to be nonrestrictive. The aim of this long-term study was to assess donor-site morbidity with the modified Constant score more than 8 years after coverage of large myelomeningocele (MMC) defects with a reverse latissimus dorsi flap. Within the first days after birth, the reverse latissimus dorsi muscle flap was used uni- or bilaterally in three neonates to cover a large MMC defect. Bilateral shoulder function was tested more than 8 years postoperatively according to the modified Constant score. The mean age at follow-up was 11.7 years. None of the patients experienced any pain or shoulder restrictions during normal daily activities. They all managed to position both of their arms comfortably above the head. Forward flexion was normal in all patients as was abduction and external rotation. Dorsal extension was minimally reduced on the operated side. Internal rotation was symmetric in all patients; the extent of active movement varied from excellent to poor. Our long-term data suggest that there is no specific and significant impairment of shoulder function after using the distally pedicled reverse LDF for neonatal MMC repair. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.
2014-01-01
Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335
Prusky, Glen T; Silver, Byron D; Tschetter, Wayne W; Alam, Nazia M; Douglas, Robert M
2008-09-24
Developmentally regulated plasticity of vision has generally been associated with "sensitive" or "critical" periods in juvenile life, wherein visual deprivation leads to loss of visual function. Here we report an enabling form of visual plasticity that commences in infant rats from eye opening, in which daily threshold testing of optokinetic tracking, amid otherwise normal visual experience, stimulates enduring, visual cortex-dependent enhancement (>60%) of the spatial frequency threshold for tracking. The perceptual ability to use spatial frequency in discriminating between moving visual stimuli is also improved by the testing experience. The capacity for inducing enhancement is transitory and effectively limited to infancy; however, enhanced responses are not consolidated and maintained unless in-kind testing experience continues uninterrupted into juvenile life. The data show that selective visual experience from infancy can alone enable visual function. They also indicate that plasticity associated with visual deprivation may not be the only cause of developmental visual dysfunction, because we found that experientially inducing enhancement in late infancy, without subsequent reinforcement of the experience in early juvenile life, can lead to enduring loss of function.
Respiratory morbidity of pattern and model makers exposed to wood, plastic, and metal products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robins, T.G.; Haboubi, G.; Demers, R.Y.
Pattern and model makers are skilled tradespersons who may be exposed to hardwoods, softwoods, phenol-formaldehyde resin-impregnated woods, epoxy and polyester/styrene resin systems, and welding and metal-casting fumes. The relationship of respiratory symptoms (wheezing, chronic bronchitis, dyspnea) and pulmonary function (FVC% predicted, FEV1% predicted, FEV1/FVC% predicted) with interview-derived cumulative exposure estimates to specific workplace agents and to all work with wood, plastic, or metal products was investigated in 751 pattern and model makers in southeast Michigan. In stratified analyses and age- and smoking-adjusted linear and logistic regression models, measures of cumulative wood exposures were associated with decrements in pulmonary function andmore » dyspnea, but not with other symptoms. In similar analyses, measures of cumulative plastic exposures were associated with wheezing, chronic bronchitis, and dyspnea, but not with decrements in pulmonary function. Prior studies of exposure levels among pattern and model makers and of respiratory health effects of specific agents among other occupational groups support the plausibility of wood-related effects more strongly than that of plastic-related effects.« less
All-natural bio-plastics using starch-betaglucan composites.
Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas
2017-09-15
Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Developmental plasticity of murine and human Foxp3(+) regulatory T cells.
Liston, Adrian; Piccirillo, Ciriaco A
2013-01-01
Murine and human CD4(+) regulatory T (Treg) cells expressing the Forkhead box p3 (Foxp3) transcription factor represent a distinct, highly differentiated CD4(+) T cell lineage that is programmed for dominant self-tolerance and control of immune responses against a variety of foreign antigens. Sustained Foxp3 expression in these cells drives the differentiation of a regulatory phenotype and ensures the stability of their suppressive functions under a variety of inflammatory settings. Some recent studies have challenged this premise and advanced the notion that Foxp3(+) Treg cells manifest a high degree of functional plasticity that enables them to adapt and reprogram into effector-like T cells in response to various inflammatory stimuli. The concept of Treg cell plasticity remains highly contentious, with a high degree of variation in measured plasticity potential observed under different experimental conditions. In this chapter, we propose a unifying model of Treg cell plasticity, which hypothesizes that the stable fates of regulatory and effector T (Teff) cell lineages allow transient plasticity into the alternative lineage under a discrete set of microenvironmental influences associated with, respectively, the initiation and resolution phases of infection. This model utilizes a theoretical framework consistent with the requirements for effective immune regulation and accounts for both the extraordinary long-term stability of Treg cells and the observed fate plasticity. Copyright © 2013 Elsevier Inc. All rights reserved.
Smith, Brian H.; Burden, Christina M.
2014-01-01
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time. PMID:25225822
Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum
NASA Astrophysics Data System (ADS)
Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki
2018-01-01
Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.
Baltacıoğlu, Esra; Korkmaz, Fatih Mehmet; Bağış, Nilsun; Aydın, Güven; Yuva, Pınar; Korkmaz, Yavuz Tolga; Bağış, Bora
2014-01-01
This case report presents an implant-aided prosthetic treatment in which peri-implant plastic surgery techniques were applied in combination to satisfactorily attain functional aesthetic expectations. Peri-implant plastic surgery enables the successful reconstruction and restoration of the balance between soft and hard tissues and allows the option of implant-aided fixed prosthetic rehabilitation. PMID:25489351
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.
Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F
2016-01-01
Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m -3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa , Cyanobacteria , Alphaproteobacteria , and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video : An author video summary of this article is available.
Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia
Lepeta, Katarzyna; Kaczmarek, Leszek
2015-01-01
Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia. PMID:25837304
Barcia, Juan A; Sanz, Ana; Balugo, Paloma; Alonso-Lera, Pedro; Brin, Juan Raúl; Yus, Miguel; Gonzalez-Hidalgo, Mercedes; Acedo, Victoria M; Oliviero, Antonio
2012-03-28
Functional areas located near or within brain gliomas prevent the complete resection of these tumors. It has recently been described that slow tumor invasion promotes neural reorganization, and even topographic plasticity, allowing a staged resection of those tumors. Thus, our aim was to promote plasticity by mimicking the tumor's capability to displace brain function. This proceeded through the production of a 'virtual lesion' in eloquent areas within a tumor using continuous high-frequency cortical electrical stimulation (cHFCS). An anaplastic astrocytoma located in Broca's area progressed in a patient whose lateralization of language to the side of the lesion was demonstrated with functional MRI. After partial tumor resection using awake cortical monitoring, we implanted a subdural grid over the eloquent cortex located within residual tumor. We then applied cHFCS for 25 days, using a frequency of 130 Hz and a pulse width of 1 ms. Stimulus intensity was set to the threshold wherein mild speech disturbance was evident without any other neurological effects. This treatment successfully achieved the displacement of speech functions, and a more radical resection of the tumor was possible in a second surgery. Critically, a reorganization of motor language areas was demonstrated both with functional MRI and cortical stimulation. Furthermore, motor language areas were also identified in the right hemisphere, where previously they were absent. The patient's speech fluency improved both after stimulation and resection. We therefore demonstrate the first evidence of induced topographic plasticity using cHFCS in eloquent areas within a tumor, which allowed for increased tumor removal. Our results open the possibility to induce plasticity before the resection of brain tumors near eloquent areas, in order to increase the extent of resection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael V. Glazoff; Jeong-Whan Yoon
2013-08-01
In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies alongmore » 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.« less
Gani, Khalid Muzamil; Tyagi, Vinay Kumar; Kazmi, Absar Ahmad
2017-07-01
Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.
Dynamic eye socket reconstruction after extended total maxillectomy using temporalis transfer.
Motomura, Hisashi; Hatano, Takaharu; Kobayashi, Rie; Sakahara, Daisuke; Fujii, Naho; Mineo, Mari
2014-03-01
The functional and cosmetic results of the reconstructive surgery after extended total maxillectomy greatly depend on the quality of the orbital reconstruction. In order to achieve good orbital reconstruction, we developed the dynamic eye socket reconstruction using temporalis transfer. In this report, I will present the details of the technique, including tips and innovations for dynamic eye socket reconstruction.Two patients (2 males, aged 70 and 72 years old) who underwent extensive resection of midfacial tumours were treated with dynamic eye socket reconstruction using temporalis transfer. The follow up period was 16 and 102 months. No acute complications were observed. The movements of the upper/lower eyelids including crow's feet were observed and a good shape in the reconstructed medial/lateral canthal area was maintained in all patients.This procedure provides both the eyelids with movement and also a good shape in the reconstructed medial/lateral canthal region. Furthermore, it contributes to achieving satisfactory functional and cosmetic results in the orbital reconstruction. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
To the Die Smartly: Heavy Ion Testing of PEMs on COTS Boards Through the Plastic
NASA Technical Reports Server (NTRS)
Wert, J. L.; Normand, E.; Oberg, D. L.; Stevens, L.; Blumer, J.; Fisher, E.; Wode, G.
1999-01-01
Seven commercial off the shelf (COTS) boards containing electronic devices (all in plastic packages, PEMS), under consideration for use in a spacecraft subsystem, were exposed to beams of very high energy ions at the National Superconducting Cyclotron Laboratory (MSU). The ion energies were high enough that an entire board could be exposed in air, and it could still penetrate through the plastic and reach the silicon die. A total of about 300 runs were made, and for each, the LET of the ion entering the silicon die had to be determined, based on the thickness of the plastic lid and the thickness of overlaying materials (e.g., aluminum degraders). Single event latchup (SEL) and functional interrupt (SEFI) were determined during each run, the SEFI by means of simple programs being continuously written to and read from the boards to monitor functionality, while each part was being exposed to the heavy ions.
Surface properties of beached plastics.
Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K
2015-07-01
Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.
Matzek, Virginia
2012-01-01
The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se. PMID:23119098
mTOR signaling: at the crossroads of plasticity, memory and disease.
Hoeffer, Charles A; Klann, Eric
2010-02-01
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although the majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. (c) 2009 Elsevier Ltd. All rights reserved.
mTOR Signaling: At the Crossroads of Plasticity, Memory, and Disease
Hoeffer, Charles A.; Klann, Eric
2009-01-01
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically-modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. PMID:19963289
Rios, Lorena M; Jones, Patrick R; Moore, Charles; Narayan, Urja V
2010-12-01
Floating marine plastic debris was found to function as solid-phase extraction media, adsorbing and concentrating pollutants out of the water column. Plastic debris was collected in the North Pacific Gyre, extracted, and analyzed for 36 individual PCB congeners, 17 organochlorine pesticides, and 16 EPA priority PAHs. Over 50% contained PCBs, 40% contained pesticides, and nearly 80% contained PAHs. The PAHs included 2, 3 and 4 ring congeners. The PCBs were primarily CB-11, 28, 44, 52, 66, and 101. The pesticides detected were primarily p,p-DDTs and its metabolite, o,p-DDD, as well as BHC (a,b,g and d). The concentrations of pollutants found ranged from a few ppb to thousands of ppb. The types of PCBs and PAHs found were similar to those found in marine sediments. However, these plastic particles were mostly polyethylene which is resistant to degradation and although functioning similarly to sediments in accumulating pollutants, these had remained on or near the ocean surface. Particles collected included intact plastic items as well as many pieces less than 5 mm in size.
CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory
Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J
2016-01-01
Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV. DOI: http://dx.doi.org/10.7554/eLife.20985.001 PMID:27996938
Transmission, Development, and Plasticity of Synapses
Harris, Kathryn P.
2015-01-01
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity. PMID:26447126
Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul
2011-11-01
The rheological properties of kefiran film-forming solutions, as well as the structural characterisation of the resulting films, were investigated as a function of various plasticizer types. The behaviours of the storage (G') and loss (G″) moduli as a function of frequency were typical of gel-like material, with the G' higher than the G″. Kefiran-based films, which may find application as edible films, were prepared by a casting and solvent-evaporation method. Possible interaction between the adjacent chains in the kefiran polymer and various plasticizers was proven by Fourier-transform infrared spectroscopy (FT-IR). The crystallinity of plasticized kefiran film was also analysed using X-ray diffraction (XRD); this revealed an amorphous-crystalline structure. These results were explained by the film's microstructure, which was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The present study has helped determine possible interactions of kefiran, plasticizer and water molecules in determining film properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Scattering by tilted plastic cylinders having curved ends and truncated plastic cones
NASA Astrophysics Data System (ADS)
Espana, Aubrey; Baik, Kyungmin; Marston, Philip L.
2005-04-01
In prior research an acoustic backscattering enhancement was demonstrated for a bluntly truncated plastic cylinder caused by a merged caustic [F. J. Blonigen and P. L. Marston, J. Acoust. Soc. Am. 107, 689-698 (2000)]. This was confirmed with analogous light scattering experiments [P. L. Marston, Y. B. Zhang, and D. B. Thiessen, Appl. Opt. 42, 412-417 (2003)]. In recent work a different backscattering enhancement associated with a caustic was identified for tilted plastic cylinders having curved ends. When the cylinder is tilted so as to focus a shear wave at the point of internal specular reflection, the curvature of the outgoing acoustic wavefront vanishes orthogonal to the meridional plane. This was verified with analogous light scattering experiments. The flatness of the outgoing wavefront enhances the scattering. Backscattering by truncated plastic cones as a function of tilt also shows enhancements associated with the composition of the target. The time dependence of the backscattering envelope as a function of tilt reveals different features depending on whether the top or bottom of the cone is illuminated by tone bursts. [Work supported by the Office of Naval Research.
[Principles of management of high-energy injuries of the leg].
Jovanović, Mladen; Janjić, Zlata; Marić, Dusan
2002-01-01
High-energy traumas are open or closed injuries caused by force (missile, traffic injuries, crush or blust injuries, falling from heights), affecting the body surface and transferring high amount of kinetic energy inducing great damage to the tissue. Management of such lower extremity injuries has evolved over past several decades, but still remains a difficult task for every surgical team. Specific anatomic and functional characteristics combined with extensive injuries demands specific treatment protocols. In a multiple injured patient the first priority is management of life-threatening trauma. Despite other injuries, surgical treatment of limb-threatening injuries must start as soon as life-threatening condition has been managed. Algorithms are especially beneficial in management of severely injured, but salvageable extremities and in making decision on amputation. Insight into mechanisms of injury, as well as systematic examination of the affected limb, should help us understand the extensiveness of trauma and make an adequate management plan. Prevention of wound infection and surgical approach to high-energy limb trauma, which includes wound extension, wound excision, skeletal stabilization and if necessary muscle compartment release, should be done in the first 6 hours after injury. Commonly used methods for soft tissue defects must provide wound coverage in less than five days following injury. Early passive and active mobilization and verticalization of patients is very important for successful treatment. Good and timely evaluation of the injured and collaboration between plastic and orthopaedic surgeons from the beginning of treatment, are crucial for final outcome.
A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.
Horbens, Melanie; Eder, Michaela; Neinhuis, Christoph
2015-12-01
Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuninetti, V.; Yuan, S.; Gilles, G.; Guzmán, C. F.; Habraken, A. M.; Duchêne, L.
2016-08-01
This paper presents different extensions of the classical GTN damage model implemented in a finite element code. The goal of this study is to assess these extensions for the numerical prediction of failure of a DC01 steel sheet during a single point incremental forming process, after a proper identification of the material parameters. It is shown that the prediction of failure appears too early compared to experimental results. Though, the use of the Thomason criterion permitted to delay the onset of coalescence and consequently the final failure.
Tocco-Tussardi, I.; Presman, B.; Cherubino, M.; Garusi, C.; Bassetto, F.
2016-01-01
Summary Post-burn contractures account for up to 50% of the workload of a plastic surgery team volunteering in developing nations. Best possible outcome most likely requires extensive surgery. However, extensive approaches such as microsurgery are generally discouraged in these settings. We report two successful cases of severe hand contractures reconstructed with free flaps on a surgical mission in Kenya. Microsurgery can be safely performed in the humanitarian setting by an integration of: personal skills; technical means; education of local personnel; follow-up services; and an effective network for communication. PMID:27857655
Hiratani, Naoki; Fukai, Tomoki
2016-01-01
In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories
NASA Astrophysics Data System (ADS)
Galvin, A. B.; Kistler, L. M.; Popecki, M. A.; Farrugia, C. J.; Simunac, K. D. C.; Ellis, L.; Möbius, E.; Lee, M. A.; Boehm, M.; Carroll, J.; Crawshaw, A.; Conti, M.; Demaine, P.; Ellis, S.; Gaidos, J. A.; Googins, J.; Granoff, M.; Gustafson, A.; Heirtzler, D.; King, B.; Knauss, U.; Levasseur, J.; Longworth, S.; Singer, K.; Turco, S.; Vachon, P.; Vosbury, M.; Widholm, M.; Blush, L. M.; Karrer, R.; Bochsler, P.; Daoudi, H.; Etter, A.; Fischer, J.; Jost, J.; Opitz, A.; Sigrist, M.; Wurz, P.; Klecker, B.; Ertl, M.; Seidenschwang, E.; Wimmer-Schweingruber, R. F.; Koeten, M.; Thompson, B.; Steinfeld, D.
2008-04-01
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ˜0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.
Dendritic spine dysgenesis in Rett syndrome
Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas
2014-01-01
Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341
A New Perspective on the Heterogeneity of Cancer Glycolysis
Neugent, Michael L.; Goodwin, Justin; Sankaranarayanan, Ishwarya; Yetkin, Celal Emre; Hsieh, Meng-Hsiung; Kim, Jung-whan
2018-01-01
Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells. PMID:29212302
Flexibility of movement organization in piano performance
Furuya, Shinichi; Altenmüller, Eckart
2013-01-01
Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice. PMID:23882199
Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome
Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi
2014-01-01
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. PMID:24881086
Solar UV Degradation Patterns in Photodegradable Ldpe
NASA Astrophysics Data System (ADS)
Andrady, A. L.
2016-02-01
"Degradable" polymers have been proposed as an alternative to traditional polymers as a means to potentially reduce the amount and impacts of plastic marine debris, yet the degradation of these materials in seawater is typically unknown. The light-induced degradation of a copolymer of ethylene - carbon monoxide {1%} was studied under accelerated laboratory exposure conditions. The copolymer, used as a substitute for LDPE in some applications where rapid photodegradation is desirable, loses mechanical integrity and embrittles rapidly under outdoor exposure. A laboratory weathering study of these laminates was carried out to compare the kinetics of degradation on sand to those in seawater at ambient temperature, based on the rate of change in tensile properties of the material. Virgin resin pellets of the copolymer were also exposed to laboratory weathering to detect the generation of microparticles at their surface during extensive degradation. Microparticle generation, detected by laser light scattering, as a function of the exposure duration will also be discussed.
Keefe, Kathleen M.; Sheikh, Imran S.; Smith, George M.
2017-01-01
Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord. PMID:28273811
Miskovic, Vladimir; Keil, Andreas
2012-01-01
The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatio-temporal patterns of mass neuronal activity we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered and several avenues for future work are outlined. PMID:22891639
Keefe, Kathleen M; Sheikh, Imran S; Smith, George M
2017-03-03
Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.
Combining theoretical and experimental data to decipher CFTR 3D structures and functions.
Hoffmann, Brice; Elbahnsi, Ahmad; Lehn, Pierre; Décout, Jean-Luc; Pietrucci, Fabio; Mornon, Jean-Paul; Callebaut, Isabelle
2018-05-19
Cryo-electron microscopy (cryo-EM) has recently provided invaluable experimental data about the full-length cystic fibrosis transmembrane conductance regulator (CFTR) 3D structure. However, this experimental information deals with inactive states of the channel, either in an apo, quiescent conformation, in which nucleotide-binding domains (NBDs) are widely separated or in an ATP-bound, yet closed conformation. Here, we show that 3D structure models of the open and closed forms of the channel, now further supported by metadynamics simulations and by comparison with the cryo-EM data, could be used to gain some insights into critical features of the conformational transition toward active CFTR forms. These critical elements lie within membrane-spanning domains but also within NBD1 and the N-terminal extension, in which conformational plasticity is predicted to occur to help the interaction with filamin, one of the CFTR cellular partners.
L1 Antibodies Block Lymph Node Fibroblastic Reticular Matrix Remodeling In Vivo
Di Sciullo, Gino; Donahue, Tim; Schachner, Melitta; Bogen, Steven A.
1998-01-01
L1 is an immunoglobulin superfamily adhesion molecule highly expressed on neurons and involved in cell motility, neurite outgrowth, axon fasciculation, myelination, and synaptic plasticity. L1 is also expressed by nonneural cells, but its function outside of the nervous system has not been studied extensively. We find that administration of an L1 monoclonal antibody in vivo disrupts the normal remodeling of lymph node reticular matrix during an immune response. Ultrastructural examination reveals that reticular fibroblasts in mice treated with L1 monoclonal antibodies fail to spread and envelop collagen fibers with their cellular processes. The induced defect in the remodeling of the fibroblastic reticular system results in the loss of normal nodal architecture, collapsed cortical sinusoids, and macrophage accumulation in malformed sinuses. Surprisingly, such profound architectural abnormalities have no detectable effects on the primary immune response to protein antigens. PMID:9625755
Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes
NASA Astrophysics Data System (ADS)
Szabó, Péter; Ispánovity, Péter Dusán; Groma, István
2015-02-01
The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.
Ramos, Laura; Berenstein, Giselle; Hughes, Enrique A; Zalts, Anita; Montserrat, Javier M
2015-08-01
Horticulture makes intensive use of soil and extensive use of polyethylene (PE) sheeting and pesticides, producing an environment where the dynamics between soil and plastics can affect pesticide fate. We have determined that the presence of plastic residues in the horticultural soil of small production units equals 10% of the soil area, being meso and macro-sections the predominant fragment sizes. All soil samples were taken from different plots located in Cuartel V, Moreno district, in the suburbs of Buenos Aires city, Argentina. Laboratory experiments were conducted to see the relations among pesticide, soil and PE film. Endosulfan recovery from LDPE films (25μm and 100μm) was studied, observing evidence that indicated migration to the inside of the plastic matrix. To further analyze the dynamics of pesticide migration to soil and atmosphere, experiments using chlorpyrifos, procymidone and trifluralin were performed in soil-plastic-atmosphere microenvironments, showing that up to 24h significant amounts of pesticides moved away from the PE film. To determine whether PE residues could act as potential pesticide collector in soil, column elution experiments were done using chlorpyrifos, procymidone and trifluralin. Results showed an important pesticide accumulation in the mulch film (584μg-2284μg pesticide/g plastic) compared to soil (13μg-32μg pesticide/g soil). Finally, chemical and photochemical degradation of deltamethrin adsorbed in PE film was studied, finding a protective effect on hydrolysis but no protective effect on photodegradation. We believe that a deeper understanding of the dynamics among soil, plastic and pesticides in horticultural productive systems may contribute to alert for the implications of PE use for plastic sheeting. Copyright © 2015 Elsevier B.V. All rights reserved.
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters.
Suaria, Giuseppe; Avio, Carlo G; Mineo, Annabella; Lattin, Gwendolyn L; Magaldi, Marcello G; Belmonte, Genuario; Moore, Charles J; Regoli, Francesco; Aliani, Stefano
2016-11-23
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters
NASA Astrophysics Data System (ADS)
Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano
2016-11-01
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.
Wall extensibility: its nature, measurement and relationship to plant cell growth
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1993-01-01
Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.
Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo
2014-01-01
Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.
Miyata, Shinji; Kitagawa, Hiroshi
2017-10-01
The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.
Microstructural investigations of the trimmed edge of DP980 steel sheets
NASA Astrophysics Data System (ADS)
Bhattacharya, S.; Green, D. E.; Sohmshetty, R.; Alpas, A. T.
2017-10-01
In order to reduce vehicle weight while maintaining crashworthiness, advanced high strength steels (AHSSs), such as DP980, are extensively used for manufacturing automotive body components. During trimming operations, the high tensile strength of DP980 sheets tends to cause damage of the trim edge of D2 die inserts, which result in deterioration of the edge quality. The objective of this work is to study the damage microstructures at the trimmed edge of DP980 steel sheets as a function of the number of trimming cycles. A mechanical press equipped with AISI D2 tool steel inserts was used to continuously trim 1.4 mm thick sheets of DP980 at a rate of 30 strokes/min. Cross-sectional SEM images of the trimmed edges revealed that the sheared edge quality of the DP980 sheets decreased, indicated by an increase in the burr width, with an increase in the number of trims from 40,000 to 70,000. Plastic strains were estimated using the displacements of the martensite plates within plastic flow fields of ferrite. Site-specific cross-sectional TEM samples, excised from the trimmed edge using the in-situ `lift-out' technique by focused ion-beam (FIB)-milling, revealed cracking at the ferrite/martensite interfaces after 70,000 cycles indicating an increase in the depth of deformation zone possibly due to trimming with a chipped and blunted die edge.
Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.
Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Clarkson, Cheryl; Herrero-Turrión, M. Javier; Merchán, Miguel A.
2012-01-01
The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs. PMID:23233834
Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties
NASA Astrophysics Data System (ADS)
Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro
2013-12-01
We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.
Auditory-Cortex Short-Term Plasticity Induced by Selective Attention
Jääskeläinen, Iiro P.; Ahveninen, Jyrki
2014-01-01
The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance. PMID:24551458
α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions
Ambrogini, Patrizia; Betti, Michele; Galati, Claudia; Di Palma, Michael; Lattanzi, Davide; Savelli, David; Galli, Francesco; Cuppini, Riccardo; Minelli, Andrea
2016-01-01
Neuroplasticity is an “umbrella term” referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity. PMID:27983697
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Scrap? This Program Grows on It!
ERIC Educational Resources Information Center
Schureman, Robert
1975-01-01
A high school industrial arts program in plastics recycling provided students direct contact with production methods of the plastics industry as well as awareness of governmental functions. Experimentation included fuel cells, paving and construction composites, soil composites, and watercraft flotation. (EA)
Embrittlement and Flow Localization in Reactor Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xianglin Wu; Xiao Pan; James Stubbins
2006-10-06
Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less
NASA Astrophysics Data System (ADS)
Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.
2018-01-01
The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.
Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces
NASA Astrophysics Data System (ADS)
Murdoch, Billy J.; McCulloch, Dougal G.; Partridge, James G.
2017-02-01
Short-term plasticity, long-term potentiation, and pulse interval dependent plasticity learning/memory functions have been observed in junctions between amorphous zinc-tin-oxide and silver-oxide. The same junctions exhibited current-controlled negative differential resistance and when connected in an appropriate circuit, they behaved as relaxation oscillators. These oscillators produced voltage pulses suitable for device programming. Transmission electron microscopy, energy dispersive X-ray spectroscopy, and electrical measurements suggest that the characteristics of these junctions arise from Ag+/O- electromigration across a highly resistive interface layer. With memory/learning functions and programming spikes provided in a single device structure, arrays of similar devices could be used to form transistor-free neuromorphic circuits.
Salgado-Puga, Karla; Rodríguez-Colorado, Javier; Prado-Alcalá, Roberto A; Peña-Ortega, Fernando
2017-01-01
In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.
de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice
2015-11-01
Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The plasticity of intellectual development: insights from preventive intervention.
Ramey, C T; Yeates, K O; Short, E J
1984-10-01
Debates regarding the plasticity of intelligence are often fired by a confusion between 2 distinct realms of development, that is, between developmental functions (e.g., a group's average IQ over time) and individual differences (e.g., the relative rank ordering of individual IQs within a group). Questions concerning the stability of these 2 realms are statistically independent. Thus there are 2 kinds of intellectual plasticity, and there may be no developmental convergences between them. In the present study, data from an early intervention program were used to investigate the 2 kinds of plasticity separately and to examine certain possible convergences between them. The program involved children at risk for developmental retardation who were randomly assigned at birth to 2 rearing conditions (i.e., educational daycare vs. no educational intervention) and whose intellectual development was then studied longitudinally to 4 years of age. Our findings indicate that developmental functions are moderately alterable through systemic early education, particularly after infancy, whereas individual differences are moderately stable, again particularly after infancy. They also indicate that the 2 kinds of plasticity are independent; the alteration of developmental functions through daycare affects neither the stability nor the determinants of individual differences. We discuss the implications that these findings have for current models of mental development, for the nature-nurture debate, and for arguments concerning the efficacy of early intervention programs.
1983-06-01
Commuents Regarding the Antagonistic Mechanisms Approach .0...... .................................... 67 C. Cognitive Applications...similarities between stimuli, and differentiation* a separation process. An analogous dichotomy in cognitive theory has been extensively studied by Tversky...tasks including perception. cognition , and action. Not all neurons are identical, there exist several anatomically defined categories of these cells
Posttraumatic eyebrow reconstruction with hair-bearing temporoparietal fascia flap
Denadai, Rafael; Raposo-Amaral, Cassio Eduardo; Marques, Frederico Figueiredo; Raposo-Amaral, Cesar Augusto
2015-01-01
The temporoparietal fascia flap has been extensively used in craniofacial reconstructions. However, its use for eyebrow reconstruction has been sporadically reported. We describe a successfully repaired hair-bearing temporoparietal fascia flap after traumatic avulsion of eyebrow. Temporoparietal fascia flap is a versatile tool and should be considered as a therapeutic option by all plastic surgeons. PMID:25993077
Growing spearmint, thyme, oregano, and rosemary in Northern Wyoming using plastic tunnels
USDA-ARS?s Scientific Manuscript database
Growing perennial herbs in northern climate such as Northern Wyoming is a challenge. Due to short frost-free period, high wind, and inclement weather it is impossible to harvest any herbs twice a year (summer and late fall) without using any form of season extension methods. Hence, we set up an expe...
NASA Astrophysics Data System (ADS)
Wang, Congyan; Zhou, Jiawei; Liu, Jun; Jiang, Kun
2017-08-01
Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH4-N, NO3-N, and CO(NH2)2-N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO3-N fertilization, which enhanced their competitiveness.
Wang, Congyan; Zhou, Jiawei; Liu, Jun; Jiang, Kun
2017-08-01
Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH 4 -N, NO 3 -N, and CO(NH 2 ) 2 -N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO 3 -N fertilization, which enhanced their competitiveness.
Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun
2015-06-01
In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
Applications of Density Functional Theory in Soft Condensed Matter
NASA Astrophysics Data System (ADS)
Löwen, Hartmut
Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.
Miniaturized Technologies for Enhancement of Motor Plasticity
Moorjani, Samira
2016-01-01
The idea that the damaged brain can functionally reorganize itself – so when one part fails, there lies the possibility for another to substitute – is an exciting discovery of the twentieth century. We now know that motor circuits once presumed to be hardwired are not, and motor-skill learning, exercise, and even mental rehearsal of motor tasks can turn genes on or off to shape brain architecture, function, and, consequently, behavior. This is a very significant alteration from our previously static view of the brain and has profound implications for the rescue of function after a motor injury. Presentation of the right cues, applied in relevant spatiotemporal geometries, is required to awaken the dormant plastic forces essential for repair. The focus of this review is to highlight some of the recent progress in neural interfaces designed to harness motor plasticity, and the role of miniaturization in development of strategies that engage diverse elements of the neuronal machinery to synergistically facilitate recovery of function after motor damage. PMID:27148525
Berlucchi, Giovanni
2002-09-01
The Italian psychiatrist Ernesto Lugaro can be regarded as responsible for introducing the term plasticity into the neurosciences as early as 1906. By this term he meant that throughout life the anatomo-functional relations between neurons can change in an adaptive fashion to enable psychic maturation, learning, and even functional recovery after brain damage. Lugaro's concept of plasticity was strongly inspired by a neural hypothesis of learning and memory put forward in 1893 by his teacher Eugenio Tanzi. Tanzi postulated that practice and experience promote neuronal growth and shorten the minute spatial gaps between functionally associated neurons, thus facilitating their interactions. In addition to discovering the cerebellar cells known by his name and advancing profound speculations about the functions of the glia, Lugaro lucidly foresaw the chemical nature of synaptic transmission in the central nervous system, and was the first to propose the usage of the terms "nervous conduction" and "nervous transmission" in their currently accepted meaning.
Endocannabinoid signaling and synaptic function.
Castillo, Pablo E; Younts, Thomas J; Chávez, Andrés E; Hashimotodani, Yuki
2012-10-04
Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a nonretrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. In this Review, we focus on new advances in synaptic endocannabinoid signaling in the mammalian brain. The emerging picture not only reinforces endocannabinoids as potent regulators of synaptic function but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought. Copyright © 2012 Elsevier Inc. All rights reserved.
Whole body vibration (WBV) following spinal cord injury (SCI) in rats: Timing of intervention.
Manthou, Marilena; Abdulla, Diana Saad Yousif; Pavlov, Stoyan Pavlov; Jansen, Ramona; Bendella, Habib; Nohroudi, Klaus; Stein, Gregor; Meyer, Carolin; Ozsoy, Ozlem; Ozsoy, Umut; Behram Kandemir, Yasemin; Sarikcioglu, Levent; Semler, Oliver; Schoenau, Eckhard; Dunlop, Sarah; Angelov, Doychin Nikolov
2017-01-01
Following spinal cord injury (SCI), exercise training provides a wide range of benefits and promotes activity-dependent synaptic plasticity. Whole body vibration (WBV) in SCI patients improves walking and spasticity as well as bone and muscle mass. However, little is known about the effects of timing or frequency of intervention. To determine which WBV-onset improves locomotor and bladder functions and influences synaptic plasticity beneficially. SCI was followed by WBV starting 1, 7, 14, 28 days after injury (WBV1, WBV7, etc.) and continued for 12 weeks. Intact animals and those receiving SCI but no WBV (No WBV), SCI plus WBV twice daily (2×WBV) and SCI followed by passive hindlimb flexion-extension (PFE) served as controls. Locomotor [BBB rating, foot stepping angle (FSA) and rump-height index (RHI)] as well as bladder function were determined at 1, 3, 6, 9, and 12 weeks. Following perfusion fixation at 12 weeks, lesion volume and immunofluorescence for astrogliosis (GFAP), microglia (IBA1) and synaptic vesicles (synaptophysin, SYN) were determined. Compared to the No WBV group, the WB7 and WBV14 groups showed significantly faster speeds of BBB score recovery though this effect was temporary. Considering RHI we detected a sustained improvement in the WBV14 and PFE groups. Bladder function was better in the WBV14, WBV28, 2×WBV and PFE groups. Synaptophysin levels improved in response to WBV7 and WBV14, but worsened after WBV28 in parallel to an increased IBA1 expression. Correlation- and principal components analysis revealed complex relationships between behavioural (BBB, FSA, RHI) and morphological (GFAP, IBA1, SYN) measurements. WBV started 14 days after SCI provides the most benefit (RHI, bladder); starting at 1day after SCI provides no benefit and starting at 28 days may be detrimental. Increasing the intensity of WBV to twice daily did not provide additional benefit.
Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.
2011-01-01
Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that “faulty” circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. PMID:21346243
Crack instability analysis methods for leak-before-break program in piping systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattar Neto, M.; Maneschy, E.; Nobrega, P.G.B. da
1995-11-01
The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing priormore » to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.« less
Long term potentiation, but not depression, in interlamellar hippocampus CA1.
Sun, Duk-Gyu; Kang, Hyeri; Tetteh, Hannah; Su, Junfeng; Lee, Jihwan; Park, Sung-Won; He, Jufang; Jo, Jihoon; Yang, Sungchil; Yang, Sunggu
2018-03-26
Synaptic plasticity in the lamellar CA3 to CA1 circuitry has been extensively studied while interlamellar CA1 to CA1 connections have not yet received much attention. One of our earlier studies demonstrated that axons of CA1 pyramidal neurons project to neighboring CA1 neurons, implicating information transfer along a longitudinal interlamellar network. Still, it remains unclear whether long-term synaptic plasticity is present within this longitudinal CA1 network. Here, we investigate long-term synaptic plasticity between CA1 pyramidal cells, using in vitro and in vivo extracellular recordings and 3D holography glutamate uncaging. We found that the CA1-CA1 network exhibits NMDA receptor-dependent long-term potentiation (LTP) without direction or layer selectivity. By contrast, we find no significant long-term depression (LTD) under various LTD induction protocols. These results implicate unique synaptic properties in the longitudinal projection suggesting that the interlamellar CA1 network could be a promising structure for hippocampus-related information processing and brain diseases.
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; van Aken, D. C.; Allison, J. E.
1995-12-01
The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ' strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles.
NASA Astrophysics Data System (ADS)
Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.
2014-08-01
Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.
Neuronal cytoskeleton in synaptic plasticity and regeneration.
Gordon-Weeks, Phillip R; Fournier, Alyson E
2014-04-01
During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.
Astrocyte and Neuronal Plasticity in the Somatosensory System
Sims, Robert E.; Butcher, John B.; Parri, H. Rheinallt; Glazewski, Stanislaw
2015-01-01
Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity. PMID:26345481
Kantrowitz, Joshua T; Epstein, Michael L; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M; Revheim, Nadine; Lehrfeld, Nayla P; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C
2016-12-01
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Takeuchi, Naoyuki; Izumi, Shin-Ichi
2015-01-01
Motor recovery after stroke involves developing new neural connections, acquiring new functions, and compensating for impairments. These processes are related to neural plasticity. Various novel stroke rehabilitation techniques based on basic science and clinical studies of neural plasticity have been developed to aid motor recovery. Current research aims to determine whether using combinations of these techniques can synergistically improve motor recovery. When different stroke neurorehabilitation therapies are combined, the timing of each therapeutic program must be considered to enable optimal neural plasticity. Synchronizing stroke rehabilitation with voluntary neural and/or muscle activity can lead to motor recovery by targeting Hebbian plasticity. This reinforces the neural connections between paretic muscles and the residual motor area. Homeostatic metaplasticity, which stabilizes the activity of neurons and neural circuits, can either augment or reduce the synergic effect depending on the timing of combination therapy and types of neurorehabilitation that are used. Moreover, the possibility that the threshold and degree of induced plasticity can be altered after stroke should be noted. This review focuses on the mechanisms underlying combinations of neurorehabilitation approaches and their future clinical applications. We suggest therapeutic approaches for cortical reorganization and maximal functional gain in patients with stroke, based on the processes of Hebbian plasticity and homeostatic metaplasticity. Few of the possible combinations of stroke neurorehabilitation have been tested experimentally; therefore, further studies are required to determine the appropriate combination for motor recovery. PMID:26157374
NASA Astrophysics Data System (ADS)
Edmiston, John Kearney
This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting of the quantitative profitability of undertaking such a line of experimentation for the study of plastic deformation processes.
Modelling global distribution, risk and mitigation strategies of floating plastic pollution
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Wilcox, Chris; Sherman, Peter; Hardesty, Britta Denise; Lavender Law, Kara
2016-04-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardise a global dataset of plastic marine debris measured using surface-trawling plankton nets and couple this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons. A large fraction of the uncertainty in these estimates comes from sparse sampling in coastal and Southern Hemisphere regions. We then use this global distribution of small floating plastic debris to map out where in the ocean the risk to marine life (in particular seabirds and plankton growth) is greatest, using a quantitative risk framework. We show that the largest risk occurs not necessarily in regions of high plastic concentration, but rather in regions of extensive foraging with medium-high plastic concentrations such as coastal upwelling regions and the Southern Ocean. Finally, we use the estimates of distribution to investigate where in the ocean plastic can most optimally be removed, assuming hypothetical clean-up booms following the ideas from The Ocean Cleanup project. We show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres. Based on these results, we propose more focus on the coastal zones when considering future efforts in sampling, risk management and mitigation.
Adaptation, perceptual learning, and plasticity of brain functions.
Horton, Jonathan C; Fahle, Manfred; Mulder, Theo; Trauzettel-Klosinski, Susanne
2017-03-01
The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.
Induced sensorimotor brain plasticity controls pain in phantom limb patients
Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi
2016-01-01
The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349
Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type
NASA Astrophysics Data System (ADS)
Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.
2017-07-01
In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.
A large multicenter outcome study of female genital plastic surgery.
Goodman, Michael P; Placik, Otto J; Benson, Royal H; Miklos, John R; Moore, Robert D; Jason, Robert A; Matlock, David L; Simopoulos, Alex F; Stern, Bernard H; Stanton, Ryan A; Kolb, Susan E; Gonzalez, Federico
2010-04-01
Female Genital Plastic Surgery, a relatively new entry in the field of Cosmetic and Plastic Surgery, has promised sexual enhancement and functional and cosmetic improvement for women. Are the vulvovaginal aesthetic procedures of Labiaplasty, Vaginoplasty/Perineoplasty ("Vaginal Rejuvenation") and Clitoral Hood Reduction effective, and do they deliver on that promise? For what reason do women seek these procedures? What complications are evident, and what effects are noted regarding sexual function for women and their partners? Who should be performing these procedures, what training should they have, and what are the ethical considerations? This study was designed to produce objective, utilizable outcome data regarding FGPS. 1) Reasons for considering surgery from both patient's and physician's perspective; 2) Pre-operative sexual functioning per procedure; 3) Overall patient satisfaction per procedure; 4) Effect of procedure on patient's sexual enjoyment, per procedure; 5) Patient's perception of effect on her partner's sexual enjoyment, per procedure; 6) Complications. This cross-sectional study, including 258 women and encompassing 341 separate procedures, comes from a group of twelve gynecologists, gynecologic urologists and plastic surgeons from ten centers in eight states nationwide. 104 labiaplasties, 24 clitoral hood reductions, 49 combined labiaplasty/clitoral hood reductions, 47 vaginoplasties and/or perineoplasties, and 34 combined labiaplasty and/or reduction of the clitoral hood plus vaginoplasty/perineoplasty procedures were studied retrospectively, analyzing both patient's and physician's perception of surgical rationale, pre-operative sexual function and several outcome criteria. Combining the three groups, 91.6% of patients were satisfied with the results of their surgery after a 6-42 month follow-up. Significant subjective enhancement in sexual functioning for both women and their sexual partners was noted (p = 0.0078), especially in patients undergoing vaginal tightening/perineal support procedures. Complications were acceptable and not of major consequence. While emphasizing that these female genital plastic procedures are not performed to correct "abnormalities," as there is a wide range of normality in the external and internal female genitalia, both parous and nulliparous, many women chose to modify their vulvas and vaginas. From the results of this large study pooling data from a diverse group of experienced genital plastic surgeons, outcome in both general and sexual satisfaction appear excellent.
International Conference on Martensitic Transformations (ICOMAT 92)
1993-03-05
impurities. 43 ! 12. On the Constitutive Relations for 6 to x Martensitic Transformation Plasticity in Plutonium Alloys I Paul H. Adler and Gregory B...Olson A constitutive model for transformation plasticity based on isothermal martensitic kinetics is applied to the 6-4a transformation in Pu alloys...Tle I model is in good agreement with available data for 6-4a transformation plasticity behavicr of PuGa alloys in uniaxial compression as a function of
Cortical Plasticity and Olfactory Function in Early Blindness
Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.
2016-01-01
Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596
Sarasso, S; Santhanam, P; Määtta, S; Poryazova, R; Ferrarelli, F; Tononi, G; Small, S L
2010-09-01
Stroke is associated with long-term functional deficits. Behavioral interventions are often effective in promoting functional recovery and plastic changes. Recent studies in normal subjects have shown that sleep, and particularly slow wave activity (SWA), is tied to local brain plasticity and may be used as a sensitive marker of local cortical reorganization after stroke. In a pilot study, we assessed the local changes induced by a single exposure to a therapeutic session of IMITATE (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects), a behavioral therapy used for recovery in patients with post-stroke aphasia. In addition, we measured brain activity changes with functional magnetic resonance imaging (fMRI) in a language observation task before, during and after the full IMITATE rehabilitative program. Speech production improved both after a single exposure and the full therapy program as measured by the Western Aphasia Battery (WAB) Repetition subscale. We found that IMITATE induced reorganization in functionally-connected, speech-relevant areas in the left hemisphere. These preliminary results suggest that sleep hd-EEGs, and the topographical analysis of SWA parameters, are well suited to investigate brain plastic changes underpinning functional recovery in neurological disorders.
Functional Plasticity in Childhood Brain Disorders: When, What, How, and Whom to Assess
Dennis, Maureen; Spiegler, Brenda J.; Simic, Nevena; Sinopoli, Katia J.; Wilkinson, Amy; Yeates, Keith Owen; Taylor, H. Gerry; Bigler, Erin D.; Fletcher, Jack M.
2014-01-01
At every point in the lifespan, the brain balances malleable processes representing neural plasticity that promote change with homeostatic processes that promote stability. Whether a child develops typically or with brain injury, his or her neural and behavioral outcome is constructed through transactions between plastic and homeostatic processes and the environment. In clinical research with children in whom the developing brain has been malformed or injured, behavioral outcomes provide an index of the result of plasticity, homeostasis, and environmental transactions. When should we assess outcome in relation to age at brain insult, time since brain insult, and age of the child at testing? What should we measure? Functions involving reacting to the past and predicting the future, as well as social-affective skills, are important. How should we assess outcome? Information from performance variability, direct measures and informants, overt and covert measures, and laboratory and ecological measures should be considered. In whom are we assessing outcome? Assessment should be cognizant of individual differences in gene, socio-economic status (SES), parenting, nutrition, and interpersonal supports, which are moderators that interact with other factors influencing functional outcome. PMID:24821533
Loh, Su-Yi; Jahans-Price, Thomas; Greenwood, Michael P; Greenwood, Mingkwan; Hoe, See-Ziau; Konopacka, Agnieszka; Campbell, Colin; Murphy, David; Hindmarch, Charles C T
2017-01-01
The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2 . Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.
Mineralogical Plasticity Acts as a Compensatory Mechanism to the Impacts of Ocean Acidification.
Leung, Jonathan Y S; Russell, Bayden D; Connell, Sean D
2017-03-07
Calcifying organisms are considered particularly susceptible to the future impacts of ocean acidification (OA), but recent evidence suggests that they may be able to maintain calcification and overall fitness. The underlying mechanism remains unclear but may be attributed to mineralogical plasticity, which modifies the energetic cost of calcification. To test the hypothesis that mineralogical plasticity enables the maintenance of shell growth and functionality under OA conditions, we assessed the biological performance of a gastropod (respiration rate, feeding rate, somatic growth, and shell growth of Austrocochlea constricta) and analyzed its shell mechanical and geochemical properties (shell hardness, elastic modulus, amorphous calcium carbonate, calcite to aragonite ratio, and magnesium to calcium ratio). Despite minor metabolic depression and no increase in feeding rate, shell growth was faster under OA conditions, probably due to increased precipitation of calcite and trade-offs against inner shell density. In addition, the resulting shell was functionally suitable for increasingly "corrosive" oceans, i.e., harder and less soluble shells. We conclude that mineralogical plasticity may act as a compensatory mechanism to maintain overall performance of calcifying organisms under OA conditions and could be a cornerstone of calcifying organisms to acclimate to and maintain their ecological functions in acidifying oceans.
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre
Bryant, Jessica A.; Clemente, Tara M.; Viviani, Donn A.; Fong, Allison A.; Thomas, Kimberley A.; Kemp, Paul; Karl, David M.; White, Angelicque E.
2016-01-01
ABSTRACT Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the “great Pacific garbage patch.” The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m−3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production − community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public’s attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available. PMID:27822538
A fracture criterion for widespread cracking in thin-sheet aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.
1993-01-01
An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.
Sensitive periods in affective development: nonlinear maturation of fear learning.
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development.
Sensitive Periods in Affective Development: Nonlinear Maturation of Fear Learning
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development. PMID:25035083
Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module
NASA Technical Reports Server (NTRS)
Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian
2003-01-01
The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.
The dialectic of Hebb and homeostasis.
Turrigiano, Gina G
2017-03-05
It has become widely accepted that homeostatic and Hebbian plasticity mechanisms work hand in glove to refine neural circuit function. Nonetheless, our understanding of how these fundamentally distinct forms of plasticity compliment (and under some circumstances interfere with) each other remains rudimentary. Here, I describe some of the recent progress of the field, as well as some of the deep puzzles that remain. These include unravelling the spatial and temporal scales of different homeostatic and Hebbian mechanisms, determining which aspects of network function are under homeostatic control, and understanding when and how homeostatic and Hebbian mechanisms must be segregated within neural circuits to prevent interference.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).
Convergent evidence for abnormal striatal synaptic plasticity in dystonia
Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard
2010-01-01
Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes linking etiology to pathophysiology of the disease. PMID:20005952
Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.
Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel
2008-10-01
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.
Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation
Phan, Mimi L.; Bieszczad, Kasia M.
2016-01-01
Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129
Cortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness
Desgent, Sébastien; Ptito, Maurice
2012-01-01
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field. PMID:22720175
2017-01-01
The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex. PMID:28875930
Mecozzi, Mauro; Pietroletti, Marco; Monakhova, Yulia B
2016-05-15
We inserted 190 FTIR spectra of plastic samples in a digital database and submitted it to Independent Component Analysis (ICA) to extract the "pure" plastic polymers present. These identified plastics were polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), high density polyethylene terephthalate (HDPET), low density polyethylene terephthalate (LDPET), polystyrene (PS), Nylon (NL), polyethylene oxide (OPE), and Teflon (TEF) and they were used to establish the similarity with unknown plastics using the correlation coefficient (r), and the crosscorrelation function (CC). For samples with r<0.8 we determined the Mahalanobis Distance (MD) as additional tool of identification. For instance, for the four plastic fragments found in the Carretta carretta, one plastic sample was assigned to OPE due to its r=0.87; for all the other three plastic samples, due to the r values ranging between 0.83 and0.70, the support of MD suggested LDPET and OPE as co-polymer constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning capacity unlike dietary control. PMID:24098984
Nabel, Elisa M.; Morishita, Hirofumi
2013-01-01
Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development – the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins – endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions. PMID:24273519
Modification of dendritic development.
Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio
2002-01-01
Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the hippocampal Ammon's horn and, particularly, on the CA1 field pyramidal neurons, as well as on afferences to the hippocampus which needs to be further investigated.
Wholly Aromatic Ether-Imides as n-Type Semiconductors
NASA Technical Reports Server (NTRS)
Weiser, Erik; St. Clair, Terry L.; Dingemans, Theo J.; Samulski, Edward T.; Irene, Gene
2006-01-01
Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able to communicate such important parameters to the flight crew and provide vital information with respect to the operational status of their aircraft.
ERIC Educational Resources Information Center
Gentile, A. G.; Scanlon, D. T.
This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of floricultural crops grown commercially in glass and plastic houses in Massachusetts. The publication consists of two sections. The first section presents a description of the major pests of…
75 FR 27668 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0070 and 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... cause of the MLG extension problem was the (partially) blocked hydraulic return line from the MLG selector valve by pieces of hard plastic. These were identified as parts of the poppet seat of PBSOV... problem was the (partially) blocked hydraulic return line from the MLG selector valve by pieces of hard...
Zhang, Yongming; Qiu, Binghui; Wang, Jinbiao; Yao, Yi; Wang, Chunlin; Liu, Jiachuan
2017-07-01
The purpose of this study was to investigate the effects of brain-derived neurotrophic factor (BDNF)-transfected bone marrow mesenchymal stem cells (BMSCs) on neural functional recovery and synaptophysin expression in rats with cerebral infarction (CI). A total of 120 healthy Sprague Dawley rats were randomly divided into sham group, control group, and model group. Craniotomy was conducted and neurological function defect scoring was used to verify the model. BDNF containing recombinant plasmid was transfected into rat BMSCs, which was verified by flow cytometry and Western Blot. After injection of the transfected BMSCs, neural functional recovery of the CI rats and synaptophysin expression were measured. After the CI rat model was established, magnetic resonance (MR) imaging, 2, 3, 5- triphenyl tetrazolium chloride (TTC) staining, and the neurological function defect scoring determined the success of the model. CD34 (-), CD45 (-), CD29 (+), and CD90 (+) cells detected showed that the obtained BMSCs have high purity. BDNF protein was highly expressed in the BMSCs successfully transfected with the recombinant plasmid. Balance beam walking score, rotating bar walking score, and screen test score were significantly lower, while synaptophysin expression was higher in the BDNF model group than those in the non-BDNF model group and sham group with time extension. BDNF can increase synaptic plasticity and neurogenesis and have a promotional role in neural functional recovery and synaptophysin expression in rats with CI. BDNF-transfected BMSCs may therefore have better treatment efficacy for CI clinically.
Towards lactic acid bacteria-based biorefineries.
Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica
2014-11-15
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. Copyright © 2014 Elsevier Inc. All rights reserved.
Hürzeler, M B; Weng, D
1999-02-01
The closure of surgical wounds in a layer-by-layer fashion, a common principle of plastic surgery, is applied in this article to the field of periodontal surgery with the introduction of a new flap design. The suggested technique is indicated with all periodontal procedures that aim for hard and soft tissue augmentation (guided bone regeneration, mucogingival surgery, or plastic periodontal surgery) where passive, tension-free wound closure is fundamental for wound healing and a successful functional and esthetic outcome. By means of a series of incisions, buccal and lingual flaps are split several times; this results in a double-partial thickness flap and a coronally positioned palatal sliding flap, respectively. Thus, several tissue layers are obtained and the passive advancement of flaps becomes possible for the coverage of augmented areas. Wound closure with microsurgical suture material is accomplished in a multilayer approach, which ensures adaptation and closure of the outer tissue layers without any tension. Two case reports demonstrate the new plastic periodontal approach.