Sample records for extensive high temperature

  1. Acquisition of Raman Spectrometer and High Temperature and Pressure Reactor for Synthesis and Characterization of Carbon Based Hybrid Nanoparticles from Waste Wood

    DTIC Science & Technology

    2015-04-27

    from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon materials...corporation). These tools were fully installed and operational. We have also synthesized carbon materials from waste biomass using these two high...materials from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon

  2. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  3. High temperature sealed electrochemical cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  4. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  5. Extension of thermophysical and thermodynamic property measurements by laser pulse heating up to 10,000 K. I. Under pressure

    NASA Astrophysics Data System (ADS)

    Ohse, R. W.

    1990-07-01

    The necessity for increased high-temperature data reliability and extension of thermophysical property measurements up to 5000 K and above are discussed. A new transient-type laser-autoclave technique (LAT) has been developed to extend density and heat capacity measurements of high-temperature multicomponent systems far beyond their melting and boiling points. Pulsed multibeam laser heating is performed in an autoclave under high inert gas pressure to eliminate evaporation. The spherical samples are positioned by containment-free acoustic levitation regardless of their conductive or magnetic properties. Temperature, spectral and total emittances are determined by a new microsecond six-wavelength pyrometer coupled to a fast digital data acquisition system. The density is determined by high resolution microfocus X-ray shadow technique. The heat capacity is obtained from the cooling rate. Further applications are a combination of the laser-autoclave with splat cooling techniques for metastable structure synthesis and amorphous metals research and an extension of the LAT for the study of critical phenomena and the measurement of critical-point temperatures.

  6. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  7. Effects of a temperature-dependent rheology on large scale continental extension

    NASA Technical Reports Server (NTRS)

    Sonder, Leslie J.; England, Philip C.

    1988-01-01

    The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.

  8. Investigation of Tokamak Solid Divertor Target Options.

    DTIC Science & Technology

    1981-05-26

    but materials are not known which could operate at the high resulting wall temperatures . Mist- steam flows would also demand a relatively high ...flux P = coolant density = bulk coolant viscosity w = coolant viscosity at average wall temperature = units conversion At high heat loads and moderate...therefore, the inner wall temperature will be over 300 OF, posing a high temp- erature materials challenge. E. Swirl and Mixed Flow Schemes Extensive work

  9. Tough, Microcracking-Resistant, High-Temperature Polymer

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Razon, Pert; Smith, Ricky; Working, Dennis; Chang, Alice; Gerber, Margaret

    1990-01-01

    Simultaneous synthesis from thermosetting and thermoplastic components yields polyimide with outstanding properties. Involves process in which one polymer cross-linked in immediate presence of other, undergoing simultaneous linear chain extension. New material, LaRC-RP40 synthesized from high-temperature thermosetting imide prepolymer and from thermoplastic monomer. Three significantly improved properties: toughness, resistance to microcracking, and glass-transition temperature. Shows promise as high-temperature matrix resin for variety of components of aircraft engines and for use in other aerospace structures.

  10. Fail Safe, High Temperature Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Minihan, Thomas; Palazzolo, Alan; Kim, Yeonkyu; Lei, Shu-Liang; Kenny, Andrew; Na, Uhn Joo; Tucker, Randy; Preuss, Jason; Hunt, Andrew; Carter, Bart; hide

    2002-01-01

    This paper contributes to the magnetic bearing literature in two distinct areas: high temperature and redundant actuation. Design considerations and test results are given for the first published combined 538 C (1000 F) high speed rotating test performance of a magnetic bearing. Secondly, a significant extension of the flux isolation based, redundant actuator control algorithm is proposed to eliminate the prior deficiency of changing position stiffness after failure. The benefit of the novel extension was not experimentally demonstrated due to a high active stiffness requirement. In addition, test results are given for actuator failure tests at 399 C (750 F), 12,500 rpm. Finally, simulation results are presented confirming the experimental data and validating the redundant control algorithm.

  11. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  12. Effects of acute low temperature events on development of Erysiphe necator and susceptibility of Vitis vinifera

    USDA-ARS?s Scientific Manuscript database

    Growth and development of Erysiphe necator (syn. Uncinula necator) has been extensively studied under controlled conditions, primarily with a focus on development within the optimal temperature range and the lethal effects of high temperatures. Little is known of the effect of cold temperatures on ...

  13. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  14. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2018-02-14

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  15. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  16. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    PubMed

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, B.; Nelson, K.; Lipinski, R.

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  18. High Temperature Mechanical Behavior of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1996-01-01

    The research accomplishments under this grant were very extensive in the areas of the high temperature behavior of ceramics, ceramic composites and testing standards for these materials. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the funding provided by the grant.

  19. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.

    PubMed

    Heim, Amy; Lundholm, Jeremy

    2013-01-01

    Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzedmore » the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s -1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.« less

  1. Temperature measurement reliability and validity with thermocouple extension leads or changing lead temperature.

    PubMed

    Jutte, Lisa S; Long, Blaine C; Knight, Kenneth L

    2010-01-01

    Thermocouples' leads are often too short, necessitating the use of an extension lead. To determine if temperature measures were influenced by extension-lead use or lead temperature changes. Descriptive laboratory study. Laboratory. Experiment 1: 10 IT-21 thermocouples and 5 extension leads. Experiment 2: 5 IT-21 and PT-6 thermocouples. In experiment 1, temperature data were collected on 10 IT-21 thermocouples in a stable water bath with and without extension leads. In experiment 2, temperature data were collected on 5 IT-21 and PT-6 thermocouples in a stable water bath before, during, and after ice-pack application to extension leads. In experiment 1, extension leads did not influence IT-21 validity (P  =  .45) or reliability (P  =  .10). In experiment 2, postapplication IT-21 temperatures were greater than preapplication and application measures (P < .05). Extension leads had no influence on temperature measures. Ice application to leads may increase measurement error.

  2. High Temperature Hot Corrosion Control by Fuel Additives (Contaminated Fuels).

    DTIC Science & Technology

    1987-06-01

    ABSTRACT The potential of fuel additives to minimize corrosion of blade material in gas turbine engines has been analyzed by the following series of steps...INTRODUCTION High chrome steels and superalloys, which are used extensively for high temperature boilers and gas turbine (GT) engines and related...combustion gases onto turbine blades and other hot components. Among the factors expected to affect the corrosion resis

  3. Material Science of Carbon

    DTIC Science & Technology

    2004-09-01

    required for a specific application. The list of applications is very extensive and includes: aircraft brakes, electrodes, high temperature molds, rocket...and includes: aircraft brakes, electrodes, high temperature molds, rocket nozzles and exit cones, tires, ink, nuclear reactors and fuel particles...produced. For example carbons can be hard (chars) or soft (blacks), strong (PAN fibers) or weak ( aerogel ), stiff (pitch fibers) or flexible

  4. Feasibility study of a high temperature radiation furnace for space applications

    NASA Technical Reports Server (NTRS)

    Eiss, A.; Dussan, B.; Shadis, W.; Frank, L.

    1973-01-01

    The feasibility was investigated of a high temperature general purpose furnace for use in space. It was determined that no commercial furnaces exist which could, even with extensive modifications, meet the goals of temperature, power, weight, volume, and versatility originally specified in the contract Statement of Work. A feasible furnace design which does substantially meet these goals while employing many of the advanced features of the commercial furnaces is developed and presented.

  5. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  6. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  7. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  8. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  9. Structure-Property Relationships of Bismaleimides

    NASA Technical Reports Server (NTRS)

    Tenteris-Noebe, Anita D.

    1997-01-01

    The purpose of this research was to control and systematically vary the network topology of bismaleimides through cure temperature and chemistry (addition of various coreactants) and subsequently attempt to determine structure-mechanical property relationships. Characterization of the bismaleimide structures by dielectric, rheological, and thermal analyses, and density measurements was subsequently correlated with mechanical properties such as modulus, yield strength, fracture energy, and stress relaxation. The model material used in this investigation was 4,4'-BismaleiMidodIphenyl methane (BMI). BMI was coreacted with either 4,4'-Methylene Dianiline (MDA), o,o'-diallyl bisphenol A (DABA) from Ciba Geigy, or Diamino Diphenyl Sulfone (DDS). Three cure paths were employed: a low- temperature cure of 140 C where chain extension should predominate, a high-temperature cure of 220 C where both chain extension and crosslinking should occur simultaneously, and a low-temperature (140 C) cure followed immediately by a high-temperature (220 C) cure where the chain extension reaction or amine addition precedes BMI homopolymerization or crosslinking. Samples of cured and postcured PMR-15 were also tested to determine the effects of postcuring on the mechanical properties. The low-temperature cure condition of BMI/MDA exhibited the highest modulus values for a given mole fraction of BMI with the modulus decreasing with decreasing concentration of BMI. The higher elastic modulus is the result of steric hindrance by unreacted BMI molecules in the glassy state. The moduli values for the high- and low/high-temperature cure conditions of BMI/MDA decreased as the amount of diamine increased. All the moduli values mimic the yield strength and density trends. For the high-temperature cure condition, the room- temperature modulus remained constant with decreasing mole fraction of BMT for the BMI/DABA and BMI/DDS systems. Postcuring PMR-15 increases the modulus over that of the cured material even though density values of cured and postcured PMR were essentially the same. Preliminary results of a continuous and intermittent stress relaxation experiment for BMI:MDA in a 2:1 molar ratio indicate that crosslinking is occurring when the sample is in the undeformed state. Computer simulation of properties such as density, glass transition temperature, and modulus for the low- temperature cure conditions of BMI/MDA and BMI/DABA were completed. The computer modeling was used to help further understand and confirm the structure characterization results. The simulations correctly predicted the trends of these properties versus mole fraction BMI and were extended to other BMI/diamine systems.

  10. Complete Mie-Gruneisen Equation of State (update)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-03-14

    The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gr¨uneisen coefficient, = -V (@eP)V , that is a function of only V . Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled-temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that if themore » domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gr¨uneisen EOS in which the pressure is linear in both the specific energy and the temperature. This corresponds to the limiting case of two temperature scales with one of the scales in the high temperature limit. Such an EOS has previously been used to model liquid nitromethane.« less

  11. Low-Cost Resin Transfer Molding Process Developed for High-Temperature Polyimide Matrix Composites

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The use of high-temperature polymer matrix composites (PMC's) in aircraft engine applications can significantly reduce engine weight and improve performance and fuel efficiency. High-temperature PMC's, such as those based on the PMR-15 polyimide matrix resin developed by the NASA Lewis Research Center, have been used extensively in military applications where performance improvements have justified their use regardless of the cost involved in producing the component. However, in commercial engines cost is a primary driver, and PMC components must be produced at costs comparable to those of the metal components that they will replace.

  12. Optimizing Glassy Polymer Network Morphology for Nano-particle Dispersion, Stabilization and Performance

    DTIC Science & Technology

    2016-10-03

    dissolution, toughener dissolution and controlled chain-extension reactions in the continuous reactor high temperature “hot-zone” to advance conversion...rheology and tack. 2. Simultaneous MWCNT dispersion and stabilization in the continuous reactor low temperature “cold-zone” leading to an increased...Weight and Low Dispersity Polyacrylonitrile by Low Temperature RAFT Polymerization, Moskowitz, Jeremy, Abel, Brooks, McCormick, Charles, Wiggins

  13. [Change of endogenous hormone around sprout tumble of Pinellia ternata under high temperature stress].

    PubMed

    Xue, Jian-Ping; Zhang, Ai-Min; Yang, Jian; Chang, Li; Huang, Yue-Qin

    2007-12-01

    To study the change of endogenous hormone (ABA, IAA, JA, GA3, ZR) in the leaves, petioles, tubers of Pinellia ternate around sprout tumble. It also provided some valuable information to prevent sprout tumble and increase production. Tubers of P. ternata were cultured firstly at (23 +/- 1) degree C for certain days, and then they were coerced under (30 +/- 1 ) degree C stress in the same artificial climate boxes. The endogenous hormones in leaves, petioles and tubers during different stages of high temperature stress were determined with Enzyme-linked Immunosorbent Assays (ELISA). After under high temperature stress, ABA content in leaves, petioles and tubers increased obviously. Similarly, JA content rose all in the leaves, petioles and tubers. But in the same conditions IAA content declined significantly in the leaves and petioles. In the tubers, IAA content also decreased, but not quickly. With the extension of high temperature coercion, the leaves, petioles, tubers, ZR content were gradually falling off. In the leaves of GA3 content rose markedly at the third day, fell down at the sixth day, but remained higher than before treatment. With the extension of the processing time, GA3 content fell off in the petioles and tubers. ABA, JA, ZT and GA3 played an important role in controlling sprout tumble of P. ternata.

  14. Free-standing nanocomposites with high conductivity and extensibility.

    PubMed

    Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H; Kim, Seon Jeong

    2013-04-26

    The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene-polyisoprene-polystyrene having a high electrical conductivity of 3700 S cm(-1) that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices.

  15. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  16. High temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1981-01-01

    The extension of the range of operating temperatures of electronic components and systems for planetary exploration is examined. In particular, missions which utilize balloon-borne instruments to study the Venusian and Jovian atmospheres are discussed. Semiconductor development and devices including power sources, ultrastable oscillators, transmitters, antennas, electromechanical devices, and deployment systems are addressed.

  17. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  18. Impact of mechanical shear on Listeria monocytogenes survival on surfaces

    USDA-ARS?s Scientific Manuscript database

    Microbial inactivation using high temperatures is well known process and has contributed significantly toward food safety and shelf life extension for the food industry. Mechanical high pressure (hydrostatic) treatment is also gaining interest in food processing applications for achieving microbial...

  19. The extending lithosphere (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Brun, Jean-Pierre

    2017-04-01

    Extension of the lithosphere gives birth to a wide range of structures, with characteristic widths between 10 and 1000 km, which includes continental rifts, passive margins, oceanic rifts, core complexes, or back-arc basins. Because the rheology of rocks strongly depends on temperature, this variety of extensional structures falls in two broad categories of extending lithospheres according to the initial Moho temperature TM. "Cold extending systems", with TM < 750°C and mantle-dominated strength, lead to narrow rifts and, if extension is maintained long enough, to passive margins and then mantle core complexes. "Hot extending systems", with TM > 750°C and crustal-dominated strength, lead, depending on strain rate, to either wide rifts or metamorphic core complexes. A much less quoted product of extension is the exhumation of high-pressure (HP ) metamorphic rocks occurring in domains of back-arc extension driven by slab rollback (e.g. Aegean; Appennines-Calabrian) or when the subduction upper plate undergoes extension for plate kinematics reasons (e.g. Norwegian Caledonides; Papua New Guinea). In these tectonic environments, well-documented pressure-temperature-time (P - T - t) paths of HP rocks show a two-stage retrogression path whose the first part corresponds to an isothermal large pressure drop ΔP proportional to the maximum pressure Pmax recorded by the rocks. This linear relation between ΔP and Pmax, which likely results from a stress switch between compression and extension at the onset of exhumation, is in fact observed in all HP metamorphism provinces worldwide, suggesting that the exhumation of HP rocks in extension is a general process rather than an uncommon case. In summary, the modes and products of extension are so diverse that, taken all together, they constitute a very versatile natural laboratory to decipher the rheological complexities of the continental lithosphere and their mechanical implications.

  20. The composition and origin of the moon

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    A model is presented of the moon as a high temperature condensate from the solar nebula. The Ca, Al, and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes, and anorthite. Type 3 carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and are highly enriched in refractories. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior. The inferred high U content of the lunar interior, both from the Allende analogy and the high heat flow, indicates a high temperature interior. The model is consistent with extensive early, shallow melting at 3 A.E., and with high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior raises the interior temperatures estimated from electrical conductivity by some 800 C.

  1. High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.

    2012-05-01

    Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.

  2. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  3. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  4. Anaerobic digestion of grass: the effect of temperature applied during the storage of substrate on the methane production.

    PubMed

    Míchal, Pavel; Švehla, Pavel; Plachý, Vladimír; Tlustoš, Pavel

    2017-07-01

    Within this research, biogas production, representation of methane in biogas and volatile solids (VSs) removal efficiency were compared using batch tests performed with the samples of intensively and extensively planted grasses originating from public areas. Before the batch tests, the samples were stored at different temperatures achievable on biogas plants applying trigeneration strategy (-18°C, +3°C, +18°C and +35°C). Specific methane production from intensively planted grasses was relatively high (0.33-0.41 m 3 /kg VS) compared to extensively planted grasses (0.20-0.33 m 3 /kg VS). VSs removal efficiency reached 59.8-68.8% for intensively planted grasses and 34.6-56.5% for extensively planted grasses. Freezing the intensively planted grasses at -18°C proved to be an effective thermal pretreatment leading to high biogas production (0.61 m 3 /kg total solid (TS)), high representation of methane (64.0%) in biogas and good VSs removal efficiency (68.8%). The results of this research suggest that public areas or sport parks seem to be available, cheap and at the same time very effective feedstock for biogas production.

  5. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    PubMed

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  6. Elevated temperature mechanical behavior of new low CTE superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowen, C.J.; Jablonski, P.D.

    This paper presents the high temperature mechanical properties of several experimental low coefficient of thermal expansion (CTE) alloys. The use of such alloys facilitate the extension of advanced ferritic stainless steels to higher use temperature in advanced power generation systems. We find that one of these alloys, J5 appears to be favorable for bridging ferritic alloys (operating up to ~600°C) to traditional nickel based superalloys (operating at 750°C).

  7. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    NASA Technical Reports Server (NTRS)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.

  8. Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper-Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Valentine, Peter G.

    2017-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.

  9. Coupling of Transport and Chemical Processes in Catalytic Combustion

    NASA Technical Reports Server (NTRS)

    Bracco, F. V.; Bruno, C.; Royce, B. S. H.; Santavicca, D. A.; Sinha, N.; Stein, Y.

    1983-01-01

    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics.

  10. Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Nakano, H.; Ida, K.; Tsujimura, T. I.; Kubo, S.; Kobayashi, T.; Tanaka, K.; Seki, R.; Takeiri, Y.; Yokoyama, M.; Maeta, S.; Nakata, M.; Yoshinuma, M.; Yamada, I.; Yasuhara, R.; Ido, T.; Shimizu, A.; Tsuchiya, H.; Tokuzawa, T.; Goto, M.; Oishi, T.; Morita, S.; Suzuki, C.; Emoto, M.; Tsumori, K.; Ikeda, K.; Kisaki, M.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Makino, R.; Seki, T.; Kasahara, H.; Saito, K.; Kamio, S.; Nagasaki, K.; Mutoh, T.; Kaneko, O.; Morisaki, T.; the LHD Experiment Group

    2017-08-01

    A simultaneous high ion temperature (T i) and high electron temperature (T e) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of T e/T i by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity {χ\\text{i}}/T\\text{i}1.5 at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in T i in the entire plasma region, even though the core transport was degraded.

  11. Unified constitutive models for high-temperature structural applications

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.

    1988-01-01

    Unified constitutive models are characterized by the use of a single inelastic strain rate term for treating all aspects of inelastic deformation, including plasticity, creep, and stress relaxation under monotonic or cyclic loading. The structure of this class of constitutive theory pertinent for high temperature structural applications is first outlined and discussed. The effectiveness of the unified approach for representing high temperature deformation of Ni-base alloys is then evaluated by extensive comparison of experimental data and predictions of the Bodner-Partom and the Walker models. The use of the unified approach for hot section structural component analyses is demonstrated by applying the Walker model in finite element analyses of a benchmark notch problem and a turbine blade problem.

  12. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  13. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China.

    PubMed

    Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu

    2016-05-25

    From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was <19.7 °C. A path analysis indicated that DTR was the main factor that directly affected soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world.

  14. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed Nickel Aluminum for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Deog

    The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate the thermal stability during an extensive matrix of long-term thermal annealing. In particular, the size, number density and composition of nano-clusters were assessed. While improvements in strength were obtained in the advanced NiAl ODS alloys, and the higher strength persisted through thermal annealing for 100 hrs at 1723K, characterization revealed the presence of Al in the oxide precipitate phases. The Al incorporation is believed detrimental to the formation of a high density of thermally stable Y-Ti-O nanoscale precipitates.

  15. Ultraviolet absorption cross-sections of hot carbon dioxide

    NASA Astrophysics Data System (ADS)

    Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.

    2004-12-01

    The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.

  16. Multiphase boudinage: a case study of amphibolites in marble in the Naxos migmatite core

    NASA Astrophysics Data System (ADS)

    Virgo, Simon; von Hagke, Christoph; Urai, Janos L.

    2018-02-01

    In multiply deformed terrains multiphase boudinage is common, but identification and analysis of these is difficult. Here we present an analysis of multiphase boudinage and fold structures in deformed amphibolite layers in marble from the migmatitic centre of the Naxos metamorphic core complex. Overprinting between multiple boudinage generations is shown in exceptional 3-D outcrop. We identify five generations of boudinage, reflecting the transition from high-strain high-temperature ductile deformation to medium- to low-strain brittle boudins formed during cooling and exhumation. All boudin generations indicate E-W horizontal shortening and variable direction of bedding parallel extension, evolving from subvertical extension in the earliest boudins to subhorizontal N-S extension during exhumation. Two phases of E-W shortening can be inferred, the first associated with lower crustal synmigmatic convergent flow and the second associated with exhumation and N-S extension, possibly related to movement of the North Anatolian Fault.

  17. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Sah, Injin; Jang, Changheui

    2010-10-01

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 °C for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  18. Materials insights into low-temperature performances of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Gaolong; Wen, Kechun; Lv, Weiqiang; Zhou, Xingzhi; Liang, Yachun; Yang, Fei; Chen, Zhilin; Zou, Minda; Li, Jinchao; Zhang, Yuqian; He, Weidong

    2015-12-01

    Lithium-ion batteries (LIBs) have been employed in many fields including cell phones, laptop computers, electric vehicles (EVs) and stationary energy storage wells due to their high energy density and pronounced recharge ability. However, energy and power capabilities of LIBs decrease sharply at low operation temperatures. In particular, the charge process becomes extremely sluggish at temperatures below -20 °C, which severely limits the applications of LIBs in some cold areas during winter. Extensive research has shown that the electrolyte/electrode composition and microstructure are of fundamental importance to low-temperature performances of LIBs. In this report, we review the recent findings in the role of electrolytes, anodes, and cathodes in the low temperature performances of LIBs. Our overview aims to understand comprehensively the fundamental origin of low-temperature performances of LIBs from a materials perspective and facilitates the development of high-performance lithium-ion battery materials that are operational at a large range of working temperatures.

  19. Systems Analysis of GPS Electrical Power System Redesign

    DTIC Science & Technology

    1995-12-01

    Table 8 - System Efficiencies & Multipliers for Solar Direct Model (12:102; 15:864) Component Efficiency AMTEC 0.180 Receiver and Thermal Energy Storage...and low temperatures of the working fluid. Extreme high and low temperatures provide a greater efficiency , but require extensive thermal control and...direct conversion category. The Alkali Metal Thermal -to-Electric Converter ( AMTEC ) shows mass and cost savings due to efficiencies significantly higher

  20. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1995-01-01

    The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.

  1. Crystal structure and phase transition of thermoelectric SnSe.

    PubMed

    Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo

    2016-06-01

    Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.

  2. Persistent Influences of the 2002 Hayman Fire on Stream Nitrate and Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Rhoades, C.; Pierson, D. N.; Fegel, T. S., II; Chow, A. T.; Covino, T. P.

    2016-12-01

    Large, high severity wildfires alter the physical and biological conditions that determine how watersheds retain and release nutrients and regulate stream water quality. For five years after the 2002 Hayman Fire burned in Colorado conifer forests, stream nitrate concentrations and export increased steadily in watersheds with extensive high-severity burning. Stream temperature and turbidity also increased in relation to the extent of high-severity burning and remained elevated above background levels throughout the initial five year post-fire period. Our recent sampling documents that 14 years after the Hayman Fire stream nitrate remains an order of magnitude higher in extensively-burned (35-90%) compared to unburned watersheds (0.2 vs 2.8 mg L-1). Nitrate represents 83% of the total dissolved N in extensively-burned watersheds compared to 29% in unburned watersheds. In contrast, dissolved organic carbon (DOC), was highest in watersheds that burned to a moderate extent (10-20%) and lowest in those with extensive burning. Catchments with a moderate extent burned had DOC concentrations 2.5 and 1.7 times more than those with extensive burning and unburned catchments, respectively. Peak concentrations of DOC and nitrate track the rising limb of the streamflow hydrograph and reach a maximum in May, but patterns among burn extent categories were seasonally consistent. Current riparian conditions are linked to stream nitrate in burned watersheds. For example, stream nitrate increases proportionally to the extent of riparian zones with low shrub cover (R2 = 0.76). We found signs of watershed recovery compared to the initial post-fire period; stream temperature and turbidity remained elevated in extensively burned catchments, but increases were only significant during the spring season. The persistent stream nitrate concentrations as well as the relation between riparian cover and post-fire stream nitrate may help prioritize restoration planting efforts and mitigate chronic, elevated nitrate export from burned watersheds.

  3. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  4. Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island

    NASA Astrophysics Data System (ADS)

    Anderson, Kristen D.; Heron, Scott F.; Pratchett, Morgan S.

    2015-06-01

    Reef-building corals are extremely sensitive to changing temperature regimes, such that sustained increases in ocean temperatures are generally expected to have negative effects on coral growth and survivorship. At high-latitude reefs, however, projected increases in ocean temperature may actually increase coral growth (relaxing constraints imposed by cool winter temperatures), though this will depend upon on the rate and extent of declines in aragonite saturation, which is already much lower at high latitudes. This study quantified linear extension rates of six scleractinian corals, Acropora yongei, Isopora cuneata, Pocillopora damicornis, Porites heronensis, Seriatopora hystrix, and Stylophora pistillata, at Lord Howe Island in 2010/11. Contemporary growth rates were compared to equivalent data collected in 1994/95. There was marked interspecific variation in growth rates, with A. yongei growing almost twice the rate of all other species. Temporal changes in annual growth also varied among species. Growth rates of both A. yongei and Pocillopora damicornis were 30 % of that recorded in 1994/95. However, growth rates of Porites heronensis had not changed. Declines in the growth rates of these branching species may be attributable to declines in aragonite saturation or increases in summertime temperatures above limits for optimal growth, but either way it appears that climate change is having negative effects on corals, even at subtropical locations.

  5. Plant molecular responses to the elevated ambient temperatures expected under global climate change.

    PubMed

    Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng

    2018-01-02

    Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.

  6. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  7. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  8. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  9. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  10. The electronic properties of high (Tc) superconductors probed by positron annihilation

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Jean, Y. C.; Hinks, D. G.; Dabrowski, B.; Zheng, Y.; Mitchell, A. W.; Ho, J. C.; Howell, K. H.; Wachs, A. L.

    1989-06-01

    The discovery of superconductivity at 30 K in Ba(.6)K(.4) BiO3 has generated considerable excitement in view of the contrasting properties of the Ba-K-Bi-O system when compared to the well known Cu-O based high temperature superconductors. Positron annihilation spectroscopy, which is a sensitive local probe of the electronic and defect properties of a solid, was extensively applied in the study of Cu-O based superconductors. The results of positron lifetime as a function of temperature in Ba-K-Bi-O are presented and compared with the known results in the cuprate superconductors. Plausible reasons for the observed temperature dependence of positron lifetime are presented.

  11. Evaluation of high temperature structural adhesives for extended service, phase 4

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Hale, J. N.

    1985-01-01

    The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens.

  12. The First Finding of Sapphirine in Granulites of the Angara-Kan Block: Evidence of Ultra-High-Temperature Metamorphism in the SW Siberian Craton

    NASA Astrophysics Data System (ADS)

    Sukhorukov, V. P.; Gladkochub, D. P.; Turkina, O. M.

    2018-04-01

    This work reports the first discovery of sapphirine-bearing mineral parageneses in granulites of the Angara-Kan block, information on the mineral assemblage of rocks, and the mineral composition. Based on mineral geothermometers utilizing alumina content in orthopyroxene, reconstruction of the composition of ternary feldspar, and the titanium content in zircon, it was revealed that the peak temperatures of metamorphism reached 1100°C, after which the rocks underwent cooling under sub-isobaric conditions. It is assumed that the pulse of ultra-high-temperature metamorphism correlates with processes of extension and intraplate magmatism during the age interval of 1.78-1.75 Ga.

  13. High-Temperature Surface Thermometry Technique based on Upconversion Nano-Phosphors

    NASA Astrophysics Data System (ADS)

    Combs, C.; Clemens, N.; Guo, X.; Song, H.; Zhao, H.; Li, K. K.; Zou, Y. K.; Jiang, H.

    2011-11-01

    Downconversion thermographic phosphors have been extensively used for high-temperature surface thermometry applications (e.g., aerothermodynamics, turbine blades) where temperature-sensitive paint is not viable. In downconversion techniques the phosphorescence is at longer wavelengths than the excitation source. We are developing a new upconversion thermographic phosphor technique that employs rare-earth-doped ceramics whose phosphorescence exhibit a strong temperature dependence. In the upconversion technique the phosphor is excited with near-IR light and emission is at visible wavelengths; thus, it does not require expensive UV windows and does not suffer from interference from background fluorescence. In this work the upconversion phosphors have been characterized in terms of their intensity, lifetimes and spectral content over a temperature range of 300K to 1500K. The technique has been evaluated for applications of 2D surface temperature measurements by using the total integrated intensity and the ratio of emission in different visible color bands. The results indicate that upconversion phosphor thermometry is a promising technique for making non-contact high-surface temperature measurements with good accuracy. Work supported by NASA under contract NNX11CG89P.

  14. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km < h < 1800 km. Estimation of the electrical conductivity based on the percolation theory is given. We discuss also the thermodynamic properties and structural anomalies resulting from the spin crossover and metal-insulator transition and compare them with the experimental seismic and geomagnetic field data.

  15. Novel inorganic nanomaterials generated with highly concentrated sunlight

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Katz, Eugene A.; Feuermann, Daniel; Albu-Yaron, Ana; Levy, Moshe; Tenne, Reshef

    2008-08-01

    Reactors driven by highly concentrated sunlight can create conditions well suited to the synthesis of inorganic nanomaterials. We report the experimental realization of a broad range of closed-cage (fullerene-like) nanostructures, nanotubes and/or nanowires for MoS2, SiO2 and Si, achieved via solar ablation. The solar technique generates the strong temperature and radiative gradients - in addition to the extensive high-temperature annealing environment - conducive to producing such nanostructures. The identity of the nanostructures was established with TEM, HRTEM and EDS. The fullerene-like and nanotube MoS2 configurations achieved fundamentally minimum sizes predicted by molecular structural theory. Furthermore, our experiments represent the first time SiO2 nanofibers and nanospheres have been produced purely from quartz. The solar route is far less energy intensive than laser ablation and other high-temperature chemical reactors, simpler and less costly.

  16. Geo-environmental model for the prediction of potential transmission risk of Dirofilaria in an area with dry climate and extensive irrigated crops. The case of Spain.

    PubMed

    Simón, Luis; Afonin, Alexandr; López-Díez, Lucía Isabel; González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Kartashev, Vladimir; Simón, Fernando

    2014-03-01

    Zoonotic filarioses caused by Dirofilaria immitis and Dirofilaria repens are transmitted by culicid mosquitoes. Therefore Dirofilaria transmission depends on climatic factors like temperature and humidity. In spite of the dry climate of most of the Spanish territory, there are extensive irrigated crops areas providing moist habitats favourable for mosquito breeding. A GIS model to predict the risk of Dirofilaria transmission in Spain, based on temperatures and rainfall data as well as in the distribution of irrigated crops areas, is constructed. The model predicts that potential risk of Dirofilaria transmission exists in all the Spanish territory. Highest transmission risk exists in several areas of Andalucía, Extremadura, Castilla-La Mancha, Murcia, Valencia, Aragón and Cataluña, where moderate/high temperatures coincide with extensive irrigated crops. High risk in Balearic Islands and in some points of Canary Islands, is also predicted. The lowest risk is predicted in Northern cold and scarcely or non-irrigated dry Southeastern areas. The existence of irrigations locally increases transmission risk in low rainfall areas of the Spanish territory. The model can contribute to implement rational preventive therapy guidelines in accordance with the transmission characteristics of each local area. Moreover, the use of humidity-related factors could be of interest in future predictions to be performed in countries with similar environmental characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. On the sensitivity of annual streamflow to air temperature

    USGS Publications Warehouse

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  18. The effect of temperature on reproduction in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi

    PubMed Central

    Huang, Ziyue; Footitt, Steven; Finch-Savage, William E.

    2014-01-01

    Background and Aims Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively. Methods Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio. Key Results Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield. Conclusions High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species. PMID:24573642

  19. Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.

    2012-01-01

    Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data

  20. Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C

    DTIC Science & Technology

    2015-12-01

    through experimentation. Although the Literature Review showed that some theories and models have been developed based on extensive experimental results...of Some Refractory Metals & Ceramics [Fahrenholtz] ........... 14 Figure 4: Creep Strain vs Time Based on Burgers Model ...

  1. Ideas.

    ERIC Educational Resources Information Center

    Cook, Marcy

    1989-01-01

    Provided are four activities focusing on the application of mathematics to real-world situations: (1) Baby Weight; (2) High Temperature; (3) Skin Weight; and (4) Whale Weight. Each activity contains the objective, directions, extensions, and answers with worksheet. The activities required include the skills of making charts and graphs. (YP)

  2. Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Reuter, M.; Krüger, S.; Kirkerowicz, J.; Klaus, J. S.

    2015-10-01

    The fast growing calcareous skeletons of zooxanthellate reef corals (z-corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z-corals. The z-corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z-corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion was non-linear and responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from subannually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene where ∼ 2 °C higher than they are in the present-day, intermittent upwelling of cool, nutrient rich water mitigated water temperatures off southwestern Florida in the middle of the Atlantic warm pool and created temporary refuges for z-coral growth. Based on the subannually resolved δ18O and δ13C records, the duration of the upwelling episodes causing the endmember 2 conditions was variable and lasted from a few years to a number of decades. The episodes of upwelling were interrupted by phases without upwelling (endmember 1) which lasted for at least a few years and led to high surface water temperatures. This variable environment is likely one of the reasons why the coral fauna is dominated by the eurytopic genus Solenastrea, also a species resistant to high turbidity. Over a period of ∼ 50 years, the oldest subannually resolved proxy record available (3.2 Ma) documents a persistent occurrence of the HDB during winter. In contrast, the HDB forms in summer in modern z-corals from the Florida reef tract. We suggest this difference to be the expression of a tendency towards decreasing upwelling since the middle Pliocene. The number of z-coral sclerochronological records for this time period is still, however, rather low and requires an improved resolution through data from additional time-slices. These data can contribute to predicting the effects of future ocean warming on z-coral health along the Florida reef tract.

  3. Mechanical behavior of high strength ceramic fibers at high temperatures

    NASA Technical Reports Server (NTRS)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  4. Untersuchungen zur Regeneration des Hinterendes bei Anaitides mucosa (Polychaeta, Phyllodocidae)

    NASA Astrophysics Data System (ADS)

    Röhrkasten, A.

    1983-06-01

    Caudal regeneration was investigated in decerebrate Anaitides mucosa and in brain-intact individuals. Both groups show an identical capacity to regenerate lost caudal segments. Furthermore there is no difference in males and females. Low temperature (5 °C) inhibits the regeneration of caudal segments, but it is necessary for normal oogenesis. Under conditions of high temperature (15 °C), caudal regeneration is very extensive. At the same time degeneration of most oocytes occurs.

  5. Finite-Temperature Relativistic Time-Blocking Approximation for Nuclear Strength Functions

    NASA Astrophysics Data System (ADS)

    Wibowo, Herlik; Litvinova, Elena

    2017-09-01

    This work presents an extension of the relativistic nuclear field theory (RNFT) developed throughout the last decade as an approach to the nuclear many-body problem, based on QHD meson-nucleon Lagrangian and relativistic field theory. The unique feature of RNFT is a consistent connection of the high-energy scale of heavy mesons, the medium-energy range of pion, and the low-energy domain of emergent collective vibrations (phonons). RNFT has demonstrated a very good performance in various nuclear structure calculations across the nuclear chart and, in particular, provides a consistent input for description of the two phases of r-process nucleosynthesis: neutron capture and beta decay. Further inclusion of finite temperature effects presented here allows for an extension of the method to highly excited compound nuclei. The covariant response theory in the relativistic time-blocking approximation (RTBA) is generalized for thermal effects, adopting the Matsubara Green's function formalism to the RNFT framework. The finite-temperature RTBA is implemented numerically to calculate multipole strength functions in medium-mass and heavy nuclei. The obtained results will be discussed in comparison to available experimental data and in the context of possible consequences for astrophysics.

  6. Can a pseudo-Nambu-Goldstone Higgs lead to symmetry non-restoration?

    NASA Astrophysics Data System (ADS)

    Kilic, Can; Swaminathan, Sivaramakrishnan

    2016-01-01

    The calculation of finite temperature contributions to the scalar potential in a quantum field theory is similar to the calculation of loop corrections at zero temperature. In natural extensions of the Standard Model where loop corrections to the Higgs potential cancel between Standard Model degrees of freedom and their symmetry partners, it is interesting to contemplate whether finite temperature corrections also cancel, raising the question of whether a broken phase of electroweak symmetry may persist at high temperature. It is well known that this does not happen in supersymmetric theories because the thermal contributions of bosons and fermions do not cancel each other. However, for theories with same spin partners, the answer is less obvious. Using the Twin Higgs model as a benchmark, we show that although thermal corrections do cancel at the level of quadratic divergences, subleading corrections still drive the system to a restored phase. We further argue that our conclusions generalize to other well-known extensions of the Standard Model where the Higgs is rendered natural by being the pseudo-Nambu-Goldstone mode of an approximate global symmetry.

  7. Complete Mie-Gruneisen Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-06-28

    The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gruneisen coefficient, {Lambda} = -V({partial_derivative}{sub e}P){sub V}, that is a function of only V. Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that ifmore » the domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then {Lambda} a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gruneisen EOS in which the pressure is linear in both the specific energy and the temperature. Such an EOS has previously been used to model liquid nitromethane.« less

  8. Adaptive temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2011-02-01

    We present three adaptive methods for optimizing the high temperature Thigh on-the-fly in temperature-accelerated dynamics (TAD) simulations. In all three methods, the high temperature is adjusted periodically in order to maximize the performance. While in the first two methods the adjustment depends on the number of observed events, the third method depends on the minimum activation barrier observed so far and requires an a priori knowledge of the optimal high temperature T^{opt}_{high}(E_a) as a function of the activation barrier Ea for each accepted event. In order to determine the functional form of T^{opt}_{high}(E_a), we have carried out extensive simulations of submonolayer annealing on the (100) surface for a variety of metals (Ag, Cu, Ni, Pd, and Au). While the results for all five metals are different, when they are scaled with the melting temperature Tm, we find that they all lie on a single scaling curve. Similar results have also been obtained for (111) surfaces although in this case the scaling function is slightly different. In order to test the performance of all three methods, we have also carried out adaptive TAD simulations of Ag/Ag(100) annealing and growth at T = 80 K and compared with fixed high-temperature TAD simulations for different values of Thigh. We find that the performance of all three adaptive methods is typically as good as or better than that obtained in fixed high-temperature TAD simulations carried out using the effective optimal fixed high temperature. In addition, we find that the final high temperatures obtained in our adaptive TAD simulations are very close to our results for T^{opt}_{high}(E_a). The applicability of the adaptive methods to a variety of TAD simulations is also briefly discussed.

  9. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  10. On thermomechanical testing in support of constitutive equation development for high temperature alloys

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    Three major categories of testing are identified that are necessary to provide support for the development of constitutive equations for high temperature alloys. These are exploratory, charactrization and verification tests. Each category is addressed and specific examples of each are given. An extensive, but not exhaustive, set of references is provided concerning pertinent experimental results and their relationships to theoretical development. This guide to formulating a meaningful testing effort in support of consitutive equation development can also aid in defining the necessary testing equipment and instrumentation for the establishment of a deformation and structures testing laboratory.

  11. Improvement of Superplasticity in High-Mg Aluminum Alloys by Sacrifice of Some Room Temperature Formability

    NASA Astrophysics Data System (ADS)

    Jin, H.; Amirkhiz, B. Shalchi; Lloyd, D. J.

    2018-03-01

    The mechanical properties of fully annealed Al-4.6 wt pct Mg alloys with different levels of Mn and Fe have been characterized at room and superplastic forming (SPF) temperatures. The effects of Mn and Fe on the intermetallic phase, grain structure, and cavitation were investigated and correlated to the formability at different temperatures. Although both Mn and Fe contribute to the formation of Al6(Mn,Fe) phase, which refines the grain structure by particle-stimulated nucleation and Zener pinning, their effects are different. An increasing Mn reduces the room temperature formability due to the increasing number of intermetallic particles, but significantly improves the superplasticity by fine grain size-induced grain boundary sliding. Meanwhile, the Fe makes the constituent particles very coarse, resulting in reduced formability at all temperatures due to extensive cavitation. A combination of high Mn and low Fe is therefore beneficial to SPF, while low levels of both elements are good for cold forming. Consequently, the superplasticity of high-Mg aluminum alloys can be significantly improved by modifying the chemical composition with sacrifice of some room temperature formability.

  12. Research on high-temperature sensing characteristics based on modular interference of single-mode multimode single-mode fiber

    NASA Astrophysics Data System (ADS)

    Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan

    2016-11-01

    Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.

  13. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Teramoto, A.

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflectionmore » point and with increase in temperature inside concrete members with large cross sections.« less

  14. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  15. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    NASA Astrophysics Data System (ADS)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  16. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jones, R. E.

    1978-01-01

    A Lamilloy combustor liner was designed, fabricated and tested in a combustor at pressures up to 8 atmospheres. The liner was fabricated of a three layer Lamilloy structure and designed to replace a conventional step louver liner. The liner is to be used in a combustor that provides hot gases to a turbine cooling test facility at pressures up to 40 atmospheres. The Lamilloy liner was tested extensively at lower pressures and demonstrated lower metal temperatures than the conventional liner, while at the same time requiring about 40 percent less cooling air flow. Tests conducted at combustor exit temperatures in excess of 2200 K have not indicated any cooling or durability problems with the Lamilloy linear.

  17. The National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Holmes, H. K.

    1986-01-01

    The National Transonic Facility, NTF, is a high Reynolds Number facility where the increase in Reynolds Number is obtained by operating at high pressures and low temperatures. Liquid nitrogen is allowed to vaporize, making gaseous nitrogen the test medium with temperatures extending down to approximately 100 degrees Kelvin. These factors have created unique, new challenges to those developing sensors and instrumentation. Pressure vessels, thermal enclosures or elaborate temperature compensations schemes, are needed for environmental protection and special materials are needed for sensors and model fabrication. The need for a new measurement, model deformation, was also created. An extensive program to develop the unique sensors and instrumentation was initiated. The data acquisition system and systems to measure aerodynamic forces and pressures, model attitude, and model deformation, are discussed.

  18. High pressure phase transitions in lawsonite at simultaneous high pressure and temperature: A single crystal study

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.

    2015-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.

  19. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGES

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  20. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    PubMed

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.

  1. Performances of 250 Amp-hr lithium/thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1991-01-01

    A 250 Ah lithium thionyl chloride battery is being developed for a booster rocket engine. Extensive cell testing is running to evaluate functional and safety performances. Some results are presented. The lithium/thionyl chloride batteries were selected for their high energy density (low weight) as compared to other sources. The temperature of a lower weight item will be more sensitive to variations of internal and external heat fluxes than a heavier one. The use of high energy density L/TC batteries is subjected to stringent thermal environments to have benefit of energy density and to stay safe in any conditions. The battery thermal environment and discharge rate have to be adjusted to obtain the right temperature range at cell level, to have the maximum performances. Voltage and capacity are very sensitive to temperature. This temperature is the cell internal actual temperature during discharge. This temperature is directed by external thermal environment and by cell internal heat dissipation, i.e., cell actual voltage.

  2. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-Chr.; Zinke, J.; Garbe-Schönberg, D.

    2016-09-01

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.

  3. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events.

    PubMed

    Hetzinger, S; Pfeiffer, M; Dullo, W-Chr; Zinke, J; Garbe-Schönberg, D

    2016-09-13

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.

  4. Helping HAN for hybrid rockets

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Dowler, Warren

    1995-01-01

    Hydroxyl amine nitrate (HAN) is a powerful oxidizer for hybrid rocket flight motors. Miscible with water up to 95% by mass, it also has high density and has been extensively characterized for materials compatibility, safety, transportation, storage and handling. Before any serious attempt to use the proposed oxidizer in hybrids, though, the usual performance figures must first be obtained. The simplest are time-independent, equilibrium rocket performance numbers that include chamber temperature, temperature at the nozzle throat, and key species in the exhaust. These numbers must be followed by several other important performance evaluation, including burning rates, pressure dependence, susceptibility to instabilities and temperature sensitivity.

  5. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  6. Lethal and sub-lethal responses of the biogenic reef forming polychaete Sabellaria alveolata to aqueous chlorine and temperature.

    PubMed

    Last, K S; Hendrick, V J; Beveridge, C M; Roberts, D A; Wilding, T A

    2016-06-01

    Sabellaria alveolata, a reef-forming marine polychaete, was exposed to aqueous chlorine which is routinely used as an anti-fouling agent in power station cooling water. Worms were treated to a range of chlorination levels (0, 0.02, 0.1 and 0.5 mg l(-1) Total Residual Oxidant referred to as control, low, intermediate and high TRO) at mean and maximum summer temperatures (18 and 23 °C respectively). Overall mortality was relatively low, however a combination of high temperature and intermediate and high TRO resulted in a significant increase in mortality compared to the control and low TRO treatments. In contrast the extension of dwelling tubes was reduced at high TRO, but increased at low and intermediate TRO levels relative to the controls independent of temperature. Finally, tube strength was found to decrease with increasing TRO, again independent of temperature. On the basis of these findings, S. alveolata can be considered tolerant of one month exposures to low TRO at water temperatures up to and including the summer maxima for southern UK waters. However, at higher TRO levels and during warm weather, high mortality would be predicted. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co₃O₄ Nanocubes for Supercapacitor Applications.

    PubMed

    Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Sanjay, Kali; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam

    2017-10-31

    A facile hydrothermal route to control the crystal growth on the synthesis of Co₃O₄ nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co₃O₄ nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co₃O₄ synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes.

  8. Water Quality: A Field-Based Quality Testing Program for Middle Schools and High Schools.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    This manual contains background information, lesson ideas, procedures, data collection and reporting forms, suggestions for interpreting results, and extension activities to complement a water quality field testing program. Information on testing water temperature, water pH, dissolved oxygen content, biochemical oxygen demand, nitrates, total…

  9. A temperature-precipitation-based model of thiry-year mean snowpack accumulation and melt in Oregon, USA

    EPA Science Inventory

    High-resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, non...

  10. Mechanical Behavior and Processing of Aluminum Metal Matrix Composites

    DTIC Science & Technology

    1992-02-21

    SUgeCT TERMS Spray Atomization and Co-Deposition; metal Matrix IS. NUMBER OF PAGeiS Composites; Solidification Mechanisms; Non -Equilibrium...continuously reinforced MMCs, such as: (a) fiber damage, (b) microstructural non -uniformity, (c) fiber to fiber contact, and (d) extensive...of the high reactiJity of lithium. The excessive high temperature reactivity of aluminum-lithium alloys results in the formation of non -protective

  11. Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas C.; Reuter, Markus; Krüger, Stefan; Kirkerowicz, Julia; Klaus, James S.

    2016-03-01

    The fast growing calcareous skeletons of zooxanthellate reef corals (z corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z corals. The z corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from sub-annually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene were ˜ 2 °C higher than they are in the present day, intermittent upwelling of cool, nutrient-rich water mitigated water temperatures off south-western Florida and created temporary refuges for z coral growth. Based on the sub-annually resolved δ18O and δ13C records, the duration of the upwelling episodes causing the endmember 2 conditions was variable and lasted from a few years to a number of decades. The episodes of upwelling were interrupted by phases without upwelling (endmember 1) which lasted for at least a few years and led to high surface water temperatures. This variable environment is likely one of the reasons why the coral fauna is dominated by the eurytopic genus Solenastrea, also a genus resistant to high turbidity. Over a period of ˜ 50 years, the oldest sub annually resolved proxy record available (3.2 Ma) documents a persistent occurrence of the HDB during winter. In contrast, the HDB forms in summer in modern z corals from the Florida reef tract. We suggest this difference should be tested as being the expression of a tendency towards decreasing interglacial upwelling since the middle Pliocene. The number of z coral sclerochronological records for the Plio-Pleistocene is still rather low, however, and requires more data and an improved resolution, through records from additional time slices. Nonetheless, our calcification data from the warm periods of past interglacials may contribute to predicting the effects of future ocean warming on z coral health along the Florida reef tract. The inconsistent timing of the HDB within single coral records or among specimens and time slices is unexpected and contrasts the common practice of establishing chronologies on the basis of the density banding.

  12. Injectable Ceramic Microcast Silicon Carbonitride (SiCN) Microelectromechanical System (MEMS) for Extreme Temperature Environments with Extension: Micro Packages for Nano-Devices

    DTIC Science & Technology

    2004-01-01

    pyrolyzed to produce the ceramic (SiCN) parts, or they may be retained in the polymeric state and used as high-temperature polymer /glass MEMS devices. Two...structure and the SU8 /wafer is weak due to the Teflon coating. (j) A free standing polymer structure results. The structure is then crosslinked and... polymer . Further efforts are necessary to identify the least damaging rinsing chemicals, that is, chemicals which would not contaminate polymerized

  13. The structure-property relationships of powder processed Fe-Al-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Paul D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) processmore » to obtain a high fraction of metal injection molding (MIM) quality powder (D 84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO 3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.« less

  14. High-temperature catalytically assisted combustion. Final report, 1 August 1981-31 July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracco, F.V.; Royce, B.S.H.; Santavicca, D.A.

    1983-07-31

    Results of research on a two-dimensional, transient catalytic combustion model and on a high temperature perovskite catalyst are presented. A recently developed two-dimensional, transient model was used to study the ignition of carbon monoxide/air mixtures in a platinum-coated catalytic honeycomb. Comparisons between calculated and measured steady-state substrate temperature profiles and exhaust-gas compositions show good agreement. A platinum-doped perovskite catalyst proposed will exhibit low-temperature light off and high-temperature stability. Preliminary tests using a perovskite powder with 1 wt.% platinium are encouraging, showing very little change in surface activity when used with propane fuel. Variations in catalytic activity from sample to samplemore » were also found, and after extensive testing the cause of these variations could not be identified. However, preliminary tests using Fourier-transform infrared photoacoustic spectroscopy do indicate differences in the various catalyst samples that may be related to the difference in catalytic activity. The use of bench-top-oven and differential-scanning-calorimetry techniques for screening catalysts in terms of relative activity and aging characteristics were also demonstrated.« less

  15. High temperature ceramic-tubed reformer

    NASA Astrophysics Data System (ADS)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  16. The extrusion test and sensory perception revisited: Some comments on generality and the effect of measurement temperature.

    PubMed

    Brenner, Tom; Tomczyńska-Mleko, Marta; Mleko, Stanisław; Nishinari, Katsuyoshi

    2017-12-01

    Relations between sensory perception, extrusion and fracture in shear, extension and compression are examined. Gelatin-based gels are perceived as less firm and less hard than expected based on their mechanical properties compared to polysaccharide gels that have the same mechanical properties at room temperature but melt well above body temperature, underlying the importance of the measurement temperature for gels that melt during mastication. Correlations between parameters from extrusion and compression, extension and shear are verified using mixed polysaccharide gels. We previously reported a high correlation between several sensory attributes and parameters from an extrusion test. The extrusion test showed the most robust correlation, and could be used to assess samples at both extremes of the texture range with respect to elasticity, for example, both samples that could not be extended as their very low elasticity led to their fracture during handling, as well as samples that could not be fractured in compression. Here, we reexamine the validity of the relations reported. We demonstrate the generality of the relations between large deformation tests and extrusion, but the findings underscore the need to take into account the measurement temperature for samples that melt during mastication when correlating instrumental parameters with sensory perception. © 2017 Wiley Periodicals, Inc.

  17. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird

    PubMed Central

    Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa

    2016-01-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  18. Hole-doped cuprate high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Chu, C. W.; Deng, L. Z.; Lv, B.

    2015-07-01

    Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  19. The Effect of a Pre-Lens Aperture on the Temperature Range and Image Uniformity of Microbolometer Infrared Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Parris, Larkin S.; Lindal, John M.

    This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image.more » An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.« less

  20. Criteria for the selection of materials for water-cooled reactors., with comments on D 2O reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, W.B.

    1962-07-06

    When intense radiation, high temperatures, and high mechanical stresses act in combination on different materials in contact, the familiar classification of materials into solids, liquids, and gases is a handicap rather than a help. Water becomes a source of H 2 that will pass into a metal and change its resistance to stress. Hydrogen diffuses rapidly through metals even at water temperatures. At the higher temperatures in nuclear fuel, O 2 and C diffuse rapidly. In some ceramic fuels the operating temperatures are so high that even heavy atoms will dwell less than a msec in any given lattice position.more » With so high a rate of the breaking of bonds, diffusion and interaction, the contribution of all substances present to the general ecology needs consideration. The stabilization of the mechanical properties of metals when bombarded by fast neutrons and exposed to wandering atoms, especially H, has to be studied. The behavior of Zr alloys and UO/sub 2/ in such environments has been extensively studied, and useful design criteria have been set and explored. (auth)« less

  1. Return of warm conditions in the southeastern Bering Sea: Physics to fluorescence

    PubMed Central

    Duffy-Anderson, J. T.; Eisner, L. B.; Farley, E. V.; Heintz, R. A.; Mordy, C. W.

    2017-01-01

    From 2007 to 2013, the southeastern Bering Sea was dominated by extensive sea ice and below-average ocean temperatures. In 2014 there was a shift to reduced sea ice on the southern shelf and above-average ocean temperatures. These conditions continued in 2015 and 2016. During these three years, the spring bloom at mooring site M4 (57.9°N, 168.9°W) occurred primarily in May, which is typical of years without sea ice. At mooring site M2 (56.9°N, 164.1°W) the spring bloom occurred earlier especially in 2016. Higher chlorophyll fluorescence was observed at M4 than at M2. In addition, these three warm years continued the pattern near St. Matthew Island of high concentrations (>1 μM) of nitrite occurring during summer in warm years. Historically, the dominant parameters controlling sea-ice extent are winds and air temperature, with the persistence of frigid, northerly winds in winter and spring resulting in extensive ice. After mid-March 2014 and 2016 there were no cold northerly or northeasterly winds. Cold northerly winds persisted into mid-April in 2015, but did not result in extensive sea ice south of 58°N. The apparent mechanism that helped limit ice on the southeastern shelf was the strong advection of warm water from the Gulf of Alaska through Unimak Pass. This pattern has been uncommon, occurring in only one other year (2003) in a 37-year record of estimated transport through Unimak Pass. During years with no sea ice on the southern shelf (e.g. 2001–2005, 2014–2016), the depth-averaged temperature there was correlated to the previous summers ocean temperature. PMID:28957386

  2. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    PubMed Central

    Liu, CY; Sun, ZZ; Yew, KC

    2006-01-01

    Self-assembled GaInNAs quantum dots (QDs) were grown on GaAs (001) substrate using solid-source molecular-beam epitaxy (SSMBE) equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM), photoluminescence (PL), and transmission electron microscopy (TEM) measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW) operation at room temperature (RT) with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2) at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2), with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  3. Formation and composition of the moon

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1977-01-01

    Many of the properties of the Moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr, and the REE and the depletion in Fe, Rb, K, Na, and other volatiles can be understood if the Moon represents a high-temperature condensate from the solar nebula. Thermodynamic calculations show that Ca-, Al-, and Ti-rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes, and anorthite. Inclusions in carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior. A deep interior high in Ca-Al does not imply an unacceptable mean density or moment of inertia for the Moon. The inferred high-U content of the lunar interior, both from the Allende analog and the high heat flow, indicates a high-temperature interior. The model is consistent with extensive early melting, with shallow melting at 3 AE, and with presently high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C.

  4. Ocean-Atmosphere Interaction Over Agulhas Extension Meanders

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu; Niiler, Pearn P.

    2007-01-01

    Many years of high-resolution measurements by a number of space-based sensors and from Lagrangian drifters became available recently and are used to examine the persistent atmospheric imprints of the semi-permanent meanders of the Agulhas Extension Current (AEC), where strong surface current and temperature gradients are found. The sea surface temperature (SST) measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the chlorophyll concentration measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) support the identification of the meanders and related ocean circulation by the drifters. The collocation of high and low magnitudes of equivalent neutral wind (ENW) measured by Quick Scatterometer (QuikSCAT), which is uniquely related to surface stress by definition, illustrates not only the stability dependence of turbulent mixing but also the unique stress measuring capability of the scatterometer. The observed rotation of ENW in opposition to the rotation of the surface current clearly demonstrates that the scatterometer measures stress rather than winds. The clear differences between the distributions of wind and stress and the possible inadequacy of turbulent parameterization affirm the need of surface stress vector measurements, which were not available before the scatterometers. The opposite sign of the stress vorticity to current vorticity implies that the atmosphere spins down the current rotation through momentum transport. Coincident high SST and ENW over the southern extension of the meander enhance evaporation and latent heat flux, which cools the ocean. The atmosphere is found to provide negative feedback to ocean current and temperature gradients. Distribution of ENW convergence implies ascending motion on the downwind side of local SST maxima and descending air on the upwind side and acceleration of surface wind stress over warm water (deceleration over cool water); the convection may escalate the contrast of ENW over warm and cool water set up by the dependence of turbulent mixing on stability; this relation exerts a positive feedback to the ENW-SST relation. The temperature sounding measured by the Atmospheric Infrared Sounder(AIRS) is consistent with the spatial coherence between the cloud-top temperature provided by the International Satellite Cloud Climatology Project (ISCCP) and SST. Thus ocean mesoscale SST anomalies associated with the persistent meanders may have a long-term effect well above the midlatitude atmospheric boundary layer, an observation not addressed in the past.

  5. Structure-property relationships in thermomechanically treated beryllia dispersed nickel alloys

    NASA Technical Reports Server (NTRS)

    Grewal, M. S.; Sastri, S. A.; Grant, N. J.

    1975-01-01

    BeO dispersed nickel alloys, produced by powder metallurgy techniques, were studied extensively in stress rupture at 815, 982, and 1093 C (1088, 1255, and 1366 K) and by transmission electron microscopy. The alloys were subjected to a variety of thermomechanical treatments (TMT) to determine the benefits of TMT on properties. It is shown that the use of intermediate annealing treatments after 10 pct reduction steps is highly beneficial on both low and high temperature properties. It is indicated that the high temperature strength is not primarily dependent on the grain aspect ratio or texture but depends strongly on the dislocation density and distribution of dislocations in a stable substructure which is pinned by the fine oxide dispersion.

  6. Assessing foliar ascorbate content in the rice diversity panel 1

    USDA-ARS?s Scientific Manuscript database

    Early spring plantings of rice can have poor stands due to cold temperatures. Our previous studies have shown that high vitamin C (ascorbate AsA) Arabidopsis lines are tolerant to cold stress. The rice diversity panel 1 (RDP1) represents the genetic diversity of Oryza sativa and has been extensively...

  7. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  8. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co3O4 Nanocubes for Supercapacitor Applications

    PubMed Central

    Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam

    2017-01-01

    A facile hydrothermal route to control the crystal growth on the synthesis of Co3O4 nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co3O4 nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co3O4 synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes. PMID:29088061

  9. Unconventional aspects of electronic transport in delafossite oxides

    NASA Astrophysics Data System (ADS)

    Daou, Ramzy; Frésard, Raymond; Eyert, Volker; Hébert, Sylvie; Maignan, Antoine

    2017-12-01

    The electronic transport properties of the delafossite oxides ? are usually understood in terms of two well-separated entities, namely the triangular ? and (? layers. Here, we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on ? and ?, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals ?, ?, and ?, where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.

  10. High-Temperature Induced Changes of Extracellular Metabolites in Pleurotus ostreatus and Their Positive Effects on the Growth of Trichoderma asperellum.

    PubMed

    Qiu, Zhiheng; Wu, Xiangli; Zhang, Jinxia; Huang, Chenyang

    2018-01-01

    Pleurotus ostreatus is a widely cultivated edible fungus in China. Green mold disease of P. ostreatus which can seriously affect yield is a common disease during cultivation. It occurs mostly after P. ostreatus mycelia have been subjected to high temperatures. However, little information is available on the relationship between high temperature and green mold disease. The aim of this study is to prove that extracellular metabolites of P. ostreatus affected by high temperature can promote the growth of Trichoderma asperellum . After P. ostreatus mycelia was subjected to high temperature, the extracellular fluid of P. ostreatus showed a higher promoting effect on mycelial growth and conidial germination of T. asperellum . The thiobarbituric acid reactive substance (TBARS) content reached the maximum after 48 h at 36°C. A comprehensive metabolite profiling strategy involving gas chromatography-mass spectrometry (GC/MS) combined with liquid chromatography-mass spectrometry (LC/MS) was used to analyze the changes of extracellular metabolites in response to high temperature. A total of 141 differential metabolites were identified, including 84.4% up-regulated and 15.6% down-regulated. Exogenous metabolites whose concentrations were increased after high temperature were randomly selected, and nearly all of them were able to promote the mycelial growth and conidial germination of T. asperellum . The combination of all selected exogenous metabolites also has the promotion effects on the mycelial growth and conidial germination of T. asperellum in a given concentration range in vitro . Overall, these results provide a first view that high temperature affects the extracellular metabolites of P. ostreatus , and the extensive change in metabolites promotes T. asperellum growth.

  11. All-optical technique for measuring thermal properties of materials at static high pressure

    NASA Astrophysics Data System (ADS)

    Pangilinan, G. I.; Ladouceur, H. D.; Russell, T. P.

    2000-10-01

    The development and implementation of an all-optical technique for measuring thermal transport properties of materials at high pressure in a gem anvil cell are reported. Thermal transport properties are determined by propagating a thermal wave in a material subjected to high pressures, and measuring the temperature as a function of time using an optical sensor embedded downstream in the material. Optical beams are used to deposit energy and to measure the sensor temperature and replace the resistive heat source and the thermocouples of previous methods. This overcomes the problems introduced with pressure-induced resistance changes and the spatial limitations inherent in previous high-pressure experimentation. Consistent with the heat conduction equation, the material's specific heat, thermal conductivity, and thermal diffusivity (κ) determine the sensor's temperature rise and its temporal profile. The all-optical technique described focuses on room-temperature thermal properties but can easily be applied to a wide temperature range (77-600 K). Measurements of thermal transport properties at pressure up to 2.0 GPa are reported, although extension to much higher pressures are feasible. The thermal properties of NaCl, a commonly used material for high-pressure experiments are measured and shown to be consistent with those obtained using the traditional methods.

  12. Preliminary Report on Oak Ridge National Laboratory Testing of Drake/ACSS/MA2/E3X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irminger, Philip; King, Daniel J.; Herron, Andrew N.

    2016-01-01

    A key to industry acceptance of a new technology is extensive validation in field trials. The Powerline Conductor Accelerated Test facility (PCAT) at Oak Ridge National Laboratory (ORNL) is specifically designed to evaluate the performance and reliability of a new conductor technology under real world conditions. The facility is set up to capture large amounts of data during testing. General Cable used the ORNL PCAT facility to validate the performance of TransPowr with E3X Technology a standard overhead conductor with an inorganic high emissivity, low absorptivity surface coating. Extensive testing has demonstrated a significant improvement in conductor performance across amore » wide range of operating temperatures, indicating that E3X Technology can provide a reduction in temperature, a reduction in sag, and an increase in ampacity when applied to the surface of any overhead conductor. This report provides initial results of that testing.« less

  13. Fusible heat sink materials - Evaluation of alternate candidates. [for PLSS cooling systems

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.; Lomax, W. C.

    1992-01-01

    Fusible heat sinks are a possible source for thermal regulation of space suited astronauts. Materials with greater thermal storage capability than water could enable both an extension of time between recharging and/or a reduction in size and/or mass. An extensive literature search identified 1,215 candidates with a solid-liquid transformation within the temperature range of -13 C to 5 C. Based on data available in the literature, several candidates with a cooling capacity significantly greater than water were identified. Measurements of the transformation temperature and enthalpy of transformation were then undertaken with a differential scanning calorimeter in order to confirm the accuracy of the literature. Laboratory measurements have thus far not been able to corroborate the extremely high values found from the literature. This paper presents the approach for materials selection utilized in this study, the experimental procedure, and the results of the measurements thus far undertaken.

  14. Warming has a greater effect than elevated CO2 on predator-prey interactions in coral reef fish.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; Watson, Sue Ann; Munday, Philip L; McCormick, Mark I

    2017-06-28

    Ocean acidification and warming, driven by anthropogenic CO 2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effects of short-term exposure to elevated CO 2 and temperature on the predator-prey interactions of a common pair of coral reef fishes ( Pomacentrus wardi and its predator, Pseudochromis fuscus ). We found that predator success increased following independent exposure to high temperature and elevated CO 2 Overall, high temperature had an overwhelming effect on the escape behaviour of the prey compared with the combined exposure to elevated CO 2 and high temperature or the independent effect of elevated CO 2 Exposure to high temperatures led to an increase in attack and predation rates. By contrast, we observed little influence of elevated CO 2 on the behaviour of the predator, suggesting that the attack behaviour of P. fuscus was robust to this environmental change. This is the first study to address how the kinematics and swimming performance at the basis of predator-prey interactions may change in response to concurrent exposure to elevated CO 2 and high temperatures and represents an important step to forecasting the responses of interacting species to climate change. © 2017 The Author(s).

  15. Superconductivity at 43K in SmFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.

    2008-06-01

    Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26K in the iron-based LaO1-xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43K. This provides a new material base for studying the origin of high-temperature superconductivity.

  16. The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011

    NASA Astrophysics Data System (ADS)

    Pearce, Alan F.; Feng, Ming

    2013-02-01

    Record high ocean temperatures were experienced along the Western Australian coast during the austral summer of 2010/2011. Satellite-derived sea surface temperature (SST) anomalies in February 2011 peaked at 3 °C above the long-term monthly means over a wide area from Ningaloo (22°S) to Cape Leeuwin (34°S) along the coast and out to > 200 km offshore. Hourly temperature measurements at a number of mooring sites along the coast revealed that the temperature anomalies were mostly trapped in the surface mixed layer, with peak nearshore temperatures rising to ~ 5 °C above average in the central west coastal region over a week encompassing the end of February and early March, resulting in some devastating fish kills as well as temporary southward range extensions of tropical fish species and megafauna such as whale sharks and manta rays. The elevated temperatures were a result of a combination of a record strength Leeuwin Current, a near-record La Niña event, and anomalously high air-sea heat flux into the ocean even though the SST was high. This heat wave was an unprecedented thermal event in Western Australian waters, superimposed on an underlying long-term temperature rise.

  17. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  18. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    NASA Astrophysics Data System (ADS)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  19. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  20. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    PubMed Central

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. PMID:27877342

  1. Positron studies of defected metals, metallic surfaces

    NASA Astrophysics Data System (ADS)

    Bansil, A.

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-(Tc) superconductors, in particular, (1) momentum density and positron experiments, (2) angle-resolved photoemission intensities, and (3) effects of disorder and substitutions in the high-(Tc)'s. The specific progress made in each of these problems is summarized.

  2. Thermal Fluxes and Temperatures in Small Urban Headwater Streams of the BES LTER: Landscape Forest and Impervious Patches and the Importance of Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.

    2006-05-01

    Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.

  3. Is there a path from cuprates towards room-temperature superconductivity?

    DOE PAGES

    Božović, I.; Wu, J.; He, X.; ...

    2017-09-01

    A brief account is presented of an extensive experiment performed at Brookhaven National Laboratory, aimed at understanding the nature of high-temperature superconductivity in cuprates. Over the course of the last 12 years, over 2000 films of the prototypical high- T c superconductor, La 2-xSr xCuO 4, have been synthesized using atomic-layer-by-layer molecular beam epitaxy (ALL-MBE), characterized by a range of techniques, and patterned into devices. These were then used to measure accurately the key physical parameters in both the superconducting and the normal states, and establish their precise dependence on doping, temperature, and external fields. Our results bring in somemore » great surprises, challenge the commonly held beliefs, rule out many theoretical models, and point to a new path for raising T c even further.« less

  4. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    PubMed

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the treeline showed progressively smaller growth increases. Our results suggest temperature effects on tree growth at our study sites may be mediated by soil nutrient availability, making responses to climate change more complex and our ability to interpret the tree ring record more challenging than previously thought.

  5. Thermal Evolution of the North-Central Gulf Coast

    NASA Astrophysics Data System (ADS)

    Nunn, Jeffrey A.; Scardina, Allan D.; Pilger, Rex H., Jr.

    1984-12-01

    The subsidence history of the North Louisiana Salt Basin, determined from well data, indicates that the region underwent extension during rifting and has since passively subsided due to conductive cooling of the lithosphere. Timing of the rifting event is consistent with opening of the Gulf of Mexico during Late Triassic to Early Jurassic time. Crustal extension by a factor of 1.5 to 2 was computed from "tectonic" subsidence curves. However, data from the early subsidence history are insufficient to distinguish between uniform and nonuniform extension of the lithosphere. The magnitude of extension is in good agreement with total sediment and crustal thicknesses from seismic refraction data in the adjacent Central Mississippi Salt Basin. The temperature distribution within the sediments is calculated using a simple heat conduction model. Temperature and subsidence effects of thermal insulation by overlying sediments are included. The computed temperature distribution is in good agreement with bottom hole temperatures measured in deep wells. Temperature histories predicted for selected stratigraphic horizons within the North Louisiana Salt Basin suggest that thermal conditions have been favorable for hydrocarbon generation in the older stata. Results from a two-dimensional heat conduction model suggest that a probable cause for the early formation of the adjacent uplifts is lateral heat conduction from the basin. Rapid extension of the lithosphere underneath areas with horizontal dimensions of 50-100 km produces extremely rapid early subsidence due to lateral heat conduction. The moderate subsidence rate observed in the North Louisiana Salt Basin during the Jurassic and Early Cretaceous suggests slow extension over a long period of time.

  6. Residual Stress Development in Explosive-Bonded Bi-Metal Composite Materials

    DTIC Science & Technology

    2014-03-01

    at ANSTO, researching high temperature fatigue behaviour and modelling of ferritic pressure vessel steel , for which he was awarded the degree at...solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high strength steels ...957. [3] I. Tatsukawa, I. Oda, ‘Residual Stress Measurements on Explosive Clad Stainless Steel ’, Trans. Japan Welding Soc., 2(2), 1971, p26-34

  7. Molecular Dynamics Simulations of the Temperature Induced Unfolding of Crambin Follow the Arrhenius Equation.

    PubMed

    Dalby, Andrew; Shamsir, Mohd Shahir

    2015-01-01

    Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation.

  8. Molecular Dynamics Simulations of the Temperature Induced Unfolding of Crambin Follow the Arrhenius Equation.

    PubMed Central

    Dalby, Andrew; Shamsir, Mohd Shahir

    2015-01-01

    Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation. PMID:26539292

  9. Crystalline nucleation in undercooled liquids: a Bayesian data-analysis approach for a nonhomogeneous Poisson process.

    PubMed

    Filipponi, A; Di Cicco, A; Principi, E

    2012-12-01

    A Bayesian data-analysis approach to data sets of maximum undercooling temperatures recorded in repeated melting-cooling cycles of high-purity samples is proposed. The crystallization phenomenon is described in terms of a nonhomogeneous Poisson process driven by a temperature-dependent sample nucleation rate J(T). The method was extensively tested by computer simulations and applied to real data for undercooled liquid Ge. It proved to be particularly useful in the case of scarce data sets where the usage of binned data would degrade the available experimental information.

  10. Analysis and Elimination of High Temperature Notch Induced Microcrack Initiation in Inconel 718 Nickel-Based Alloy

    DTIC Science & Technology

    1989-01-01

    Compressor Rear Frame (ClF) which exhibits extensive cract:ing of the forward flange. ThL 1988 Actuarial Function data shows CRF crackiing As the number 2...Creep-Rupture properties of Waspaloy sheet to Sharp-Edged Notches in the Temperature Range of 1O000F-14O0OF. Journal of Basle Engineering, Trans ASME ...Dependence of the Notch Sensitivity of Waspaloy at 10000F-1400F on the Gamma Prime Phase, Journal of Basic Engineering, Trans ASME (in print at time of

  11. Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2003-01-01

    A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick-film metalization-based wirebond electrical interconnection system was also tested in an extremely dynamic thermal environment to assess thermal reliability. The I-V curve1 of a SiC high-temperature diode was measured in oxidizing air at 500 C for 1000 hr to electrically test the Au thick-film material-based die-attach assembly.

  12. Safety characteristics of the lithium SO2 system

    NASA Technical Reports Server (NTRS)

    Watson, T.

    1978-01-01

    Extensive tests were conducted to quantitatively define the safety characteristics of high-rate SO2 multicell batteries under various discharge and temperature profiles, which closely simulated actual field-use conditions. The resulting behavior patters of the multicell batteries and the corrective action which can be implemented to minimize or prevent hazardous battery performance are briefly summarized.

  13. Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses

    Treesearch

    Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman

    2012-01-01

    Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...

  14. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    PubMed Central

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience. PMID:21119929

  15. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes.

    PubMed

    Suwa, Ryuichi; Hakata, Hiroaki; Hara, Hiromichi; El-Shemy, Hany A; Adu-Gyamfi, Joseph J; Nguyen, Nguyen Tran; Kanai, Synsuke; Lightfoot, David A; Mohapatra, Pravat K; Fujita, Kounosuke

    2010-01-01

    Short hot and dry spells before, or during, silking have an inordinately large effect on maize (Zea mays L.; corn) grain yield. New high yielding genotypes could be developed if the mechanism of yield loss were more fully understood and new assays developed. The aim here was to determine the effects of high temperature (35/27 degrees C) compared to cooler (25/18 degrees C) temperatures (day/night). Stress was applied for a 14 d-period during reproductive stages prior to silking. Effects on whole plant biomass, ear development, photosynthesis and carbohydrate metabolism were measured in both dent and sweet corn genotypes. Results showed that the whole plant biomass was increased by the high temperature. However, the response varied among plant parts; in leaves and culms weights were slightly increased or stable; cob weights decreased; and other ear parts of dent corn also decreased by high temperature. Photosynthetic activity was not affected by the treatments. The (13)C export rate from an ear leaf was decreased by the high temperature treatment. The amount of (13)C partitioning to the ears decreased more than to other plant parts by the high temperature. Within the ear decreases were greatest in the cob than the shank within an ear. Sugar concentrations in both hemicellulose and cellulose fractions of cobs in sweet corn were decreased by high temperature, and the hemicellulose fraction in the shank also decreased. In dent corn there was no reduction of sugar concentration except in the in cellulose fraction, suggesting that synthesis of cell-wall components is impaired by high temperatures. The high temperature treatment promoted the growth of vegetative plant parts but reduced ear expansion, particularly suppression of cob extensibility by impairing hemicellulose and cellulose synthesis through reduction of photosynthate supply. Therefore, plant biomass production was enhanced and grain yield reduced by the high temperature treatment due to effects on sink activity rather than source activity. Heat resistant ear development can be targeted for genetic improvement. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  16. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  17. Microstructural Evolution of Thor™ 115 Creep-Strength Enhanced Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Ortolani, Matteo; D'Incau, Mirco; Ciancio, Regina; Scardi, Paolo

    2017-12-01

    A new ferritic steel branded as Thor™ 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy, cast to different product forms such as plates and tubes, was extensively tested to assess the high-temperature time-dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide and nitride phases. Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term property stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray Powder Diffraction on specimens aged up to 50,000 hours. A thermodynamic modeling supports presentation and evaluation of the experimental results. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.

  18. Tg and Structural Recovery of Single Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Simon, Sindee

    The behavior of materials confined at the nanoscale has been of considerable interest over the past two decades. Here, the focus is on recent results for single polystyrene ultrathin films studied with ultrafast scanning chip calorimetry. The Tg depression of a 20 nm-thick high-molecular-weight polystyrene film is found to be a function of cooling rate, decreasing with increasing cooling rate; whereas, at high enough cooling rates (e.g., 1000 K/s), Tg is the same as the bulk within the error of the measurements. Structural recovery is also performed with chip calorimetry as a function of aging time and temperature, and the evolution of the fictive temperature is followed. The advantages of the Flash DSC include sufficient sensitivity to measure enthalpy recovery for a single 20 nm-thick film, as well as extension of the measurements to aging temperatures as high as 15 K above nominal Tg and to aging times as short as 0.01 s. The aging behavior and relaxation time-temperature map for single ultrathin films are compared to those for bulk material. Comparison to behavior in other geometries will also be discussed.

  19. Super-soliton dust-acoustic waves in four-component dusty plasma using non-extensive electrons and ions distributions

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Abulwafa, Essam M.; Elhanbaly, Atalla A.

    2017-07-01

    Based on Sagdeev pseudo-potential and phase-portrait, the dynamics of four-component dust plasma with non-extensively distributed electrons and ions are investigated. Three distinct types of nonlinear waves, namely, soliton, double layer, and super-soliton, have been found. The basic features of such waves are high sensitivity to Mach number, non-extensive parameter, and dust temperature ratio. It is found that the multi-component plasma is a necessary condition for super-soliton's existence, having a wider amplitude and a larger width than the regular soliton. Super-solitons may also exist when the Sagdeev pseudo-potential curves admit at least four extrema and two roots. In our multi-component plasma system, the super-solitons can be found by increasing the Mach number and the non-extensive parameter beyond those of double-layers. On the contrary, the super-soliton can be produced by decreasing the dust temperature ratio. The conditions of the onset of such nonlinear waves and its merging to regular solitons have been studied. This work shows that the obtained nonlinear waves are found to exist only in the super-sonic Mach number regime. The obtained results may be of wide relevance in the field of space plasma and may also be helpful to better understand the nonlinear fluctuations in the Auroral-zone of the Earth's magnetosphere.

  20. Advances in Solid State Joining of Haynes 230 High Temperature Alloy

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Schneider, Judy; Walker, Bryant

    2010-01-01

    The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230 alloy using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set-up and welding techniques will be discussed leading to the challenges experienced in joining the superalloy. Mechanical property data will also be presented.

  1. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering

    DOE PAGES

    Huang, Hailong; Wu, Yuan; He, Junyang; ...

    2017-06-07

    High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. In this paper, the “metastability-engineering” strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. Finally, this not only sheds new insights on the development of HEAs with excellent combination of strengthmore » and ductility, but also has great implications on overcoming the long-standing strength–ductility tradeoff of metallic materials in general.« less

  2. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hailong; Wu, Yuan; He, Junyang

    High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. In this paper, the “metastability-engineering” strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. Finally, this not only sheds new insights on the development of HEAs with excellent combination of strengthmore » and ductility, but also has great implications on overcoming the long-standing strength–ductility tradeoff of metallic materials in general.« less

  3. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer.more » We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.« less

  4. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    PubMed Central

    Amsler, Maximilian; Naghavi, S. Shahab

    2017-01-01

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa, FeBi2 and FeBi3. According to our predictions, FeBi2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa. PMID:28507678

  5. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    DOE PAGES

    Amsler, Maximilian; Naghavi, S. Shahab; Wolverton, Chris

    2016-12-07

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa,more » FeBi 2 and FeBi 3. According to our predictions, FeBi 2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa.« less

  6. Mid-infrared Laser Absorption Diagnostics for Detonation Studies

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    Detonation-based engines represent a challenging application for diagnostics due to the wide range of thermodynamic conditions involved (T~500-3000 K, P~2-60 atm) and the short time scales of change (~10- 6 to 10- 4 sec) associated with such systems. Non-intrusive laser absorption diagnostics can provide high time-resolution and have been employed extensively in shock tube kinetics experiments (P~1-20 atm), offering high potential for application in detonation environments with modest utilization to date [1-4]. Limiting factors in designing effective tunable laser absorption sensors for detonation engines can be divided into two sets of challenges: high-pressure, high-temperature absorption spectroscopy and harsh thermo-mechanical environments. The present work, conducted in a high-pressure shock tube and operating detonation combustor, addresses both sets of difficulties, with the objective of developing time-resolved, in-situ temperature and concentration sensors for detonation studies.

  7. Analysis of Carbon/Carbon Fragments From the Columbia Tragedy

    NASA Technical Reports Server (NTRS)

    Tallant, David R.; Simpson, Regina L.; Jacobson, Nathan S.

    2005-01-01

    The extensive investigation following the Space Shuttle Orbiter Columbia accident of February 1, 2003 determined that hot gases entered the wing through a breach in the protective reinforced carbon/carbon (RCC) leading edge. In the current study, the exposed edges of the recovered RCC from the vicinity of the breach are examined with scanning electron microscopy and Raman spectroscopy. Electron microscopy of the exposed edges revealed regions of pointed carbon fibers, characteristic of exposure to high temperature oxidizing gases. The Raman technique relates the observed 1350 and 1580 to 1600 cm(-1) bands to graphitic dom ains and their corresponding temperatures of formation. Some of the regions showed evidence of exposure temperatures beyond 2700 ?C during the accident.

  8. Experimental Study of Ballistic-Missile Base Heating with Operating Rocket

    NASA Technical Reports Server (NTRS)

    Nettle, J. Cary

    1958-01-01

    A rocket of the 1000-pound-thrust class using liquid oxygen and JP-4 fuel as propellant was installed in the Lewis 8- by 6-foot tunnel to permit a controlled study of some of the factors affecting the heating of a rocket-missile base. Temperatures measured in the base region are presented from findings of three motor extension lengths relative to the base. Data are also presented for two combustion efficiency levels in the rocket motor. Temperature as high as 1200 F was measured in the base region because of the ignition of burnable rocket gases. combustibles that are dumped into the base by accessories seriously aggravate the base-burning temperature rise.

  9. ITER structural design criteria and their extension to advanced reactor blankets*1

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Kalinin, G.

    2000-12-01

    Applications of the recent ITER structural design criteria (ISDC) are illustrated by two components. First, the low-temperature-design rules are applied to copper alloys that are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures. Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. Next, the high-temperature-design rules of ISDC are applied to evaporation of lithium and vapor extraction (EVOLVE), a blanket design concept currently being investigated under the US Advanced Power Extraction (APEX) program. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method.

  10. Distinct aggregation patterns and fluid porous phase in a 2D model for colloids with competitive interactions

    NASA Astrophysics Data System (ADS)

    Bordin, José Rafael

    2018-04-01

    In this paper we explore the self-assembly patterns in a two dimensional colloidal system using extensive Langevin Dynamics simulations. The pair potential proposed to model the competitive interaction have a short range length scale between first neighbors and a second characteristic length scale between third neighbors. We investigate how the temperature and colloidal density will affect the assembled morphologies. The potential shows aggregate patterns similar to observed in previous works, as clusters, stripes and porous phase. Nevertheless, we observe at high densities and temperatures a porous mesophase with a high mobility, which we name fluid porous phase, while at lower temperatures the porous structure is rigid. triangular packing was observed for the colloids and pores in both solid and fluid porous phases. Our results show that the porous structure is well defined for a large range of temperature and density, and that the fluid porous phase is a consequence of the competitive interaction and the random forces from the Langevin Dynamics.

  11. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase.

    PubMed

    Varejão, Nathalia; De-Andrade, Rafael A; Almeida, Rodrigo V; Anobom, Cristiane D; Foguel, Debora; Reverter, David

    2018-02-06

    Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analysis of medium-BTU gasification condensates, June 1985-June 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.

    1987-05-01

    This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers andmore » pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.« less

  13. LaRC-RP41: A Tough, High-Performance Composite Matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Johnston, Norman J.; Smith, Ricky E.; Snoha, John J.; Gautreaux, Carol R.; Reddy, Rakasi M.

    1991-01-01

    New polymer exhibits increased toughness and resistance to microcracking. Cross-linking PMR-15 and linear LaRC-TPI combined to provide sequential semi-2-IPN designated as LaRC-RP41. Synthesized from PMR-15 imide prepolymer undergoing cross-linking in immediate presence of LaRC-TPI polyamic acid, also undergoing simultaneous imidization and linear chain extension. Potentially high-temperature matrix resin, adhesive, and molding resin. Applications include automobiles, electronics, aircraft, and aerospace structures.

  14. Long-Term Effects of Temperature Exposure on SLM 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Amine, Tarak; Kriewall, Caitlin S.; Newkirk, Joseph W.

    2018-03-01

    Austenitic stainless steel is extensively used in industries that operate at elevated temperatures. This work investigates the high-temperature microstructure stability as well as elevated-temperature properties of 304L stainless steel fabricated using the selective laser melting (SLM) process. Significant microstructural changes were seen after a 400°C aging process for as little as 25 h. This dramatic change in microstructure would not be expected based on the ferrite decomposition studied in conventional 304L materials. The as-built additively manufactured alloy has much faster kinetic response to heat treatment at 400°C. An investigation of the structures which occur, the kinetics of the various transformations, and the mechanical properties is presented. The impact of this on the application of SLM 304L is discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jianfeng, E-mail: hjf@bit.edu.cn; Dai, Jin, E-mail: daijing491@gmail.com; Li, Jing, E-mail: jinglichina@139.com

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regimemore » where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.« less

  16. Aspects of structural landscape of human islet amyloid polypeptide

    NASA Astrophysics Data System (ADS)

    He, Jianfeng; Dai, Jin; Li, Jing; Peng, Xubiao; Niemi, Antti J.

    2015-01-01

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  17. Surfaces for high heat dissipation with no Leidenfrost limit

    NASA Astrophysics Data System (ADS)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  18. Stress corrosion cracking of Ti-8Al-1 Mo-1V in molten salts

    NASA Technical Reports Server (NTRS)

    Smyrl, W. H.; Blackburn, M. J.

    1975-01-01

    The stress corrosion cracking (SCC) behavior of Ti-8Al-1 Mo-1V has been studied in several molten salt environments. Extensive data are reported for the alloy in highly pure LiCl-KCl. The influence of the metallurgical heat treatment and texture, and the mechanical microstructure show similarities with aqueous solutions at lower temperature. The fracture path and cracking modes are also similar to that found in other environments. The influence of H2O and H(-) in molten LiCl-KCl lead to the conclusion that hydrogen does not play a major role in crack extension in this environment.

  19. On q-non-extensive statistics with non-Tsallisian entropy

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Korbel, Jan

    2016-02-01

    We combine an axiomatics of Rényi with the q-deformed version of Khinchin axioms to obtain a measure of information (i.e., entropy) which accounts both for systems with embedded self-similarity and non-extensivity. We show that the entropy thus obtained is uniquely solved in terms of a one-parameter family of information measures. The ensuing maximal-entropy distribution is phrased in terms of a special function known as the Lambert W-function. We analyze the corresponding "high" and "low-temperature" asymptotics and reveal a non-trivial structure of the parameter space. Salient issues such as concavity and Schur concavity of the new entropy are also discussed.

  20. Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses

    PubMed Central

    Delvendahl, Igor; Vyleta, Nicholas P.; von Gersdorff, Henrique; Hallermann, Stefan

    2016-01-01

    The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bonafide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin, but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin-, dynamin-, and actin-dependent. Furthermore, the speed of endocytosis is highly temperature-dependent with a Q10 of ~3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. PMID:27146271

  1. Catalytic conversion of Chlorella pyrenoidosa to biofuels in supercritical alcohols over zeolites.

    PubMed

    Yang, Le; Ma, Rui; Ma, Zewei; Li, Yongdan

    2016-06-01

    Microalgae have been considered as the feedstock for the third generation biofuels production, given its high lipid content and fast productivity. Herein, a catalytic approach for microalgae liquefaction to biocrude is examined in a temperature range of 250-300°C in methanol and ethanol over zeolites. Higher biocrude yield was achieved in ethanol and at lower temperatures, while better quality biocrude with higher light biocrude ratio and lower average molecular weight (Mw) was favored in methanol and at higher temperatures. Application of zeolites improves the biocrude quality significantly. Among the catalysts, HY shows the strongest acidity and performs the best to produce high quality biocrude. Solid residues have been extensively explored with thermal gravity analysis and elemental analysis. It is reported for the first time that up to 99wt.% of sulfur is deposited in the solid residue at 250°C for both solvents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  3. Search for the First-Order Liquid-to-Liquid Phase Transition in Low-Temperature Confined Water by Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I

    2013-01-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaricmore » temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.« less

  4. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang

    2013-02-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  5. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.

    PubMed

    Stolworthy, Dean K; Zirbel, Shannon A; Howell, Larry L; Samuels, Marina; Bowden, Anton E

    2014-05-01

    The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified temperature, and a scaling parameter. A Bland-Altman analysis showed high coefficients of determination for the predictive model. The present work demonstrates significant changes in spine segment flexibility as a result of loading rate and testing temperature. Loading rate effects can be accounted for using the predictive model, which accurately estimated ROM, neutral zone, stiffness, and hysteresis within the range of voluntary motion. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center ( Guaymas Basin).

    USGS Publications Warehouse

    Lonsdale, P.F.; Bischoff, J.L.; Burns, V.M.; Kastner, M.; Sweeney, R.E.

    1980-01-01

    A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. S and O isotopes indicate precipitation around a hydrothermal vent, at about 2800C. - Authors

  7. HIGH TEMPERATURE POLAMINE RESINS.

    DTIC Science & Technology

    A literature search was conducted to investigate work done with aromatic amine-organic chloride reactions and organo- sodium amide preparations from...synthesized by the diamine/dichloride route. Extensive investigations of polyamine synthesis from sodium salts of amides and amines, and chlorides were...conducted. Apparently successful methods were found for preparing sodium derivatives of amides and amines from both solid sodium amide and sodium /ammonia

  8. Final report. Superconducting materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Ruvalds

    1999-09-11

    Our group has discovered a many body effect that explains the surprising divergence of the spin susceptibility which has been measured by neutron scattering experiments on high temperature superconductors and vanadium oxide metals. Electron interactions on nested - i.e., nearly parallel paths - have been analyzed extensively by our group, and such processes provide a physical explanation for many anomalous features that distinguish cuprate superconductors from ordinary metals.

  9. Chaparral and fire

    USGS Publications Warehouse

    Keeley, Jon E.

    2007-01-01

    Large wildfires are an inevitable feature of chaparral. The moderate temperatures during winter promote growth of extensive stands of shrublands with contiguous fuels covering massive portions of the landscape. The summer-fall drought makes these fuels highly flammable over a relatively lengthy portion of the year. Because of widespread human influence, most fires today are anthropogenic; however, in wilderness areas lightning still accounts for some chaparral fires.

  10. Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Liu, Hongbo; Liu, Jianhua; Wu, Bowei; Su, Xiaofeng; Li, Shiqi; Ding, Hao

    2017-07-01

    The influence of Ti addition ( 0.10 wt%) on hot ductility of as-cast high-manganese austenitic steels has been examined over the temperature range 650-1,250 °C under a constant strain rate of 10-3 s-1 using Gleeble3500 thermal simulation testing machine. The fracture surfaces and particles precipitated at different tensile temperatures were characterized by means of scanning electron microscope and X-ray energy dispersive spectrometry (SEM-EDS). Hot ductility as a function of reduction curves shows that adding 0.10 wt% Ti made the ductility worse in the almost entire range of testing temperatures. The phases' equilibrium diagrams of precipitates in Ti-bearing high-Mn austenitic steel were calculated by the Thermo-Calc software. The calculation result shows that 0.1 wt% Ti addition would cause Ti(C,N) precipitated at 1,499 °C, which is higher than the liquidus temperature of high-Mn austenitic steel. It indicated that Ti(C,N) particles start forming in the liquid high-Mn austenitic steel. The SEM-EDS results show that Ti(C,N) and TiC particles could be found along the austenite grain boundaries or at triple junction, and they would accelerate the extension of the cracks along the grain boundaries.

  11. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  12. Temperature variations recorded during interinstitutional air shipments of laboratory mice.

    PubMed

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.

  13. Testing relativity with orbiting clocks

    NASA Astrophysics Data System (ADS)

    Nissen, J. A.; Lipa, J. A.; Wang, S.; Avaloff, D.; Stricker, D. A.

    2011-02-01

    We describe the background and status of a superconducting microwave clock suitable for relativity experiments in earth orbit. The project has the capability of performing improved tests of Lorentz invariance via a Michelson-Morley type experiment, and setting new limits on nine parameters in the Standard Model Extension. If flown with a high stability atomic clock, a Kennedy-Thorndike experiment along with additional tests in general relativity could be performed.In orbit, unwanted cavity frequency variations are expected to be caused mainly by acceleration effects due to residual drag and vibration, temperature variations, and fluctuations in the energy stored in the cavity. A cavity support system has been designed to reduce acceleration effects and a high resolution thermometer has been implemented to improve temperature control.

  14. Using high thermal stability flexible thin film thermoelectric generator at moderate temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping

    2018-04-01

    Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.

  15. Nature of the first-order liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Tan, X. M.

    2015-08-01

    The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.

  16. High-rate deformation and fracture of steel 09G2S

    NASA Astrophysics Data System (ADS)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  17. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  18. Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); Saintclair, Terry L. (Inventor)

    1989-01-01

    A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC).

  19. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event

    NASA Astrophysics Data System (ADS)

    Cook, Clayton B.; Logan, Alan; Ward, Jack; Luckhurst, Brian; Berg, Carl J.

    1990-03-01

    Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4 6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species; Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species, Montastrea annularis and perhaps Diploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9 30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching of M. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.

  20. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    PubMed

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  1. Article comprising a garment or other textile structure for use in controlling body temperature

    DOEpatents

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  2. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Bothmore » STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.« less

  3. Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness.

    PubMed

    Yim, Taeeun; Park, Min-Sik; Woo, Sang-Gil; Kwon, Hyuk-Kwon; Yoo, Jung-Keun; Jung, Yeon Sik; Kim, Ki Jae; Yu, Ji-Sang; Kim, Young-Jun

    2015-08-12

    User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise is reduced by 74% without compromising electrochemical performances. It is anticipated that on the strengths of excellent scalability, simplicity, and cost-effectiveness, this novel strategy can be extensively applied to various high energy-density devices to ensure human safety.

  4. Fractographic analysis of gaseous hydrogen induced cracking in 18Ni maraging steel

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1978-01-01

    Electron microscope fractographic analysis supplemented an extensive study of the kinetics of gaseous hydrogen assisted cracking in 18Ni maraging steel. Temperature determined the crack path morphology in each steel which, in turn, was directly related to the temperature dependence of the crack growth rate. Crack growth in the low temperature regime proceeded along prior austenite grain boundaries. Increasing the temperature above a critical value produced a continuously increasing proportion of transgranular quasi-cleavage associated with lath martensite boundaries. The amount of transgranular cracking was qualitatively correlated with the degree of temperature-induced deviation from Arrhenius behavior. Fractographic observations are interpreted in terms of hypothesized mechanisms for gaseous hydrogen embrittlement. It is concluded that hydrogen segregation to prior austenite and lath martensite boundaries must be considered as a significant factor in developing mechanisms for gaseous embrittlement of high strength steels.

  5. Analysis of ORNL site temperature and humidity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, B.E.

    1989-08-01

    The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less

  6. Cosmology with the cosmic microwave background temperature-polarization correlation

    NASA Astrophysics Data System (ADS)

    Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.

    2017-06-01

    We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-ℓ HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For ΛCDM parameters, TE gives very competitive results compared to TT. For basic ΛCDM model extensions (such as AL, ∑mν, or Neff), it is still limited by the instrumental noise level in the polarization maps.

  7. Physical treatment of fever

    PubMed Central

    Purssell, E.

    2000-01-01

    Fever is a common symptom of childhood illness, and much time and effort is spent in the pursuit of reducing high temperature. Although antipyretic drugs are the main form of treatment, this report considers the part that physical treatments might play in reducing the temperature of febrile children. Such treatments include tepid sponging, removing clothing, and cooling the environment. Of these treatments, tepid sponging has been studied most extensively, as an addition to paracetamol, but seems to offer little advantage over paracetamol alone. It is likely that other methods might be equally ineffective because they all rely on similar methods of heat loss.

 PMID:10685930

  8. Modification of the Gurney Equation for Explosive Bonding by Slanted Elevation Angle

    DTIC Science & Technology

    2014-04-01

    researching high temperature fatigue behaviour and modelling of ferritic pressure vessel steel , for which he was awarded the degree at the University of...weld metal solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high... steel (2.0) 15 2.4 16 300 x300 1: S defines ‘Superaustenitic’. The flyer plate was placed on the top of the bottom plate for each test with

  9. SMOS L1C and L2 Validation in Australia

    NASA Technical Reports Server (NTRS)

    Rudiger, Christoph; Walker, Jeffrey P.; Kerr, Yann H.; Mialon, Arnaud; Merlin, Olivier; Kim, Edward J.

    2012-01-01

    Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.

  10. Low-Temperature Properties of Silver

    PubMed Central

    Smith, David R.; Fickett, F. R.

    1995-01-01

    Pure silver is used extensively in the preparation of high-temperature superconductor wires, tapes, films, and other configurations in which the silver not only shields the superconducting material from the surrounding materials, but also provides a degree of flexibility and strain relief, as well as stabilization and low-resistance electrical contact. Silver is relatively expensive, but at this stage of superconductor development, its unique combination of properties seems to offer the only reasonable means of achieving usable lengths of conductor. In this role, the low-temperature physical (electrical, thermal, magnetic, optical) and mechanical properties of the silver all become important. Here we present a collection of properties data extracted from the cryogenic literature and, to the extent possible, selected for reliability. PMID:29151733

  11. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua Daw; Joy Rempe; Darrell Knudson

    2009-04-01

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions.more » This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.« less

  12. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  13. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  14. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  15. Nonintrusive fast response oxygen monitoring system for high temperature flows

    NASA Technical Reports Server (NTRS)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  16. Magnetic property zonation in a thick lava flow

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  17. Chemical vapor deposition of high T sub c superconductors

    NASA Technical Reports Server (NTRS)

    Webb, G. W.; Engelhardt, J. J.

    1978-01-01

    The results are reported of an investigation into the synthesis and properties of high temperature superconducting materials. A chemical vapor deposition apparatus was designed and built which is suitable for the preparation of multicomponent metal films This apparatus was used to prepare a series of high T sub c A-15 structure superconducting films in the binary system Nb-Ge. The effect on T sub c of a variety of substrate materials was investigated. An extensive series of ternary alloys were also prepared. Conditions allowing the brittle high T sub c (approximately 18 K) A-15 structure superconductor Nb3A1 to be prepared in a low T sub c but ductile form were found. Some of the ways that the ductile (bcc) form can be cold worked or machined are described. Measurements of rate of transformation of cold worked bcc material to the high T sub c A-15 structure with low temperature annealing are given. Preliminary measurements indicate that this material has attractive high field critical current densities.

  18. QCD equation of state with almost physical quark masses

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Christ, N. H.; Datta, S.; van der Heide, J.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Petrov, K.; Schmidt, C.; Soeldner, W.; Umeda, T.

    2008-01-01

    We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nτ=4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140MeV≤T≤800MeV. We present a detailed discussion of finite cutoff effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nτ=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.

  19. Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development.

    PubMed

    Davidson, G; Phelps, K; Sunderland, K D; Pell, J K; Ball, B V; Shaw, K E; Chandler, D

    2003-01-01

    To investigate the thermal biology of entomopathogenic fungi being examined as potential microbial control agents of Varroa destructor, an ectoparasite of the European honey bee Apis mellifera. Colony extension rates were measured at three temperatures (20, 30 and 35 degrees C) for 41 isolates of entomopathogenic fungi. All of the isolates grew at 20 and 30 degrees C but only 11 isolates grew at 35 degrees C. Twenty-two isolates were then selected on the basis of appreciable growth at 30-35 degrees C (the temperature range found within honey bee colonies) and/or infectivity to V. destructor, and their colony extension rates were measured at 10 temperatures (12.5-35 degrees C). This data were then fitted to Schoolfield et al. [J Theor Biol (1981)88:719-731] re-formulation of the Sharpe and DeMichele [J Theor Biol (1977)64:649-670] model of poikilotherm development. Overall, this model accounted for 87.6-93.9% of the data variance. Eleven isolates exhibited growth above 35 degrees C. The optimum temperatures for extension rate ranged from 22.9 to 31.2 degrees C. Only three isolates exhibited temperature optima above 30 degrees C. The super-optimum temperatures (temperature above the optimum at which the colony extension rate was 10% of the maximum rate) ranged from 31.9 to 43.2 degrees C. The thermal requirements of the isolates examined against V. destructor are well matched to the temperatures in the broodless areas of honey bee colonies, and a proportion of isolates, should also be able to function within drone brood areas. Potential exists for the control of V. destructor with entomopathogenic fungi in honey bee colonies. The methods employed in this study could be utilized in the selection of isolates for microbial control prior to screening for infectivity and could help in predicting the activity of a fungal control agent of V. destructor under fluctuating temperature conditions.

  20. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  1. Raman Spectra of Glasses

    DTIC Science & Technology

    1986-11-30

    Howard University , Department of Chemistry, Washington, DC Distribution Unlimited Per.. .Dr. Donald Polk, ONR/Code 1131M .IL. OFFICE OF NAVAL...the specific facilities to perform this extremely high temperature Raman work at Howard university . Of course, we do have very extensive facilities at... Howard University for CW laser-Raman spectroscopy of melts to about 1600 or 1800 OC. We have four complete laser-Raman instruments; Lhree holographic

  2. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, P.R. Jr.

    Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologic regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains. Controlled source audio-magnetotelluric (CSAMT) electromagnetic techniques, refraction seismic experiments, and gravity traverses were utilized on the base. These, together with published geohysical information that presents evidence for a shallow magma body beneath the Albuquerque Basin; favorable terrestrial heat flow, water chemistry, and shallow temperature gradient holes on the nearby mesa west ofmore » the Rio Grande; interpretation of regional gravity data; and geological data from nearby deep wells tend to confirm structural, stratigraphic, and hydrologic conditions favorable for developing an extensive intermediate to high-temperature hydrothermal regime on portions of Kirtland AFB lands where intensive land use occurs. Two possible exploration and development scenarios are presented. One involves drilling a well to a depth of 3000 to 5000 ft (914 to 1524 m) to test the possibility of encountering higher than normal water temperatures on the basinward side of the faults underlying the travertine deposits. The other is to conduct limited reflection seismograph surveys in defined areas on the base to determine the depth to basement (granite) and thickness of the overyling, unconfined, water filled, relatively unconsolidated sand and gravel aquifer.« less

  3. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    USGS Publications Warehouse

    Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  4. Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot

    NASA Astrophysics Data System (ADS)

    Kelly, Paige; Clementson, Lesley; Davies, Claire; Corney, Stuart; Swadling, Kerrie

    2016-10-01

    Southeastern Australia is a 'hotspot' for oceanographic change. Here, rapidly increasing sea surface temperatures, rising at more than double the global trend, are largely associated with a southerly extension of the East Australian Current (EAC) and its eddy field. Maria Island, situated at the southern end of the EAC extension at 42°S, 148°E, has been used as a site to study temperature-driven biological trends in this region of accelerated change. Zooplankton have short life cycles (usually < 1 year) and are highly sensitive to environmental change, making them an ideal indicator of the biological effects of an increased southward flow of the EAC. Data from in-situ net drops and the Continuous Plankton Recorder (CPR), collected since 2009, together with historical zooplankton abundance data, have been analysed in this study. Like the North Atlantic, zooplankton communities of southeastern Australia are responding to increased temperatures through relocation, long-term increases in warm-water species and a shift towards a zooplankton community dominated by small copepods. The biological trends present evidence of extended EAC influence at Maria Island into autumn and winter months, which has allowed for the rapid establishment of warm-water species during these seasons, and has increased the similarity between Maria Island and the more northerly Port Hacking zooplankton community. Generalised Linear Models (GLM) suggest the high salinity and low nutrient properties of EAC-water to be the primary drivers of increasing abundances of warm-water species off southeastern Australia. Changes in both the species composition and size distribution of the Maria Island zooplankton community will have effects for pelagic fisheries. This study provides an indication of how zooplankton communities influenced by intensifying Western Boundary currents may respond to rapid environmental change.

  5. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  6. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China

    PubMed Central

    Tian, Huimei; Gao, Peike; Chen, Zhaohui; Li, Yanshu; Li, Yan; Wang, Yansen; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2017-01-01

    Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs. PMID:28210252

  7. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less

  8. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  9. Initiation and strain compatibility of connected extension twins in AZ31 magnesium alloy at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao, E-mail: liuxiao0105@163.com

    2016-12-15

    Uniaxial compression tests were carried out at 350 °C and a strain rate of 0.3 s{sup −1} on as-extruded AZ31 magnesium alloy samples. At a true strain of − 0.1, extension twin pairs in a grain and twin chains across adjacent grains were detected. The orientation of selected twins and their host grains were determined by electron backscattered diffraction (EBSD) techniques. The Schmid factors (SFs), accommodation strains and geometric compatibility factors (m{sup ′}) were calculated. Analysis of the data indicated that the formation of twin pair and twin chain was related to the SF and m{sup ′}. Regarding to twinmore » chain across adjacent grains, accommodation strain was also involved. The selection of twin variants in twin chain was generally determined by m{sup ′}. When the twins required the operation of pyramidal slip or twinning in adjacent grain, the corresponding connected twins with a relative high m{sup ′} were selected in this adjacent grain. - Highlights: •The formation of paired twins is studied during high temperature deformation. •The initiation of twinning in twin pair and twin chain obeys the Schmid law. •The twin variants' selection in twin chain is related to the geometric compatibility factor. •The accommodation strain plays an important role on the formation of twin chain.« less

  10. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.

    PubMed

    Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E

    2012-09-01

    The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.

  11. Constraints on temperature-dependent sex determination in the leopard gecko ( Eublepharis macularius): response to Kratochvil et al.

    NASA Astrophysics Data System (ADS)

    Huang, Victoria; Sakata, Jon T.; Rhen, Turk; Coomber, Patricia; Simmonds, Sarah; Crews, David

    2008-12-01

    Kratochvil et al. (Naturwissenschaften 95:209 215, 2008) reported recently that in the leopard gecko ( Eublepharis macularius) of the family Eublepharidae with temperature-dependent sex determination (TSD), clutches in which eggs were incubated at the same temperature produce only same-sex siblings. Interpreting this result in light of studies of sex steroid hormone involvement in sex determination, they suggested that maternally derived yolk steroid hormones could constrain sex-determining mechanisms in TSD reptiles. We have worked extensively with this species and have routinely incubated clutches at constant temperatures. To test the consistency of high frequency same-sex clutches across different incubation temperatures, we examined our records of clutches at the University of Texas at Austin from 1992 to 2001. We observed that clutches in which eggs were incubated at the same incubation temperature produced mixed-sex clutches as well as same-sex clutches. Furthermore, cases in which eggs within a clutch were separated and incubated at different temperatures produced the expected number of mixed-sex clutches. These results suggest that maternal influences on sex determination are secondary relative to incubation temperature effects.

  12. Understanding and controlling low-temperature aging of nanocrystalline materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Boyce, Brad Lee; Brons, Justin G.

    2013-10-01

    Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection.more » Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.« less

  13. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    NASA Technical Reports Server (NTRS)

    Mebs, R W; Mcadam, D J

    1947-01-01

    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were removed. Comparison is also obtained between the variation of the several properties, as measured in tension and in shear. The rise of proof stress with extension is studied, and the work-hardening rates of the various metals evaluated. The ratio between the tensile and shear proof stresses for the various annealed and cold-worked tubular metals is likewise calculated. The influence of annealing or tempering temperature on the proof stresses and moduli for the cold-worked metals and for air-hardened 13:2 Cr-Ni steel is investigated. An improvement of elastic strength generally is obtained, without important loss of yield strength, by annealing at suitable temperature. The variation of the proof stress and modulus of elasticity with plastic deformation or annealing temperature is explained in terms of the relative dominance of three important factors: namely, (a) internal stress, (b) lattice-expansion or work-hardening, and (c) crystal reorientation. Effective values of Poisson's ratio were computed from tensile and shear moduli obtained on tubular specimens. The variation of Poisson's ratio with plastic deformation and annealing temperature is explained in terms of the degree of anisotropy produced by changes of (a) internal stress and (b) crystal orientation.

  14. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  15. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  16. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Williams-Jones, Anthony E.

    1990-09-01

    The Strange Lake Zr, Y, REE, Nb, and Be deposit is hosted by a small, high-level, Late-Proterozoic peralkaline granite stock that intruded into high-grade metamorphic gneisses on the Quebec-Labrador border. The stock is extensively altered. Early alteration is manifested by the replacement of arfvedsonite with aegirine. Later alteration involved Ca-Na exchange. Zr, Ti, Y, REEs, Nb, and Be are concentrated in Ca-bearing minerals that, together with quartz, commonly pseudomorph Na-bearing minerals. Fluid inclusions in pseudomorphs comprise several distinct types: high-salinity (13 to 24 wt% NaCl eq.), Ca-rich aqueous inclusions that homogenize to liquid between 135 and 195°C; mixed aqueousmethane inclusions; methane inclusions; and solid-bearing inclusions. Aqueous-methane inclusions represent heterogeneous entrapment of immiscible high-salinity aqueous liquid and methane. Bastnäsite (tentatively identified by SEM analysis) occurs as a daughter mineral. Other daughter or trapped minerals include a Y, HREE-bearing mineral, possibly gagarinite, and hematite, galena, sphalerite, fluorite, pyrochlore, kutnahorite (?), and griceite (?). The first three inclusion types also occur in quartz in pegmatites and veins together with lower-temperature, lower-salinity, Na-dominated aqueous inclusions. The entrapment temperature inferred for the aqueous inclusions from microthermometry and the Na-K-Ca geothermometer range from 155 to 195°C for the higher-salinity inclusions and 100 to 165°C for the low-salinity inclusions. A model is proposed in which the intrusion of a peralkaline granite to high crustal levels initiated a ground/formational water-dominated hydrothermal system in adjacent gabbroic, calc-silicate, and graphitic gneisses. Reaction of the high-salinity, Ca-rich liquid with the graphitic gneisses led to the production of an immiscible methane gas. Subsequent interaction of this liquid with the granite led to extensive replacement of sodic minerals by calcium analogues at temperatures of less than 200°C. Some time after the onset of Ca metasomatism the high-salinity liquid mixed with a Ca-poor, low-salinity, low-temperature liquid that had leached F and rare metals from the granite. Yttrium and REE mineral deposition occurred as a result of the decreased ligand concentration that accompanied fluorite deposition during mixing of the Ca-rich and Ca-poor aqueous liquids.

  17. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.

    1984-01-01

    High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.

  18. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  19. Two gaps make a high-temperature superconductor?

    NASA Astrophysics Data System (ADS)

    Hüfner, S.; Hossain, M. A.; Damascelli, A.; Sawatzky, G. A.

    2008-06-01

    One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data which suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome. We focus on spectroscopic data from cuprate systems characterized by T_c^max\\sim 95\\,K , such as Bi2Sr2CaCu2O8+δ, YBa2Cu3O7-δ, Tl2Ba2CuO6+δ and HgBa2CuO4+δ, with particular emphasis on the Bi-compound which has been the most extensively studied with single-particle spectroscopies.

  20. Petascale supercomputing to accelerate the design of high-temperature alloys

    DOE PAGES

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; ...

    2017-10-25

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ'-Al 2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviourmore » of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. As a result, the approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.« less

  1. Petascale supercomputing to accelerate the design of high-temperature alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ'-Al 2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviourmore » of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. As a result, the approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.« less

  2. Petascale supercomputing to accelerate the design of high-temperature alloys

    NASA Astrophysics Data System (ADS)

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; Haynes, J. Allen

    2017-12-01

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ‧-Al2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviour of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. The approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.

  3. The effects of microstructural stability on the compressive response of two cast aluminum alloys up to 300 °C

    DOE PAGES

    Shower, Patrick T.; Roy, Shibayan; Hawkins, Charles Shane; ...

    2017-06-08

    Here in this study, the high temperature compressive response of cast aluminum alloys 319 and RR350 is compared in light of their microstructures. The 319 alloy is widely used in thermally critical automotive applications and provides a baseline for comparison with the RR350 alloy, whose microstructural stability at high homologous temperatures was recently reported. Cylindrical compression samples from each alloy were tested at four temperatures up to 300 °C at a constant true strain rate that was varied over four orders of magnitude. Although both alloys are strengthened by metastable precipitates (nominally Al 2Cu) in the as-aged condition, their mechanicalmore » response diverges at temperatures greater than 250 °C as the strengthening precipitates evolve in the 319 alloy and retain their as-aged morphology in the RR350 alloy. Deformation mechanisms of each alloy are examined using microstructural analysis and empirical activation energy calculations. The stability of the θ' phase in the RR350 alloy leads to effective precipitation hardening at homologous temperatures up to 0.6 and an extensive regime of grain boundary controlled deformation.« less

  4. [Effect of investment composition ratio for pure titanium crown and bridge on some mechanical properties of mould].

    PubMed

    Yang, Se-fei; Wang, You-xu; Guo, Tian-wen; Liu, Hong-chen

    2011-11-01

    To determine the optimal composition of a self-developing investment material by measuring physical and mechanical properties of mould. L(9) (3(4)) orthogonal design was adopted. One hundred and fifty specimens with the size of 80 mm × 20 mm × 20 mm were prepared to measure the atmospheric temperature bending strength, high temperature bending strength and residual bending strength. Nine specimens with the size of 5 mm diameter 25 mm heigh were prepared to survey the thermal expansion curve from ambient temperature to 1150°C. Strengths were greatly affected by fine powder proportion in refractory and water/powder ratio. When the content of fine powder was 35% and water/powder ratio was 1:7.5, adequate atmospheric temperature strength and high temperature strength could be achieved. Moreover, the residual strength was moderate. The thermal extension curves of specimens in experiment group were almost similar. And the average linear expansion coefficient was (4 ∼ 5) × 10(-6)/°C. The three kinds of bending strength of self-developing investment material are compared with commercialized investment material for titanium casting when water/powder ratio and the content of fine powder are carefully controlled.

  5. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  6. Properties of concrete containing different type of waste materials as aggregate replacement exposed to elevated temperature – A review

    NASA Astrophysics Data System (ADS)

    Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.

    2018-04-01

    Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.

  7. High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.

    NASA Astrophysics Data System (ADS)

    Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof

    Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  8. Note: High temperature pulsed solenoid valve.

    PubMed

    Shen, Wei; Sulkes, Mark

    2010-01-01

    We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 degrees C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations.

  9. Thermal design concept for a high resolution UV spectrometer

    NASA Technical Reports Server (NTRS)

    Caruso, P.; Stipandic, E.

    1979-01-01

    The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.

  10. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria.

    PubMed

    Schuster, C; Estrella, N; Menzel, A

    2014-03-01

    The impact of global warming on phenology has been widely studied, and almost consistently advancing spring events have been reported. Especially in alpine regions, an extraordinary rapid warming has been observed in the last decades. However, little is known about phenological phases over the whole vegetation period at high elevations. We observed 12 phenological phases of seven tree species and measured air temperature at 42 sites along four transects of about 1000 m elevational range in the years 2010 and 2011 near Garmisch-Partenkirchen, Germany. Site- and species-specific onset dates for the phenological phases were determined and related to elevation, temperature lapse rates and site-specific temperature sums. Increasing temperatures induced advanced spring and delayed autumn phases, in which both yielded similar magnitudes. Delayed leaf senescence could therefore have been underestimated until now in extending the vegetation period. Not only the vegetation period, but also phenological periods extended with increasing temperature. Moreover, sensitivity to elevation and temperature strongly depends on the specific phenological phase. Differences between species and groups of species (deciduous, evergreen, high elevation) were found in onset dates, phenological response rates and also in the effect of chilling and forcing temperatures. Increased chilling days highly reduced forcing temperature requirements for deciduous trees, but less for evergreen trees. The problem of shifted species associations and phenological mismatches due to species-specific responses to increasing temperature is a recent topic in ecological research. Therefore, we consider our findings from this novel, dense observation network in an alpine area of particular importance to deepen knowledge on phenological responses to climate change. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Quantum and quasi-classical collisional dynamics of O{sub 2}–Ar at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulusoy, Inga S.; Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400; Andrienko, Daniil A.

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate verymore » good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.« less

  12. Peculiar features of boron distribution in high temperature fracture area of rapidly quenched heat-resistant nickel alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulga, A. V., E-mail: avshulga@mephi.ru

    This article comprises the results of comprehensive study of the structure and distribution in the high temperature fracture area of rapidly quenched heat-resistant superalloy of grade EP741NP after tensile tests. The structure and boron distribution in the fracture area are studied in detail by means of direct track autoradiography in combination with metallography of macro- and microstructure. A rather extensive region of microcracks generation and intensive boron redistribution is detected in the high temperature fracture area of rapidly quenched nickel superalloy of grade EP741NP. A significant decrease in boron content in the fracture area and formation of elliptically arranged boridemore » precipitates are revealed. The mechanism of intense boron migration and stability violation of the structural and phase state in the fracture area of rapidly quenched heat-resistant nickel superalloy of grade EP741NP is proposed on the basis of accounting for deformation occurring in the fracture area and analysis of the stressed state near a crack.« less

  13. How to detect fluctuating stripes in the high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.

    2003-10-01

    This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.

  14. Quantum and quasi-classical collisional dynamics of O2-Ar at high temperatures

    NASA Astrophysics Data System (ADS)

    Ulusoy, Inga S.; Andrienko, Daniil A.; Boyd, Iain D.; Hernandez, Rigoberto

    2016-06-01

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.

  15. Advances in Ultra High Temperature Ceramics for Hot Structures

    NASA Astrophysics Data System (ADS)

    Scatteia, Luigi; Monteverde, Federico; Alfano, Davide; Cantoni, Stefania

    The objective of this paper is to describe the current state of the art of the research on Ultra High Temperature Ceramic materials with particular reference to their space applications, and also to report on the activities performed on UHTC in the past decade by the Italian Aerospace Research Centre in the specific technological field of structural thermal protection systems. Within several internal research project, various UHTC composition, mainly based upon Zirconium Diboride and Hafnium Diboride with added secondary phases and sintering aid were examined characterized in their mechanical properties and oxidation resistance. Two main composition were selected as the most promising for hot structure manufacturing: these materials were extensively characterized in order to obtain a comprehensive database of properties to feed the thermomechanical design of prototype hot structures. Technological demonstrators were manufactured by hot pressing followed by further fine machining with Electrical Discharge methods, and then tested at high temperature for long times in a plasma torch facility. The main outstanding results obtained are discussed in this paper. Future outlooks related to the UHTC technology and its further development are also provided.

  16. Developments in TurboBrayton Technology for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Swift, W. L.; Zagarola, M. V.; Nellis, G. F.; McCormick, J. A.; Gibbon, Judy

    1999-01-01

    A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5 mW to 200 mW of cooling at temperatures between 4 K and 10 K. This paper discusses the extension of Turbo-Brayton technology to meet these requirements.

  17. Bacterial membranes: the effects of chill storage and food processing. An overview.

    PubMed

    Russell, Nicholas J

    2002-11-15

    The shelf life of food is extended by refrigeration because the metabolic processes of food-associated microorganisms are slowed by the lowered temperature. Nonetheless, cold-adapted psychrotrophic food-poisoning and food-spoilage bacteria remain a concern because they possess cold-adapted proteins and membrane lipids that facilitate growth at low temperatures. The use of membrane-disrupting novel preservation techniques, such as ultrasound, high hydrostatic pressure or pulsed electric field, offer the potential for an extension of shelf life. This review considers the interacting and potentially synergistic effects of chill storage or mild heat treatment on membrane properties, with the disruptive effects of membrane-targeted physical treatments.

  18. Feasibility of line-ratio spectroscopy on helium and neon as edge diagnostic tool for Wendelstein 7-X

    DOE PAGES

    Barbui, T.; Krychowiak, M.; König, R.; ...

    2016-09-27

    A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. Lastly, this setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.

  19. Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Weeks, Carrell E.

    2005-01-01

    Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.

  20. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm.

    PubMed

    Venugopal, P Dilip; Dively, Galen P

    2017-06-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop-pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996-2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

  1. Leaves to landscapes: using high performance computing to assess patch-scale forest response to regional temperature and trace gas gradients

    Treesearch

    George E. Host; Harlan W. Stech; Kathryn E. Lenz; Kyle Roskoski; Richard Mather; Michael Donahue

    2007-01-01

    ECOPHYS is one of the early FSTM's that integrated plant physiological and tree architectural models to assess the relative importance of genetic traits in tree growth, and explore the growth response to interacting environmental stresses (Host et al 1999, Isebrands et al 1999, Martin et al 2001). This paper will describe extensions of the ECOPHYS individual tree...

  2. Entropy perspective on the thermal crossover in a fermionic Hubbard chain

    NASA Astrophysics Data System (ADS)

    Bonnes, Lars; Pichler, Hannes; Läuchli, Andreas M.

    2013-10-01

    We study the Renyi entropy in the finite-temperature crossover regime of a Hubbard chain using quantum Monte Carlo. The ground-state entropy has characteristic features such as a logarithmic divergence with block size and 2kF oscillations that are a hallmark of its Luttinger liquid nature. The interplay between the (extensive) thermal entropy and the ground-state features is studied and we analyze the temperature-induced decay of the amplitude of the oscillations as well as the scaling of the purity. Furthermore, we show how the spin and charge velocities can be extracted from the temperature dependence of the Renyi entropy, bridging our findings to recent experimental proposals on how to implement the measurement of Renyi entropies in the cold atom system. Studying the Renyi mutual information, we also demonstrate how constraints such as particle number conservation can induce persistent correlations visible in the mutual information even at high temperature.

  3. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    NASA Astrophysics Data System (ADS)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  4. On nonlinear thermo-electro-elasticity.

    PubMed

    Mehnert, Markus; Hossain, Mokarram; Steinmann, Paul

    2016-06-01

    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.

  5. On nonlinear thermo-electro-elasticity

    PubMed Central

    Mehnert, Markus; Hossain, Mokarram

    2016-01-01

    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings. PMID:27436985

  6. Low-Temperature Criticality of Martensitic Transformations of Cu Nanoprecipitates in α-Fe

    NASA Astrophysics Data System (ADS)

    Erhart, Paul; Sadigh, Babak

    2013-07-01

    Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.

  7. Fidelity of the Sr/Ca proxy in recording ocean temperature in the western Atlantic coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Kuffner, Ilsa B.; Roberts, Kelsey E.; Flannery, Jennifer A.; Morrison, Jennifer M.; Richey, Julie N.

    2017-01-01

    Massive corals provide a useful archive of environmental variability, but careful testing of geochemical proxies in corals is necessary to validate the relationship between each proxy and environmental parameter throughout the full range of conditions experienced by the recording organisms. Here we use samples from a coral-growth study to test the hypothesis that Sr/Ca in the coral Siderastrea siderea accurately records sea-surface temperature (SST) in the subtropics (Florida, USA) along 350 km of reef tract. We test calcification rate, measured via buoyant weight, and linear extension (LE) rate, estimated with Alizarin Red-S staining, as predictors of variance in the Sr/Ca records of 39 individual S. siderea corals grown at four outer-reef locations next to in-situ temperature loggers during two, year-long periods. We found that corals with calcification rates < 1.7 mg cm-2 d-1 or < 1.7 mm yr-1 LE returned spuriously high Sr/Ca values, leading to a cold-bias in Sr/Ca-based SST estimates. The threshold-type response curves suggest that extension rate can be used as a quality-control indicator during sample and drill-path selection when using long cores for SST paleoreconstruction. For our corals that passed this quality control step, the Sr/Ca-SST proxy performed well in estimating mean annual temperature across three sites spanning 350 km of the Florida reef tract. However, there was some evidence that extreme temperature stress in 2010 (cold snap) and 2011 (SST above coral-bleaching threshold) may have caused the corals not to record the temperature extremes. Known stress events could be avoided during modern calibrations of paleoproxies.Plain Language SummaryCoral skeletons are used to decipher past environmental conditions in the ocean because they live for centuries and produce annual growth bands much like tree rings. Along with measuring coral growth rates in the past, coral skeletons can be chemically sampled to get even more detailed information, like past seawater temperatures. In this study we tested the validity of the strontium-to-calcium (Sr/Ca) temperature proxy in the Massive Starlet Coral (Siderastrea siderea) by sampling 39 corals that were grown in the ocean right next to instruments recording underwater temperature. We found that, as long as corals with very slow growth rates are avoided, the proxy performed well across an extensive region in the western Atlantic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100039623&hterms=importance+oxygen&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dimportance%2Boxygen','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100039623&hterms=importance+oxygen&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dimportance%2Boxygen"><span>Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, Paul B.</p> <p>2010-01-01</p> <p>The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains unclear. If most of the water mobilized by an impact event remained at relatively low temperatures (<30deg), low-temperature interactions could predominate in these environments. These conditions would be consistent with the isotopic constraints suggested in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150007347&hterms=active+packaging+materials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20100101%2B20181231%26N%3D0%26No%3D50%26Ntt%3Dactive%2Bpackaging%2Bmaterials','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150007347&hterms=active+packaging+materials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20100101%2B20181231%26N%3D0%26No%3D50%26Ntt%3Dactive%2Bpackaging%2Bmaterials"><span>Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cucullu, Gordy C., III; Mikhaylov, Rebecca; Rajeshuni, Ramesham; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg</p> <p>2013-01-01</p> <p>Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through a change in construction such that the manufacturer significantly restricts the minimum temperature. However, significant subsequent testing was performed with this new version of the part to show that it indeed is still robust to at least Mars minimum temperatures of -135(sup o)C. The additional completed testing will be described. This work has resulted in a successful sensor package qualification and a reliable bonding method suitable for use over large temperature extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150007449&hterms=active+packaging+materials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20100101%2B20181231%26N%3D0%26No%3D60%26Ntt%3Dactive%2Bpackaging%2Bmaterials','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150007449&hterms=active+packaging+materials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20100101%2B20181231%26N%3D0%26No%3D60%26Ntt%3Dactive%2Bpackaging%2Bmaterials"><span>Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cucullu, Gordy C. III; Mikhaylov, Rebecca; Ramesham, Rajeshuni; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg</p> <p>2013-01-01</p> <p>Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through a change in construction such that the manufacturer significantly restricts the minimum temperature. However, significant subsequent testing was performed with this new version of the part to show that it indeed is still robust to at least Mars minimum temperatures of -135 degrees Centigrade. The additional completed testing will be described. This work has resulted in a successful sensor package qualification and a reliable bonding method suitable for use over large temperature extremes</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=thermodynamics&pg=2&id=EJ913365','ERIC'); return false;" href="https://eric.ed.gov/?q=thermodynamics&pg=2&id=EJ913365"><span>Transformations between Extensive and Intensive Versions of Thermodynamic Relationships</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Eberhart, James G.</p> <p>2010-01-01</p> <p>Most thermodynamic properties are either extensive (e.g., volume, energy, entropy, amount, etc.) or intensive (e.g., temperature, pressure, chemical potential, mole fraction, etc.). By the same token most of the mathematical relationships in thermodynamics can be written in extensive or intensive form. The basic laws of thermodynamics are usually…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24090986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24090986"><span>Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg</p> <p>2014-02-01</p> <p>We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830014272','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830014272"><span>THERMTRAJ: A FORTRAN program to compute the trajectory and gas film temperatures of zero pressure balloons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horn, W. J.; Carlson, L. A.</p> <p>1983-01-01</p> <p>A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27146271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27146271"><span>Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delvendahl, Igor; Vyleta, Nicholas P; von Gersdorff, Henrique; Hallermann, Stefan</p> <p>2016-05-04</p> <p>The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990116702','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990116702"><span>Epitaxial Ferroelectric Ba(0.5)Sr(0.5)TiO3 Thin Films for Room-Temperature High-Frequency Tunable Element Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19990116702'); toggleEditAbsImage('author_19990116702_show'); toggleEditAbsImage('author_19990116702_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19990116702_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19990116702_hide"></p> <p>1999-01-01</p> <p>Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JNuM..389..213Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JNuM..389..213Z"><span>High temperature surface effects of He + implantation in ICF fusion first wall materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.</p> <p>2009-06-01</p> <p>The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180017','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180017"><span>Fidelity of the Sr/Ca proxy in recording ocean temperature in the western Atlantic coral Siderastrea siderea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kuffner, Ilsa B.; Roberts, Kelsey E.; Flannery, Jennifer A.; Morrison, Jennifer M.; Richey, Julie</p> <p>2017-01-01</p> <p>Massive corals provide a useful archive of environmental variability, but careful testing of geochemical proxies in corals is necessary to validate the relationship between each proxy and environmental parameter throughout the full range of conditions experienced by the recording organisms. Here we use samples from a coral-growth study to test the hypothesis that Sr/Ca in the coral Siderastrea siderea accurately records sea-surface temperature (SST) in the subtropics (Florida, USA) along 350 km of reef tract. We test calcification rate, measured via buoyant weight, and linear extension (LE) rate, estimated with Alizarin Red-S staining, as predictors of variance in the Sr/Ca records of 39 individual S. siderea corals grown at four outer-reef locations next to in-situ temperature loggers during two, year-long periods. We found that corals with calcification rates < 1.7 mg cm−2 d−1 or < 1.7 mm yr−1 LE returned spuriously high Sr/Ca values, leading to a cold-bias in Sr/Ca-based SST estimates. The threshold-type response curves suggest that extension rate can be used as a quality-control indicator during sample and drill-path selection when using long cores for SST paleoreconstruction. For our corals that passed this quality control step, the Sr/Ca-SST proxy performed well in estimating mean annual temperature across three sites spanning 350 km of the Florida reef tract. However, there was some evidence that extreme temperature stress in 2010 (cold snap) and 2011 (SST above coral-bleaching threshold) may have caused the corals not to record the temperature extremes. Known stress events could be avoided during modern calibrations of paleoproxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27214896','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27214896"><span>Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji</p> <p>2016-10-01</p> <p>Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880018915','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880018915"><span>Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkinson, W. H.; Cyr, M. A.; Strange, R. R.</p> <p>1988-01-01</p> <p>The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27770417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27770417"><span>Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N</p> <p>2017-01-01</p> <p>Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=548998','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=548998"><span>Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spear, John R.; Walker, Jeffrey J.; McCollom, Thomas M.; Pace, Norman R.</p> <p>2005-01-01</p> <p>The geochemical energy budgets for high-temperature microbial ecosystems such as occur at Yellowstone National Park have been unclear. To address the relative contributions of different geochemistries to the energy demands of these ecosystems, we draw together three lines of inference. We studied the phylogenetic compositions of high-temperature (>70°C) communities in Yellowstone hot springs with distinct chemistries, conducted parallel chemical analyses, and carried out thermodynamic modeling. Results of extensive molecular analyses, taken with previous results, show that most microbial biomass in these systems, as reflected by rRNA gene abundance, is comprised of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen, H2. The apparent dominance by H2-metabolizing organisms indicates that H2 is the main source of energy for primary production in the Yellowstone high-temperature ecosystem. Hydrogen concentrations in the hot springs were measured and found to range up to >300 nM, consistent with this hypothesis. Thermodynamic modeling with environmental concentrations of potential energy sources also is consistent with the proposed microaerophilic, hydrogen-based energy economy for this geothermal ecosystem, even in the presence of high concentrations of sulfide. PMID:15671178</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27417734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27417734"><span>An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong</p> <p>2016-07-15</p> <p>The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard "chilled-mirror" dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional "chilled-mirror" hygrometers. Moreover, this DPS outperforms conventional "chilled-mirror" hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...629672T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...629672T"><span>An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong</p> <p>2016-07-01</p> <p>The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1334538-complete-equation-state-shocked-liquid-nitrogen-analytical-developments','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1334538-complete-equation-state-shocked-liquid-nitrogen-analytical-developments"><span>Complete equation of state for shocked liquid nitrogen: Analytical developments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Winey, J. M.; Gupta, Y. M.</p> <p>2016-08-02</p> <p>The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref.more » Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CliPa...7.1209D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CliPa...7.1209D"><span>Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dupont, L. M.; Caley, T.; Kim, J.-H.; Castañeda, I.; Malaizé, B.; Giraudeau, J.</p> <p>2011-11-01</p> <p>Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka) have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome) for the last glacial as well as for other glacial periods of the past 300 Ka.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSemi..38l4005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSemi..38l4005T"><span>Design of a cylindrical LED substrate without radiator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Fan; Guo, Zhenning</p> <p>2017-12-01</p> <p>To reduce the weight and production costs of light-emitting diode (LED) lamps, we applied the principle of the chimney effect to design a cylindrical LED substrate without a radiator. We built a 3D model by using Solidworks software and applied the flow simulation plug-in to conduct model simulation, thereby optimizing the heat source distribution and substrate thickness. The results indicate that the design achieved optimal cooling with a substrate with an upper extension length of 35 mm, a lower extension length of 8 mm, and a thickness of 1 mm. For a substrate of those dimensions, the highest LED chip temperature was 64.78 °C, the weight of the substrate was 35.09 g, and R jb = 7.00 K/W. If the substrate is powered at 8, 10, and 12 W, its temperature meets LED safety requirements. In physical tests, the highest temperature for a physical 8 W cylindrical LED substrate was 66 °C, which differed by only 1.22 °C from the simulation results, verifying the validity of the simulation. The designed cylindrical LED substrate can be used in high-power LED lamps that do not require radiators. This design is not only excellent for heat dissipation, but also for its low weight, low cost, and simplicity of manufacture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1353142-new-method-measure-crack-extension-nuclear-graphite-based-digital-image-correlation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1353142-new-method-measure-crack-extension-nuclear-graphite-based-digital-image-correlation"><span>A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lai, Shigang; Shi, Li; Fok, Alex; ...</p> <p>2017-01-01</p> <p>Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1353142-new-method-measure-crack-extension-nuclear-graphite-based-digital-image-correlation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1353142-new-method-measure-crack-extension-nuclear-graphite-based-digital-image-correlation"><span>A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lai, Shigang; Shi, Li; Fok, Alex</p> <p></p> <p>Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482577-atmospheric-pressure-high-temperature-laminar-flow-reactor-investigation-combustion-related-gas-phase-reaction-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482577-atmospheric-pressure-high-temperature-laminar-flow-reactor-investigation-combustion-related-gas-phase-reaction-systems"><span>An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oßwald, Patrick; Köhler, Markus</p> <p></p> <p>A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimentalmore » data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27595556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27595556"><span>Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Guodong; Zhang, Shu; Dong, Yunwei</p> <p>2017-09-01</p> <p>Organisms on rocky shores are frequently exposed to high temperatures, which cause impairment of cardiac function and retard cellular oxygen delivery. However, some gastropods can survive at several degrees Celsius higher than their Arrhenius break temperature of cardiac function (ABT), indicating the importance of anaerobic metabolism for their thermal tolerance. We measured the global molecular responses to heat stress in limpet Cellana toreuma using 454 GS-FLX to investigate the variations of genes involved in anaerobic metabolism at high temperatures. Next, the gene expression levels of 4 anaerobic enzymes and activity of alanopine dehydrogenase (AlDH), which is involved in opine pathway, were measured in response to elevated temperature. A total of 19 heat shock proteins (HSPs) were determined using real-time PCR at different temperatures. At high temperatures, the extensive upregulation of HSP genes was an effective but energetically expensive form of protection to prevent thermal damage. The upregulation of hypoxia-inducible factor 1 alpha mRNA indicated the condition of cellular hypoxia and the high gene expression and enzyme activity of AlDH suggested that opine pathway was the main anaerobic pathway. These results implied that anaerobic metabolism was enhanced to provide energy in the face of thermal stress. Our findings highlight the ecological significance of the anaerobic metabolism of gastropods to thermal adaptation. For predicting the ecological impact of global warming on the distribution of gastropods, the role of anaerobic pathways should be evaluated. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1015330','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1015330"><span>Estimating cumulative effects of clearcutting on stream temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartholow, J.M.</p> <p>2000-01-01</p> <p>The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993PhDT........97A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993PhDT........97A"><span>Growth and Structure of High-Temperature Superconducting Thin Films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Achutharaman, Vedapuram Sankar</p> <p></p> <p>High temperature superconducting thin films with atomic scale perfection are required for technological applications and scientific studies on the mechanism of superconductivity. Ozone assisted molecular beam epitaxy (MBE) has been shown to produce in-situ superconducting thin films. To obtain a well-controlled and reproducible process, some components such as the substrate heater and the substrate holder have to be designed to be compatible with high oxygen partial pressures. Also, to ensure precise stoichiometry and precipitate-free films, evaporation sources and temperature controllers have to be designed for better temperature stability. The investigation of the MBE process and the thin films grown by MBE are required to obtain a better understanding of the growth parameters such as the composition of the film, substrate surface structure, substrate temperature and ozone partial pressure. This can be obtained by dynamically monitoring the growth process by in-situ characterization techniques such as reflection high energy electron diffraction (RHEED). Intensity oscillations of the specular RHEED beam have been observed during the growth of RBa_2Cu_3 O_7 (R = Y,Dy) films on SrTiO _3. A model for the origin of these RHEED intensity oscillations will be proposed from extensive RHEED intensity studies. A mechanism for growth of these oxides by physical vapor deposition techniques such as MBE and pulsed laser deposition will also be developed. To verify both the models, the growth of the superconductors will be simulated by the Monte Carlo method and compared with experimental RHEED observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20403836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20403836"><span>Recent and future warm extreme events and high-mountain slope stability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R</p> <p>2010-05-28</p> <p>The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970033422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970033422"><span>Quantitative PLIF Imaging in High-Pressure Combustion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hanson, R. K.</p> <p>1997-01-01</p> <p>This is the final report for a research project aimed at developing planar laser-induced fluorescence (PLIF) techniques for quantitative 2-D species imaging in fuel-lean, high-pressure combustion gases, relevant to modem aircraft gas turbine combustors. The program involved both theory and experiment. The theoretical activity led to spectroscopic models that allow calculation of the laser-induced fluorescence produced in OH, NO and 02 for arbitrary excitation wavelength, pressure, temperature, gas mixture and laser linewidth. These spectroscopic models incorporate new information on line- broadening, energy transfer and electronic quench rates. Extensive calculations have been made with these models in order to identify optimum excitation strategies, particularly for detecting low levels (ppm) of NO in the presence of large 02 mole fractions (10% is typical for the fuel-lean combustion of interest). A promising new measurement concept has emerged from these calculations, namely that excitation at specific wavelengths, together with detection of fluorescence in multiple spectral bands, promises to enable simultaneous detection of both NO (at ppm levels) and 02 or possibly NO, 02 and temperature. Calculations have been made to evaluate the expected performance of such a diagnostic for a variety of conditions and choices of excitation and detection wavelengths. The experimental effort began with assembly of a new high-pressure combustor to provide controlled high-temperature and high-pressure combustion products. The non-premixed burner enables access to postflame gases at high temperatures (to 2000 K) and high pressures (to 13 atm), and a range of fuel-air equivalence ratios. The chamber also allowed use of a sampling probe, for chemiluminescent detection of NO/NO2, and thermocouples for measurement of gas temperature. Experiments were conducted to confirm the spectroscopic models for OH, NO and 02.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3568851','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3568851"><span>Neogene origins and implied warmth tolerance of Amazon tree species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge</p> <p>2013-01-01</p> <p>Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late-Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely. PMID:23404439</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJBm...52..471G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJBm...52..471G"><span>A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golden, Jay S.; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick</p> <p>2008-07-01</p> <p>Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003—surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5°C (96°F) was recorded, breaking the previous all-time high minimum temperature record of 33.8°C (93°F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001 2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18219501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18219501"><span>A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Golden, Jay S; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick</p> <p>2008-07-01</p> <p>Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003-surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5 degrees C (96 degrees F) was recorded, breaking the previous all-time high minimum temperature record of 33.8 degrees C (93 degrees F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001-2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391926-temperature-sensitive-junction-transformations-mid-wavelength-hgcdte-photovoltaic-infrared-detector-arrays-laser-beam-induced-current-microscope','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391926-temperature-sensitive-junction-transformations-mid-wavelength-hgcdte-photovoltaic-infrared-detector-arrays-laser-beam-induced-current-microscope"><span>Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qiu, Weicheng; National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn</p> <p>2014-11-10</p> <p>In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixedmore » conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990010023','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990010023"><span>Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jordan, William</p> <p>1998-01-01</p> <p>Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B51A0264A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B51A0264A"><span>Residential Exposure to Nighttime Retained Heat in the El Paso, Texas, USA Desert Metroplex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amaya, M. A.; Mohammed, M.; Pingitore, N. E.; Aldouri, R. K.; Benedict, B. A.</p> <p>2013-12-01</p> <p>The urban heat island is a well recognized and extensively studied phenomenon that has accelerating importance resulting from two trends associated with world-wide population growth: increasing urbanization and global warming. Urbanization, particularly when unplanned and haphazard, changes such thermal parameters as albedo, surface roughness, and heat capacities of surface materials. Rapid urbanization in the contiguous El Paso, Texas, USA - Ciudad Juarez, Chihuahua, Mexico bi-national metroplex has produced an urban heat island that is warmer than the surrounding Chihuahuan desert (temperature: 35-40 C summer; high elevation: 600-1675 m; rainfall: less than 250 mm annual). Despite the extensive literature on the urban heat island, little is known about urban nighttime land surface temperatures. We employed infrared satellite imaging to establish the variation of nighttime neighborhood surface temperatures across the city of El Paso, as well as all of El Paso County. The underlying purpose of our continuing investigation is to evaluate the geography of morbidity risk: are different neighborhoods at different risk of high nighttime temperatures. Those risks can include heat stress, and irritability and sleep deprivation, with possible resultant violence. Heat exposure at night is significant because residents are at home and 90% of El Pasoans do not have 'refrigerated' air conditioning, but instead have evaporative coolers, which are less expensive to own and operate, but are less effective since they raise the humidity of the partially cooled air. Our geographically weighted regression model showed that both day and nighttime land surface temperatures correlated with the normalized difference vegetation index, population density, and albedo. The association with the index and albedo was stronger during the daytime and with population density during the nighttime. Vegetation (negative) and population density (positive) were the dominant temperature drivers, with albedo and elevation as secondary drivers. Using archived satellite imagery we determined that over the last two decades there has been an increase in both day and nighttime temperatures. With no expected change in urban growth and global warming, local residents will be at increasing risk in the future, as will residents in other urban centers in the desert southwest of the US. We currently are evaluating exposure risk in different population sectors. Do the aged or the poor reside in higher risk neighborhoods? Are there simple measures that can be taken to ameliorate nighttime temperatures?</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3597251','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3597251"><span>Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Krause-Jensen, Dorte; Marbà, Núria; Olesen, Birgit; Sejr, Mikael K; Christensen, Peter Bondo; Rodrigues, João; Renaud, Paul E; Balsby, Thorsten JS; Rysgaard, Søren</p> <p>2012-01-01</p> <p>We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub-Arctic conditions from 78 °N to 64 °N. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice-free periods and higher water temperature. The depth limit of 10% kelp cover was 9–14 m at the northernmost sites (77–78 °N) with only 94–133 ice-free days per year, but extended to depths of 21–33 m further south (73 °N–64 °N) where >160 days per year were ice-free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open-water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 °N), inter-annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open-water period increases. As kelps increase carbon-flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem. PMID:28741817</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28741817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28741817"><span>Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krause-Jensen, Dorte; Marbà, Núria; Olesen, Birgit; Sejr, Mikael K; Christensen, Peter Bondo; Rodrigues, João; Renaud, Paul E; Balsby, Thorsten J S; Rysgaard, Søren</p> <p>2012-10-01</p> <p>We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub-Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice-free periods and higher water temperature. The depth limit of 10% kelp cover was 9-14 m at the northernmost sites (77-78 ºN) with only 94-133 ice-free days per year, but extended to depths of 21-33 m further south (73 ºN-64 ºN) where >160 days per year were ice-free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open-water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter-annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open-water period increases. As kelps increase carbon-flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25418100','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25418100"><span>Equilibrium and kinetics of DNA overstretching modeled with a quartic energy landscape.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Argudo, David; Purohit, Prashant K</p> <p>2014-11-04</p> <p>It is well known that the dsDNA molecule undergoes a phase transition from B-DNA into an overstretched state at high forces. For some time, the structure of the overstretched state remained unknown and highly debated, but recent advances in experimental techniques have presented evidence of more than one possible phase (or even a mixed phase) depending on ionic conditions, temperature, and basepair sequence. Here, we present a theoretical model to study the overstretching transition with the possibility that the overstretched state is a mixture of two phases: a structure with portions of inner strand separation (melted or M-DNA), and an extended phase that retains the basepair structure (S-DNA). We model the double-stranded DNA as a chain composed of n segments of length l, where the transition is studied by means of a Landau quartic potential with statistical fluctuations. The length l is a measure of cooperativity of the transition and is key to characterizing the overstretched phase. By analyzing the different values of l corresponding to a wide spectrum of experiments, we find that for a range of temperatures and ionic conditions, the overstretched form is likely to be a mix of M-DNA and S-DNA. For a transition close to a pure S-DNA state, where the change in extension is close to 1.7 times the original B-DNA length, we find l ? 25 basepairs regardless of temperature and ionic concentration. Our model is fully analytical, yet it accurately reproduces the force-extension curves, as well as the transient kinetic behavior, seen in DNA overstretching experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......248H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......248H"><span>Design and Economic Potential of an Integrated High-Temperature Fuel Cell and Absorption Chiller Combined Cooling, Heat, and Power System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hosford, Kyle S.</p> <p></p> <p>Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24731371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24731371"><span>Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Jingjing; Zheng, Jinkai; McClements, David Julian; Xiao, Hang</p> <p>2014-09-01</p> <p>The aim of this study was to design a colloidal delivery system to encapsulate poor water-soluble bioactive flavonoid tangeretin so that it could be utilized in various food products as functional ingredient. Tangeretin-loaded protein nanoparticles were produced by mixing an organic phase containing zein and tangeretin with an aqueous phase containing β-lactoglobulin and then converted into powder by freeze-drying. This powder formed a colloidal suspension when dispersed in water that is relatively stable to particle aggregation and sedimentation. The influence of temperature, ionic strength, and pH on the stability of the protein nanoparticles was tested. Extensive particle aggregation occurred at high ionic strength (>100mM) and intermediate pH (4.5-5.5) due to reduced electrostatic repulsion. Extensive aggregation also occurred at temperatures exceeding 60 °C, which was presumably due to increased hydrophobic attraction. Overall, this study shows that protein-based nanoparticles can be used to encapsulate bioactive tangeretin so that it can be readily dispersed in compatible food products. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JNuM..203..255A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JNuM..203..255A"><span>Modification de l'état d'ordre local d'alliages austénitiques Fe-Cr-Ni au cours de la déformation plastique par traction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aïdi, B.; Bertrand, C.; Viltange, M.; Dimitrov, O.</p> <p>1993-09-01</p> <p>The influence of plastic deformation, by extension at room temperature, on electrical resistivity has been determined in four austenitic Fe-Cr-Ni alloys with 16 wt% Cr and 20, 25, 45 or 75 wt% Ni, in two different states of local order. Two experimental methods have been used (4.2 K resistance measurements before and after deformation, continuous resistance measurements during room-temperature extension tests); the possibilities of the second method and the corrections to be applied are particularly discussed. Resistivity is found to slightly increase at the beginning of deformation ( e < 0.05), then to strongly decrease. The amplitude of the observed effects increases with the nickel content, and with the initial degree of local order. In the high deformation range ( e = 0.15), the resistivity decrease varies linearly with the initial contribution of local order to electrical resistivity. These effects are attributed to a destruction of the local order existing in the solid solutions, by the glide of dislocations during plastic deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002OExpr..10..505S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002OExpr..10..505S"><span>Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanders, Scott Thomas; Mattison, Daniel W.; Ma, Lin; Jeffries, Jay B.; Hanson, Ronald K.</p> <p>2002-06-01</p> <p>The rapid, broad wavelength scanning capabilities of advanced diode lasers allow extension of traditional diode-laser absorption techniques to high pressure, transient, and generally hostile environments. Here, we demonstrate this extension by applying a vertical cavity surface-emitting laser (VCSEL) to monitor gas temperature and pressure in a pulse detonation engine (PDE). Using aggressive injection current modulation, the VCSEL is scanned through a 10 cm-1 spectral window at megahertz rates roughly 10 times the scanning range and 1000 times the scanning rate of a conventional diode laser. The VCSEL probes absorption lineshapes of the ~ 852 nm D2 transition of atomic Cs, seeded at ~ 5 ppm into the feedstock gases of a PDE. Using these lineshapes, detonated-gas temperature and pressure histories, spanning 2000 4000 K and 0.5 30 atm, respectively, are recorded with microsecond time response. The increasing availability of wavelength-agile diode lasers should support the development of similar sensors for other harsh flows, using other absorbers such as native H2O.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PMag...97.1847K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PMag...97.1847K"><span>Yttria catalyzed microstructural modifications in oxide dispersion strengthened V-4Cr-4Ti alloys synthesized by field assisted sintering technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran; Verma, Shailendra Kumar; Dash, Biswaranjan; Agrawal, Priyanka; Subramanian, Karthikeyan</p> <p>2017-08-01</p> <p>The present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V-4Cr-4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V-4Cr-4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V-4Cr-4Ti) with and without yttria addition has resulted in single phase α-V (V-4Cr-4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr-V and Ti-V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α-V alloys. High temperature compression test of 0.9 at% yttria dispersed α-V alloy reveals a glassy behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220520','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220520"><span>Technology Solutions Case Study: Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast, Devens and Easthampton, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p></p> <p>Transformations, Inc., has extensive experience building high-performance homes - production and custom - in a variety of Massachusetts locations and uses mini-split heat pumps (MSHPs) for space conditioning in most of its homes. The use of MSHPs for simplified space-conditioning distribution provides significant first-cost savings, which offsets the increased investment in the building enclosure. In this project, the U.S. Department of Energy Building America team Building Science Corporation evaluated the long-term performance of MSHPs in 8 homes during a period of 3 years. The work examined electrical use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point)more » heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220481','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220481"><span>Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ueno, K.; Loomis, H.</p> <p></p> <p>Transformations, Inc. has extensive experience building their high performance housing at a variety of Massachusetts locations, in both a production and custom home setting. The majority of their construction uses mini-split heat pumps (MSHPs) for space conditioning. This research covered the long-term performance of MSHPs in Zone 5A; it is the culmination of up to 3 years' worth of monitoring in a set of eight houses. This research examined electricity use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions. The use ofmore » simplified space conditioning distribution (through use of MSHPs) provides significant first cost savings, which are used to offset the increased investment in the building enclosure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890016890','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890016890"><span>On finite element implementation and computational techniques for constitutive modeling of high temperature composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.</p> <p>1989-01-01</p> <p>The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010066965','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010066965"><span>Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.</p> <p>2000-01-01</p> <p>Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/28273','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/28273"><span>Using wheel temperature detector technology to monitor railcar brake system effectiveness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-12-01</p> <p>Wheel temperature detector technology has been used extensively in the railroad industry for the past several decades. The : technology has traditionally been used to identify wheels with elevated temperatures. There is currently a movement in the : ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19251509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19251509"><span>Temperature compensated cuts in LGT crystal microresonators using length extensional mode.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Douchet, Gabrielle; Sthal, Fabrice; Bigler, Emmanuel; Bourquin, Roger</p> <p>2009-02-01</p> <p>In this letter, experimental investigation of frequency-temperature effects in langatate rectangular cross-section beams are presented. It is shown that a first-order temperature compensated cut exists for the first vibrating mode of length extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308206&Lab=NHEERL&keyword=Remote+AND+sensing&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308206&Lab=NHEERL&keyword=Remote+AND+sensing&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We used an extensive dataset of remotely sensed summertime river temperature to compare longitudinal profiles (temperature versus distance) for 54 rivers in the Pacific Northwest. We evaluated (1) how often profiles fit theoretical expectations of asymptotic downstream warming, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730003330','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730003330"><span>Surface properties of thermionic electrodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stickney, R. E.</p> <p>1972-01-01</p> <p>A quasi-equilibrium model which provides semiquantitative predictions of the oxygen reaction with refractory metals was developed at high temperature and low pressure. Extensive experimental data was obtained on adsorption and work function properties for a wide variety of adsorbates (Cs, K, Na, I, Br, Cl, and O) on several refractory metals (W, Ta, Mo, and Re). Conclusions and recommendations for research on alkali metal adsorption, oxygen adsorption, and adsorption of cesium - oxygen mixtures are included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA119832','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA119832"><span>Laser Journal (Selected Articles),</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-09-10</p> <p>temperature CO2 branch selection laser with a lifetime already exceeding 6500 hours which may be even longer. HIGH POWER LONG LIFE HeCd LASER Qu Shipu...method of plating single crystal gold film in a vacuum with the foreign material extension method. First mica is used as the substrate. Then a special...Hospital) Chen Zhasping Zhou Yiping et al (Eye, Ear, Nose, Throat Hospital, Examination Department, Shanghai Medical School Number 1.) Qu Zhipu et al</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA610496','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA610496"><span>Research@ARL: Materials Modeling at Multiple Scales. Volume 3, Issue 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-07-01</p> <p>possessing high ionic conductivity , low viscosity, and good thermal and electrochemical stability and, importantly, being compatible with electrodes. As... thermal and electrical properties. ARL conducts extensive research in graphene and other 2D materials such as BN, ZnO, and hybrid graphene-polyethylene...contribution at temperatures below 393 K. Thus, below 393 K, Li2EDC essentially acts as a single ion conductor . The isotropic ionic conductivity from MD</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMM43A..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMM43A..08M"><span>Strong latitudinal and vertical biogeography of Synechococcus diversity in the equatorial Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martiny, A.; Kent, A. G.; Mouginot, C.; Baer, S. E.; Lomas, M. W.</p> <p>2016-02-01</p> <p>Extensive genetic diversity has been observed within Synechococcus including the presence of multiple major clades. However, the biogeography and underlying environmental drivers of these clades remain elusive. Here, we developed a new high-throughput sequencing assay using rpoC1 as marker combined with Illumina sequencing. Using this, we identified the genetic diversity of Synechococcus from 200 samples in an eastern Pacific Ocean transect between 19˚N and 3˚S. We used a placement method to identify the phylogenetic affiliation of each sequence and detected extensive diversity including multiple previously undescribed clades. We observed clear biogeographical domains, with Clade 2 dominant in the northern part of the transect, Clade CRD peaking at the equator, and Clade 1 dominant deeper in the water column throughout the transect. This biogeography, along with physical and nutrient data, suggests that Clade 2 represents a high temperature, low macronutrient ecotype, CRD a high temperature but low iron ecotype, and at least part of Clade 1 a low-light ecotype. The shift between Clade 2 and CRD occurred at 7˚N, whereas the concentration of macronutrients was low down to 4˚N, before increasing. This biogeography indicates that Synechococcus cells experience iron stress up to 7˚N despite low concentrations of phosphate and nitrate. The overall biogeography closely matched the distribution of Prochlorococcus diversity in this region, suggesting a parallel evolution of ecotypes in these two major lineages of marine Cyanobacteria.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890005136','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890005136"><span>Observations of stratospheric temperature changes coincident with the recent Antarctic ozone depletions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randel, William J.; Newman, Paul A.</p> <p>1988-01-01</p> <p>A high degree of correlation between the recent decline in Antarctic total ozone and cooling of the stratosphere during Austral spring has been noted in several recent studies (e.g., Sekiguchi, 1986; Angel, 1986). This study analyzes the observed temperature trends in detail, focusing on the spatial and temporal aspects of the observed cooling. Ozone losses and stratospheric cooling can be correlated for several reasons: (1) ozone losses (from an unspecified cause) will directly reduce temperatures due to decreased solar ultraviolet absorption (Shine, 1986), and/or (2) changes in both ozone and temperature structure due to modification of stratospheric circulation patterns (Mahlman and Fels, 1986). In order to scrutinize various ozone depletion scenarios, detailed information on the observed temperature changes is necessary; the goal is to provide such data. The data used are National Meteorological Center (NMC) Climate Analysis Center (CAC) derived temperatures, covering 1000 to 1 mb (0 to 48 km), for the period 1979 to 1987. Discussions on data origin and quality (assessed by extensive comparisons with radiosonde observations), along with other details of these observations, can be found in Newman and Randel (1988).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23058810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23058810"><span>Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coles, Steve L; Riegl, Bernhard M</p> <p>2013-07-30</p> <p>Corals in the Gulf withstand summer temperatures up to 10 °C higher than corals elsewhere and have recovered from extreme temperature events in 10 years or less. This heat-tolerance of Gulf corals has positive implications for the world's coral populations to adapt to increasing water temperatures. However, survival of Gulf corals has been severely tested by 35-37 °C temperatures five times in the last 15 years, each time causing extensive coral bleaching and mortality. Anticipated future temperature increases may therefore challenge survival of already highly stressed Gulf corals. Previously proposed translocation of Gulf corals to introduce temperature-adapted corals outside of the Gulf is assessed and determined to be problematical, and to be considered a tool of last resort. Coral culture and transplantation within the Gulf is feasible for helping maintain coral species populations and preserving genomes and adaptive capacities of Gulf corals that are endangered by future thermal stress events. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990020840&hterms=fossils+formed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfossils%2Bformed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990020840&hterms=fossils+formed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfossils%2Bformed"><span>Rare Potassium-Bearing Mica in Allan Hills 84001: Additional Constraints on Carbonate Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brearley, A. J.</p> <p>1998-01-01</p> <p>There have been presented several intriguing observations suggesting evidence of fossil life in martian orthopyroxenite ALH 84001. These exciting and controversial observations have stimulated extensive debate over the origin and history of ALH 84001, but many issues still remain unresolved. Among the most important is the question of the temperature at which the carbonates, which host the putative microfossils, formed. Oxygen- isotopic data, while showing that the carbonates are generally out of isotopic equilibria with the host rock, cannot constrain their temperature of formation. Both low- and high-temperature scenarios are plausible depending on whether carbonate growth occurred in an open or closed system. Petrographic arguments have generally been used to support a high-temperature origin but these appear to be suspect because they assume equilibrium between carbonate compositions that are not in contact. Some observations appear to be consistent with shock mobilization and growth from immiscible silicate-carbonate melts at high temperatures. Proponents of a low-temperature origin for the carbonates are hampered by the fact that there is currently no evidence of hydrous phases that would indicate low temperatures and the presence of a hydrous fluid during the formation of the carbonates. However, the absence of hydrous phases does not rule out carbonate formation at low temperatures, because the carbonate forming fluids may have been extremely CO2 rich, such that hydrous phases would not have been stabilized. In this study, I have carried out additional Transmission electron microscopy (TEM) studies of ALH-84001 and have found evidence of very rare phyllosilicates, which appear to be convincingly of pre-terrestrial origin. At present these observations are limited to one occurrence: further studies are in progress to determine if the phyllosilicates are more widespread.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AdAtS..22..915Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AdAtS..22..915Z"><span>South Asian high and Asian-Pacific-American climate teleconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Peiqun; Song, Yang; Kousky, Vernon E.</p> <p>2005-11-01</p> <p>Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surface temperature and land surface. This study investigates the relationship between the Asian monsoon and the climate anomalies in the Asian-Pacific-American (APA) sector. A hypothesis is tested that the variability of the upper-tropospheric South Asian high (SAH), which is closely associated with the overall heating of the large-scale Asian monsoon, is linked to changes in the subtropical western Pacific high (SWPH), the mid-Pacific trough, and the Mexican high. The changes in these circulation systems cause variability in surface temperature and precipitation in the APA region. A stronger SAH is accompanied by a stronger and more extensive SWPH. The enlargement of the SWPH weakens the mid-Pacific trough. As a result, the southern portion of the Mexican high becomes stronger. These changes are associated with changes in atmospheric teleconnections, precipitation, and surface temperature throughout the APA region. When the SAH is stronger, precipitation increases in southern Asia, decreases over the Pacific Ocean, and increases over the Central America. Precipitation also increases over Australia and central Africa and decreases in the Mediterranean region. While the signals in surface temperature are weak over the tropical land portion, they are apparent in the mid latitudes and over the eastern Pacific Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1093744-multi-scale-characterization-pore-evolution-combustion-metamorphic-complex-hatrurim-basin-israel-combining-ultra-small-angle-neutron-scattering-image-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1093744-multi-scale-characterization-pore-evolution-combustion-metamorphic-complex-hatrurim-basin-israel-combining-ultra-small-angle-neutron-scattering-image-analysis"><span>Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu</p> <p></p> <p>Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760010237','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760010237"><span>Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Groll, M.; Pittman, R. B.; Eninger, J. E.</p> <p>1975-01-01</p> <p>A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1888b0034A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1888b0034A"><span>Temperature dependence of electron impact ionization coefficient in bulk silicon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmed, Mowfaq Jalil</p> <p>2017-09-01</p> <p>This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DMP.R1001L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DMP.R1001L"><span>Theory of BCS-BEC Crossover in Ultracold Fermi Gases: Insights into Thermodynamical and Spectroscopic Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levin, Kathryn</p> <p>2009-05-01</p> <p>In this talk we summarize our theoretical understanding of the atomic Fermi superfluids with an emphasis on understanding current experiments. We compare and contrast different theoretical approaches for dealing with finite temperature, and discuss their respective implications for these trapped gases. Armed with a basic picture of the thermodynamics we turn to a variety of different measurements based on radio frequency spectroscopy, including both momentum integrated and momentum resolved experiments. As recently reviewed in arXiv 0810.1940 and 0810.1938, we show how a broad range of experimental phenomena can be accomodated within our natural extension of the BCS-Leggett ground state to finite temperature, and briefly touch on the applicability of BCS-BEC crossover theory to the high temperature superconductors. Co-authors: Qijin Chen, Yan He and Chih-Chun Chien</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760025292&hterms=working+performance&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dworking%2Bperformance','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760025292&hterms=working+performance&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dworking%2Bperformance"><span>Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Groll, M.; Pittman, R. B.; Eninger, J. E.</p> <p>1976-01-01</p> <p>A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013217"><span>Formation of Minor Phases in a Nickel-Based Disk Superalloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gabb, T. P.; Garg, A.; Miller, D. R.; Sudbrack, C. K.; Hull, D. R.; Johnson, D.; Rogers, R. B.; Gayda, J.; Semiatin, S. L.</p> <p>2012-01-01</p> <p>The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approximate equilibrium. Additional heat treatments were also performed for shorter times, to then assess non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their transformation temperatures, lattice parameters, compositions, average sizes and total area fractions were determined, and compared to estimates of an existing phase prediction software package. Parameters measured at equilibrium sometimes agreed reasonably well with software model estimates, with potential for further improvements. Results for shorter times representing non-equilibrium indicated significant potential for further extension of the software to such conditions, which are more commonly observed during heat treatments and service at high temperatures for disk applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29103069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29103069"><span>Genetic programming-based mathematical modeling of influence of weather parameters in BOD5 removal by Lemna minor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi</p> <p>2017-11-04</p> <p>This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980227984','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980227984"><span>Materials Problems in Chemical Liquid-Propellant Rocket Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gilbert, L. L.</p> <p>1959-01-01</p> <p>With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cosp...37.1370J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cosp...37.1370J"><span>High Temperature Mechanisms for Venus Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven</p> <p></p> <p>Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New Frontiers AO release. Scalable high temperature motor, resolver and bearing developments allow for creation of long lasting sample acquisition systems, booms, robot arms and even mobility systems that operate outside of an environment-controlled landed platform on the surface of Venus. The SR and BLDC motors are no longer expected to limit the life of Venus surface operations. With the accompanying high temperature bearing and other mechanisms development, surface operations will be limited only by available power. Therefore, the motor and resolver's capability to survive for hours (and potentially longer) in the environment is a major benefit to future Venus science missions and they also allow time for communication ground loops to optimize sample target selection and the possibility for acquiring multiple samples from the surface. The extreme temperature motors, resolver and other high temperature mechanisms therefore revolutionize the exploration of Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPS...381..107R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPS...381..107R"><span>High-temperature solid electrolyte interphases (SEI) in graphite electrodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.</p> <p>2018-03-01</p> <p>Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820049516&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820049516&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DATLA"><span>Venus - Limited extension and volcanism along zones of lithospheric weakness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schaber, G. G.</p> <p>1982-01-01</p> <p>Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23134767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23134767"><span>Air temperature-related human health outcomes: current impact and estimations of future risks in Central Italy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morabito, Marco; Crisci, Alfonso; Moriondo, Marco; Profili, Francesco; Francesconi, Paolo; Trombi, Giacomo; Bindi, Marco; Gensini, Gian Franco; Orlandini, Simone</p> <p>2012-12-15</p> <p>The association between air temperature and human health is described in detail in a large amount of literature. However, scientific publications estimating how climate change will affect the population's health are much less extensive. In this study current evaluations and future predictions of the impact of temperature on human health in different geographical areas have been carried out. Non-accidental mortality and hospitalizations, and daily average air temperatures have been obtained for the 1999-2008 period for the ten main cities in Tuscany (Central Italy). High-resolution city-specific climatologic A1B scenarios centered on 2020 and 2040 have been assessed. Generalized additive and distributed lag models have been used to identify the relationships between temperature and health outcomes stratified by age: general adults (<65), elderly (aged 65-74) and very elderly (≥75). The cumulative impact (over a lag-period of 30 days) of the effects of cold and especially heat, was mainly significant for mortality in the very elderly, with a higher impact on coastal plain than inland cities: 1 °C decrease/increase in temperature below/above the threshold was associated with a 2.27% (95% CI: 0.17-4.93) and 15.97% (95% CI: 7.43-24.51) change in mortality respectively in the coastal plain cities. A slight unexpected increase in short-term cold-related mortality in the very elderly, with respect to the baseline period, is predicted for the following years in half of the cities considered. Most cities also showed an extensive predicted increase in short-term heat-related mortality and a general increase in the annual temperature-related elderly mortality rate. These findings should encourage efforts to implement adaptation actions conducive to policy-making decisions, especially for planning short- and long-term health intervention strategies and mitigation aimed at preventing and minimizing the consequences of climate change on human health. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023751&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023751&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia"><span>High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan</p> <p>2004-01-01</p> <p>The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007E%26PSL.255..133H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007E%26PSL.255..133H"><span>The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huerta, Audrey D.; Harry, Dennis L.</p> <p>2007-03-01</p> <p>Two distinct stages of extension are recognized in the West Antarctic Rift system (WARS). During the first stage, beginning in the Late Cretaceous, extension was broadly distributed throughout much of West Antarctica. A second stage of extension in the late Paleogene was focused primarily in the Victoria Land Basin, near the boundary with the East Antarctic craton. The transition to focused extension was roughly coeval with volcanic activity and strike-slip faulting in the adjacent Transantarctic Mountains. This spatial and temporal correspondence suggests that the transition in extensional style could be the result of a change in plate motions or impingement of a plume. Here we use finite element models to study the processes and conditions responsible for the two-stage evolution of rifting in the WARS. Model results indicate that the transition from a prolonged period of broadly distributed extension to a later period of focused rifting did not require a change in the regional stress regime (changes in plate motion), or deep mantle thermal state (impingement of a plume). Instead, we attribute the transition from diffuse to focused extension to an early stage dominated by the initially weak accreted lithosphere of West Antarctica, and a later stage that concentrated around a secondary weakness located at the boundary between the juvenile West Antarctica lithosphere and Precambrian East Antarctic craton. The modeled transition in extension from the initially weak West Antarctica region to the secondary weakness at the West Antarctic-East Antarctic boundary is precipitated by strengthening of the West Antarctica lithosphere during syn-extensional thinning and cooling. The modeled syn-extensional strengthening of the WARS lithosphere promotes a wide-rift mode of extension between 105 and ˜ 65 Ma. By ˜ 65 Ma most of the extending WARS region becomes stronger than the area immediately adjacent to the East Antarctic craton and extension becomes concentrated near the East Antarctic/West Antarctic boundary, forming the Victoria Land Basin region. Mantle necking in this region leads to syn-extensional weakening that promotes a narrow-rift mode of extension that becomes progressively more focused with time, resulting in formation of the Terror Rift in the western Victoria Land Basin. The geodynamic models demonstrate that the transition from diffuse to focused extension occurs only under a limited set of initial and boundary conditions, and is particularly sensitive to the pre-rift thermal state of the crust and upper mantle. Models that predict diffuse extension in West Antarctica followed by localization of rifting near the boundary between East and West Antarctica require upper mantle temperatures of 730 ± 50 °C and sufficient concentration of heat producing elements in the crust to account for ˜ 50% of the upper mantle temperature. Models with upper mantle temperatures < ca. 680 °C and/or less crustal heat production initially undergo diffuse extension in West Antarctica, and quickly develop a lithospheric neck at the model edge furthest from East Antarctica. Models with upper mantle temperatures > ca. 780 °C do not develop focused rifts, and predict indefinite diffuse extension in West Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040071102','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040071102"><span>Thermocouple Extension-Wire-Connections and Low Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figueroa, Fernando; Mitchell, Mark; Richardson, Gregory</p> <p>2000-01-01</p> <p>Experiments were carried out to determine the casue of erroneous readings from thermocouples of type K when measuring temperatures of liquid hydrogen. It was believed to be linked to te temperature of the connector used to extend the thermocouple wires to the voltage meter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1121/pdf/ofr2013-1121.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1121/pdf/ofr2013-1121.pdf"><span>Linear extension rates of massive corals from the Dry Tortugas National Park (DRTO), Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Muslic, Adis; Flannery, Jennifer A.; Reich, Christopher D.; Umberger, Daniel K.; Smoak, Joseph M.; Poore, Richard Z.</p> <p>2013-01-01</p> <p>Colonies of three coral species, Montastraea faveolata, Diploria strigosa, and Siderastrea siderea, located in the Dry Tortugas National Park (DRTO), Florida, were sampled and analyzed to evaluate annual linear extension rates. Montastraea faveolata had the highest average linear extension and variability in (DRTO: C2 = 0.67 centimeters/year (cm yr-1) ± 0.04, B3 = 0.85 cm yr-1 ± 0.07), followed by D. strigosa (DRTO: C1 = 0.73 cm yr-1 ± 0.04; MK = 0.59 cm yr-1 ± 0.06) and S. siderea (DRTO: A1 = 0.41 cm yr-1 ± 0.03). Intercolony comparison of M. faveolata from DRTO yielded a significant correlation (r = 0.34, df = 67, P = 0.005) and similar long-term patterns. DRTO S. siderea core A1 showed an overall increasing trend (r = 0.61, df = 119, P < 0.0001) in extension rates that correlated significantly with International Comprehensive Ocean/Atmosphere Data Set annual sea-surface temperature (r = 0.42, df = 115, P < 0.0001) and an air temperature record from Key West (r = 0.37, df = 111, P < 0.0001). In conclusion, annual linear extension rates are species specific and potentially influence by long-term variability in sea-surface temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28763616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28763616"><span>Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J</p> <p>2017-08-22</p> <p>Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptMa..73..319W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptMa..73..319W"><span>Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang</p> <p>2017-11-01</p> <p>Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMPP31B1523B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMPP31B1523B"><span>Geochemical Ecology of a High Latitude Coral: Plesiastrea versipora a new Paleo-Environmental Archive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burgess, S. N.; McCulloch, M. M.; Ward, T.</p> <p>2005-12-01</p> <p>Corals growing in high latitude waters in Southern Australia are considered to be sensitive to changes in climate, including seasonal fluctuations in sea surface temperature. The annual nature of density bands of Plesiastrea versipora were verified using U/Th ages derived from multi-collector ICP-MS analyses and the resulting extension rates varied from an average of 1.2 mm yr -1 to 9 mm yr -1 for different colonies ranging in age from 120 - 300 years, located within the same reef. High resolution laser-ablation ICP-MS analyses of established paleo-temperature proxies including B/Ca, Mg/Ca, Sr/Ca and U/Ca were obtained from several cores of P. versipora from Gulf St Vincent (34.5°S) and Spencer Gulf (35°S), South Australia. Elemental compositions were compared to in situ sea surface temperature (SST) and satellite (IGOSS) records, and demonstrate significant covariance between Ba/Ca and temperature. Barium may not have been recognised as a temperature proxy in previous studies due to the smaller temperature range for lower latitude environments (~ 5°C versus 12°C for this study) and other factors contributing to the Ba signal such as terrestrially-derived or upwelled sources. Other trace elements analysed gave an indication of both the nutrient availability (P and Mn) and terrestrially derived pollutants (V, Y, Mo, Sn and Pb) correlating strongly with luminescent bands. Several of the stronger luminescent bands coincide temporally with known oil spills at a nearby port refinery and research is ongoing to determine if this is the point source of pollution. These data taken together suggest that P. versipora can provide valuable paleoclimate information in high-latitude environments, recording large seasonal variation in both temperature and productivity regimes with high fidelity and may also be employed to reconstruct anthropogenic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21137093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21137093"><span>Temperature effects on snapping performance in the common snapper Chelydra serpentina (Reptilia, Testudines).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vervust, Bart; Brecko, Jonathan; Herrel, Anthony</p> <p>2011-01-01</p> <p>Studies on the effect of temperature on whole-animal performance traits other than locomotion are rare. Here we investigate the effects of temperature on the performance of the turtle feeding apparatus in a defensive context. We measured bite force and the kinematics of snapping in the Common Snapping Turtle (Chelydra serpentina) over a wide range of body temperatures. Bite force performance was thermally insensitive over the broad range of temperatures typically experienced by these turtles in nature. In contrast, neck extension (velocity, acceleration, and deceleration) and jaw movements (velocity, acceleration, and deceleration) showed clear temperature dependence with peak acceleration and deceleration capacity increasing with increasing temperatures. Our results regarding the temperature dependence of defensive behavior are reflected by the ecology and overall behavior of this species. These data illustrate the necessity for carefully controlling T(b) when carrying out behavioral and functional studies on turtles as temperature affects the velocity, acceleration, and deceleration of jaw and neck extension movements. More generally, these data add to the limited but increasing number of studies showing that temperature may have important effects on feeding and defensive performance in ectotherms. © 2010 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191867','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191867"><span>Energetic requirements of green sturgeon (Acipenser medirostris) feeding on burrowing shrimp (Neotrypaea californiensis) in estuaries: importance of temperature, reproductive investment, and residence time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Borin, Joshua M.; Moser, Mary L.; Hansen, Adam G.; Beauchamp, David A.; Corbett, Stephen C.; Dumbauld, Brett R.; Pruitt, Casey; Ruesink, Jennifer L.; Donoghue, Cinde</p> <p>2017-01-01</p> <p>Habitat use can be complex, as tradeoffs among physiology, resource abundance, and predator avoidance affect the suitability of different environments for different species. Green sturgeon (Acipenser medirostris), an imperiled species along the west coast of North America, undertake extensive coastal migrations and occupy estuaries during the summer and early fall. Warm water and abundant prey in estuaries may afford a growth opportunity. We applied a bioenergetics model to investigate how variation in estuarine temperature, spawning frequency, and duration of estuarine residence affect consumption and growth potential for individual green sturgeon. We assumed that green sturgeon achieve observed annual growth by feeding solely in conditions represented by Willapa Bay, Washington, an estuary annually frequented by green sturgeon and containing extensive tidal flats that harbor a major prey source (burrowing shrimp, Neotrypaea californiensis). Modeled consumption rates increased little with reproductive investment (<0.4%), but responded strongly (10–50%) to water temperature and duration of residence, as higher temperatures and longer residence required greater consumption to achieve equivalent growth. Accordingly, although green sturgeon occupy Willapa Bay from May through September, acoustically-tagged individuals are observed over much shorter durations (34 d + 41 d SD, N = 89). Simulations of <34 d estuarine residence required unrealistically high consumption rates to achieve observed growth, whereas longer durations required sustained feeding, and therefore higher total intake, to compensate for prolonged exposure to warm temperatures. Model results provide a range of per capita consumption rates by green sturgeon feeding in estuaries to inform management decisions regarding resource and habitat protection for this protected species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880007500','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880007500"><span>Evaluation of high temperature structural adhesives for extended service, phase 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hendricks, C. L.; Hill, S. G.; Hale, J. N.; Dumars, W. G.</p> <p>1987-01-01</p> <p>The evaluation of 3 experimental polymers from NASA-Langley and a commercially produced polymer from Mitsui Toatsu Chemicals as high temperature structural adhesives is presented. A polyphenylquinoxaline (PPQ), polyimide (STPI/LaRC-2), and a polyarylene ether (PAE-SO2) were evaluated as metal-to-metal adhesives. Lap shear, crack extension, and climbing drum peel specimens were fabricated from all three polymers and tested after thermal, combined thermal/humidity, and stressed hydraulic fluid (Skydrol) exposure. The fourth polymer, LARC-TPI was evaluated as an adhesive for titanium honeycomb sandwich structure. All three experimental polymers performed well as metal-to-metal adhesives from 219 K (-65 F) to 505 K (450 F), including humidity exposure. Structural adhesive strength was also maintained at 505 K for a minimum of 3000 hours. LaRC-TPI was evaluated as a high temperature (505 K) adhesive for titanium honeycomb sandwich structure. The LaRC-TPI bonding process development concentrated on improving the honeycomb core-to-skin bond. The most promising approach of those evaluated combined a LaRC-TPI polymer solution with a semi-crystalline LaRC-TPI powder for adhesive film fabrication and fillet formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HMT....52..469Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HMT....52..469Q"><span>Influence of fluid temperature gradient on the flow within the shaft gap of a PLR pump</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, W.; Rosic, B.; Zhang, Q.; Khanal, B.</p> <p>2016-03-01</p> <p>In nuclear power plants the primary-loop recirculation (PLR) pump circulates the high temperature/high-pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between the hot recirculating water and the cold purge water (of order of 200 °C), the flow instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue cracks. The present work numerically investigated the influence of temperature difference and rotating speed on the structure and dynamics of the Taylor-Couette flow instabilities. The CFD solver used in this study was extensively validated against the experimental data published in the open literature. Influence of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface region between the annulus gap and the lower recirculating cavity. Higher temperature difference and rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the experimental data, identifying the region potentially affected by the thermal fatigue. The physical understandings of such flow instabilities presented in this paper would be useful for future PLR pump design optimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080047309','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080047309"><span>User-defined Material Model for Thermo-mechanical Progressive Failure Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knight, Norman F., Jr.</p> <p>2008-01-01</p> <p>Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T21A2797L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T21A2797L"><span>Orogenic inheritance in Death Valley region, western US Basin and Range: implications for Neogene crustal extension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lima, R. D.; Hayman, N. W.; Prior, M. G.; Stockli, D. F.; Kelly, E. D.</p> <p>2016-12-01</p> <p>Deformation and temperature evolution during orogenic stages may influence later fabric development, thus controlling large-scale extensional processes that can occur millions of years later. Here, we describe pressure-temperature and fabric evolution from the Death Valley (DV) region and show how inherited fabrics, formed in late orogenic stages during Late Cretaceous time, influenced later Neogene age Basin and Range (BR) extension. The DV region is one of the most extended and thinned regions in the western US BR province, and the two of the ranges that bound the eastern valley expose basement rocks exhumed during the Neogene extension. In the Funeral range, it has been established that older (Precambrian) basement underwent Mesozoic age syn-deformational metamorphism during the Sevier-Laramide orogeny. In contrast, the Black Mountains record widespread tectonic stretching and magmatism of Miocene age on Precambrian basement, and have, overall, been lacking previous evidence of Mesozoic metamorphism and fabric development. In the Funeral Range Late Cretaceous migmatitic fabrics were overprinted by zones of high-strain fabrics formed due to melt-consuming reaction that define an overall P-T cooling path likely during late- to post-orogenesis. These fabrics form interconnected layers of quartz + biotite aggregates, in which individual quartz grains lack evidence of intracrystalline plastic deformation and show consistently random [c]-axis microfabrics. This suggests coupled reaction-diffusion processes that favored diffusion-assisted creep. New geochronometric results of melt products in the Black Mountains show evidence of partial melting of Late Cretaceous age. Contrasting with the neighboring Funeral Range, overprinting by extensional fabrics of Miocene age is widespread, and consists of high-strain, anastomosing foliation composed of retrograde products from preexisting, higher-temperature fabrics. These include interconnected fine-grained chlorite + quartz and sericite aggregates showing [c]-axis quartz microfabrics consistent with diffusion-assisted creep. In both ranges, the formation of new-over-old fabric due to the extensional deformation is favored by local heterogeneities in bulk composition due previous melt segregation during late- to post-orogenic stages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020091960','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020091960"><span>Insulation Material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1984-01-01</p> <p>Manufactured by Hitco Materials Division of Armco, Inc. a ceramic fiber insulation material known as Refrasil has been used extensively as a heat-absorbing ablative reinforcement for such space systems as rocket motor nozzles, combustion chambers, and re-entry shields. Refrasil fibers are highly porous and do not melt or vaporize until fibers exceed 3,100 degrees Fahrenheit. Due to these and other properties, Refrasil has found utility in a number of industrial high temperature applications where glass, asbestos and other materials fail. Hitco used this insulation to assist Richardson Co., Inc. in the manufacturing of hard rubber and plastic molded battery cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12710729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12710729"><span>Chemical composition of Tipuana tipu, a source for tropical honey bee products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>dos Santos Pereira, Alberto; de Aquino Neto, Francisco Radler</p> <p>2003-01-01</p> <p>Tipuana tipu (Benth.) Kuntze is a tree from the leguminosae family (Papilionoideae) indigenous in Argentina and extensively used in urbanism, mainly in Southern Brazil. The epicuticular waxes of leaves and branch, and flower surface were studied by high temperature high resolution gas chromatography. Several compounds were characterized, among which the aliphatic alcohols were predominant in branch, leaves and receptacle. Alkanes were predominant only in the petals and the aliphatic acids were predominant in stamen. In branches and leaf epicuticular surfaces, six long chain wax esters series were characterized, as well as lupeol and b-amyrin hexadecanoates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987JMatS..22.3361S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987JMatS..22.3361S"><span>Investigation of laser irradiation of WC-Co cemented carbides inside a scanning electron microscope (LASEM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultrich, B.; Wetzig, K.</p> <p>1987-09-01</p> <p>A combination of SEM and laser enables direct observation of structural modifications by a high-energy input. With this new device, melting phenomena and fracture processes in a WC-6 percent Co hard metal were investigated. The first laser pulse leads to melting of a thin surface layer with the formation of blisters and craters. Cracking is induced by the relaxation of compressive surface stresses during the high-temperature stage and the appearance of tensile stresses during cooling. Besides crack formation and extension, complete welding of crack surfaces was observed after repeated laser irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369643','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369643"><span>Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Jing</p> <p></p> <p>This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transitionmore » at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La 2Zr 2O 7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA301872','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA301872"><span>Mechanical Properties of Porous, High Temperature Structural Materials: Sources of Toughness in Reaction Bonded Silicon Nitride.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1995-10-15</p> <p>tensile extension. At each level of externally imposed displacements, internal equilibrium was achieved by a conjugate gradient method of energy...indentation cracks viewed by TEM. This could be due to either weaker grain boundaries or due to grain level internal stresses of misfit. The fact... internally using the conjugate gradient method until the overall elastic strain energy function 4 was minimized for a unit level of border displacement which</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA099674','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA099674"><span>Characterization of Anaerobic Chemical Processes in Reservoirs: Problem Description and Conceptual Model Formulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-04-01</p> <p>also found that almost all the Fe in soil solution was complexed with organic mat- ter. The high degree of Fe complexing in soil solution was...range of pH, the potentials were in conformity with the theoretical slope of 0.06. 45. When a soil is submerged, soil solution concentrations of...Ponnanperuma 1972). Low temperatures lead to extensive accumula- tion of organic acids in the soil solution (International Rice Research Institute (IRRI) 1969</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003872','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003872"><span>Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahlborg, Nadia L.; Zhu, Dongming</p> <p>2013-01-01</p> <p>The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SolED...5..525P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SolED...5..525P"><span>Extreme extension across Seram and Ambon, eastern Indonesia: Evidence for Banda slab rollback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pownall, J. M.; Hall, R.; Watkinson, I. M.</p> <p>2013-04-01</p> <p>The island of Seram, which lies in the northern part of the 180°-curved Banda Arc, has previously been interpreted as a fold-and-thrust belt formed during arc-continent collision, which incorporates ophiolites intruded by granites thought to have been produced by anatexis within a metamorphic "sole". However, new geological mapping and a re-examination of the field relations cause us to question this model. We instead propose that there is evidence for recent N-S extension that has caused the high-temperature exhumation of hot mantle peridotites, granites, and granulites (the "Kobipoto Complex") beneath low-angle lithospheric detachment faults. Greenschist- to lower-amphibolite facies metapelites and amphibolites of the Tehoru Formation, which comprise the hanging wall above the detachment faults, were overprinted by sillimanite-grade metamorphism, migmatisation and limited localised diatexis to form the Taunusa Complex. Highly aluminous metapelitic garnet + cordierite + sillimanite + spinel + corundum + quartz granulites exposed in the Kobipoto Mountains (central Seram) are intimately associated with the peridotites. Spinel + quartz inclusions in garnet, which indicate that peak metamorphic temperatures for the granulites likely approached 900 °C, confirm that peridotite was juxtaposed against the crust at typical lithospheric mantle temperatures and could not have been part of a cooled ophiolite. Some granulites experienced slight metatexis, but the majority underwent more advanced in situ anatexis to produce widespread granitic diatexites characterised by abundant cordierite and garnet xenocrysts and numerous restitic sillimanite + spinel "clots". These Mio-Pliocene "cordierite granites", which are present throughout Ambon, western Seram, and the Kobipoto Mountains in direct association with peridotites, demonstrate that the extreme extension required to have driven Kobipoto Complex exhumation must have occurred along much of the northern Banda Arc. In central Seram, smeared lenses of peridotites are incorporated with a major left-lateral strike-slip shear zone (the "Kawa Shear Zone"), demonstrating that strike-slip motions likely initiated shortly after the mantle had been partly exhumed by detachment faulting and that the main strike-slip faults may themselves be reactivated and steepened low-angle detachments. The Kobipoto Mountains represent a left-lateral pop-up structure that has facilitated the final stages of exhumation of the high-grade Kobipoto Complex through overlying Mesozoic sedimentary rocks. On Ambon, Quaternary "ambonites" (cordierite + garnet dacites) are evidently the volcanic equivalent of the cordierite granites as they also contain granulite-inherited xenoliths and xenocrysts. The geodynamic driver for mantle exhumation along the detachment faults and strike-slip faulting in central Seram is very likely the same - we interpret the extreme extension to be the result of eastward slab rollback into the Banda Embayment as outlined by the latest plate reconstructions for Banda Arc evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.T1225H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.T1225H"><span>Effect of Milling Time on the Blocking Temperature of Nanoparticles of Magnetocaloric Gd5Si4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadimani, Ravi; Gupta, Shalbh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David; David C Jiles Team; Vitalij Pecharsky Collaboration</p> <p></p> <p>Extensive research has been done on giant magnetocaloric material Gd5(SixGe1-x)4 to improve adiabatic temperature/isothermal entropy change. However, there have been only a few reports on fabrication of nanostructure/nanoparticles that can be used to tune various properties by changing the length scale. Recently we have reported fabrication of room temperature ferromagnetic nanoparticles of Gd5Si4 using high energy ball milling. These nanoparticles have potential applications in biomedical engineering such as better T2 MRI contrast agents and in hypothermia. Here we report the effect of milling time on the blocking temperature, micro-structure, crystal structure, and magnetic properties of these nanoparticles. Magnetization vs. temperature at an applied field of 100 Oe is measured for all the ball milled samples. Bulk Gd5Si4 has a transition temperature of ~340 K. There are two phase transitions observed in the nanoparticles, one near 300 K corresponding to the Gd5Si4 phase and another between 75-150 K corresponding to Gd5Si3. Zero Field Cooling (ZFC) and Field Cooling (FC) were measured. The blocking temperatures for the nanoparticles increase with decrease in milling time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9105627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9105627"><span>Heat-mediated activation of affinity-immobilized Taq DNA polymerase.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nilsson, J; Bosnes, M; Larsen, F; Nygren, P A; Uhlén, M; Lundeberg, J</p> <p>1997-04-01</p> <p>A novel strategy for heat-mediated activation of recombinant Taq DNA polymerase is described. A serum albumin binding protein tag is used to affinity-immobilize an E. coli-expressed Taq DNA polymerase fusion protein onto a solid support coated with human serum albumin (HSA). Analysis of heat-mediated elution showed that elevated temperatures (> 70 degrees C) were required to significantly release the fusion protein from the solid support. A primer-extension assay showed that immobilization of the fusion protein resulted in little or no extension product. In contrast, fusion protein released from the HSA ligand by heat showed high polymerase activity. Thus, a heat-mediated release and reactivation of the Taq DNA polymerase fusion protein from the solid support can be obtained to allow for hot-start PCR with improved amplification performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........83A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........83A"><span>On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Askari, Omid</p> <p></p> <p>This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma composition and thermodynamic properties. The method was applied to compute the thermodynamic properties of hydrogen/air and methane/air plasma mixtures for a wide range of temperatures (1,000-100,000 K), pressures (10-6-100 atm) and different equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function. A new differential-based multi-shell model was developed in conjunction with Schlieren photography to measure laminar burning speed and to study the flame instabilities for different alternative fuels such as syngas and GTL. Flame instabilities such as cracking and wrinkling were observed during flame propagation and discussed in terms of the hydrodynamic and thermo-diffusive effects. Laminar burning speeds were measured using pressure rise data during flame propagation and power law correlations were developed over a wide range of temperatures, pressures and equivalence ratios. As a part of this work, the effect of EGR addition and substitution of nitrogen with helium in air on flame morphology and laminar burning speed were extensively investigated. The effect of cell formation on flame surface area of syngas fuel in terms of a newly defined parameter called cellularity factor was also evaluated. In addition to that the experimental onset of auto-ignition and theoretical ignition delay times of premixed GTL/air mixture were determined at high pressures and low temperatures over a wide range of equivalence ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJBm...60..687Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJBm...60..687Z"><span>Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio</p> <p>2016-05-01</p> <p>Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (Tb) and laboratory-preferred (Tpref) body temperatures of lizards with different reproductive conditions, as well as ambient (Ta) and copper-model operative temperature (Te), which we used to determine thermal quality of the habitat (de), accuracy (db), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while Ta constrained Tb only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, Tpref dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (Te > Tpref). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, db and de-db were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5455283','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5455283"><span>Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Hui-Ying; Liu, Yun-Fei; Duan, Yu; Yang, Yong-Qiang; Lu, Yi-Nan</p> <p>2015-01-01</p> <p>Preparation of dense alumina (Al2O3) thin film through atomic layer deposition (ALD) provides a pathway to achieve the encapsulation of organic light emitting devices (OLED). Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day) under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED. PMID:28787960</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037402','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037402"><span>Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mason, J.A.; Lu, H.; Zhou, Y.; Miao, X.; Swinehart, J.B.; Liu, Z.; Goble, R.J.; Yi, S.</p> <p>2009-01-01</p> <p>Wind-blown sands were mobile at many sites along the desert margin in northern China during the early Holocene (11.5-8 ka ago), based on extensive new numerical dating. This mobility implies low effective moisture at the desert margin, in contrast to growing evidence for greater than modern monsoon precipitation at the same time in central and southern China. Dry conditions in the early Holocene at the desert margin can be explained through a dynamic link between enhanced diabatic heating in the core region of the strengthened monsoon and increased subsidence in drylands to the north, combined with high evapotranspiration rates due to high summer temperatures. After 8 ka ago, as the monsoon weakened and lower temperatures reduced evapotranspiration, eolian sands were stabilized by vegetation. Aridity and dune mobility at the desert margin and a strengthened monsoon can both be explained as responses to high summer insolation in the early Holocene. ?? 2009 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25569837','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25569837"><span>Millisecond laser ablation of molybdenum target in reactive gas toward MoS2 fullerene-like nanoparticles with thermally stable photoresponse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Shu-Tao; Cui, Lan; Yang, Jing; Du, Xi-Wen</p> <p>2015-01-28</p> <p>As a promising material for photoelectrical application, MoS2 has attracted extensive attention on its facile synthesis and unique properties. Herein, we explored a novel strategy of laser ablation to synthesize MoS2 fullerene-like nanoparticles (FL-NPs) with stable photoresponse under high temperature. Specifically, we employed a millisecond pulsed laser to ablate the molybdenum target in dimethyl trisulfide gas, and as a result, the molybdenum nanodroplets were ejected from the target and interacted with the highly reactive ambient gas to produce MoS2 FL-NPs. In contrast, the laser ablation in liquid could only produce core-shell nanoparticles. The crucial factors for controlling final nanostructures were found to be laser intensity, cooling rate, and gas reactivity. Finally, the MoS2 FL-NPs were assembled into a simple photoresponse device which exhibited excellent thermal stability, indicating their great potentialities for high-temperature photoelectrical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017hst..prop15139L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017hst..prop15139L"><span>Metals from deep atmosphere to exosphere in hot-Jupiters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lecavelier des Etangs, Alain</p> <p>2017-08-01</p> <p>With STIS/UV observations we detected magnesium atoms at high altitude in the atmosphere of the hot-Jupiter HD209458b, probing lower regions in the atmosphere than previously done with Lyman-alpha observations (Vidal-Madjar et al. 2013). With the present program, we will search for magnesium and other heavy species in escaping atmospheres of 2 giant planets orbiting hot A and F-type stars: WASP-94Ab and WASP-33b.The observations will provide unprecedented information on the physical conditions (velocity, temperature, and density) in the upper atmosphere of these two hot-Jupiters. Targets have been selected for the expected high significance level of the atmospheric detections (>10 sigma). These exoplanets present favorable configuration for upper atmosphere observations because of the combination of high escape rates and large spatial extensions of the magnesium clouds surrounding them. The atmospheric signatures of the magnesium and other metals are therefore expected to be easily detectable. Moreover, the two selected exoplanets have highly different equilibrium temperatures, below and above the MgSiO3 condensation temperature. Consequently, because the metals observed in the escaping flow originate from deeper in the atmosphere where haze can condensate, the observations will constrain the physical processes taking place in the clouds that cannot be observed directly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4945865','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4945865"><span>An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong</p> <p>2016-01-01</p> <p>The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints. PMID:27417734</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22250818-performance-optimization-apodized-fbg-based-temperature-sensors-single-quasi-distributed-dwdm-systems-new-different-apodization-profiles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22250818-performance-optimization-apodized-fbg-based-temperature-sensors-single-quasi-distributed-dwdm-systems-new-different-apodization-profiles"><span>Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mohammed, Nazmi A.; Ali, Taha A., E-mail: Taha25@gmail.com; Aly, Moustafa H.</p> <p>2013-12-15</p> <p>In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A “New” apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSRmore » of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of −45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of −60.1, very low SLav of −63.6 dB, and very high SLSR of −57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPA....3l2125M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPA....3l2125M"><span>Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammed, Nazmi A.; Ali, Taha A.; Aly, Moustafa H.</p> <p>2013-12-01</p> <p>In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A "New" apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of -45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of -60.1, very low SLav of -63.6 dB, and very high SLSR of -57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22102196-study-surface-cleaning-methods-pyrolysis-temperatures-nanostructured-carbon-films-using-ray-photoelectron-spectroscopy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22102196-study-surface-cleaning-methods-pyrolysis-temperatures-nanostructured-carbon-films-using-ray-photoelectron-spectroscopy"><span>Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kerber, Pranita; Porter, Lisa M.; McCullough, Lynne A.</p> <p>2012-11-15</p> <p>Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of diblock copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, 177 (2009)]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of diblock copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) at two different temperatures weremore » carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % nitrogen was present in the films pyrolyzed at 600 Degree-Sign C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration decreased significantly for films pyrolyzed at 900 Degree-Sign C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen subpeaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic clusters, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 Degree-Sign C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1031679','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1031679"><span>NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cynthia D. Gentillon</p> <p>2011-09-01</p> <p>Projects for the Very High Temperature Reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. The NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory has been established to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities formore » displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities. The capabilities are described from the perspective of NDMAS users, starting with those who just view experimental data and analytical results on the INL NDMAS web portal. Web display and delivery capabilities are described in detail. Also the current web pages that show Advanced Gas Reactor, Advanced Graphite Capsule, and High Temperature Materials test results are itemized. Capabilities available to NDMAS developers are more extensive, and are described using a second series of examples. Much of the data analysis efforts focus on understanding how thermocouple measurements relate to simulated temperatures and other experimental parameters. Statistical control charts and correlation monitoring provide an ongoing assessment of instrument accuracy. Data analysis capabilities are virtually unlimited for those who use the NDMAS web data download capabilities and the analysis software of their choice. Overall, the NDMAS provides convenient data analysis and web delivery capabilities for studying a very large and rapidly increasing database of well-documented, pedigreed data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009622','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009622"><span>Selection of High Temperature Organic Materials for Future Stirling Convertors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shin, Euy-Sik Eugene</p> <p>2017-01-01</p> <p>In the future higher temperature Stirling convertors for improved efficiency and performance, various high temperature organic materials have been demanded as essential components for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The higher temperature capabilities would also allow current state-of-the-art (SOA) convertors to be used in additional missions, particularly those that require a Venus flyby for a gravity assist. Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of comprehensive structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, o-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This paper presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22913341','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22913341"><span>Interconnected V2O5 nanoporous network for high-performance supercapacitors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G</p> <p>2012-09-26</p> <p>Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPS...311...91L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPS...311...91L"><span>A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef</p> <p>2016-04-01</p> <p>This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1418478-development-nanosized-lanthanum-strontium-aluminum-manganite-electrodes-potentiometric-oxygen-sensor','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1418478-development-nanosized-lanthanum-strontium-aluminum-manganite-electrodes-potentiometric-oxygen-sensor"><span>Development of nanosized lanthanum strontium aluminum manganite as electrodes for potentiometric oxygen sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mullen, Max R.; Spirig, John V.; Hoy, Julia; ...</p> <p>2014-11-01</p> <p>Nanocrystalline La0.8Sr0.2Al0.9Mn0.1O3 (LSAM) was synthesized by a microwave-assisted citrate method, and characterized by electron microscopy and X-ray diffraction. Electrical behavior of LSAM was investigated by impedance spectroscopy and activation energy of conduction was obtained. Joining of sintered bodies of LSAM and yttria-stabilized tetragonal zirconia polycrystals (YTZP), an extensively studied oxygen ion conducting electrolyte, was examined by isostatic hot pressing methods. Characteristics of the joining region were evaluated with microprobe Raman spectroscopy, and products formed at the interface, primarily strontium zirconate, was confirmed by examination of high temperature chemical reaction between LSAM and YTZP powders. Finally, the electrical properties of themore » LSAM were exploited for development of a high temperature oxygen sensor in which LSAM functioned as the electrode and YTZP as electrolyte.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1955S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1955S"><span>June 2017: The Earliest European Summer Mega-heatwave of Reanalysis Period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez-Benítez, A.; García-Herrera, R.; Barriopedro, D.; Sousa, P. M.; Trigo, R. M.</p> <p>2018-02-01</p> <p>This paper examines the characteristics of the heatwave that affected western and central Europe in June 2017. Using a novel algorithm, we show that its extension, intensity, and persistence were comparable to those of other European mega-heatwaves, but it occurred earlier in the summer. The most affected area was Iberia, which experienced devastating forest fires with human casualties and the warmest temperatures of the reanalysis period from daily to seasonal scales. The peak of the mega-heatwave displayed an unprecedented warm air intrusion due to a record-breaking subtropical ridge with signatures closer to those of July and August. The atmospheric circulation was the main triggering factor of the event. However, thermodynamical changes of the last decades made a substantial contribution to the event, by increasing the likelihood of surpassing high-temperature thresholds. This episode could be a good example of a coming future, with high-summer mega-heatwaves occurring earlier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..330a2082T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..330a2082T"><span>Welding processes for Inconel 718- A brief review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tharappel, Jose Tom; Babu, Jalumedi</p> <p>2018-03-01</p> <p>Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810016656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810016656"><span>High temperature alkali corrosion in high velocity gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lowell, C. E.; Sidik, S. M.; Deadmore, D. L.</p> <p>1981-01-01</p> <p>The effects of potential impurities in coal derived liquids such as Na, K, Mg, Ca and Cl on the accelerated corrosion of IN-100, U-700, IN-792 and Mar-M509 were investigated using a Mach 0.3 burner rig for times to 1000 hours in one hour cycles. These impurities were injected in combination as aqueous solutions into the combustor of the burner rig. The experimental matrix utilized was designed statistically. The extent of corrosion was determined by metal recession. The metal recession data were fitted by linear regression to a polynomial expression which allows both interpolation and extrapolation of the data. As anticipated, corrosion increased rapidly with Na and K, and a marked maximum in the temperature response was noted for many conditions. In contrast, corrosion decreased somewhat as the Ca, Mg and Cl contents increased. Extensive corrosion was observed at concentrations of Na and K as low as 0.1 PPM at long times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P24A..08E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P24A..08E"><span>The Water Content of Martian Recurring Slope Lineae: Insights from THEMIS Thermal Infrared Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, C. S.; Piqueux, S.</p> <p>2016-12-01</p> <p>Observations of Recurring Slope Lineae (RSL) have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL.We examine a well characterized RSL-site in Valles Marineris on the walls of Garni crater, with extensive daytime and nighttime THEMIS coverage. In addition to having been characterized in detail with HiRISE data, this area is suitable for thermal analysis as it displays: 1) limited bedrock outcrops at the origination of the RSL, avoiding anisothermal behaviors with slope materials; 2) high density of RSL terrain versus dry slope material (typically 40% and up to 88% of a THEMIS pixel) maximizing RSL-bearing signal; 3) an extensive areal region, encompassing multiple THEMIS pixels; 4) seasonal THEMIS coverage. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5-3 wt%. In addition, distinct high thermal inertia regolith signatures expected with evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any), and/or low enough volumes to prevent their formation. Alternatively, the observed salts may be pre-existing in soils at low abundances (i.e. near or below detection limits) and largely immobile. These RSL-rich surfaces experience 100K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on timescales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis, or at least significantly limit the water content of martian RSL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981JVGR....9...57J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981JVGR....9...57J"><span>Geothermal studies in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang</p> <p>1981-01-01</p> <p>Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25565275','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25565275"><span>Influence of temperature during grain filling on gluten viscoelastic properties and gluten protein composition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koga, Shiori; Böcker, Ulrike; Moldestad, Anette; Tosi, Paola; Shewry, Peter R; Mosleth, Ellen F; Uhlen, Anne Kjersti</p> <p>2016-01-15</p> <p>The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax ) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperatures. © 2015 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989SPIE.1145..540C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989SPIE.1145..540C"><span>Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.</p> <p>1989-12-01</p> <p>Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SSSci..14..761H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SSSci..14..761H"><span>How temperature influences the stoichiometry of CeTi2O6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huynh, Lana T.; Eger, Shaylin B.; Walker, James D. S.; Hayes, John R.; Gaultois, Michael W.; Grosvenor, Andrew P.</p> <p>2012-06-01</p> <p>Of the many materials examined for the sequestration of nuclear waste, Ti oxides have received considerable attention. Brannerite (UTi2O6), in particular, has been studied extensively for this application. The Ce analogue of this material (CeTi2O6) has been widely investigated instead of the actinide versions owing to the reduced safety hazards and because Ce has similar crystal chemistry to U and Pu. In this study, examination of Ti K-, Ce L3-, and Ce M4,5-edge XANES spectra lead to the conclusion that CeTi2O6 was O-deficient when synthesized at high temperature and then quench cooled, and that the degree of O-deficiency was reduced upon post-annealing at lower temperatures. These observations can be ascribed to a temperature-dependant Ce3+/Ce4+ redox couple. This investigation suggests that Ce-containing materials may not properly simulate the actinide-bearing analogues; however, CeTi2O6 could be useful for other applications, such as catalysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6086038','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6086038"><span>Armored instrumentation cable for geothermal well logging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dennis, B.R.; Johnson, J.; Todd, B.</p> <p>1981-01-01</p> <p>Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electricalmore » insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910006217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910006217"><span>Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, A. Y.; Battles, B. E.; Hanson, R. K.</p> <p>1990-01-01</p> <p>In high speed flows, laser induced fluorescence (LIF) on Doppler shifted transitions is an attractive technique for velocity measurement. LIF velocimetry was applied to combined single-point measurements of velocity, temperature, and pressure and 2-D imaging of velocity and pressure. Prior to recent research using NO, LIF velocimetry in combustion related flows relied largely on the use of seed molecules. Simultaneous, single-point LIF measurements is reported of velocity, temperature, and pressure using the naturally occurring combustion species OH. This experiment is an extension of earlier research in which a modified ring dye laser was used to make time resolved temperature measurements behind reflected shock waves by using OH absorption an in postflame gases by using OH LIF. A pair of fused-silica rhombs mounted on a single galvanonmeter in an intracavity-doubled Spectra-Physics 380 ring laser permit the UV output to be swept continuously over a few wave numbers at an effective frequency of 3kHz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720018725','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720018725"><span>Analysis of oil lubricated, fluid film, thrust bearings with allowance for temperature dependent viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pan, C. H. T.; Malanoski, S. B.</p> <p>1972-01-01</p> <p>A preliminary design study was performed to seek a fluid-film thrust bearing design intended to be part of a high-speed, hybrid (rolling element/fluid film) bearing configuration. The base line used is a design previously tested. To improve the accuracy of theoretical predictions of load capacity, flow rate, and friction power loss, an analytical procedure was developed to include curvature effects inherent in thrust bearings and to allow for the temperature rise in the fluid due to viscous heating. Also, a narrow-groove approximation in the treatment of the temperature field was formulated to apply the procedure to the Whipple thrust bearing. A comparative trade-off study was carried out assuming isothermal films; its results showed the shrouded-step design to be superior to the Whipple design for the intended application. An extensive parametric study was performed, employing isoviscous calculations, to determine the optimized design, which was subsequently recalculated allowing for temperature effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/46570','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/46570"><span>Influence of strain rate and temperature on the mechanical behavior of iron aluminide-based alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gray, G.T.</p> <p></p> <p>Iron aluminides are receiving increasing attention as potential high temperature structural materials due to their excellent oxidation and sulfidation resistance. Although the influence of strain rate on the microstructure/property relationships of pure iron and a variety of iron alloys and steels has been extensively studied, the effect of strain rate on the stress-strain and deformation response of iron aluminides remains poorly understood. In this paper the influence of strain rate, varied between 0.001 and 10{sup 4} s{sup {minus}1}, and temperature, between 77 & 1073{degree}K, on the mechanical behavior of Fe-40Al-0.1B and Fe-16.12Al-5.44Cr-0.11Zr-0.13C-1.07Mo-006Y, called FAP-Y, (both in at.%) is presented. Themore » rate sensitivity and work hardening of Fe-40Al and the disordered alloy based on Fe-16% Al are discussed as a function of strain rate and temperature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhA.123..564T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhA.123..564T"><span>Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trivedi, Nitin; Kumar, Manoj; Haldar, Subhasis; Deswal, S. S.; Gupta, Mridula; Gupta, R. S.</p> <p>2017-09-01</p> <p>A charge plasma technique based dopingless (DL) accumulation mode (AM) junctionless (JL) cylindrical surrounding gate (CSG) MOSFET has been proposed and extensively investigated. Proposed device has no physical junction at source to channel and channel to drain interface. The complete silicon pillar has been considered as undoped. The high free electron density or induced N+ region is designed by keeping the work function of source/drain metal contacts lower than the work function of undoped silicon. Thus, its fabrication complexity is drastically reduced by curbing the requirement of high temperature doping techniques. The electrical/analog characteristics for the proposed device has been extensively investigated using the numerical simulation and are compared with conventional junctionless cylindrical surrounding gate (JL-CSG) MOSFET with identical dimensions. For the numerical simulation purpose ATLAS-3D device simulator is used. The results show that the proposed device is more short channel immune to conventional JL-CSG MOSFET and suitable for faster switching applications due to higher I ON/ I OFF ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29745269','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29745269"><span>Biophysical and photobiological basics of water-filtered infrared-A hyperthermia of superficial tumors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaupel, Peter; Piazena, Helmut; Müller, Werner; Notter, Markus</p> <p>2018-05-10</p> <p>Thermography-controlled, water-filtered infrared-A (wIRA) is a novel, effective and approved heating technique listed in the ESHO quality assurance guidelines for superficial hyperthermia clinical trials (2017). In order to assess the special features and the potential of wIRA-hyperthermia (wIRA-HT), detailed and updated information about its physical and photobiological background is presented. wIRA allows for (a) application of high irradiances without skin pain and acute grade 2-4 skin toxicities, (b) prolonged, therapeutically relevant exposure times using high irradiances (150-200 mW/cm 2 ) and (c) faster and deeper heat extension within tissues. The deeper radiative penetration depth is mainly caused by forward Mie-scattering. At skin surface temperatures of 42-43 °C, the effective heating depth is 15 mm (T ≥ 40 °C) and 20 mm (T ≥ 39.5 °C). Advantages of wIRA include its contact-free energy input, easy power steering by a feed-back loop, extendable treatment fields, real-time and noninvasive surface temperature monitoring with observation of dynamic changes during HT, and - if necessary - rapid protection of temperature-sensitive structures. wIRA makes the compliant heating of ulcerated and/or bleeding tumors possible, allows for HT of irregularly shaped and diffusely spreading tumors, is independent of individual body contours, allows for very short 'transits' between HT and RT (1-4 min) or continuous heating between both therapeutic interventions. New treatment options for wIRA-HT may include malignant melanoma, vulvar carcinoma, skin metastases of different primary tumors, cutaneous T-and B-cell lymphoma, large-area hemangiomatosis, inoperable squamous cell, basal cell and eccrine carcinoma of the skin with depth extensions ≤20 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830018566','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830018566"><span>Testing of felt-ceramic materials for combustor applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Venkat, R. S.; Roffe, G.</p> <p>1983-01-01</p> <p>The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1431072-quantum-phase-transition-destruction-kondo-effect-pressurized-smb6','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1431072-quantum-phase-transition-destruction-kondo-effect-pressurized-smb6"><span>Quantum phase transition and destruction of Kondo effect in pressurized SmB 6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Yazhou; Wu, Qi; Rosa, Priscila Ferrari Silveira</p> <p></p> <p>SmB 6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB 6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E l and high temperature gap E h) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondomore » hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ~4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. In conclusion, our results raise the new prospect for studying topological electronic states in quantum critical materials settings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1431072-quantum-phase-transition-destruction-kondo-effect-pressurized-smb6','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1431072-quantum-phase-transition-destruction-kondo-effect-pressurized-smb6"><span>Quantum phase transition and destruction of Kondo effect in pressurized SmB 6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhou, Yazhou; Wu, Qi; Rosa, Priscila Ferrari Silveira; ...</p> <p>2017-10-24</p> <p>SmB 6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB 6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E l and high temperature gap E h) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondomore » hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ~4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. In conclusion, our results raise the new prospect for studying topological electronic states in quantum critical materials settings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15009690','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15009690"><span>Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Birosca, S; Dingley, D; Higginson, R L</p> <p>2004-03-01</p> <p>High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27888351','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27888351"><span>Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nedbalová, Linda; Mihál, Martin; Kvíderová, Jana; Procházková, Lenka; Řezanka, Tomáš; Elster, Josef</p> <p>2017-01-01</p> <p>The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day -1 ) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..SHK.E5004T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..SHK.E5004T"><span>Shock states of solid Mg2SiO4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Townsend, Joshua; Shulenburger, Luke</p> <p>2017-06-01</p> <p>To date there have been thousands of planets discovered outside our solar system. Forsterite, the magnesium end-member of olivine, ((Mg , Fe) 2SiO4) is abundant in the Earth's mantle, and is likely a common planetary building block throughout the galaxy. Despite extensive investigation under terrestrial pressure and temperature regimes, the behavior of the Mg2SiO4 system at higher pressures and temperatures (P>100 GPa, T>4000 K) remains poorly understood. To better understand the behavior of planetary impact processes and the structure of massive planets we investigated the high pressure and high temperature properties of Mg2SiO4 using combined shock compression experiments on the Z-machine at Sandia National Laboratories, and ab-initio molecular dynamics simulations. We compare our results to other recent experiments on shocked forsterite. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. SAND2017-1987 C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25454780','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25454780"><span>Multilocus adaptation associated with heat resistance in reef-building corals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bay, Rachael A; Palumbi, Stephen R</p> <p>2014-12-15</p> <p>The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleaching because of both acclimation and fixed effects, including adaptation. To search for potential genetic correlates of these fixed effects, we genotyped 15,399 single nucleotide polymorphisms (SNPs) in 23 individual tabletop corals, Acropora hyacinthus, within a natural temperature mosaic in backreef lagoons on Ofu Island, American Samoa. Despite overall lack of population substructure, we identified 114 highly divergent SNPs as candidates for environmental selection, via multiple stringent outlier tests, and correlations with temperature. Corals from the warmest reef location had higher minor allele frequencies across these candidate SNPs, a pattern not seen for noncandidate loci. Furthermore, within backreef pools, colonies in the warmest microclimates had a higher number and frequency of alternative alleles at candidate loci. These data suggest mild selection for alternate alleles at many loci in these corals during high heat episodes and possible maintenance of extensive polymorphism through multilocus balancing selection in a heterogeneous environment. In this case, a natural population harbors a reservoir of alleles preadapted to high temperatures, suggesting potential for future evolutionary response to climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23708329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23708329"><span>Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J</p> <p>2013-07-01</p> <p>The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EaFut...6...71P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EaFut...6...71P"><span>Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papalexiou, Simon Michael; AghaKouchak, Amir; Trenberth, Kevin E.; Foufoula-Georgiou, Efi</p> <p>2018-01-01</p> <p>Trends in short-lived high-temperature extremes record a different dimension of change than the extensively studied annual and seasonal mean daily temperatures. They also have important socioeconomic, environmental, and human health implications. Here, we present analysis of the highest temperature of the year for approximately 9000 stations globally, focusing on quantifying spatially explicit exceedance probabilities during the recent 50- and 30-year periods. A global increase of 0.19°C per decade during the past 50 years (through 2015) accelerated to 0.25°C per decade during the last 30 years, a faster increase than in the mean annual temperature. Strong positive 30-year trends are detected in large regions of Eurasia and Australia with rates higher than 0.60°C per decade. In cities with more than 5 million inhabitants, where most heat-related fatalities occur, the average change is 0.33°C per decade, while some east Asia cities, Paris, Moscow, and Houston have experienced changes higher than 0.60°C per decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29541645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29541645"><span>Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Papalexiou, Simon Michael; AghaKouchak, Amir; Trenberth, Kevin E; Foufoula-Georgiou, Efi</p> <p>2018-01-01</p> <p>Trends in short-lived high-temperature extremes record a different dimension of change than the extensively studied annual and seasonal mean daily temperatures. They also have important socioeconomic, environmental, and human health implications. Here, we present analysis of the highest temperature of the year for approximately 9000 stations globally, focusing on quantifying spatially explicit exceedance probabilities during the recent 50- and 30-year periods. A global increase of 0.19°C per decade during the past 50 years (through 2015) accelerated to 0.25°C per decade during the last 30 years, a faster increase than in the mean annual temperature. Strong positive 30-year trends are detected in large regions of Eurasia and Australia with rates higher than 0.60°C per decade. In cities with more than 5 million inhabitants, where most heat-related fatalities occur, the average change is 0.33°C per decade, while some east Asia cities, Paris, Moscow, and Houston have experienced changes higher than 0.60°C per decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180496"><span>An Oxidation-Resistant Coating Alloy for Gamma Titanium Aluminides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brady, Michael P.; Smialek, James L.; Brindley, William J.</p> <p>1997-01-01</p> <p>Titanium aluminides based on the g-phase (TiAl) offer the potential for component weight savings of up to 50 percent over conventional superalloys in 600 to 850 C aerospace applications. Extensive development efforts over the past 10 years have led to the identification of "engineering" gamma-alloys, which offer a balance of room-temperature mechanical properties and high-temperature strength retention. The gamma class of titanium aluminides also offers oxidation and interstitial (oxygen and nitrogen) embrittlement resistance superior to that of the alpha(sub 2) (Ti3Al) and orthorhombic (Ti2AlNb) classes of titanium aluminides. However, environmental durability is still a concern, especially at temperatures above 750 to 800 C. Recent work at the NASA Lewis Research Center led to the development of an oxidation-resistant coating alloy that shows great promise for the protection of gamma titanium aluminides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050175863','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050175863"><span>Thermomechanical Property Data Base Developed for Ceramic Fibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1996-01-01</p> <p>A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhLB..774..527W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhLB..774..527W"><span>Holographic superconductivity from higher derivative theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jian-Pin; Liu, Peng</p> <p>2017-11-01</p> <p>We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800024988','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800024988"><span>Time-temperature-stress capabilities of composite materials for advanced supersonic technology application, phase 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kerr, J. R.; Haskins, J. F.</p> <p>1980-01-01</p> <p>Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvB..83h5209B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvB..83h5209B"><span>Effect of dynamic disorder on charge transport along a pentacene chain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Böhlin, J.; Linares, M.; Stafström, S.</p> <p>2011-02-01</p> <p>The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27411397','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27411397"><span>Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Yuqiang; Huang, Rongjin; Li, Shaopeng; Wang, Wei; Jiang, Xingxing; Lin, Zheshuai; Li, Jiangtao; Li, Laifeng</p> <p>2016-07-27</p> <p>Cubic NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds were synthesized and extensively explored through crystal structure and magnetization analyses. By optimizing the chemical composition, the isotropic abnormal properties of excellent zero and giant negative thermal expansion in a pure form were both found at different temperature ranges through room temperature. Moreover, the temperature regions with the remarkable abnormal thermal expansion (ATE) properties have been broadened which are controlled by the dM/dT. The present study demonstrates that the ATE behavior mainly depends on special structural and magnetic properties. These diverse properties suggest the high potential of La(Fe1-xCox)11.4Al1.6 for the development of abnormal expansion materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ResPh...9..787R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ResPh...9..787R"><span>A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rawy, E. K.</p> <p>2018-06-01</p> <p>We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025250','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025250"><span>Geothermal GIS coverage of the Great Basin, USA: Defining regional controls and favorable exploration terrains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coolbaugh, M.F.; Sawatzky, D.L.; Oppliger, G.L.; Minor, T.B.; Raines, G.L.; Shevenell, L.; Blewitt, G.; Louie, J.N.</p> <p>2003-01-01</p> <p>A geographic information system (GIS) of geothermal resources, built last year for the state of Nevada, is being expanded to cover the Great Basin, USA. Data from that GIS is being made available to industry, other researchers, and the public via a web site at the Great Basin Center for Geothermal Energy, Reno, Nevada. That web site features a search engine, supports ArcExplorer?? for on-line map construction, and provides downloadable data layers in several formats. Though data collection continues, preliminary analysis has begun. Contour maps of geothermal temperatures, constructed using geothermometer temperatures calculated from a Great Basin geochemical database compiled by the Geo-Heat Center, reveal distinctive trends and patterns. As expected, magmatic-type and extensional-type geothermal systems have profoundly different associations, with magmatic-type systems following major tectonic boundaries, and extensional-type systems associating with regionally high heat flow, thin crust, active faulting, and high extensional strain rates. As described by earlier researchers, including Rowen and Wetlaufer (1981) and Koenig and McNitt (1983), high-temperature (> 100??C) geothermal systems appear to follow regional northeast trends, most conspicuously including the Humboldt structural zone in Nevada, the "Black Rock-Alvord Desert" trend in Oregon and Nevada, and the "Newcastle-Roosevelt" trend in Utah and Nevada. Weights-of-evidence analyses confirm a preference of high-temperature geothermal systems for young northeast-trending faults, but the distribution of geothermal systems correlates even better with high rates of crustal extension, as measured from global positioning system (GPS) stations in Nevada. A predictive map of geothermal potential based only on areas of high extensional strain rates and high heat flux does an excellent job of regionally predicting the location of most known geothermal systems in Nevada, and may prove useful in identifying blind systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4178991','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4178991"><span>High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan</p> <p>2014-01-01</p> <p>Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26089006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26089006"><span>High-purity Cu nanocrystal synthesis by a dynamic decomposition method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui</p> <p>2014-12-01</p> <p>Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NRL.....9..689J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NRL.....9..689J"><span>High-purity Cu nanocrystal synthesis by a dynamic decomposition method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui</p> <p>2014-12-01</p> <p>Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015isms.confEWF02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015isms.confEWF02S"><span>Probing Buffer-Gas Cooled Molecules with Direct Frequency Comb Spectroscopy in the Mid-Infrrared</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spaun, Ben; Changala, Bryan; Bjork, Bryce J.; Heckl, Oliver H.; Patterson, David; Doyle, John M.; Ye, Jun</p> <p>2015-06-01</p> <p>We present the first demonstration of cavity-enhanced direct frequency comb spectroscopy on buffer-gas cooled molecules.By coupling a mid-infrared frequency comb to a high-finesse cavity surrounding a helium buffer-gas chamber, we can gather rotationally resolved absorption spectra with high sensitivity over a broad wavelength region. The measured ˜10 K rotational and translational temperatures of buffer-gas cooled molecules drastically simplify the observed spectra, compared to those of room temperature molecules, and allow for high spectral resolution limited only by Doppler broadening (10-100 MHz). Our system allows for the extension of high-resolution spectroscopy to larger molecules, enabling detailed analysis of molecular structure and dynamics, while taking full advantage of the powerful optical properties of frequency combs. A. Foltynowicz et al. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Applied Physics B, vol. 110, pp. 163-175, 2013. {D. Patterson and J. M. Doyle. Cooling molecules in a cell for FTMW spectroscopy. Molecular Physics 110, 1757-1766, 2012</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23004312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23004312"><span>Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biscaras, J; Bergeal, N; Hurand, S; Grossetête, C; Rastogi, A; Budhani, R C; LeBoeuf, D; Proust, C; Lesueur, J</p> <p>2012-06-15</p> <p>In this Letter, we show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose transition temperature can be modulated by a back-gate voltage. The gas consists of two types of carriers: a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electron spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by the field effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900034314&hterms=boron&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dboron','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900034314&hterms=boron&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dboron"><span>Shock induced polymorphic transition in quartz, carbon, and boron nitride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tan, Hua; Ahrens, Thomas J.</p> <p>1990-01-01</p> <p>The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28642345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28642345"><span>Evolution of nonspectral rhodopsin function at high altitudes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castiglione, Gianni M; Hauser, Frances E; Liao, Brian S; Lujan, Nathan K; Van Nynatten, Alexander; Morrow, James M; Schott, Ryan K; Bhattacharyya, Nihar; Dungan, Sarah Z; Chang, Belinda S W</p> <p>2017-07-11</p> <p>High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617428-casimir-effect-finite-temperature-pure-photon-sector-minimal-standard-model-extension','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617428-casimir-effect-finite-temperature-pure-photon-sector-minimal-standard-model-extension"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br; Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC; Khanna, Faqir C., E-mail: khannaf@uvic.ca</p> <p></p> <p>Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA357437','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA357437"><span>USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 1A, Armstrong Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-11-01</p> <p>5 lb. Chad H. Joshi and Rich F. Schiferl , "Design and Fabrication of High Temperature Superconducting Field Coils for a Demonstration DC Motor", IEEE...C.H. Joshi, and R.F. Schiferl , IEEE Transactions on Applied Superconductivity, Volume 3, No. 1, March 1993, pp. 373-376. 108. 0. Tsukamoto, Y. Tanaka...November , 1989, Tsukuba, Japan, ed. by T. Ishiguro, and K. Kajimnura, (Springer-Verlag, Tokyo, 1990), 1055-1058. 110. J.D. Edick, R.F. Schiferl , and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA279182','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA279182"><span>Performance of LI-1542 Reusable Surface Insulation System in a Hypersonic Stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1974-04-01</p> <p>differential pressure loading across the panel. Facility The tests were conducted in the Langley 8-foot high-temperature "’!structures tunnel ( HTST ...is too long to be simulated in the relatively short test time of the 8-foot HTST ; therefore, the radiant-heat apparatus is used in sequence with the... HTST . Impact of these minute particles caused extensive crater damage to the tiles. A series of photos is shown in figure 20 to illustrate the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..499..182L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..499..182L"><span>Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lou, Xiaoyuan; Andresen, Peter L.; Rebak, Raul B.</p> <p>2018-02-01</p> <p>Intergranular and intragranular Si and Mn rich oxide inclusions are present in laser additive manufactured austenitic stainless steel. The uniform oxide dispersions in additive manufactured material promoted early initiation of microvoids and reduced its impact toughness relative to powder metallurgy (hot isostatic pressing) and wrought materials. For stress corrosion cracking in high temperature water, the silica inclusions along the grain boundaries preferentially dissolved and appeared to accelerate oxidation and caused extensive crack branching.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17841084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17841084"><span>Plate tectonics and hotspots: the third dimension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, D L; Tanimoto, T; Zhang, Y S</p> <p>1992-06-19</p> <p>High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=80287&keyword=oysters&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=80287&keyword=oysters&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>TEMPERATURE AND RANGE EXTENSION BY PERKINSUS MARINUS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Between 1990 and 1992, Dermo disease of oysters, caused by Perkinsus marinus, experienced a 500-km northward range extension and is now established as far north as Massachusetts. Climate warming during the 1980s and early 1990s, combined with historical introductions of infected ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017239','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017239"><span>Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.</p> <p>1992-01-01</p> <p>The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5176152-sr-ca-temperature-relationship-coralline-aragonite-influence-variability-sr-ca-sub-seawater-skeletal-growth-parameters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5176152-sr-ca-temperature-relationship-coralline-aragonite-influence-variability-sr-ca-sub-seawater-skeletal-growth-parameters"><span>The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)[sub seawater] and skeletal growth parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>de Villiers, S.; Shen, G.T.; Nelson, B.K.</p> <p>1994-01-01</p> <p>This paper provides an evaluation of two of the most likely pitfalls of Sr/Ca thermometry, i.e., the effect of biogenic cycling of Sr vs. Ca in the surface ocean and the effect of variable extension rate on Sr incorporation in coralline aragonite. The authors also report calibration of the Sr/Ca-temperature relationship for three coral species, Porites lobata, Pocillopora eydouxi, and Pavona clavus, collected for the Hawaiian and Galapagos islands. Analyses of seawater samples show significant spatial and depth variability in the Sr:Ca ratio. The uncertainty introduced by this effect is estimated to be <0.2[degrees]C for corals located in tropical oligotrophicmore » waters, and potentially larger for corals located in upwelling areas. Sr/Ca along two different growth axes of a Galapagos Pavona clavus, with annual extension rates of [approximately]6 and 12 mm/y, respectively, indicate an offset of 1-2[degrees]C, with higher Sr/Ca values associated with slower extension rates. The offset observed between the two growth axes may be the result of variations in extension and/or calcification rate. These results are important in determining past sea surface temperatures for reconstruction of paleoclimates.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......146M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......146M"><span>Hydraulic and Thermal Response to Intermittent Pumping in Unconfined Alluvial Aquifers along a Regulated Stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maharjan, Madan</p> <p></p> <p>Groundwater response to stream stage fluctuations was studied using a year-long time series of stream stage and well heads in Glen Dale and New Martinsville, WV. Stream stage fluctuations exerted primary control over groundwater levels, especially during high flows. The location and operation of river pools created by dams alter groundwater flow paths and velocities. Aquifers are more prone to surface water infiltration in the upper reaches of pools than in lower reaches. Aquifer diffusivity is heterogeneous within and between the two sites. Temperature fluctuations were observed for 2.5 years in 14 wells in three alluvial aquifers. Temperature signals have 2 components corresponding to pump-on and pump-off periods. Both components vary seasonality at different magnitudes. While pump-off temperatures fluctuated up to 3.8o C seasonally, short-term temperature shifts induced by turning the pump on were 0.2 to 2.5o C. Pumping-induced temperature shifts were highest in magnitude in summer and winter. Groundwater temperature lagged behind that of surface water by approximately six months. Pumping induced and seasonal temperature shifts were spatially and temporally complex but indicate stream exfiltration is a major driver for a number of these wells. Numerical simulation of aquifer response to pumping show different conditions before and after well-field development. During pre-development, the stream was losing at high flow and gaining at low flow. During post-development, however, the stream was losing at high flow and spatially variable at low flow. While bank storage gained only during high stage, stream exfiltration occurred year-round. Pumping induced stream exfiltration by creating an extensive cone of depression beneath the stream in both upstream and downstream directions. Spatially and temporally variable groundwater-surface water interaction next to a regulated stream were studied using analytical and numerical models, based on field observations. Seasonality plays an important role in these interactions, but human activity may also alter its intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3846729','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3846729"><span>Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana</p> <p>2013-01-01</p> <p>Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years. PMID:24312614</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24312614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24312614"><span>Millennial-scale temperature change velocity in the continental northern Neotropics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana</p> <p>2013-01-01</p> <p>Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTA...49.2644S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTA...49.2644S"><span>High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu</p> <p>2018-07-01</p> <p>India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTA..tmp.1526S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTA..tmp.1526S"><span>High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu</p> <p>2018-05-01</p> <p>India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720050434&hterms=usher&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dusher','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720050434&hterms=usher&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dusher"><span>Temperature profile determination in an absorbing plasma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usher, J. L.; Campbell, H. D.</p> <p>1972-01-01</p> <p>A new method has been developed to determine the temperature profile of an optically-non-thin plasma. The technique is essentially an extension of the brightness-emissivity method to the case of a cylindrically-symmetric plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870000988','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870000988"><span>A theory for the retrieval of virtual temperature from winds, radiances and the equations of fluid dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tzvi, G. C.</p> <p>1986-01-01</p> <p>A technique to deduce the virtual temperature from the combined use of the equations of fluid dynamics, observed wind and observed radiances is described. The wind information could come from ground-based sensitivity very high frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The radiometers are also assumed to be either space-borne and/or ground-based. From traditional radiometric techniques the vertical structure of the temperature can be estimated only crudely. While it has been known for quite some time that the virtual temperature could be deduced from wind information only, such techniques had to assume the infallibility of certain diagnostic relations. The proposed technique is an extension of the Gal-Chen technique. It is assumed that due to modeling uncertainties the equations of fluid dynamics are satisfied only in the least square sense. The retrieved temperature, however, is constrained to reproduce the observed radiances. It is shown that the combined use of the three sources of information (wind, radiances and fluid dynamical equations) can result in a unique determination of the vertical temperature structure with spatial and temporal resolution comparable to that of the observed wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000720"><span>Challenges in Modelling of Lightning-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naghipour, P.; Pineda, E. J.; Arnold, S.</p> <p>2014-01-01</p> <p>Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120004030','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120004030"><span>Crystalline Silicates in Comets: Modeling Irregularly-Shaped Forsterite Crystals and Its Implications on Condensation Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wooden, Diane H.; Lindsay, Sean S.</p> <p>2011-01-01</p> <p>Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25611968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25611968"><span>Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Faßheber, Nancy; Friedrichs, Gernot; Marshall, Paul; Glarborg, Peter</p> <p>2015-07-16</p> <p>A detailed mechanism for the thermal decomposition and oxidation of the flame intermediate glyoxal (OCHCHO) has been assembled from available theoretical and experimental literature data. The modeling capabilities of this extensive mechanism have been tested by simulating experimental HCO profiles measured at intermediate and high temperatures in previous glyoxal photolysis and pyrolysis studies. Additionally, new experiments on glyoxal pyrolysis and oxidation have been performed with glyoxal and glyoxal/oxygen mixtures in Ar behind shock waves at temperatures of 1285-1760 K at two different total density ranges. HCO concentration-time profiles have been detected by frequency modulation spectroscopy at a wavelength of λ = 614.752 nm. The temperature range of available direct rate constant data of the high-temperature key reaction HCO + O2 → CO + HO2 has been extended up to 1705 K and confirms a temperature dependence consistent with a dominating direct abstraction channel. Taking into account available literature data obtained at lower temperatures, the following rate constant expression is recommended over the temperature range 295 K < T < 1705 K: k1/(cm(3) mol(-1) s(-1)) = 6.92 × 10(6) × T(1.90) × exp(+5.73 kJ/mol/RT). At intermediate temperatures, the reaction OCHCHO + HO2 becomes more important. A detailed reanalysis of previous experimental data as well as more recent theoretical predictions favor the formation of a recombination product in contrast to the formerly assumed dominating and fast OH-forming channel. Modeling results of the present study support the formation of HOCH(OO)CHO and provide a 2 orders of magnitude lower rate constant estimate for the OH channel. Hence, low-temperature generation of chain carriers has to be attributed to secondary reactions of HOCH(OO)CHO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26582993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26582993"><span>Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren</p> <p>2015-01-01</p> <p>Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940016479','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940016479"><span>High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Applegate, James H.</p> <p>1994-01-01</p> <p>The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8353E..1RM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8353E..1RM"><span>Thales Cryogenics rotary cryocoolers for HOT applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien</p> <p>2012-06-01</p> <p>Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1398422','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1398422"><span>Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aghanim, N.; Arnaud, M.; Ashdown, M.</p> <p></p> <p>This study presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy broughtmore » by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK 2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Finally and nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...594A..11P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...594A..11P"><span>Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L. D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.</p> <p>2016-09-01</p> <p>This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, I.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, ns, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1398422-planck-results-xi-cmb-power-spectra-likelihoods-robustness-parameters','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1398422-planck-results-xi-cmb-power-spectra-likelihoods-robustness-parameters"><span>Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Aghanim, N.; Arnaud, M.; Ashdown, M.; ...</p> <p>2016-09-20</p> <p>This study presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy broughtmore » by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK 2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Finally and nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27592436','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27592436"><span>Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L</p> <p>2016-11-01</p> <p>Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22341873-study-maxwellwagner-mw-relaxation-behavior-hysteresis-observed-bismuth-titanate-layered-structure-obtained-solution-combustion-synthesis-using-dextrose-fuel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22341873-study-maxwellwagner-mw-relaxation-behavior-hysteresis-observed-bismuth-titanate-layered-structure-obtained-solution-combustion-synthesis-using-dextrose-fuel"><span>Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Subohi, Oroosa, E-mail: oroosa@gmail.com; Shastri, Lokesh; Kumar, G.S.</p> <p>2014-01-01</p> <p>Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies showmore » that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T{sub c} due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P41C1937K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P41C1937K"><span>Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.</p> <p>2013-12-01</p> <p>Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1159486','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1159486"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata</p> <p></p> <p>The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T23B2950L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T23B2950L"><span>Estimation of subsurface formation temperature in the Yangtze area, South China: implications for shale gas generation and preservation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, S.; Hao, C.; Li, X.; Xu, M.</p> <p>2015-12-01</p> <p>Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160005167','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160005167"><span>On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jensen, Eric J.</p> <p>2016-01-01</p> <p>Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJT....29..926B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJT....29..926B"><span>Metal Carbon Eutectics to Extend the Use of the Fixed-Point Technique in Precision IR Thermometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Battuello, M.; Girard, F.; Florio, M.</p> <p>2008-06-01</p> <p>The high-temperature extension of the fixed-point technique for primary calibration of precision infrared (IR) thermometers was investigated both through mathematical simulations and laboratory investigations. Simulations were performed with Co C (1,324°C) and Pd C (1, 492°C) eutectic fixed points, and a precision IR thermometer was calibrated from the In point (156.5985°C) up to the Co C point. Mathematical simulations suggested the possibility of directly deriving the transition temperature of the Co C and Pd C points by extrapolating the calibration derived from fixed-point measurements from In to the Cu point. Both temperatures, as a result of the low uncertainty associated with the In Cu calibration and the high number of fixed points involved in the calibration process, can be derived with an uncertainty of 0.11°C for Co C and 0.18°C for Pd C. A transition temperature of 1,324.3°C for Co C was determined from the experimental verification, a value higher than, but compatible with, the one proposed by the thermometry community for inclusion as a secondary reference point for ITS-90 dissemination, i.e., 1,324.0°C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24425938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24425938"><span>Evaporative cooling system for storage of fruits and vegetables - a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala</p> <p>2013-06-01</p> <p>Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900004075','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900004075"><span>Constitutive modeling for isotropic materials (HOST)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.</p> <p>1984-01-01</p> <p>The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6335029-new-mexico-climate-manual-solar-weather-data-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6335029-new-mexico-climate-manual-solar-weather-data-final-report"><span>New Mexico climate manual: solar and weather data. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morris, W.S.; Haggard, K.W</p> <p></p> <p>This manual contains extensive solar and weather data for the state of New Mexico in tabular, map, and graphic formats. It is particularly relevant to design of energy efficient buildings and renewable energy systems, but is also broad enough to provide useful information to many other disciplines. Maps of the state show monthly values of insolation for horizontal, south-facing latitude-tilted and vertical surfaces, as well as mean temperatures. Climatic summaries given for 63 sites include monthly temperature and precipitation data as well as heating/cooling degree-days and design temperatures. For nine locations (Albuquerque, Clayton, Farmington, Los Alamos, Roswell, T or C,more » Tucumcari, Zuni, and El Paso, Texas) most of the following comprehensive data sets are also presented: design temperatures with mean coincident wet bulb and wind values; HDD/CDD values to 12 base temperatures; day/night wind data; typical and clear-day values of incident and transmitted solar radiation for 97 orientations and tilts; and temperature distribution data in 2/sup 0/F bins for six daily time periods. Extensive explanatory text with referencing to the data is provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1456919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1456919"><span>Decrement in manual arm performance during whole body cooling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giesbrecht, G G; Bristow, G K</p> <p>1992-12-01</p> <p>Six subjects performed three manual arm tasks: 1) prior to immersion in 8 degrees C water; 2) soon after immersion to the neck, but prior to any decrease in core temperature; and 3) every 15 min until core temperatures decreased 2-4.5 degrees C. The tasks were speed of flexion and extension of the fingers, handgrip strength and manual dexterity. There was no immediate effect of cold immersion; however, all scores decreased significantly after core temperature decreased 0.5 degrees C. Further decrease in core temperature was associated with a progressive impairment of performance, although at a slower rate than during the first 0.5 degrees C decrease. Flexion and extension of the fingers was affected relatively more than handgrip strength or manual dexterity. Decrement in performance is a result of peripheral cooling on sensorimotor function with a probable additional effect of central cooling on cerebral function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1334682-high-order-perturbative-calculations-finite-density','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1334682-high-order-perturbative-calculations-finite-density"><span>On high-order perturbative calculations at finite density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ghisoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; ...</p> <p>2016-12-01</p> <p>We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — aresult reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbativemore » orders.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4195240','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4195240"><span>TUNGSTEN BASE ALLOYS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Schell, D.H.; Sheinberg, H.</p> <p>1959-12-15</p> <p>A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26373651','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26373651"><span>Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio</p> <p>2016-05-01</p> <p>Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (T(b)) and laboratory-preferred (T(pref)) body temperatures of lizards with different reproductive conditions, as well as ambient (T(a)) and copper-model operative temperature (T(e)), which we used to determine thermal quality of the habitat (d(e)), accuracy (d(b)), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while T(a) constrained T(b) only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, T(pref) dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (T(e) > T(pref)). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, d(b) and d(e)-d(b) were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4348756','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4348756"><span>SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an Ortholog of OPEN STOMATA1, Is a Negative Regulator of Strawberry Fruit Development and Ripening1[OPEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo</p> <p>2015-01-01</p> <p>Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713946B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713946B"><span>Deciphering the influence of the thermal processes on the early passive margins formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille</p> <p>2015-04-01</p> <p>Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere.
However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs.
In addition, it seems that the relationship between basin formation and thermal evolution is not always the same:
- Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic .
- Other examples show that temperature changes are synchronous with basin formation . For example, extensive ponds Cretaceous North Pyrenean clearly indicate that the "cooking" of contemporary sediment deposit. In the light of new models, we discuss the consequences of the formation of LP-granulites during rifting on deformation and the subsidence processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53I..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53I..06S"><span>Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.</p> <p>2017-12-01</p> <p>Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24658410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24658410"><span>Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harlan, Sharon L; Chowell, Gerardo; Yang, Shuo; Petitti, Diana B; Morales Butler, Emmanuel J; Ruddell, Benjamin L; Ruddell, Darren M</p> <p>2014-03-20</p> <p>In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥ 65 during the months May-October for years 2000-2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90-97 °F; 32.2-36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990018982&hterms=long+hours+work&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlong%2Bhours%2Bwork','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990018982&hterms=long+hours+work&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlong%2Bhours%2Bwork"><span>Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704 C In Air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Locci, I. E.; Brady, M. P.; MacKay, R. A.; Smith, J. W.</p> <p>1997-01-01</p> <p>Introduction Titanium aluminides are of great interest for intermediate-temperature (600 C - 850 C) aerospace and power generation applications because of their high specific properties. Replacement of conventional superalloys by titanium aluminides offers the potential of significant weight savings. Extensive development efforts over the past IO years have led to the identification of y (TiAl) + alpha(sub 2) (Ti3Al) alloys, such as the G.E. alloy Ti48Al-2Cr-2Nb (all composition in at. %), which offer a balance of room temperature mechanical properties and high-temperature strength retention. The two phase gamma + alpha(sub 2) class of titanium aluminides also offers superior oxidation and embrittlement resistance compared to the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, environmental durability is still a major concern. Significant progress has recently been made in understanding the fundamental aspects of the oxidation behavior of binary gamma + alpha(sub 2) Ti-Al alloys. However, most of this work has concentrated on short term (less than 1000 hours), high temperature (900 C - 1000 C) exposures. Also little data are available in the literature regarding the oxidation behavior of the quaternary and higher order gamma + alpha(sub 2) engineering alloys. This is especially true for the very long-term, low temperature conditions likely to be experienced during engineering applications. The present work addresses this regime to fill this gap by characterizing the oxidation behavior of Ti48Al-2Cr-2Nb for periods up to 9000 h at 704 C in air.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035478','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035478"><span>Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Colgan, Joseph P.; Henry, Christopher D.</p> <p>2009-01-01</p> <p>The modern Sierra Nevada and Great Basin were likely the site of a high-elevation orogenic plateau well into Cenozoic time, supported by crust thickened during Mesozoic shortening. Although crustal thickening at this scale can lead to extension, the relationship between Mesozoic shortening and subsequent formation of the Basin and Range is difficult to unravel because it is unclear which of the many documented or interpreted extensional episodes was the most significant for net widening and crustal thinning. To address this problem, we integrate geologic and geochronologic data that bear on the timing and magnitude of Cenozoic extension along an ???200km east-west transect south of Winnemucca, Battle Mountain, and Elko, Nevada. Pre-Cenozoic rocks in this region record east-west Palaeozoic and Mesozoic compression that continued into the Cretaceous. Little to no tectonism and no deposition followed until intense magmatism began in the Eocene. Eocene and Oligocene ash-flow tuffs flowed as much as 200km down palaeovalleys cut as deeply as 1.5km into underlying Palaeozoic and Mesozoic rocks in a low-relief landscape. Eocene sedimentation was otherwise limited to shallow lacustrine basins in the Elko area; extensive, thick clastic deposits are absent. Minor surface extension related to magmatism locally accompanied intense Eocene magmatism, but external drainage and little or no surface deformation apparently persisted regionally until about 16-17Ma. Major upper crustal extension began across the region ca. 16-17Ma, as determined by cross-cutting relationships, low-temperature thermochronology, and widespread deposition of clastic basin fill. Middle Miocene extension was partitioned into high-strain (50-100%) domains separated by largely unextended crustal blocks, and ended by 10-12Ma. Bimodal volcanic rocks that erupted during middle Miocene extension are present across most of the study area, but are volumetrically minor outside the northern Nevada rift. The modern physiographic basins and ranges formed during a distinctly different episode of extension that began after about 10Ma and has continued to the present. Late Miocene and younger faulting is characterized by widely spaced, high-angle normal faults that cut both older extended and unextended domains. Major widening of the Basin and Range at this latitude thus took place during a relatively brief interval in the middle Miocene, and the lack of major shortening west of the Sierra Nevada at this time suggests that the change in the plate margin from microplate subduction to lengthy transtensional strike-slip played an important role in allowing extension to occur when it did, as rapidly as it did. The onset of extension ca. 16-17Ma was coeval with both Columbia River flood-basalt volcanism and the hypothesized final delamination of the shallow Farallon slab that lay beneath the western USA in the early Tertiary. However, it is unclear if these events were necessary prerequisites for extension, simply coincidental, or themselves consequences of rapid extension and/or reorganization of the plate boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357608-study-convection-heat-transfer-very-high-temperature-reactor-flow-channel-numerical-experimental-results','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357608-study-convection-heat-transfer-very-high-temperature-reactor-flow-channel-numerical-experimental-results"><span>Study of Convection Heat Transfer in a Very High Temperature Reactor Flow Channel: Numerical and Experimental Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Valentin, Francisco I.; Artoun, Narbeh; Anderson, Ryan; ...</p> <p>2016-12-01</p> <p>Very High Temperature Reactors (VHTRs) are one of the Generation IV gas-cooled reactor models proposed for implementation in next generation nuclear power plants. A high temperature/pressure test facility for forced and natural circulation experiments has been constructed. This test facility consists of a single flow channel in a 2.7 m (9’) long graphite column equipped with four 2.3kW heaters. Extensive 3D numerical modeling provides a detailed analysis of the thermal-hydraulic behavior under steady-state, transient, and accident scenarios. In addition, forced/mixed convection experiments with air, nitrogen and helium were conducted for inlet Reynolds numbers from 500 to 70,000. Our numerical resultsmore » were validated with forced convection data displaying maximum percentage errors under 15%, using commercial finite element package, COMSOL Multiphysics. Based on this agreement, important information can be extracted from the model, with regards to the modified radial velocity and property gas profiles. Our work also examines flow laminarization for a full range of Reynolds numbers including laminar, transition and turbulent flow under forced convection and its impact on heat transfer under various scenarios to examine the thermal-hydraulic phenomena that could occur during both normal operation and accident conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23010177','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23010177"><span>The seasonal effect in one-dimensional Daisyworld.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biton, Eli; Gildor, Hezi</p> <p>2012-12-07</p> <p>We have studied the effects of seasonal Solar Radiation Forcing (SRF) on the climate self-regulatory capability of life, using a latitudinal-dependent Daisyworld model. Because the seasonal polarity of SRF increases poleward, habitable conditions exist in the equatorial regions year round, whereas, in the high latitudes, harsh winters cause annual extinction of life, and only the summers are inhabited or regulated by life. Seasonality affects climate regulation by two major mechanisms: (1) the cold winter conditions in the high latitudes reduce the global temperature below the optimal temperature; (2) during summer, life experiences higher SRF anomalies and, therefore, shifts to higher albedo when compared to annual mean SRF. In turn, a full capacity for temperature regulation is reached at lower SRF, and the range of SRF over which life regulates climate is significantly reduced. Lastly, initiation/extinction of life at low/highly-perturbed SRF occurs at the poles. Therefore, an irreversible global extinction occurs once life passes its regulatory capacity in the poles. We conduct extensive sensitivity analyses on various model parameters (latitudinal heat diffusion, heat capacity, and population death rate), strengthening the generality/robustness of the above net seasonal effects. Applications to other SRF fluctuation, as Milankovitch cycles are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.490..100M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.490..100M"><span>Instability of the southern Canadian Shield during the late Proterozoic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDannell, Kalin T.; Zeitler, Peter K.; Schneider, David A.</p> <p>2018-05-01</p> <p>Cratons are generally considered to comprise lithosphere that has remained tectonically quiescent for billions of years. Direct evidence for stability is mainly founded in the Phanerozoic sedimentary record and low-temperature thermochronology, but for extensive parts of Canada, earlier stability has been inferred due to the lack of an extensive rock record in both time and space. We used 40Ar/39Ar multi-diffusion domain (MDD) analysis of K-feldspar to constrain cratonic thermal histories across an intermediate (∼150-350 °C) temperature range in an attempt to link published high-temperature geochronology that resolves the timing of orogenesis and metamorphism with lower-temperature data suited for upper-crustal burial and unroofing histories. This work is focused on understanding the transition from Archean-Paleoproterozoic crustal growth to later intervals of stability, and how uninterrupted that record is throughout Earth's Proterozoic "Middle Age." Intermediate-temperature thermal histories of cratonic rocks at well-constrained localities within the southern Canadian Shield of North America challenge the stability worldview because our data indicate that these rocks were at elevated temperatures in the Proterozoic. Feldspars from granitic rocks collected at the surface cooled at rates of <0.5 °C/Ma subsequent to orogenesis, seemingly characteristic of cratonic lithosphere, but modeled thermal histories suggest that at ca. 1.1-1.0 Ga these rocks were still near ∼200 °C - signaling either reheating, or prolonged residence at mid-crustal depths assuming a normal cratonic geothermal gradient. After 1.0 Ga, the regions we sampled then underwent further cooling such that they were at or near the surface (≪60 °C) in the early Paleozoic. Explaining mid-crustal residence at 1.0 Ga is challenging. A widespread, prolonged reheating history via burial is not supported by stratigraphic information, however assuming a purely monotonic cooling history requires at the very least 5 km of exhumation beginning at ca. 1.0 Ga. A possible explanation may be found in evidence of magmatic underplating that thickened the crust, driving uplift and erosion. The timing of this underplating coincides with Mid-Continent extension, Grenville orogenesis, and assembly of the supercontinent Rodinia. 40Ar/39Ar MDD data demonstrate that this technique can be successfully applied to older rocks and fill in a large observational gap. These data also raise questions about the evolution of cratons during the Proterozoic and the nature of cratonic stability across deep time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NucFu..57j2023T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NucFu..57j2023T"><span>Extension of the operational regime of the LHD towards a deuterium experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.</p> <p>2017-10-01</p> <p>As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920061982&hterms=Fractography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFractography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920061982&hterms=Fractography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFractography"><span>Thermomechanical testing of high-temperature composites - Thermomechanical fatigue (TMF) behavior of SiC(SCS-6)/Ti-15-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Castelli, Michael G.; Bartolotta, Paul; Ellis, John R.</p> <p>1992-01-01</p> <p>Thermomechanical testing techniques recently developed for monolithic structural alloys were successfully extended to continuous fiber reinforced composite materials in plate form. The success of this adaptation was verified on a model metal matrix composite (MMC) material, namely SiC(SCS-6)/Ti-15V-3Cr-3Al-3Sn. Effects of heating system type and specimen preparation are also addressed. Cyclic lives determined under full thermomechanical conditions were shown to be significantly reduced from those obtained under comparable isothermal and in-phase bi-thermal conditions. Fractography and metallography from specimens subjected to isothermal, out-of-phase and in-phase conditions reveal distinct differences in damage-failure modes. Isothermal metallography revealed extensive matrix cracking associated with fiber damage throughout the entire cross-section of the specimen. Out-of-phase metallography revealed extensive matrix damage associated with minimal (if any) fiber cracking. However, the damage was located exclusively at surface and near-surface locations. In-phase conditions produced extensive fiber cracking throughout the entire cross-section, associated with minimal (if any) matrix damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1052..151C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1052..151C"><span>Implementation of Temperature Sequential Controller on Variable Speed Drive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheong, Z. X.; Barsoum, N. N.</p> <p>2008-10-01</p> <p>There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSP...171..768C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSP...171..768C"><span>Free Fermions and the Classical Compact Groups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil</p> <p>2018-06-01</p> <p>There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080733"><span>The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)</p> <p>2002-01-01</p> <p>Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1340197','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1340197"><span>Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zidan, Ragaiy; Hardy, B. J.; Corgnale, C.</p> <p>2016-01-31</p> <p>The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce verymore » high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28647287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28647287"><span>Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta</p> <p>2017-08-01</p> <p>Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24045169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24045169"><span>High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y</p> <p>2014-06-01</p> <p>In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21654342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21654342"><span>Heart rate and core temperature responses of elite pit crews during automobile races.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy</p> <p>2011-08-01</p> <p>There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325661','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325661"><span>Lifetime Extension Report: Progress on the SAVY-4000 Lifetime Extension Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Welch, Cynthia F.; Smith, Paul Herrick; Weis, Eric M.</p> <p></p> <p>The 3-year accelerated aging study of the SAVY-4000 O-ring shows very little evidence of significant degradation to samples subjected to aggressive elevated temperature and radiation conditions. Whole container thermal aging studies followed by helium leakage testing and compression set measurements were used to establish an estimate for a failure criterion for O-ring compression set of ≥65 %. The whole container aging studies further show that the air flow and efficiency functions of the filter do not degrade significantly after thermal aging. However, the degradation of the water-resistant function leads to water penetration failure after four months at 210°C, but doesmore » not cause failure after 10 months at 120°C (130°C is the maximum operating temperature for the PTFE membrane). The thermal aging data for O-ring compression set do not meet the assumptions of standard time-temperature superposition analysis for accelerated aging studies. Instead, the data suggest that multiple degradation mechanisms are operative, with a reversible mechanism operative at low aging temperatures and an irreversible mechanism dominating at high aging temperatures. To distinguish between these mechanisms, we have measured compression set after allowing the sample to physically relax, thereby minimizing the effect of the reversible mechanism. The resulting data were analyzed using two distinct mathematical methods to obtain a lifetime estimate based on chemical degradation alone. Both methods support a lifetime estimate of greater than 150 years at 80°C. Although the role of the reversible mechanism is not fully understood, it is clear that the contribution to the total compression set is small in comparison to that due to the chemical degradation mechanism. To better understand the chemical degradation mechanism, thermally aged O-ring samples have been characterized by Fourier Transform Infrared (FTIR), Electron Paramagnetic Resonance (EPR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). These experiments detect no significant O-ring degradation below 80°C. Furthermore, durometer measurements indicate that there is no significant change in O-ring hardness at all aging conditions examined. Therefore, our current conservative lifetime estimate for the O-ring and the filter is 10 years at 80°C. In FY17, we will continue to probe the chemical degradation mechanism using oxygen consumption measurements under accelerated aging conditions to reveal temperatures at which oxidation occurs, along with any differences in oxidation rate at the low vs. high aging temperatures. We will also refine the failure criteria and finalize the radiation/thermal synergistic studies to determine a final design lifetime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......454M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......454M"><span>Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandal, Paranjayee</p> <p></p> <p>Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2 and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24038752','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24038752"><span>Impacts of a spring heat wave on canopy processes in a northern hardwood forest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filewod, Ben; Thomas, Sean C</p> <p>2014-02-01</p> <p>Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896f0006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896f0006M"><span>Thermoforming of HDPE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McKelvey, David; Menary, Gary; Martin, Peter; Yan, Shiyong</p> <p>2017-10-01</p> <p>The thermoforming process involves a previously extruded sheet of material being reheated to a softened state below the melting temperature and then forced into a mould either by a plug, air pressure or a combination of both. Thermoplastics such as polystyrene (PS) and polypropylene (PP) are commonly processed via thermoforming for products in the packaging industry. However, high density polyethylene (HDPE) is generally not processed via thermoforming and yet HDPE is extensively processed throughout the packaging industry. The aim of this study was to investigate the potential of thermoforming HDPE. The objectives were to firstly investigate the mechanical response under comparable loading conditions and secondly, to investigate the final mechanical properties post-forming. Obtaining in-process stress-strain behavior during thermoforming is extremely challenging if not impossible. To overcome this limitation the processing conditions were replicated offline using the QUB biaxial stretcher. Typical processing conditions that the material will experience during the process are high strain levels, high strain rates between 0.1-10s-1 and high temperatures in the solid phase (1). Dynamic Mechanical Analysis (DMA) was used to investigate the processing range of the HDPE grade used in this study, a peak in the tan delta curve was observed just below the peak melting temperature and hence, a forming temperature was selected in this range. HPDE was biaxially stretched at 128°C at a strain rate of 4s-1, under equal biaxial deformation (EB). The results showed a level of biaxial orientation was induced which was accompanied by an increase in the modulus from 606 MPa in the non-stretched sample to 1212MPa in the stretched sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22691196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22691196"><span>Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oswald, Stephen A; Arnold, Jennifer M</p> <p>2012-06-01</p> <p>There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AAS...22831611A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AAS...22831611A"><span>Combining VPL tools with NEMESIS to Probe Hot Jupiter Exoclimes for JWST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afrin Badhan, Mahmuda; Kopparapu, Ravi Kumar; Domagal-Goldman, Shawn; Hébrard, Eric; Deming, Drake; Barstow, Joanna; Claire, Mark; Irwin, Patrick GJ; Mandell, Avi; Batalha, Natasha; Garland, Ryan</p> <p>2016-06-01</p> <p>Hot Jupiters are the most readily detected exoplanets by present technology. Since the scorching temperatures (>1000K) from high stellar irradiation levels do not allow for cold traps to form in their atmospheres, we can constrain their envelope’s elemental composition with greater confidence compared to our own Jupiter. Thus highly irradiated giant exoplanets hold keys to advancing our understanding of the origin and evolution of planetary systems.Constraining the atmospheric constituents through retrieval methods demands high-precision spectroscopic measurements and robust models to match those measurements. The former will be provided by NASA’s upcoming missions such as JWST. We meet the latter by producing self-consistent retrievals. Here I present modeling results for the temperature structure and photochemical gas abundances of water, methane, carbon dioxide and carbon monoxide, in the dayside atmospheres of selected H2-dominated hot Jupiters observed by present space missions and JWST/NIRSpec simulations, for two [C]/[O] metallicity ratios.The photochemical models were computed using a recently upgraded version of the NASA Astrobiology Institute’s VPL/Atmos software suite. For the radiative transfer and retrieval work, I have utilized a combination of two different numerical approaches in the extensively validated NEMESIS Atmospheric Retrieval Algorithm (Oxford Planetary Group). I have also represented the temperature profile in an analytical radiative equilibrium form to ascertain their physical plausibility. Finally, high-temperature (T> 1000K) spectroscopic opacity databases are slowly but continually being improved. Since this carries the potential of impacting irradiated atmospheric models quite significantly, I also talk about the potential observable impact of such improvements on the retrieval results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23600522','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23600522"><span>Major QTLs for critical photoperiod and vernalization underlie extensive variation in flowering in the Mimulus guttatus species complex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Friedman, Jannice; Willis, John H</p> <p>2013-07-01</p> <p>Species with extensive ranges experience highly variable environments with respect to temperature, light and soil moisture. Synchronizing the transition from vegetative to floral growth is important to employ favorable conditions for reproduction. Optimal timing of this transition might be different for semelparous annual plants and iteroparous perennial plants. We studied variation in the critical photoperiod necessary for floral induction and the requirement for a period of cold-chilling (vernalization) in 46 populations of annuals and perennials in the Mimulus guttatus species complex. We then examined critical photoperiod and vernalization QTLs in growth chambers using F(2) progeny from annual and perennial parents that differed in their requirements for flowering. We identify extensive variation in critical photoperiod, with most annual populations requiring substantially shorter day lengths to initiate flowering than perennial populations. We discover a novel type of vernalization requirement in perennial populations that is contingent on plants experiencing short days first. QTL analyses identify two large-effect QTLs which influence critical photoperiod. In two separate vernalization experiments we discover each set of crosses contain different large-effect QTLs for vernalization. Mimulus guttatus harbors extensive variation in critical photoperiod and vernalization that may be a consequence of local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMEP..tmp..157A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMEP..tmp..157A"><span>A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.</p> <p>2018-03-01</p> <p>The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure resulting from the above treatment is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033325','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033325"><span>'Snake River (SR)-type' volcanism at the Yellowstone hotspot track: Distinctive products from unusual, high-temperature silicic super-eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Branney, M.J.; Bonnichsen, B.; Andrews, G.D.M.; Ellis, B.; Barry, T.L.; McCurry, M.</p> <p>2008-01-01</p> <p>A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-??18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050??C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coule??es. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, Etendeka-Paran, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia. ?? Springer-Verlag 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26810479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26810479"><span>RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yatsu, Ryohei; Miyagawa, Shinichi; Kohno, Satomi; Parrott, Benjamin B; Yamaguchi, Katsushi; Ogino, Yukiko; Miyakawa, Hitoshi; Lowers, Russell H; Shigenobu, Shuji; Guillette, Louis J; Iguchi, Taisen</p> <p>2016-01-25</p> <p>The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..497..272G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..497..272G"><span>An extensive study of Bose-Einstein condensation in liquid helium using Tsallis statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guha, Atanu; Das, Prasanta Kumar</p> <p>2018-05-01</p> <p>Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼ 1 . 4) , the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc = 2 . 17 K), although they differs from each other for q = 1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730021232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730021232"><span>Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Packer, C. M.; Perkins, R. A.</p> <p>1973-01-01</p> <p>Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1286779-giant-spin-driven-ferroelectric-polarization-bifeo3-room-temperature','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1286779-giant-spin-driven-ferroelectric-polarization-bifeo3-room-temperature"><span>Giant Spin-Driven Ferroelectric Polarization in BiFeO 3 at Room Temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lee, Jun Hee; Fishman, Randy S.</p> <p>2015-11-11</p> <p>Although BiFeO 3 is the most extensively investigated multiferroic material, its magnetoelectic couplings are barely understood. Here we report a thorough study of the magentoelectric (ME) couplings in spin-cycloidal buk BiFeO 3 using first-principles calculations and microscopic spin-wave models compared with neutron-scattering measurements. We find that huge exchange-striction (ES) polarizations, i.e. the electric response of the magnetic exchange through ferroelectric and antiferrodistortive distortions, is giant enough to dominate over all other ME couplings. We show that BiFeO 3 has a hidden record-high spin-driven polarization ( 3 C/cm 2) at room-temperature. The huge ES polarizations can be tuned by coupling tomore » the antiferrodistortive rotations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20113088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20113088"><span>Design and development of indirectly heated solid cathode for strip type electron gun.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maiti, Namita; Mukherjee, S; Kumar, Bhunesh; Barve, U D; Suryawanshi, V B; Das, A K</p> <p>2010-01-01</p> <p>Design analysis of a high power indirectly heated solid cathode (for a 200 kW, 45 kV, and 270 degrees bent strip type electron gun) has been presented. The design approach consists of simulation followed by extensive experimentation with different cathode configurations. The preferred cathode is of trapezoidal section (8 x 4 x 2 mm(3)) with an emitting area of 110 x 4 mm(2) made up of tantalum operating at about 2500 K. The solid cathode at the operating temperature of 2500 K generated a well defined electron beam. Electromagnetic and thermomechanical simulation is used to optimize the shape of the beam. Thermal modeling has also been used to analyze the temperature and stress distribution on the electrodes. The simulation results are validated by experimental measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96f0411R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96f0411R"><span>Anisotropic phase diagram and spin fluctuations of the hyperkagome magnet Gd3Ga5O12 as revealed by sound velocity measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rousseau, Alexandre; Parent, Jean-Michel; Quilliam, Jeffrey A.</p> <p>2017-08-01</p> <p>Sound velocity and attenuation measurements on the frustrated garnet material Gd3Ga5O12 (GGG) are presented as a function of field and temperature, with two different magnetic field orientations: [100 ] and [110 ] . We demonstrate that the phase diagram is highly anisotropic, with two distinct field-induced ordered phases for H ||[110 ] and only one for H ||[100 ] . Extensive lattice softening is found to occur at low fields, which can be associated with spin fluctuations. However, deep within the spin liquid phase a low-temperature stiffening of the lattice and reduced attenuation provide evidence for a spin gap which may be related to short-range antiferromagnetic correlations over minimal ten-spin loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900051608&hterms=iodine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Diodine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900051608&hterms=iodine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Diodine"><span>Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.</p> <p>1990-01-01</p> <p>Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013113"><span>Superplastic formability of Al-Cu-Li alloy Weldalite (TM) 049</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ma, Bao-Tong; Pickens, Joseph R.</p> <p>1991-01-01</p> <p>Extensive research during the past decade shows that several aluminum lithium alloys can be processed to attain a microstructure that enables superplasticity. The high tensile stress of Al-Cu-Li alloy Weldalite (TM) 049 in the T4 and T6 tempers offers tremendous potential for attaining exceptional post-SPF (superplastic formability) properties. The used SPF material is Weldalite, which was shown to induce SPF behavior in other Al-Cu-Li alloys. The superplastic behavior and resulting post-SPF mechanical properties of this alloy, which was designed to be the next major structural alloy for space applications, were evaluated. The results indicate that Weldalite alloy does indeed exhibit excellent superplasticity over a wide range of temperatures and strain rates and excellent post-SPF tensile strength at various potential service temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97b2141W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97b2141W"><span>Enhanced diffusion on oscillating surfaces through synchronization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui</p> <p>2018-02-01</p> <p>The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SJRUE..21...47S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SJRUE..21...47S"><span>An Attempt to Design a Naturally Ventilated Tower in Subtropical Climate of the Developing Country; Pakistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sohail, Maha</p> <p>2017-12-01</p> <p>A large proportion of the world's population resides in developing countries where there is a lack of rigorous studies in designing energy efficient buildings. This study is a step in designing a naturally ventilated high rise residential building in a tropical climatic context of the developing country, Pakistan. Karachi, the largest city of Pakistan, lies in the subtropical hot desert region with constant high temperature of average 32 °C throughout the summer and no particular winter season. The Design Builder software package is used to design a 25 storey high rise residential building relying primarily on natural ventilation. A final conceptual design is proposed after optimization of massing, geometry, orientation, and improved building envelope design including extensive shading devices in the form of trees. It has been observed that a reduction of 8 °C in indoor ambient temperature is possible to achieve with passive measures and use of night time ventilation. A fully naturally ventilated building can reduce the energy consumption for cooling and heating by 96 % compared to a building using air conditioning systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.208....4M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.208....4M"><span>Reviews and perspectives of high impact atmospheric processes in the Mediterranean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michaelides, Silas; Karacostas, Theodore; Sánchez, Jose Luis; Retalis, Adrianos; Pytharoulis, Ioannis; Homar, Víctor; Romero, Romualdo; Zanis, Prodromos; Giannakopoulos, Christos; Bühl, Johannes; Ansmann, Albert; Merino, Andrés; Melcón, Pablo; Lagouvardos, Konstantinos; Kotroni, Vassiliki; Bruggeman, Adriana; López-Moreno, Juan Ignacio; Berthet, Claude; Katragkou, Eleni; Tymvios, Filippos; Hadjimitsis, Diofantos G.; Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro</p> <p>2018-08-01</p> <p>The Mediterranean region is a unique area characterized by a large spectrum of atmospheric phenomena, some of which have a high impact on many aspects of human activities, safety and wellbeing. The area is long considered as a hot spot of such atmospheric phenomena deserving multidisciplinary scientific attention. The scientific research that has been carried out on these high impact atmospheric processes that occur in the Mediterranean area is indeed widespread and the available international literature is very extensive. The paper touches initially the temperature and precipitation regimes, followed by a discussion of floods and droughts. The exciting cyclogenetic patterns of explosive cyclones and medicanes are presented in separate sections. The lightning activity and the presence of dust and other pollutants are also presented herein. The atmospheric chemistry of the region which is increasingly becoming of utmost importance for the area under study is distinctly discussed. Attempts to modify the weather (the precipitation, in particular) are outlined too. The effects of climatic change on various atmospheric processes are considered throughout this paper, in addition to a dedicated section on temperature and precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RScI...84l4101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RScI...84l4101S"><span>Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek</p> <p>2013-12-01</p> <p>Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890010771','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890010771"><span>Fatigue life prediction modeling for turbine hot section materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.</p> <p>1989-01-01</p> <p>A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880005071','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880005071"><span>Fatigue life prediction modeling for turbine hot section materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.</p> <p>1988-01-01</p> <p>A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1054442-study-surface-cleaning-methods-pyrolysis-temperature-nano-structured-carbon-films-using-ray-photoelectron-spectroscopy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1054442-study-surface-cleaning-methods-pyrolysis-temperature-nano-structured-carbon-films-using-ray-photoelectron-spectroscopy"><span>Study of Surface Cleaning Methods and Pyrolysis Temperature on Nano-Structured Carbon Films using X-ray Photoelectron Spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kerber, Pranita B.; Porter, Lisa M.; McCullough, L. A.</p> <p>2012-10-12</p> <p>Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of di-block copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, (2009) 177]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of di-block copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) (PAN-b-PBA) at two different temperaturesmore » were carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included: HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % of nitrogen present in the films pyrolyzed at 600 °C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration reduced significantly for films pyrolyzed at 900 °C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen sub-peaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic cluster, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 °C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980048415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980048415"><span>Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda</p> <p>1998-01-01</p> <p>Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPS...378..369K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPS...378..369K"><span>High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup</p> <p>2018-02-01</p> <p>To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...90a2061C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...90a2061C"><span>Thin-layer thermal insulation coatings based on high-filled spheroplastics with polyorganosiloxane binder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chukhlanov, V. Yu; Selivanov, O. G.; Trifonova, T. A.; Ilina, M. E.; Chukhlanova, N. V.</p> <p>2017-10-01</p> <p>Thermal insulation coatings, based on polyorganosiloxane as a binder and hollow glass microspheres, have been studied in this research. The developed materials are widely applied in various branches of science and engineering basically in construction. Components interaction processes are comprehensively studied. Spraying production methods of thin layer thermal insulation coatings have been researched. Ideal technological parameters for polyorganosiloxane coatings hardening depending on components ratio, ambient temperature, solvent and curative concentration have been determined. Stress related characteristics of constructional energy saving materials containing polyorganosiloxane have been researched. Components structure and ratio concerning compound extension strength properties have been revealed. Substantiation of Danneberg model application for the strength characteristics enhancing, when hollow microspheres are introduced, has been suggested. Thermal properties of coating thermal insulation have been studied. To research these characteristics standard methods applying devices IT-S-400 and IT-λ-400 have been chosen. Filler concentration increase was stated to decrease the composition heat conductivity coefficient and to the reduction of temperature dependence of this index. The authors suggested to employ the developed thermal insulation materials for construction and power engineering facilities operating under high temperature and other unfavorable environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10168E..0RB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10168E..0RB"><span>Heating and thermal control of brazing technique to break contamination path for potential Mars sample return</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio</p> <p>2017-04-01</p> <p>The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111v1901B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111v1901B"><span>Deduced elasticity of sp3-bonded amorphous diamond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballato, J.; Ballato, A.</p> <p>2017-11-01</p> <p>Amorphous diamond was recently synthesized using high temperature and pressure techniques [Z. Zeng, L. Yang, Q. Zeng, H. Lou, H. Sheng, J. Wen, D. J. Miller, Y. Meng, W. Yang, W. L. Mao, and H. K. Mao, Nat. Commun. 8, 322 (2017)]. Here, selected physical properties of this new phase of carbon are deduced using an extension of the Voigt-Reuss-Hill (VRHx) methodology whereby single crystal values are averaged over all orientations to yield values for the amorphous analog. Specifically, the elastic constants were deduced to be c11 = 1156.5 GPa, c12 = 87.6 GPa, and c44 = 534.5 GPa, whereas the Young's modulus, bulk modulus, and Poisson's ratio were also estimated to be 1144.2 GPa, 443.9 GPa, and 0.0704, respectively. These numbers are compared with experimental and theoretical literature values for other allotropic forms, specifically, Lonsdaleite, and two forms each of graphite and amorphous carbon. It is unknown at this time how the high temperature and pressure synthesis approach employed influences the structure, hence properties, of amorphous diamond at room temperature. However, the values provided herein constitute a baseline against which future structure/property/processing analyses can be compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020081280','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020081280"><span>Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth</p> <p>2002-01-01</p> <p>The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e2704W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e2704W"><span>Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woo, K. M.; Betti, R.; Shvarts, D.; Bose, A.; Patel, D.; Yan, R.; Chang, P.-Y.; Mannion, O. M.; Epstein, R.; Delettrez, J. A.; Charissis, M.; Anderson, K. S.; Radha, P. B.; Shvydky, A.; Igumenshchev, I. V.; Gopalaswamy, V.; Christopherson, A. R.; Sanz, J.; Aluie, H.</p> <p>2018-05-01</p> <p>The study of Rayleigh-Taylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. We show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. These results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. The effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ=1 -12. The jet observed in low mode ℓ=1 is shown to cause the largest ion temperature variation in the mode spectrum. The vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME54A0910B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME54A0910B"><span>Evaluating temperature as a driver of changing coastal biodiversity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batt, R. D.; Morley, J. W.; Selden, R. L.; Tingley, M. W.; Pinsky, M. L.</p> <p>2016-02-01</p> <p>Coastal waters are warming for many regions of the world, but the impacts on biodiversity are unclear. Theoretical mechanisms for temperature-driven changes in diversity include the expansion of highly diverse warm-water communities, and a tendency for colonizations to occur more rapidly than extinctions. However, these hypotheses remain untested. In fact, some surveys of biodiversity indicate no systematic change in local species richness for most regions of the world. We evaluated the empirical evidence for these proposed mechanisms using long-term and spatially extensive surveys in conjunction with statistical methods robust to observational biases. In contrast to other empirical studies, we identified consistent increases in the richness of North American demersal communities in recent decades. The changes in these communities are associated with changing water temperatures, but are not well-predicted by proposed mechanisms. Most theoretical expectations for how temperature may change biodiversity involve biogeographic dynamics. By determining the timing and locations of colonization and extinction events of 2000 species, we provide a rare assessment of the merits and shortcomings of these hypotheses as they pertain to observed changes coastal biodiversity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>