Sample records for extensive numerical study

  1. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  2. Code Validation Studies of High-Enthalpy Flows

    DTIC Science & Technology

    2006-12-01

    stage of future hypersonic vehicles. The development and design of such vehicles is aided by the use of experimentation and numerical simulation... numerical predictions and experimental measurements. 3. Summary of Previous Work We have studied extensively hypersonic double-cone flows with and in...the experimental measurements and the numerical predictions. When we accounted for that effect in numerical simulations, and also augmented the

  3. Stimulating the Imaginative Capacities of Agricultural Extension Students

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Chang, Wen-Shan; Yao, Shu-Nung; King, Jung-Tai; Chen, Shi-An

    2016-01-01

    Purpose: To address the dynamic challenges associated with developing a globally sustainable society, numerous scholars have stressed the need to cultivate the imagination of agricultural students. This study aimed to explore how pictorial representations stimulate the imaginative capacities of agricultural extension students.…

  4. A Model of Motivation for Extensive Reading in Japanese as a Foreign Language

    ERIC Educational Resources Information Center

    de Burgh-Hirabe, Ryoko; Feryok, Ann

    2013-01-01

    Numerous studies have reported that extensive reading (ER) has a positive influence on affect. Recent studies suggest that motivation for ER changes. This is in line with recent developments in second language (L2) motivation research that have highlighted the complex and dynamic nature of L2 motivation. This study presents a model of complex and…

  5. A numerical investigation of the effects of the spanwise length on the 3-D wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Labbé, D. F. L.; Wilson, P. A.

    2007-11-01

    The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.

  6. Minimizing Dispersion in FDTD Methods with CFL Limit Extension

    NASA Astrophysics Data System (ADS)

    Sun, Chen

    The CFL extension in FDTD methods is receiving considerable attention in order to reduce the computational effort and save the simulation time. One of the major issues in the CFL extension methods is the increased dispersion. We formulate a decomposition of FDTD equations to study the behaviour of the dispersion. A compensation scheme to reduce the dispersion in CFL extension is constructed and proposed. We further study the CFL extension in a FDTD subgridding case, where we improve the accuracy by acting only on the FDTD equations of the fine grid. Numerical results confirm the efficiency of the proposed method for minimising dispersion.

  7. Overview of Plant Incorporated Protectants

    EPA Pesticide Factsheets

    When assessing the potential risks of genetically engineered plant-incorporated protectants, EPA requires extensive studies examining numerous factors. Learn more about the history and process for regulating PIPs.

  8. Scientific study of data analysis

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1990-01-01

    We present a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized and the accuracy and numerical instability are discussed. On the basis of this investigation, we claim that the two methods do resemble each other qualitatively.

  9. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds

    Treesearch

    X. Zhou; D.R. Weise; S Mahalingam

    2005-01-01

    An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...

  10. Extensive numerical study of a D-brane, anti-D-brane system in AdS 5 /CFT 4

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2015-04-01

    In this paper the hybrid-NLIE approach of [38] is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L = 1 case is also commented in the paper.

  11. Sull'Integrazione delle Strutture Numeriche nella Scuola dell'Obbligo (Integrating Numerical Structures in Mandatory School).

    ERIC Educational Resources Information Center

    Bonotto, C.

    1995-01-01

    Attempted to verify knowledge regarding decimal and rational numbers in children ages 10-14. Discusses how pupils can receive and assimilate extensions of the number system from natural numbers to decimals and fractions and later can integrate this extension into a single and coherent numerical structure. (Author/MKR)

  12. 3D numerical simulations of multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.

  13. A Numerical Study on Microwave Coagulation Therapy

    DTIC Science & Technology

    2013-01-01

    hepatocellular carcinoma (small size liver tumor). Through extensive numerical simulations, we reveal the mathematical relationships between some critical parameters in the therapy, including input power, frequency, temperature, and regions of impact. It is shown that these relationships can be approximated using simple polynomial functions. Compared to solutions of partial differential equations, these functions are significantly easier to compute and simpler to analyze for engineering design and clinical

  14. The role of elasticity in simulating long-term tectonic extension

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Behn, Mark D.; Mittelstaedt, Eric; Ito, Garrett; Klein, Benjamin Z.

    2016-05-01

    While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.

  15. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  16. Public Sector Agricultural Extension System Reform and the Challenges Ahead

    ERIC Educational Resources Information Center

    Rivera, William M.

    2011-01-01

    This paper is organized into two main sections. The first section examines extension as an engine for innovation and reviews the numerous priorities confronting extension systems. Section two highlights the current knowledge imperative and the critical connection of extension to post-secondary higher education and training, organizational…

  17. Numerical and Experimental Study on Hydrodynamic Performance of A Novel Semi-Submersible Concept

    NASA Astrophysics Data System (ADS)

    Gao, Song; Tao, Long-bin; Kou, Yu-feng; Lu, Chao; Sun, Jiang-long

    2018-04-01

    Multiple Column Platform (MCP) semi-submersible is a newly proposed concept, which differs from the conventional semi-submersibles, featuring centre column and middle pontoon. It is paramount to ensure its structural reliability and safe operation at sea, and a rigorous investigation is conducted to examine the hydrodynamic and structural performance for the novel structure concept. In this paper, the numerical and experimental studies on the hydrodynamic performance of MCP are performed. Numerical simulations are conducted in both the frequency and time domains based on 3D potential theory. The numerical models are validated by experimental measurements obtained from extensive sets of model tests under both regular wave and irregular wave conditions. Moreover, a comparative study on MCP and two conventional semi-submersibles are carried out using numerical simulation. Specifically, the hydrodynamic characteristics, including hydrodynamic coefficients, natural periods and motion response amplitude operators (RAOs), mooring line tension are fully examined. The present study proves the feasibility of the novel MCP and demonstrates the potential possibility of optimization in the future study.

  18. The Osher scheme for real gases

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1990-01-01

    An extension of Osher's approximate Riemann solver to include gases with an arbitrary equation of state is presented. By a judicious choice of thermodynamic variables, the Riemann invariats are reduced to quadratures which are then approximated numerically. The extension is rigorous and does not involve any further assumptions or approximations over the ideal gas case. Numerical results are presented to demonstrate the feasibility and accuracy of the proposed method.

  19. Juneau Indian Studies Elementary Curriculum Guide. Grades K-5.

    ERIC Educational Resources Information Center

    Cadiente, Ronalda

    Designed to provide instruction in Tlingit culture as an integral part of the K-5 social studies curriculum, this guide presents teachers with extensive lesson plans and numerous resource materials. The units of study focus on the culture and environment of southeast Alaska and emphasize experiential learning activities. Each grade…

  20. Stream Lifetimes Against Planetary Encounters

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  1. Feasibility study for a numerical aerodynamic simulation facility. Volume 3: FMP language specification/user manual

    NASA Technical Reports Server (NTRS)

    Kenner, B. G.; Lincoln, N. R.

    1979-01-01

    The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.

  2. Computing Evans functions numerically via boundary-value problems

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Nguyen, Rose; Sandstede, Björn; Ventura, Nathaniel; Wahl, Colin

    2018-03-01

    The Evans function has been used extensively to study spectral stability of travelling-wave solutions in spatially extended partial differential equations. To compute Evans functions numerically, several shooting methods have been developed. In this paper, an alternative scheme for the numerical computation of Evans functions is presented that relies on an appropriate boundary-value problem formulation. Convergence of the algorithm is proved, and several examples, including the computation of eigenvalues for a multi-dimensional problem, are given. The main advantage of the scheme proposed here compared with earlier methods is that the scheme is linear and scalable to large problems.

  3. Zdeněk Kopal: Numerical Analyst

    NASA Astrophysics Data System (ADS)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  4. Extensions and applications of a second-order landsurface parameterization

    NASA Technical Reports Server (NTRS)

    Andreou, S. A.; Eagleson, P. S.

    1983-01-01

    Extensions and applications of a second order land surface parameterization, proposed by Andreou and Eagleson are developed. Procedures for evaluating the near surface storage depth used in one cell land surface parameterizations are suggested and tested by using the model. Sensitivity analysis to the key soil parameters is performed. A case study involving comparison with an "exact" numerical model and another simplified parameterization, under very dry climatic conditions and for two different soil types, is also incorporated.

  5. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block

    PubMed Central

    Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640

  6. Hints for an extension of the early exercise premium formula for American options

    NASA Astrophysics Data System (ADS)

    Bermin, Hans-Peter; Kohatsu-Higa, Arturo; Perelló, Josep

    2005-09-01

    There exists a non-closed formula for the American put option price and non-trivial computations are required to solve it. Strong efforts have been made to propose efficient numerical techniques but few have strong mathematical reasoning to ascertain why they work well. We present an extension of the American put price aiming to catch weaknesses of the numerical methods based on their non-fulfillment of the smooth pasting condition.

  7. Explaining University Students' Strong Commitment to Understand through Individual and Contextual Elements

    ERIC Educational Resources Information Center

    Postareff, Liisa; Lindblom-Ylänne, Sari; Parpala, Anna

    2014-01-01

    Since the late 1970s numerous studies have explored students' approaches to learning (referred to as the "SAL" tradition). These studies have provided valuable evidence of students' study strategies and intentions at the university. Since extensive research already exists on students' approaches to learning, there is a need to move…

  8. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  9. The CALL-SLA Interface: Insights from a Second-Order Synthesis

    ERIC Educational Resources Information Center

    Plonsky, Luke; Ziegler, Nicole

    2016-01-01

    The relationship between computer-assisted language learning (CALL) and second language acquisition (SLA) has been studied both extensively, covering numerous subdomains, and intensively, resulting in hundreds of primary studies. It is therefore no surprise that CALL researchers, as in other areas of applied linguistics, have turned in recent…

  10. Methods, Software and Tools for Three Numerical Applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. R. Jessup

    2000-03-01

    This is a report of the results of the authors work supported by DOE contract DE-FG03-97ER25325. They proposed to study three numerical problems. They are: (1) the extension of the PMESC parallel programming library; (2) the development of algorithms and software for certain generalized eigenvalue and singular value (SVD) problems, and (3) the application of techniques of linear algebra to an information retrieval technique known as latent semantic indexing (LSI).

  11. Defining and Developing Curricula in the Context of Cooperative Extension

    ERIC Educational Resources Information Center

    Smith, Martin H.; Worker, Steven M.; Meehan, Cheryl L.; Schmitt-McQuitty, Lynn; Ambrose, Andrea; Brian, Kelley; Schoenfelder, Emily

    2017-01-01

    Effective curricula are considered to be the cornerstone of successful programming in Extension. However, there is no universal operationalized definition of the term "curriculum" as it applies to Extension. Additionally, the development of curricula requires a systematic process that takes into account numerous factors. We provide an…

  12. A comparison between progressive extension method (PEM) and iterative method (IM) for magnetic field extrapolations in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Sakurai, Takashi

    1990-01-01

    This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.

  13. Numerical investigation of deep-crust behavior under lithospheric extension

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Rey, Patrice F.; Mondy, Luke; Teyssier, Christian; Whitney, Donna L.

    2018-02-01

    What are the conditions under which lithospheric extension drives exhumation of the deep orogenic crust during the formation of gneiss domes? The mechanical link between extension of shallow crust and flow of deep crust is investigated using two-dimensional numerical experiments of lithospheric extension in which the crust is 60 km thick and the deep-crust viscosity and density parameter space is explored. Results indicate that the style of extension of the shallow crust and the path, magnitude, and rate of flow of deep crust are dynamically linked through the deep-crust viscosity, with density playing an important role in experiments with a high-viscosity deep crust. Three main groups of domes are defined based on their mechanisms of exhumation across the viscosity-density parameter space. In the first group (low-viscosity, low-density deep crust), domes develop by lateral and upward flow of the deep crust at km m.y-1 velocity rates (i.e. rate of experiment boundary extension). In this case, extension in the shallow crust is localized on a single interface, and the deep crust traverses the entire thickness of the crust to the Earth's near-surface in 5 m.y. This high exhuming power relies on the dynamic feedback between the flow of deep crust and the localization of extension in the shallow crust. The second group (intermediate-viscosity, low-density deep crust) has less exhuming power because the stronger deep crust flows less readily and instead accommodates more uniform extension, which imparts distributed extension to the shallow crust. The third group represents the upper limits of viscosity and density for the deep crust; in this case the low buoyancy of the deep crust results in localized thinning of the crust with large upward motion of the Moho and lithosphere-asthenosphere boundary. These numerical experiments test the exhuming power of the deep crust in the formation of extensional gneiss domes.

  14. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  15. Characterization of Defects in Composite Material Using Rapidly Acquired Leaky Lamb Wave Dispersion Data

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A.; Chang, Z.

    1998-01-01

    The phenomenon of Leaky Lamb Wave (LLW) in composite materials was first observed in 1982 using a Schlieren system. It has been studied extensively by numerous investigators and successfully shown to be an effective quantitative NDE tool.

  16. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C.

    2001-01-01

    As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.

  17. Collapse of Composite Cylinders in Bending

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Starnes, James H., Jr.; Hyer, Michael W.

    1998-01-01

    This paper summarizes the results of a numerical and experimental study of the collapse behavior of small-scale graphite-epoxy cylindrical shells subjected to overall bending loads, and in one case, an initial internal pressure. Shells with quasi-isotropic and orthotropic inplane stiffness properties are studied. Numerical results from geometrically nonlinear finite element analyses and results from experiments using a specially-built apparatus indicate that extensive stable postbuckling responses occur. Orthotropy influences the buckling values and the extent to which the bending moment decreases after buckling. Material damage is observed to initiate in the vicinity of the nodal lines of the postbuckled deflection patterns. Numerical results indicate that the magnitudes of the shear stress resultants are greatest in these nodal regions. Failure of the internally pressurized cylinder is catastrophic.

  18. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  19. Many-body effects in electron liquids with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Simion, George E.

    The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.

  20. Transition mixing study empirical model report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1988-01-01

    The empirical model developed in the NASA Dilution Jet Mixing Program has been extended to include the curvature effects of transition liners. This extension is based on the results of a 3-D numerical model generated under this contract. The empirical model results agree well with the numerical model results for all tests cases evaluated. The empirical model shows faster mixing rates compared to the numerical model. Both models show drift of jets toward the inner wall of a turning duct. The structure of the jets from the inner wall does not exhibit the familiar kidney-shaped structures observed for the outer wall jets or for jets injected in rectangular ducts.

  1. Student Participation in the College Classroom: An Extended Multidisciplinary Literature Review

    ERIC Educational Resources Information Center

    Rocca, Kelly A.

    2010-01-01

    The goal of this study was to integrate previous research conducted on student participation in the college classroom. Numerous studies have been completed on engaging students in classroom discussions, but no study has synthesized this information in the form of an extensive literature review. Here, previous research is pulled together to gain a…

  2. Controlled release of B-carotene in B-lactoglobulin-dextran conjugates nanoparticles in vitro digestion and the transport with Caco-2 monolayers

    USDA-ARS?s Scientific Manuscript database

    Chitosan–tripolyphosphate nanoparticles have been extensively studied during the last decade because of their numerous applications. In this study, we describe conditions to optimize chitosan nanoparticles as potential nano-fillers in edible films. The ionic cross-linking between the cationic amino ...

  3. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta

    USDA-ARS?s Scientific Manuscript database

    Loss of natural enemies during colonization is a prominent hypothesis explaining enhanced performance of invasive species in introduced areas. Numerous studies have tested this enemy release hypothesis in a wide range of taxa but few studies have focused on invasive ants. We conducted extensive surv...

  4. Application of triggered lightning numerical models to the F106B and extension to other aircraft

    NASA Technical Reports Server (NTRS)

    Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.

    1988-01-01

    The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.

  5. The roles of non-extensivity and dust concentration as bifurcation parameters in dust-ion acoustic traveling waves in magnetized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan Ghosh, Uday; Kumar Mandal, Pankaj, E-mail: pankajwbmsd@gmail.com; Chatterjee, Prasanta

    Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior ofmore » the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.« less

  6. Investigation of the effect of the ejector on the performance of the pulse detonation engine nozzle extension

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Golovastov, S. V.

    2015-11-01

    Influence of an ejector nozzle extension on gas flow at a pulse detonation engine was investigated numerically and experimentally. Detonation formation was organized in stoichiometric hydrogen-oxygen mixture in cylindrical detonation tube. Cylindrical ejector was constructed and mounted at the open end of the tube. Thrust, air consumption and parameters of the detonation were measured in single and multiple regimes of operation. Axisymmetric model was used in numerical investigation. Equations of Navies-Stokes were solved using a finite-difference scheme Roe of second order of accuracy. Initial conditions were estimated on a base of experimental data. Numerical results were validated with experiments data.

  7. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Heuzé, Thomas

    2017-10-01

    We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.

  8. Determination of Global Stability of the Slosh Motion in a Spacecraft via Num Erical Experiment

    NASA Astrophysics Data System (ADS)

    Kang, Ja-Young

    2003-12-01

    The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.

  9. The MATH--Open Source Application for Easier Learning of Numerical Mathematics

    ERIC Educational Resources Information Center

    Glaser-Opitz, Henrich; Budajová, Kristina

    2016-01-01

    The article introduces a software application (MATH) supporting an education of Applied Mathematics, with focus on Numerical Mathematics. The MATH is an easy to use tool supporting various numerical methods calculations with graphical user interface and integrated plotting tool for graphical representation written in Qt with extensive use of Qwt…

  10. The Power of 2: How an Apparently Irregular Numeration System Facilitates Mental Arithmetic

    ERIC Educational Resources Information Center

    Bender, Andrea; Beller, Sieghard

    2017-01-01

    Mangarevan traditionally contained two numeration systems: a general one, which was highly regular, decimal, and extraordinarily extensive; and a specific one, which was restricted to specific objects, based on diverging counting units, and interspersed with binary steps. While most of these characteristics are shared by numeration systems in…

  11. The Julia programming language: the future of scientific computing

    NASA Astrophysics Data System (ADS)

    Gibson, John

    2017-11-01

    Julia is an innovative new open-source programming language for high-level, high-performance numerical computing. Julia combines the general-purpose breadth and extensibility of Python, the ease-of-use and numeric focus of Matlab, the speed of C and Fortran, and the metaprogramming power of Lisp. Julia uses type inference and just-in-time compilation to compile high-level user code to machine code on the fly. A rich set of numeric types and extensive numerical libraries are built-in. As a result, Julia is competitive with Matlab for interactive graphical exploration and with C and Fortran for high-performance computing. This talk interactively demonstrates Julia's numerical features and benchmarks Julia against C, C++, Fortran, Matlab, and Python on a spectral time-stepping algorithm for a 1d nonlinear partial differential equation. The Julia code is nearly as compact as Matlab and nearly as fast as Fortran. This material is based upon work supported by the National Science Foundation under Grant No. 1554149.

  12. Container-grown longleaf pine seedling quality

    Treesearch

    Mark J. Hainds; James P. Barnett

    2006-01-01

    The Longleaf Alliance, in cooperation with the USDA Forest Service, the Georgia Forestry Commission, and the Clemson Extension Service, has installed numerous longleaf pine (Pinus palustris Mill.) seedling quality studies across the Southeastern United States. This paper reviews survival and growth for different classes of container-grown longleaf...

  13. A Computational Procedure for Identifying Bilinear Representations of Nonlinear Systems Using Volterra Kernels

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Silva, Walter A.

    2008-01-01

    A computational procedure for identifying the state-space matrices corresponding to discrete bilinear representations of nonlinear systems is presented. A key feature of the method is the use of first- and second-order Volterra kernels (first- and second-order pulse responses) to characterize the system. The present method is based on an extension of a continuous-time bilinear system identification procedure given in a 1971 paper by Bruni, di Pillo, and Koch. The analytical and computational considerations that underlie the original procedure and its extension to the title problem are presented and described, pertinent numerical considerations associated with the process are discussed, and results obtained from the application of the method to a variety of nonlinear problems from the literature are presented. The results of these exploratory numerical studies are decidedly promising and provide sufficient credibility for further examination of the applicability of the method.

  14. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1997-07-05

    The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.

  15. Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir

    An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less

  16. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.

  17. Study of a homotopy continuation method for early orbit determination with the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Huang, C.

    1986-01-01

    A recent mathematical technique for solving systems of equations is applied in a very general way to the orbit determination problem. The study of this technique, the homotopy continuation method, was motivated by the possible need to perform early orbit determination with the Tracking and Data Relay Satellite System (TDRSS), using range and Doppler tracking alone. Basically, a set of six tracking observations is continuously transformed from a set with known solution to the given set of observations with unknown solutions, and the corresponding orbit state vector is followed from the a priori estimate to the solutions. A numerical algorithm for following the state vector is developed and described in detail. Numerical examples using both real and simulated TDRSS tracking are given. A prototype early orbit determination algorithm for possible use in TDRSS orbit operations was extensively tested, and the results are described. Preliminary studies of two extensions of the method are discussed: generalization to a least-squares formulation and generalization to an exhaustive global method.

  18. Mentoring New Faculty at a Christian University in the Northeast: Developing a Framework for Programming

    ERIC Educational Resources Information Center

    Cook, Donna M.

    2011-01-01

    Mentoring has been used in various fields as a professional development and acculturation tool (Kram, 1991) and is used extensively in higher education (Cunningham, 1999). However, despite numerous studies based on faculty mentoring, those conducted at Christian institutions of higher education have been limited. The study was framed by several…

  19. Lost Boys: A Qualitative Study of Disengaged First-Year Men at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Herring, April L.

    2013-01-01

    The virtue of student engagement in all aspects of college life has been studied extensively throughout higher education. Research demonstrates that engagement in academics and the social aspects of college lead to retention and persistence. Beyond persistence, engagement has been linked to numerous other desirable effects of college. This…

  20. External and internal geometry of European adults.

    PubMed

    Bertrand, Samuel; Skalli, Wafa; Delacherie, Laurent; Bonneau, Dominique; Kalifa, Gabriel; Mitton, David

    2006-12-15

    The primary objective of the study was to bring a deeper knowledge of the human anthropometry, investigating the external and internal body geometry of small women, mid-sized men and tall men. Sixty-four healthy European adults were recruited. External measurements were performed using classical anthropometric instruments. Internal measurements of the trunk bones were performed using a stereo-radiographic 3D reconstruction technique. Besides the original procedure presented in this paper for performing in vivo geometrical data acquisition on numerous volunteers, this study provides an extensive description of both external and internal (trunk skeleton) human body geometry for three morphotypes. Moreover, this study proposes a global external and internal geometrical description of 5th female 50th male and 95th male percentile subjects. This study resulted in a unique geometrical database enabling improvement for numerical models of the human body for crash test simulation and offering numerous possibilities in the anthropometry field.

  1. The New Horizons Kuiper Belt Extended Mission

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Weaver, H. A.; Spencer, J. R.; Elliott, H. A.

    2018-06-01

    The central objective of the New Horizons prime mission was to make the first exploration of Pluto and its system of moons. Following that, New Horizons has been approved for its first extended mission, which has the objectives of extensively studying the Kuiper Belt environment, observing numerous Kuiper Belt Objects (KBOs) and Centaurs in unique ways, and making the first close flyby of the KBO 486958 2014 MU69. This review summarizes the objectives and plans for this approved mission extension, and briefly looks forward to potential objectives for subsequent extended missions by New Horizons.

  2. Fractional calculus in hydrologic modeling: A numerical perspective

    PubMed Central

    Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan

    2013-01-01

    Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449

  3. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    DOE PAGES

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  4. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  5. An Effective Parent Paraprofessional.

    ERIC Educational Resources Information Center

    Harris, Cleveland J.

    A study designed to modify inappropriate pupil behavior in a recently integrated public elementary school in New Orleans made extensive use of a parent paraprofessional. It was conducted in a classroom judged by the faculty to be experiencing numerous behavior problems. The parent paraprofessional was given written definitions of the behaviors she…

  6. Research in Self-Disclosure: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Breed, George; Jourard, Sidney M.

    This is an extensive compilation of abstracts of research in numerous areas as they relate to self-disclosure. No theoretical overview or introductory comments are included. Specific content areas, as listed in the index, include: (1) cross-cultural studies; (2) dyadic effect; (3) selective disclosure; (4) achievement; (5) adolescence; (6) age;…

  7. The Self-Systems: Facilitating Personal Well-Being Experiences at School

    ERIC Educational Resources Information Center

    Phan, Huy P.

    2017-01-01

    The focus of inquiry pertaining to quality learning and student well-being experiences at school has involved numerous studies, utilizing complex quantitative methodological approaches. In a similar vein, for consideration of research advancement, there has been extensive progress made regarding motivational tenets of effective learning and…

  8. An Examination of Master's Student Retention & Completion

    ERIC Educational Resources Information Center

    Barry, Melissa; Mathies, Charles

    2011-01-01

    This study was conducted at a research-extensive public university in the southeastern United States. It examined the retention and completion of master's degree students across numerous disciplines. Results were derived from a series of descriptive statistics, T-tests, and a series of binary logistic regression models. The findings from binary…

  9. Appetitive Pavlovian Goal-Tracking Memories Reconsolidate Only under Specific Conditions

    ERIC Educational Resources Information Center

    Reichelt, Amy C.; Lee, Jonathan L. C.

    2013-01-01

    Despite extensive evidence that appetitive memories undergo reconsolidation, two notable failures to observe reconsolidation have been reported: instrumental responding and goal-tracking. However, these studies do not provide conclusive evidence for a lack of memory reconsolidation due to the numerous boundary conditions that dictate whether a…

  10. Extension of a System Level Tool for Component Level Analysis

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    2002-01-01

    This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.

  11. Extension of a System Level Tool for Component Level Analysis

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.

  12. Advances in the computation of transonic separated flows over finite wings

    NASA Technical Reports Server (NTRS)

    Kaynak, Unver; Flores, Jolen

    1989-01-01

    Problems encountered in numerical simulations of transonic wind-tunnel experiments with low-aspect-ratio wings are surveyed and illustrated. The focus is on the zonal Euler/Navier-Stokes program developed by Holst et al. (1985) and its application to shock-induced separation. The physical basis and numerical implementation of the method are reviewed, and results are presented from studies of the effects of artificial dissipation, boundary conditions, grid refinement, the turbulence model, and geometry representation on the simulation accuracy. Extensive graphs and diagrams and typical flow visualizations are provided.

  13. Smisc - A collection of miscellaneous functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon Sego, PNNL

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less

  14. 77 FR 70741 - Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... DEPARTMENT OF ENERGY U.S. Energy Information Administration Agency Information Collection Extension AGENCY: U.S. Energy Information Administration (EIA), U.S. Department of Energy. ACTION: Notice... being achieved. These data are also needed to satisfy numerous public requests for detailed information...

  15. Numerical simulations of water flow and tracer transport in soils at the USDA-ARS Beltsville OPE3 field site

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in USDA-ARS OPE3 field site and to compare simulation results with the detailed monitoring observations. The site has been studied for over 10 years with the extensive availabl...

  16. Nonclassicality thresholds for multiqubit states: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw

    2010-07-15

    States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.

  17. Joint transform correlator optical encryption system: Extensions of the recorded encrypted signal and its inverse Fourier transform

    NASA Astrophysics Data System (ADS)

    Galizzi, Gustavo E.; Cuadrado-Laborde, Christian

    2015-10-01

    In this work we study the joint transform correlator setup, finding two analytical expressions for the extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition, the effect on the decrypted image when the detection area is lower than the encrypted signal extension was analyzed. We illustrate these results through several numerical examples.

  18. Electrophoretic separator for purifying biologicals, part 1

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1978-01-01

    A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.

  19. Hydra, a model system for environmental studies.

    PubMed

    Quinn, Brian; Gagné, François; Blaise, Christian

    2012-01-01

    Hydra have been extensively used for studying the teratogenic and toxic potential of numerous toxins throughout the years and are more recently growing in popularity to assess the impacts of environmental pollutants. Hydra are an appropriate bioindicator species for use in environmental assessment owing to their easily measurable physical (morphology), biochemical (xenobiotic biotransformation; oxidative stress), behavioural (feeding) and reproductive (sexual and asexual) endpoints. Hydra also possess an unparalleled ability to regenerate, allowing the assessment of teratogenic compounds and the impact of contaminants on stem cells. Importantly, Hydra are ubiquitous throughout freshwater environments and relatively easy to culture making them appropriate for use in small scale bioassay systems. Hydra have been used to assess the environmental impacts of numerous environmental pollutants including metals, organic toxicants (including pharmaceuticals and endocrine disrupting compounds), nanomaterials and industrial and municipal effluents. They have been found to be among the most sensitive animals tested for metals and certain effluents, comparing favourably with more standardised toxicity tests. Despite their lack of use in formalised monitoring programmes, Hydra have been extensively used and are regarded as a model organism in aquatic toxicology.

  20. Fluid-solid interaction: benchmarking of an external coupling of ANSYS with CFX for cardiovascular applications.

    PubMed

    Hose, D R; Lawford, P V; Narracott, A J; Penrose, J M T; Jones, I P

    2003-01-01

    Fluid-solid interaction is a primary feature of cardiovascular flows. There is increasing interest in the numerical solution of these systems as the extensive computational resource required for such studies becomes available. One form of coupling is an external weak coupling of separate solid and fluid mechanics codes. Information about the stress tensor and displacement vector at the wetted boundary is passed between the codes, and an iterative scheme is employed to move towards convergence of these parameters at each time step. This approach has the attraction that separate codes with the most extensive functionality for each of the separate phases can be selected, which might be important in the context of the complex rheology and contact mechanics that often feature in cardiovascular systems. Penrose and Staples describe a weak coupling of CFX for computational fluid mechanics to ANSYS for solid mechanics, based on a simple Jacobi iteration scheme. It is important to validate the coupled numerical solutions. An extensive analytical study of flow in elastic-walled tubes was carried out by Womersley in the late 1950s. This paper describes the performance of the coupling software for the straight elastic-walled tube, and compares the results with Womersley's analytical solutions. It also presents preliminary results demonstrating the application of the coupled software in the context of a stented vessel.

  1. Numerical study of terrain-induced mesoscale motions and hydrostatic form drag in a heated, growing mixed layer

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.; Ueyoshi, K.; Han, Y.-J.

    1984-01-01

    Han et al. (1982) have found in a previous numerical study of terrain-induced mesoscale motions that the orography caused a steady-state flow pattern to occur. The study was concerned with a simplified case in which no surface heating occurred. The present investigation considers an extension of this study to the more realistic case of a heated, growing daytime mixed layer containing horizontal variations of potential temperature as well as velocity. The model is also extended to include three layers above the mixed layer. It is found for a heated, growing mixed layer, that the mesoscale form drag is a thermal-anomaly or buoyancy effect associated with horizontal variations of potential temperature within the layer.

  2. Accurate green water loads calculation using naval hydro pack

    NASA Astrophysics Data System (ADS)

    Jasak, H.; Gatin, I.; Vukčević, V.

    2017-12-01

    An extensive verification and validation of Finite Volume based CFD software Naval Hydro based on foam-extend is presented in this paper for green water loads. Two-phase numerical model with advanced methods for treating the free surface is employed. Pressure loads on horizontal deck of Floating Production Storage and Offloading vessel (FPSO) model are compared to experimental results from [1] for three incident regular waves. Pressure peaks and integrals of pressure in time are measured on ten different locations on deck for each case. Pressure peaks and integrals are evaluated as average values among the measured incident wave periods, where periodic uncertainty is assessed for both numerical and experimental results. Spatial and temporal discretization refinement study is performed providing numerical discretization uncertainties.

  3. Critical study of higher order numerical methods for solving the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1978-01-01

    A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.

  4. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2

    NASA Astrophysics Data System (ADS)

    Rognes, M. E.; Ham, D. A.; Cotter, C. J.; McRae, A. T. T.

    2013-12-01

    Differential equations posed over immersed manifolds are of particular importance in studying geophysical flows; for instance, ocean and atmosphere simulations crucially rely on the capability to solve equations over the sphere. This paper presents the extension of the FEniCS software components to the automated solution of finite element formulations of differential equations defined over general, immersed manifolds. We describe the implementation and, in particular detail, how the required extensions essentially reduce to the extension of the FEniCS form compiler to cover this case. The resulting implementation has all the properties of the FEniCS pipeline and we demonstrate its flexibility by an extensive range of numerical examples covering a number of geophysical benchmark examples and test cases. The results are all in agreement with the expected values. The description here relates to DOLFIN/FEniCS 1.2.

  5. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2

    NASA Astrophysics Data System (ADS)

    Rognes, M. E.; Ham, D. A.; Cotter, C. J.; McRae, A. T. T.

    2013-07-01

    Differential equations posed over immersed manifolds are of particular importance in studying geophysical flows; for instance, ocean and atmosphere simulations crucially rely on the capability to solve equations over the sphere. This paper presents the extension of the FEniCS software components to the automated solution of finite element formulations of differential equations defined over general, immersed manifolds. We describe the implementation and in particular detail how the required extensions essentially reduce to the extension of the FEniCS form compiler to cover this case. The resulting implementation has all the properties of the FEniCS pipeline and we demonstrate its flexibility by an extensive range of numerical examples covering a number of geophysical benchmark examples and test cases. The results are all in agreement with the expected values. The description here relates to DOLFIN/FEniCS 1.2.

  6. The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion.

    PubMed

    Lempke, Landon; Wilkinson, Rebecca; Murray, Caitlin; Stanek, Justin

    2018-05-22

    Clinical Scenario: Stretching is applied for the purposes of injury prevention, increasing joint range of motion (ROM), and increasing muscle extensibility. Many researchers have investigated various methods and techniques to determine the most effective way to increase joint ROM and muscle extensibility. Despite the numerous studies conducted, controversy still remains within clinical practice and the literature regarding the best methods and techniques for stretching. Focused Clinical Question: Is proprioceptive neuromuscular facilitation (PNF) stretching more effective than static stretching for increasing hamstring muscle extensibility through increased hip ROM or increased knee extension angle (KEA) in a physically active population? Summary of Key Findings: Five studies met the inclusion criteria and were included. All 5 studies were randomized control trials examining mobility of the hamstring group. The studies measured hamstring ROM in a variety of ways. Three studies measured active KEA, 1 study measured passive KEA, and 1 study measured hip ROM via the single-leg raise test. Of the 5 studies, 1 study found greater improvements using PNF over static stretching for increasing hip flexion, and the remaining 4 studies found no significant difference between PNF stretching and static stretching in increasing muscle extensibility, active KEA, or hip ROM. Clinical Bottom Line: PNF stretching was not demonstrated to be more effective at increasing hamstring extensibility compared to static stretching. The literature reviewed suggests both are effective methods for increasing hip-flexion ROM. Strength of Recommendation: Using level 2 evidence and higher, the results show both static and PNF stretching effectively increase ROM; however, one does not appear to be more effective than the other.

  7. Modeling the ductile fracture and the plastic anisotropy of DC01 steel at room temperature and low strain rates

    NASA Astrophysics Data System (ADS)

    Tuninetti, V.; Yuan, S.; Gilles, G.; Guzmán, C. F.; Habraken, A. M.; Duchêne, L.

    2016-08-01

    This paper presents different extensions of the classical GTN damage model implemented in a finite element code. The goal of this study is to assess these extensions for the numerical prediction of failure of a DC01 steel sheet during a single point incremental forming process, after a proper identification of the material parameters. It is shown that the prediction of failure appears too early compared to experimental results. Though, the use of the Thomason criterion permitted to delay the onset of coalescence and consequently the final failure.

  8. Fundamental studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Hager, B. H.; Kanamori, H.

    1981-01-01

    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix.

  9. Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.

    2010-01-01

    A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.

  10. Extension of CE/SE method to non-equilibrium dissociating flows

    NASA Astrophysics Data System (ADS)

    Wen, C. Y.; Saldivar Massimi, H.; Shen, H.

    2018-03-01

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  11. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    NASA Astrophysics Data System (ADS)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  12. Modeling of Electromagnetic Scattering by Discrete and Discretely Heterogeneous Random Media by Using Numerically Exact Solutions of the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2017-01-01

    In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.

  13. The FRD and transmission of the 270-m GRACES optical fiber link and a high numerical aperture fiber for astronomy

    NASA Astrophysics Data System (ADS)

    Pazder, John; Fournier, Paul; Pawluczyk, Rafal; van Kooten, Maaike

    2014-07-01

    We report results of the extensive development work done on the 270-m optical fiber link for the GRACES project and a preliminary investigations into a high numerical aperture fiber for astronomy. The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an instrumentation experiment to link ESPaDOnS, a bench-mounted highresolution optical spectrograph at CFHT, to the Gemini-North telescope with an optical fiber link. A 270-m fiber link with less than 14% Focal Ratio Degradation (FRD) has been developed jointly by HIA and FiberTech Optica for the experiment. A preliminary study has been conducted by HIA into a high numerical aperture fiber (0.26 numerical aperture) with the intended application of wide field optical spectrographs fiber fed from the telescope prime focus. The Laboratory test results of FRD, transmission, and stability for the GRACES fiber link and preliminary FRD measurements of the high numerical aperture fiber tests are reported.

  14. SiMon: Simulation Monitor for Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  15. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  16. CBES--An Efficient Implementation of the Coursewriter Language.

    ERIC Educational Resources Information Center

    Franks, Edward W.

    An extensive computer based education system (CBES) built around the IBM Coursewriter III program product at Ohio State University is described. In this system, numerous extensions have been added to the Coursewriter III language to provide capabilities needed to implement sophisticated instructional strategies. CBES design goals include lower CPU…

  17. Dispersive effects on multicomponent transport through porous media

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir

    2017-11-01

    We use a hybrid numerical method to solve a global pressure based porous media flow model of chemical enhanced oil recovery. This is an extension of our recent work. The numerical method is based on the use of a discontinuous finite element method and the modified method of characteristics. The impact of molecular diffusion and mechanical dispersion on the evolution of scalar concentration distributions are studied through numerical simulations of various flooding schemes. The relative importance of the advective, capillary diffusive and dispersive fluxes are compared over different flow regimes defined in the parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion coefficients. Such studies are relevant for the design of effective injection policies and determining optimal combinations of chemical components for improving recovery. This work has been possible due to financial support from the U.S. National Science Foundation Grant DMS-1522782.

  18. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  19. Graphical and Numerical Descriptive Analysis: Exploratory Tools Applied to Vietnamese Data

    ERIC Educational Resources Information Center

    Haughton, Dominique; Phong, Nguyen

    2004-01-01

    This case study covers several exploratory data analysis ideas, the histogram and boxplot, kernel density estimates, the recently introduced bagplot--a two-dimensional extension of the boxplot--as well as the violin plot, which combines a boxplot with a density shape plot. We apply these ideas and demonstrate how to interpret the output from these…

  20. Soil physical changes associated with forest harvesting operations on a organic soil

    Treesearch

    Johnny M. Grace; R.W. Skaggs; D.K. Cassel

    2006-01-01

    The influence of forest operations on forest soil and water continues to be an issue of concern in forest management. Research has focused on evaluating forest operation effects on numerous soil and water quality indicators. However, poorly drained forested watersheds with organic soil surface horizons have not been extensively investigated. A study was initiated in...

  1. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  2. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  3. Simple Numerical Modelling for Gasdynamic Design of Wave Rotors

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Nagashima, Toshio

    The precise estimation of pressure waves generated in the passages is a crucial factor in wave rotor design. However, it is difficult to estimate the pressure wave analytically, e.g. by the method of characteristics, because the mechanism of pressure-wave generation and propagation in the passages is extremely complicated as compared to that in a shock tube. In this study, a simple numerical modelling scheme was developed to facilitate the design procedure. This scheme considers the three dominant factors in the loss mechanism —gradual passage opening, wall friction and leakage— for simulating the pressure waves precisely. The numerical scheme itself is based on the one-dimensional Euler equations with appropriate source terms to reduce the calculation time. The modelling of these factors was verified by comparing the results with those of a two-dimensional numerical simulation, which were previously validated by the experimental data in our previous study. Regarding wave rotor miniaturization, the leakage flow effect, which involves the interaction between adjacent cells, was investigated extensively. A port configuration principle was also examined and analyzed in detail to verify the applicability of the present numerical modelling scheme to the wave rotor design.

  4. Hypersonic research at Stanford University

    NASA Technical Reports Server (NTRS)

    Candler, Graham; Maccormack, Robert

    1988-01-01

    The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.

  5. Enhancing Extension and Research Activities through the Use of Web GIS

    ERIC Educational Resources Information Center

    Estwick, Noel M.; Griffin, Richard W.; James, Annette A.; Roberson, Samuel G.

    2016-01-01

    There have been numerous efforts aimed at improving geographic literacy in order to address societal challenges. Extension educators can use geographic information system (GIS) technology to help their clients cultivate spatial thinking skills and solve problems. Researchers can use it to model relationships and better answer questions. A program…

  6. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  7. Initiation of extension in South China continental margin during the active-passive margin transition: kinematic and thermochronological constraints

    NASA Astrophysics Data System (ADS)

    ZUO, Xuran; CHAN, Lung

    2015-04-01

    The southern South China Block is characterized by a widespread magmatic belt, prominent NE-striking fault zones and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from an active to a passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. In this study, we used zircon fission-track dating (ZFT) and numerical modeling to examine the timing and kinematics of the active-passive margin transition. Our ZFT results on granitic plutons in the SW Cathaysia Block show two episodes of exhumation of the granitic plutons. The first episode, occurring during 170 Ma - 120 Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115 Ma - 70 Ma. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the observation based on ZFT data that exhumation of the granite-dominant Nanling Range occurred at an earlier time than the gneiss-dominant Yunkai Terrane. In addition to the difference in geology between Yunkai and Nanling, the heating from Jurassic-Early Cretaceous magmatism in the Nanling Range may have softened the upper crust, causing the area to exhume more readily. Numerical modeling results also indicate that (1) high slab dip angle, high geothermal gradient of lithosphere and low convergence velocity favor the subduction process and the reversal of crustal stress state from compression to extension in the upper plate; (2) the late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension has shed light on the geological condition producing the red bed basins during Late Cretaceous-early Paleogene in South China. It appears that the red bed basins could have formed during the late stage of the subduction process, accounting for the observations why concurrent volcanic rocks could be found in some sedimentary basin formation. We propose that the extensional events started as early as the Late Cretaceous, probably before the cessation of subduction process. (Funding from Total Company and matching support from UGC are gratefully acknowledged).

  8. Active and hibernating turbulence in drag-reducing plane Couette flows

    NASA Astrophysics Data System (ADS)

    Pereira, Anselmo S.; Mompean, Gilmar; Thais, Laurent; Soares, Edson J.; Thompson, Roney L.

    2017-08-01

    In this paper we analyze the active and hibernating turbulence in drag-reducing plane Couette flows using direct numerical simulations of the viscoelastic finitely extensible nonlinear elastic model with the Peterlin approximation fluids. The polymer-turbulence interactions are studied from an energetic standpoint for a range of Weissenberg numbers (from 2 up to 30), fixing the Reynolds number based on the plate velocities at 4000, the viscosity ratio at 0.9, and the maximum polymer molecule extensibility at 100. The qualitative picture that emerges from this investigation is a cyclic mechanism of energy exchange between the polymers and turbulence that drives the flow through an oscillatory behavior.

  9. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    NASA Astrophysics Data System (ADS)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  10. A Quantitative and Comparative Research on Chinese and English Numerical Phrases

    ERIC Educational Resources Information Center

    Chen, Peijun

    2010-01-01

    Numerical phases have rich cultural connotations and connect closely with culture. Along with the extension of China's reform and opening up policy, cross-cultural communication tends to be wider. The comparative research on cross-cultural languages is very important. Because of different cultural backgrounds, the cultural connotations of Chinese…

  11. Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Petković, Aleksandra; Wiese, Kay Jörg

    2012-06-01

    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean-field Alessandro-Beatrice- Bertotti-Montorsi (ABBM) model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress, we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m=6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.

  12. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  13. Towards Large-Scale, Non-Destructive Inspection of Concrete Bridges

    NASA Astrophysics Data System (ADS)

    Mahmoud, A.; Shah, A. H.; Popplewell, N.

    2005-04-01

    It is estimated that the rehabilitation of deteriorating engineering infrastructure in the harsh North American environment could cost billions of dollars. Bridges are key infrastructure components for surface transportation. Steel-free and fibre-reinforced concrete is used increasingly nowadays to circumvent the vulnerability of steel rebar to corrosion. Existing steel-free and fibre-reinforced bridges may experience extensive surface-breaking cracks that need to be characterized without incurring further damage. In the present study, a method that uses Lamb elastic wave propagation to non-destructively characterize cracks in plain as well as fibre-reinforced concrete is investigated both numerically and experimentally. Numerical and experimental data are corroborated with good agreement.

  14. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach.

    PubMed

    Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V

    2001-09-01

    The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.

  15. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  16. Stabilizing coherence with nested environments: a numerical study using kicked Ising models

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, C.; Villaseñor, E.; Pineda, C.; Seligman, T. H.

    2016-08-01

    We study a tripartite system of coupled spins, where a first set of one or two spins is our central system which is coupled to another set considered, the near environment, in turn coupled to the third set, the far environment. The dynamics considered are those of a generalized kicked spin chain in the regime of quantum chaotic dynamics. This allows us to test recent results that suggest that the presence of a far environment, coupled to the near environment, slows decoherence of the central system. After an extensive numerical study, we confirm previous results for extreme values and special cases. In particular, under a wide variety of circumstances an increasing coupling between near and far environment, slows decoherence, as measured by purity, and protects internal entanglement.

  17. Numerical studies of the reversed-field pinch at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Sätherblom, H.-E.; Drake, J. R.

    1998-10-01

    The reversed field pinch (RFP) configuration at an aspect ratio of 8.8 is studied numerically by means of the three-dimensional magnetohydrodynamic code DEBS [D. D. Schnack et al., J. Comput. Phys. 70, 330 (1987)]. This aspect ratio is equal to that of the Extrap T1 experiment [S. Mazur et al., Nucl. Fusion 34, 427 (1994)]. A numerical study of a RFP with this level of aspect ratio requires extensive computer achievements and has hitherto not been performed. The results are compared with previous studies [Y. L. Ho et al., Phys. Plasmas 2, 3407 (1995)] of lower aspect ratio RFP configurations. In particular, an evaluation of the extrapolation to the aspect ratio of 8.8 made in this previous study shows that the extrapolation of the spectral spread, as well as most of the other findings, are confirmed. An important exception, however, is the magnetic diffusion coefficient, which is found to decrease with aspect ratio. Furthermore, an aspect ratio dependence of the magnetic energy and of the helicity of the RFP is found.

  18. Numerical simulation of geomorphic, climatic and anthropogenic drivers of soil distribution on semi-arid hillslopes

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.

    2010-12-01

    Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.

  19. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  20. User's guide to the Parallel Processing Extension of the Prognosis Model

    Treesearch

    Nicholas L. Crookston; Albert R. Stage

    1991-01-01

    The Parallel Processing Extension (PPE) of the Prognosis Model was designed to analyze responses of numerous stands to coordinated management and pest impacts that operate at the landscape level of forests. Vegetation-related resource supply analysis can be readily performed for a thousand or more sample stands for projections 400 years into the future. Capabilities...

  1. On finite element implementation and computational techniques for constitutive modeling of high temperature composites

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.

    1989-01-01

    The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.

  2. CFD Simulation On The Pressure Distribution For An Isolated Single-Story House With Extension: Grid Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yahya, W. N. W.; Zaini, S. S.; Ismail, M. A.; Majid, T. A.; Deraman, S. N. C.; Abdullah, J.

    2018-04-01

    Damage due to wind-related disasters is increasing due to global climate change. Many studies have been conducted to study the wind effect surrounding low-rise building using wind tunnel tests or numerical simulations. The use of numerical simulation is relatively cheap but requires very good command in handling the software, acquiring the correct input parameters and obtaining the optimum grid or mesh. However, before a study can be conducted, a grid sensitivity test must be conducted to get a suitable cell number for the final to ensure an accurate result with lesser computing time. This study demonstrates the numerical procedures for conducting a grid sensitivity analysis using five models with different grid schemes. The pressure coefficients (CP) were observed along the wall and roof profile and compared between the models. The results showed that medium grid scheme can be used and able to produce high accuracy results compared to finer grid scheme as the difference in terms of the CP values was found to be insignificant.

  3. Quantitative risk management in gas injection project: a case study from Oman oil and gas industry

    NASA Astrophysics Data System (ADS)

    Khadem, Mohammad Miftaur Rahman Khan; Piya, Sujan; Shamsuzzoha, Ahm

    2017-09-01

    The purpose of this research was to study the recognition, application and quantification of the risks associated in managing projects. In this research, the management of risks in an oil and gas project is studied and implemented within a case company in Oman. In this study, at first, the qualitative data related to risks in the project were identified through field visits and extensive interviews. These data were then translated into numerical values based on the expert's opinion. Further, the numerical data were used as an input to Monte Carlo simulation. RiskyProject Professional™ software was used to simulate the system based on the identified risks. The simulation result predicted a delay of about 2 years as a worse case with no chance of meeting the project's on stream date. Also, it has predicted 8% chance of exceeding the total estimated budget. The result of numerical analysis from the proposed model is validated by comparing it with the result of qualitative analysis, which was obtained through discussion with various project managers of company.

  4. Scaling Relations for Intercalation Induced Damage in Electrodes

    DOE PAGES

    Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; ...

    2016-04-02

    Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based onmore » a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.« less

  5. Separation of crack extension modes in orthotropic delamination models

    NASA Technical Reports Server (NTRS)

    Beuth, Jack L.

    1995-01-01

    In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.

  6. The Relationship between Health Status, Life Satisfaction, and Humor as a Coping Mechanism among Noninstitutionalized Older Adults

    ERIC Educational Resources Information Center

    Jones, Cristina Llanos

    2010-01-01

    The older adult population is growing faster than any other cohort of people. By the year 2011, the baby boomers will start turning age 65, presenting a problem for public policy and health care systems. One of the key components of successful aging is the maintenance of good health. Numerous studies have extensively documented the link between…

  7. An Empirical Verification of a-priori Learning Models on Mailing Archives in the Context of Online Learning Activities of Participants in Free\\Libre Open Source Software (FLOSS) Communities

    ERIC Educational Resources Information Center

    Mukala, Patrick; Cerone, Antonio; Turini, Franco

    2017-01-01

    Free\\Libre Open Source Software (FLOSS) environments are increasingly dubbed as learning environments where practical software engineering skills can be acquired. Numerous studies have extensively investigated how knowledge is acquired in these environments through a collaborative learning model that define a learning process. Such a learning…

  8. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  9. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  10. Rigor or mortis: best practices for preclinical research in neuroscience.

    PubMed

    Steward, Oswald; Balice-Gordon, Rita

    2014-11-05

    Numerous recent reports document a lack of reproducibility of preclinical studies, raising concerns about potential lack of rigor. Examples of lack of rigor have been extensively documented and proposals for practices to improve rigor are appearing. Here, we discuss some of the details and implications of previously proposed best practices and consider some new ones, focusing on preclinical studies relevant to human neurological and psychiatric disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. REVIEWS OF TOPICAL PROBLEMS: Population synthesis in astrophysics

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Prokhorov, M. E.

    2007-11-01

    Population synthesis is a method for numerical simulation of the population of objects with a complex evolution. This method is widely used in astrophysics. We consider its main applications to studying astronomical objects. Examples of modeling evolution are given for populations of close binaries and isolated neutron stars. The application of the method to studying active galactic nuclei and the integral spectral characteristics of galaxies is briefly discussed. An extensive bibliography on all the topics covered is provided.

  12. Verification and Validation Strategy for LWRS Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl M. Stoots; Richard R. Schultz; Hans D. Gougar

    2012-09-01

    One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verifiedmore » and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.« less

  13. Mid-Cretaceous oblique rifting of West Antarctica: Emplacement and rapid cooling of the Fosdick Mountains migmatite-cored gneiss dome

    USGS Publications Warehouse

    McFadden, Rory; Teyssier, Christian; Siddoway, Christine; Cosca, Michael A.; Fanning, C. Mark

    2015-01-01

    In Marie Byrd Land, West Antarctica, the Fosdick Mountains migmatite-cored gneiss dome was exhumed from mid- to lower middle crustal depths during the incipient stage of the West Antarctic Rift system in the mid-Cretaceous. Prior to and during exhumation, major crustal melting and deformation included transfer and emplacement of voluminous granitic material and numerous intrusions of mantle-derived diorite in dikes. A succession of melt- and magma-related structures formed at temperatures in excess of 665 ± 50 °C based on Ti-in-zircon thermometry. These record a transition from wrench to oblique extensional deformation that culminated in the development of the oblique South Fosdick Detachment zone. Solid-state fabrics within the detachment zone and overprinting brittle structures record translation of the detachment zone and dome to shallow levels.To determine the duration of exhumation and cooling, we sampled granite and gneisses at high spatial resolution for U–Pb zircon geochronology and 40Ar/39Ar hornblende and biotite thermochronology. U–Pb zircon crystallization ages for the youngest granites are 102 Ma. Three hornblende ages are 103 to 100 Ma and 12 biotite ages are 101 to 99 Ma. All overlap within uncertainty. The coincidence of zircon crystallization ages with 40Ar/39Ar cooling ages indicates cooling rates > 100 °C/m.y. that, when considered together with overprinting structures, indicates rapid exhumation of granite and migmatite from deep to shallow crustal levels within a transcurrent setting. Orientations of structures and age-constrained crosscutting relationships indicate counterclockwise rotation of stretching axes from oblique extension into nearly orthogonal extension with respect to the Marie Byrd Land margin. The rotation may be a result of localized extension arising from unroofing and arching of the Fosdick dome, extensional opening within a pull-apart zone, or changes in plate boundary configuration.The rapid tectonic and temperature evolution of the Fosdick Mountains dome lends support to recently developed numerical models of crustal flow and cooling in orogenic crust undergoing extension/transtension, and accords with numerous studies of migmatite-cored gneiss domes in transcurrent settings.

  14. 3D Numerical Rift Modeling with Application to the East African Rift System

    NASA Astrophysics Data System (ADS)

    Glerum, A.; Brune, S.; Naliboff, J.

    2017-12-01

    As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of Sedimentary Basins: Recent Advances, Wiley, C. Busby and A. Azor (Eds.). Heister et al. (2017). Geophys. J. Int., 210, 833-851. Huismans, R. S. and Beaumont, C. (2003). J. Geophys. Res., 108, B10, 2496. Kronbichler et al. (2012). Geophys. J. Int., 191, 12-29. Pasyanos et al. (2014). J. of Geophys. Res., 119, 3, 2153-2173.

  15. Evaluation of the effect of different stretching patterns on force decay and tensile properties of elastomeric ligatures

    PubMed Central

    Aminian, Amin; Nakhaei, Samaneh; Agahi, Raha Habib; Rezaeizade, Masoud; Aliabadi, Hamed Mirzazadeh; Heidarpour, Majid

    2015-01-01

    Background: There have been numerous researches on elastomeric ligatures, but clinical conditions in different stages of treatment are not exactly similar to laboratory conditions. The aim of this in vitro study was to simulate clinical conditions and evaluate the effect of three stretching patterns on the amount of force, tensile strength (TS) and extension to TS of the elastomers during 8 weeks. Materials and Methods: Forces, TS and extension to TS of two different brands of elastomers were measured at initial, 24 h and 2, 4, and 8-week intervals using a testing machine. During the study period, the elastomers were stored in three different types of jig (uniform stretching, 1 and 3 mm point stretching) designed by the computer-aided design and computer-aided manufacturing technique in order to simulate the different stages of orthodontic treatment. Results: The elastomeric ligatures under study exhibited a similar force decay pattern. The maximum force decay occurred during the first 24 h (49.9% ± 15%) and the amount of force decay was 75.7% ± 8% after 8 weeks. In general, the TS decreased during the study period, and the amount of extension to TS increased. Conclusion: Although the elastic behavior of all ligatures under study was similar, the amount of residual force, TS and extension to TS increased in elastomers under point stretching pattern. PMID:26759597

  16. Evaluation of the effect of different stretching patterns on force decay and tensile properties of elastomeric ligatures.

    PubMed

    Aminian, Amin; Nakhaei, Samaneh; Agahi, Raha Habib; Rezaeizade, Masoud; Aliabadi, Hamed Mirzazadeh; Heidarpour, Majid

    2015-01-01

    There have been numerous researches on elastomeric ligatures, but clinical conditions in different stages of treatment are not exactly similar to laboratory conditions. The aim of this in vitro study was to simulate clinical conditions and evaluate the effect of three stretching patterns on the amount of force, tensile strength (TS) and extension to TS of the elastomers during 8 weeks. Forces, TS and extension to TS of two different brands of elastomers were measured at initial, 24 h and 2, 4, and 8-week intervals using a testing machine. During the study period, the elastomers were stored in three different types of jig (uniform stretching, 1 and 3 mm point stretching) designed by the computer-aided design and computer-aided manufacturing technique in order to simulate the different stages of orthodontic treatment. The elastomeric ligatures under study exhibited a similar force decay pattern. The maximum force decay occurred during the first 24 h (49.9% ± 15%) and the amount of force decay was 75.7% ± 8% after 8 weeks. In general, the TS decreased during the study period, and the amount of extension to TS increased. Although the elastic behavior of all ligatures under study was similar, the amount of residual force, TS and extension to TS increased in elastomers under point stretching pattern.

  17. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  18. Richtmyer-Meshkov flow in elastic solids.

    PubMed

    Piriz, A R; López Cela, J J; Tahir, N A; Hoffmann, D H H

    2006-09-01

    Richtmyer-Meshkov flow is studied by means of an analytical model which describes the asymptotic oscillations of a corrugated interface between two perfectly elastic solids after the interaction with a shock wave. The model shows that the flow stability is due to the restoring effect of the elastic force. It provides a simple approximate but still very accurate formula for the oscillation period. It also shows that as it is observed in numerical simulations, the amplitude oscillates around a mean value equal to the post-shock amplitude, and that this is a consequence of the stress free conditions of the material immediately after the shock interaction. Extensive numerical simulations are presented to validate the model results.

  19. Developing and Using an Applet to Enrich Students' Concept Image of Rational Polynomials

    ERIC Educational Resources Information Center

    Mason, John

    2015-01-01

    This article draws on extensive experience working with secondary and tertiary teachers and educators using an applet to display rational polynomials (up to degree 7 in numerator and denominator), as support for the challenge to deduce as much as possible about the graph from the graphs of the numerator and the denominator. Pedagogical and design…

  20. Brain Dynamics: Methodological Issues and Applications in Psychiatric and Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Pezard, Laurent

    The human brain is a complex dynamical system generating the EEG signal. Numerical methods developed to study complex physical dynamics have been used to characterize EEG since the mid-eighties. This endeavor raised several issues related to the specificity of EEG. Firstly, theoretical and methodological studies should address the major differences between the dynamics of the human brain and physical systems. Secondly, this approach of EEG signal should prove to be relevant for dealing with physiological or clinical problems. A set of studies performed in our group is presented here within the context of these two problematic aspects. After the discussion of methodological drawbacks, we review numerical simulations related to the high dimension and spatial extension of brain dynamics. Experimental studies in neurologic and psychiatric disease are then presented. We conclude that if it is now clear that brain dynamics changes in relation with clinical situations, methodological problems remain largely unsolved.

  1. Numerical simulation of turbulent jet noise, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, R. W.; Orszag, S. A.

    1976-01-01

    Results on the numerical simulation of jet flow fields were used to study the radiated sound field, and in addition, to extend and test the capabilities of the turbulent jet simulation codes. The principal result of the investigation was the computation of the radiated sound field from a turbulent jet. In addition, the computer codes were extended to account for the effects of compressibility and eddy viscosity, and the treatment of the nonlinear terms of the Navier-Stokes equations was modified so that they can be computed in a semi-implicit way. A summary of the flow model and a description of the numerical methods used for its solution are presented. Calculations of the radiated sound field are reported. In addition, the extensions that were made to the fundamental dynamical codes are described. Finally, the current state-of-the-art for computer simulation of turbulent jet noise is summarized.

  2. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  3. Minerva: Cylindrical coordinate extension for Athena

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Ostriker, Eve C.

    2013-02-01

    Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.

  4. Strong monogamy inequalities for four qubits

    NASA Astrophysics Data System (ADS)

    Regula, Bartosz; Osterloh, Andreas; Adesso, Gerardo

    2016-05-01

    We investigate possible generalizations of the Coffman-Kundu-Wootters monogamy inequality to four qubits, accounting for multipartite entanglement in addition to the bipartite terms. We show that the most natural extension of the inequality does not hold in general, and we describe the violations of this inequality in detail. We investigate alternative ways to extend the monogamy inequality to express a constraint on entanglement sharing valid for all four-qubit states, and perform an extensive numerical analysis of randomly generated four-qubit states to explore the properties of such extensions.

  5. From scale-free to Erdos-Rényi networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir

    2006-05-01

    We analyze a model that interpolates between scale-free and Erdos-Rényi networks. The model introduced generates a one-parameter family of networks and allows one to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.

  6. Numerical Experiments Investigating the Source of Explosion S-Waves

    DTIC Science & Technology

    2007-09-01

    simulations in this study are based on the well-recorded 1993 Nonproliferation experiment (NPE) ( chemical kiloton). A regional 3-dimensional model...1-kiloton chemical explosion at the NTS. NPE details and research reports can be found in Denny and Stull (1994). Figure 3 shows the extensive...T., D. Helmberger, and G. Engen (1985). Evidence for tectonic release from underground nuclear explosions in long period S waves, Bull. Seismol. Soc

  7. Installation Restoration Program (IRP). Operable Unit B1 Remedial Investigation/Feasibility Study

    DTIC Science & Technology

    1993-07-01

    Alternative Evaluation Criteria ......................... 8-2 8-2 Remedial Alternative Evaluation Criteria Rating System ................ 8-3 8-3...ies, various technologies and process options relative numerical rating system was developed were identified and screened on the basis of (see Table 8-2...extensive paving and PCBs were found (north/central ditch). This storm drainage system , and because of the ditch was paved with asphalt in 1981; before

  8. A multi-species exchange model for fully fluctuating polymer field theory simulations.

    PubMed

    Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Düchs, Dominik; Delaney, Kris T., E-mail: kdelaney@mrl.ucsb.edu; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complexmore » Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.« less

  10. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    DTIC Science & Technology

    2015-09-01

    plate interface resistance control. Numerical heat transfer and uncertainty analyses with applied engineering judgement were extensively used to come... heat transfer issues facing the Department of Defense. 14. SUBJECT TERMS Thermal contact resistance, thermal conductivity, measurement system 15... heat transfer and uncertainty analyses with applied engineering judgement were extensively used to come up with an optimized design and construction

  11. Abrupt plate acceleration through oblique rifting: Geodynamic aspects of Gulf of California evolution

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2016-12-01

    The Gulf of California formed by oblique divergence across the Pacific-North America plate boundary. This presentation combines numerical forward modeling and plate tectonic reconstructions in order to address 2 important aspects of rift dynamics: (1) Plate motions during continental rifting are decisively controlled by the non-linear decay of rift strength. This conclusion is based on a recent plate-kinematic analysis of post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea). In all cases, continental rifting starts with a slow phase followed by an abrupt acceleration within a few My introducing a fast rift phase. Numerical forward modeling with force boundary conditions shows that the two-phase velocity behavior and the rapid speed-up during rifting are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies. (2) Rift strength depends on the obliquity of the rift system: the force required to maintain a given rift velocity can be computed from simple analytical and more realistic numerical models alike, and both modeling approaches demonstrate that less force is required to perpetuate oblique extension. The reason is that plastic yielding requires a smaller plate boundary force when extension is oblique to the rift trend. Comparing strike slip and pure extension end-member scenarios, it can be shown that about 50% less force is required to deform the lithosphere under strike-slip. This result implies that rift systems involving significant obliquity are mechanically preferred. These two aspects shed new light on the underlying geodynamic causes of Gulf of California rift history. Continental extension is thought to have started in Late Eocene/Oligocene times as part of the southern Basin and Range Province and evolved in a protracted history at low extension rate (≤15 mm/yr). However, with a direction change in Baja California microplate motion 13-6 My ago, plate divergence drastically increased its obliquity, which reduced the rifts mechanical resistance to extension. This effective loss of rift strength sparked an acceleration of the Gulf of California rift and ultimately enabled today's divergence velocities of more than 45 mm/yr.

  12. Role of third molars in orthodontics

    PubMed Central

    Almpani, Konstantinia; Kolokitha, Olga-Elpis

    2015-01-01

    The role of third molars in the oral cavity has been extensively studied over the years. Literature includes numerous diagnostic and treatment alternatives regarding the third molars. However, an issue that has not been discussed at the same level is their involvement in orthodontic therapy. The aim of this study is to present a review of the contemporary literature regarding the most broadly discussed aspects of the multifactorial role of third molars in orthodontics and which are of general dental interest too. PMID:25685759

  13. Noise and Dissipation on Coadjoint Orbits

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; De Castro, Alex L.; Holm, Darryl D.

    2018-02-01

    We derive and study stochastic dissipative dynamics on coadjoint orbits by incorporating noise and dissipation into mechanical systems arising from the theory of reduction by symmetry, including a semidirect product extension. Random attractors are found for this general class of systems when the Lie algebra is semi-simple, provided the top Lyapunov exponent is positive. We study in details two canonical examples, the free rigid body and the heavy top, whose stochastic integrable reductions are found and numerical simulations of their random attractors are shown.

  14. Designing Adaptive Low Dissipative High Order Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.; Parks, John W. (Technical Monitor)

    2002-01-01

    Proper control of the numerical dissipation/filter to accurately resolve all relevant multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for long-time numerical integrations poses a great challenge to the design of numerical methods. The required type and amount of numerical dissipation/filter are not only physical problem dependent, but also vary from one flow region to another. This is particularly true for unsteady high-speed shock/shear/boundary-layer/turbulence/acoustics interactions and/or combustion problems since the dynamics of the nonlinear effect of these flows are not well-understood. Even with extensive grid refinement, it is of paramount importance to have proper control on the type and amount of numerical dissipation/filter in regions where it is needed.

  15. Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Zhan, Yan; Hou, Guiting; Kusky, Timothy; Gregg, Patricia M.

    2016-03-01

    The New Madrid Seismic Zone (NMSZ) in the Midwestern United States was the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although this region has been investigated extensively, the ultimate controls on earthquake initiation and the duration of the seismicity remain unclear. In this study, we develop a finite element model for the Central United States to conduct a series of numerical experiments with the goal of determining the impact of heterogeneity in the upper crust, the lower crust, and the mantle on earthquake nucleation and rupture processes. Regional seismic tomography data (CITE) are utilized to infer the viscosity structure of the lithosphere which provide an important input to the numerical models. Results indicate that when differential stresses build in the Central United States, the stresses accumulating beneath the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are comparatively low. The numerical observations coincide with the observed distribution of seismicity throughout the region. By comparing the numerical results with three reference models, we argue that an extensive mantle low velocity zone beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocities, enables the elevated stress to extend to the base of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. These results show that, if boundary displacements are significant, the NMSZ is able to localize tectonic stresses, which may be released when faults close to failure are triggered by external processes such as melting of the Laurentide ice sheet or rapid river incision.

  16. Numerical orbit generators of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  17. Energy balance and mass conservation in reduced order models of fluid flows

    NASA Astrophysics Data System (ADS)

    Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian

    2017-10-01

    In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) energy balance and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM energy balance. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect energy balance. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate energy balance. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.

  18. Numerical Study of Magnetic Damping During Unidirectional Solidification

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.

    1997-01-01

    A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.

  19. Space charge effects on the third order coupled resonance

    NASA Astrophysics Data System (ADS)

    Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-08-01

    The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.

  20. Computational aeroacoustics and numerical simulation of supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Long, Lyle N.

    1996-01-01

    The research project has been a computational study of computational aeroacoustics algorithms and numerical simulations of the flow and noise of supersonic jets. During this study a new method for the implementation of solid wall boundary conditions for complex geometries in three dimensions has been developed. In addition, a detailed study of the simulation of the flow in and noise from supersonic circular and rectangular jets has been conducted. Extensive comparisons have been made with experimental measurements. A summary of the results of the research program are attached as the main body of this report in the form of two publications. Also, the report lists the names of the students who were supported by this grant, their degrees, and the titles of their dissertations. In addition, a list of presentations and publications made by the Principal Investigators and the research students is also included.

  1. Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension

    NASA Astrophysics Data System (ADS)

    Schmitz, William J.; Holland, William R.

    1986-08-01

    Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.

  2. Local dynamics and spatiotemporal chaos. The Kuramoto- Sivashinsky equation: A case study

    NASA Astrophysics Data System (ADS)

    Wittenberg, Ralf Werner

    The nature of spatiotemporal chaos in extended continuous systems is not yet well-understood. In this thesis, a model partial differential equation, the Kuramoto- Sivashinsky (KS) equation ut+uxxxx+uxx+uux =0 on a large one-dimensional periodic domain, is studied analytically, numerically, and through modeling to obtain a more detailed understanding of the observed spatiotemporally complex dynamics. In particular, with the aid of a wavelet decomposition, the relevant dynamical interactions are shown to be localized in space and scale. Motivated by these results, and by the idea that the attractor on a large domain may be understood via attractors on smaller domains, a spatially localized low- dimensional model for a minimal chaotic box is proposed. A (de)stabilized extension of the KS equation has recently attracted increased interest; for this situation, dissipativity and analyticity areproven, and an explicit shock-like solution is constructed which sheds light on the difficulties in obtaining optimal bounds for the KS equation. For the usual KS equation, the spatiotemporally chaotic state is carefully characterized in real, Fourier and wavelet space. The wavelet decomposition provides good scale separation which isolates the three characteristic regions of the dynamics: large scales of slow Gaussian fluctuations, active scales containing localized interactions of coherent structures, and small scales. Space localization is shown through a comparison of various correlation lengths and a numerical experiment in which different modes are uncoupled to estimate a dynamic interaction length. A detailed picture of the contributions of different scales to the spatiotemporally complex dynamics is obtained via a Galerkin projection of the KS equation onto the wavelet basis, and an extensive series of numerical experiments in which different combinations of wavelet levels are eliminated or forced. These results, and a formalism to derive an effective equation for periodized subsystems externally forced from a larger system, motivate various models for spatially localized forced systems. There is convincing evidence that short periodized systems, internally forced at the largest scales, form a minimal model for the observed extensively chaotic dynamics in larger domains.

  3. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less

  4. A matched case-control study of convenience store robbery risk factors.

    PubMed

    Hendricks, S A; Landsittel, D P; Amandus, H E; Malcan, J; Bell, J

    1999-11-01

    Convenience store clerks have been shown to be at high risk for assault and homicide, mostly owing to robbery or robbery attempts. Although the literature consistently indicates that at least some environmental designs are effective deterrents of robbery, the significance of individual interventions and policies has differed across past studies. To address these issues, a matched case-control study of 400 convenience store robberies in three metropolitan areas of Virginia was conducted. Conditional logistic regression was implemented to evaluate the significance of various environmental designs and other factors possibly related to convenience store robbery. Findings indicate that numerous characteristics of the surrounding environment and population were significantly associated with convenience store robbery. Results also showed that, on a univariate level, most crime prevention factors were significantly associated with a lower risk for robbery. Using a forward selection process, a multivariate model, which included cash handling policy, bullet-resistant shielding, and numerous characteristics of the surrounding area and population, was identified. This study addressed numerous limitations of the previous literature by prospectively collecting extensive data on a large sample of diverse convenience stores and directly addressing the current theory on the robbers' selection of a target store through a matched case-control design.

  5. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao

    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full fieldmore » strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.« less

  6. A numerical study of confined turbulent jets

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1993-01-01

    A numerical investigation is reported of turbulent incompressible jets confined in two ducts, one cylindrical and the other conical with a 5 degree divergence. In each case, three Craya-Curtet numbers are considered which correspond, respectively, to flow situations with no moderate and strong recirculation. Turbulence closure is achieved by using the k-epsilon model and a recently proposed realizable Reynolds stress algebraic equation model that relates the Reynolds stresses explicitly to the quadratic terms of the mean velocity gradients and ensures the positiveness of each component of the turbulent kinetic energy. Calculations are carried out with a finite-volume procedure using boundary-fitted curvilinear coordinates. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to prevent the solutions from being contaminated by numerical diffusion. The calculated results are compared extensively with the available experimental data. It is shown that the numerical methods presented are capable of capturing the essential flow features observed in the experiments and that the realizable Reynolds stress algebraic equation model performs much better than the k-epsilon model for this class of flows of great practical importance.

  7. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A comparative study between experimental results and numerical predictions of multi-wall structural response to hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Peck, Jeffrey A.

    1992-01-01

    Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.

  9. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  10. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme

    NASA Astrophysics Data System (ADS)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres

    2007-10-01

    Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.

  11. Direct Numerical Simulations of Aerofoils with Serrated Trailing-Edge Extensions

    NASA Astrophysics Data System (ADS)

    Shahab, Muhammad Farrukh; Omidyeganeh, Mohammad; Pinelli, Alfredo

    2017-11-01

    Owl-feather-inspired technology motivates engineers to develop quieter wings. Direct numerical simulations of NACA-4412 aerofoil with retrofitted flat plate, serrated sawtooth shaped and porous (serrations with filaments) extensions have been performed to study the effects of these modifications on the hydrodynamic characteristics of the turbulent wake and their upstream influence on the interacting boundary layer. A chord based Reynolds number of 100,000 and an angle of attack of 5° has been chosen for all simulations, moreover the surface boundary layers are tripped using a a volume forcing method. This contribution will present a detailed statistical analysis of the mean and fluctuating behaviour of the flow and the key differences in the flow topologies will be highlighted. The preliminary analysis of results identifies a system of counter rotating streamwise vortices for the case of saw-tooth shaped serrations. The presence of the latter is generally considered responsible for an increased parasitic higher frequency noise for serrated aerofoils. To palliate the effect of aforementioned system of streamwise vortices, a filamentous layer occupying the voids of the serrations has been added which is expected to improve the aeroacoustic performance of the system.

  12. Anchorage Behaviors of Frictional Tieback Anchors in Silty Sand

    NASA Astrophysics Data System (ADS)

    Hsu, Shih-Tsung; Hsiao, Wen-Ta; Chen, Ke-Ting; Hu, Wen-Chi; Wu, Ssu-Yi

    2017-06-01

    Soil anchors are extensively used in geotechnical applications, most commonly serve as tieback walls in deep excavations. To investigate the anchorage mechanisms of this tieback anchor, a constitutive model that considers both strain hardening and softening and volume dilatancy entitled SHASOVOD model, and FLAC3D software are used to perform 3-D numerical analyses. The results from field anchor tests are compared with those calculated by numerical analyses to enhance the applicability of the numerical method. After the calibration, this research carried out the parameter studies by numerical analyses. The numerical results reveal that whether the yield of soil around an anchor develops to ground surface and/or touches the diaphragm wall depending on the overburden depth H and the embedded depth Z of an anchor, this study suggests the minimum overburden and embedded depths to avoid the yield of soils develop to ground surface and/or touch the diaphragm wall. When the embedded depth, overburden depth or fixed length of an anchor increases, the anchorage capacity also increases. Increasing fixed length should be the optimum method to increase the anchorage capacity for fixed length less than 20m. However, when the fixed length of an anchor exceeds 30 m, the increasing rate of anchorage capacity per fixed length decreases, and progressive yield occurs obviously between the fixed length and surrounding soil.

  13. An Investigation of the Antifouling Potential of Extracts of the Periostracum of Mytilus sp.

    DTIC Science & Technology

    2011-07-01

    organisms), and has been extensively studied and qualified by numerous researchers (Abarzua & Jakubowski, 1995; Callow & Callow, 2002; Wahl, 1989; Yebra ...occurring almost instantaneously on contact with the (typically) marine aquatic environment (Wahl, 1989; Yebra et al., 2004). The rapid formation of this...al., 2003; Wahl, 1989; Yebra et al., 2004). Fouling of ship hulls and niche areas represents a significant cost for the maritime industry. Higher

  14. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction

    PubMed Central

    Alton, Eric W.F.W.

    2015-01-01

    Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians and has been extensively studied for many decades. The cystic fibrosis transmembrane conductance regulator gene was identified in 1989. It encodes a complex protein which has numerous cellular functions. Our understanding of cystic fibrosis pathophysiology and genetics is constantly expanding and being refined, leading to improved management of the disease and increased life expectancy in affected individuals. PMID:26097737

  15. Effective transport properties of composites of spheres

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    1994-06-01

    The effective linear transport properties of composites of spheres may be studied by the methods of statistical physics. The analysis leads to an exact cluster expansion. The resulting expression for the transport coefficients may be evaluated approximately as the sum of a mean field contribution and correction terms, given by cluster integrals over two-sphere and three-sphere correlation functions. Calculations of this nature have been performed for the effective dielectric constant, as well as the effective elastic constants of composites of spheres. Accurate numerical data for the effective properties may be obtained by computer simulation. An efficient formulation uses multiple expansion in Cartesian coordinates and periodic boundary conditions. Extensive numerical results have been obtained for the effective dielectric constant of a suspension of randomly distributed spheres.

  16. Numerical results for axial flow compressor instability

    NASA Technical Reports Server (NTRS)

    Mccaughan, F. E.

    1988-01-01

    Using Cornell's supercomputing facilities, an extensive study of the Moore-Greitzer model was carried out, which gives accurate and reliable information about compressor instability. The bifurcation analysis in the companion paper shows the dependence of the mode of compressor response on the shape of the rotating stall characteristic. The numerical results verify and extend this with a more accurate representation of the characteristic. The effect of the parameters on the shape of the rotating stall characteristic is investigated, and it is found that the parameters with the strongest effects are the inlet length, and the shape of the compressor pressure rise vs. mass flow diagram (i.e. tall diagrams vs. shallow diagrams). The effects of inlet guide vane loss on the characteristic are discussed.

  17. Numerical Simulation on the Dynamic Splitting Tensile Test of reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuan; Jia, Haokai; Jing, Lin

    2018-03-01

    The research for crack resistance was of RC was based on the split Hopkinson bar and numerical simulate software LS-DYNA3D. In the research, the difference of dynamic splitting failure modes between plane concrete and reinforced concrete were completed, and the change rule of tensile stress distribution with reinforcement ratio was studied; also the effect rule with the strain rate and the crack resistance was also discussed by the radial tensile stress time history curve of RC specimen under different loading speeds. The results shows that the reinforcement in the concrete can impede the crack extension, defer the failure time of concrete, increase the tension intensity of concrete; with strain rate of concrete increased, the crack resistance of RC increased.

  18. The challenges of numerically simulating analogue brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2017-04-01

    Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that failed. References 1. Buiter and the GeoMod2004 Team, 2006. The numerical sandbox: comparison of model results for a shortening and an extension experiment. Geol. Soc. Lond. Spec. Publ. 253, 29-64 2. Schreurs and the GeoMod2004 Team, 2006. Analogue benchmarks of shortening and extension experiments. Geol. Soc. Lond. Spec. Publ. 253, 1-27 3. Buiter, Schreurs and the GeoMod2008 Team, 2016. Benchmarking numerical models of brittle thrust wedges, J. Struct. Geol. 92, 140-177 4. Schreurs, Buiter and the GeoMod2008 Team, 2016. Benchmarking analogue models of brittle thrust wedges, J. Struct. Geol. 92, 116-13

  19. Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics*

    NASA Astrophysics Data System (ADS)

    Setchell, Robert E.

    2001-06-01

    Ferroelectric ceramics exhibit a permanent remanent polarization, and the use of shock depoling of these materials to achieve pulsed sources of electrical power was proposed in the late 1950s. During the following twenty years, extensive studies were conducted to examine the shock response of ferroelectric ceramics primarily based on lead zirconate titanate (PZT). Under limited conditions, relatively simple analytical models were found to adequately describe the observed electrical behavior. In general, however, the studies indicated a complex behavior involving finite-rate depoling kinetics with stress and field dependencies. Dielectric relaxation and shock-induced conductivity were also suggested. Unfortunately, few experimental studies were undertaken over the next twenty years, and the development of more comprehensive models was inhibited. In recent years, a strong interest in advancing numerical simulation capabilities has motivated new experimental studies and corresponding model development. More than seventy gas gun experiments have examined several ferroelectric ceramics, with most experiments on lead zirconate titanate having a Zr:Ti ratio of 95:5 and modified with 2ferroelectric but is near an antiferroelectric phase boundary, and depoling results from a shock-driven phase transition. Experiments have examined unpoled, normally poled, and axially poled PZT 95/5 over broad ranges of shock pressure and peak electric field. The extensive base of new data provides quantitative insights into the stress and field dependencies of depoling kinetics and dielectric properties, and is being actively utilized to develop and refine material response models used in numerical simulations of pulsed power devices.

  20. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    NASA Astrophysics Data System (ADS)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  1. Exploring contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Hall, R.; White, L. T.

    2016-12-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia, including northern and central Sulawesi as well as eastern- and westernmost New Guinea. Periods of extension are associated with sedimentary basin growth and phases of crustal melting and rapid uplift. This is recorded by seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provides some control on the rates of processes, indicating that extension rates can be up to an order of magnitude faster than the rates inferred for the more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). We explore a suite of numerical experiments comparing the evolution of these `fast' (20-100 mm/year full rate) rifting models to rifting at slow and ultra-slow extension rates (5-20 mm/year). The experiments focus on the 2-D margin architecture and predicted melt volumes. These extension episodes occurring in Eastern Indonesia take place under different thermal conditions. Thus, we also investigate the role of the initial thermal structure in controlling the evolution of rifting. We explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and infer that many of the extensional basins in SE Asia cannot be explained by simple rifting episodes of fragments of continental crust. Instead, fast extension appears to be initiated by subduction related processes that we will briefly discuss.

  2. An enhanced beam model for constrained layer damping and a parameter study of damping contribution

    NASA Astrophysics Data System (ADS)

    Xie, Zhengchao; Shepard, W. Steve, Jr.

    2009-01-01

    An enhanced analytical model is presented based on an extension of previous models for constrained layer damping (CLD) in beam-like structures. Most existing CLD models are based on the assumption that shear deformation in the core layer is the only source of damping in the structure. However, previous research has shown that other types of deformation in the core layer, such as deformations from longitudinal extension and transverse compression, can also be important. In the enhanced analytical model developed here, shear, extension, and compression deformations are all included. This model can be used to predict the natural frequencies and modal loss factors. The numerical study shows that compared to other models, this enhanced model is accurate in predicting the dynamic characteristics. As a result, the model can be accepted as a general computation model. With all three types of damping included and the formulation used here, it is possible to study the impact of the structure's geometry and boundary conditions on the relative contribution of each type of damping. To that end, the relative contributions in the frequency domain for a few sample cases are presented.

  3. Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.

    PubMed

    Williams, Logan A; Nehmetallah, Georges; Aylo, Rola; Banerjee, Partha P

    2015-02-20

    Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.

  4. Extension of the firefly algorithm and preference rules for solving MINLP problems

    NASA Astrophysics Data System (ADS)

    Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2017-07-01

    An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.

  5. Linear and nonlinear variable selection in competing risks data.

    PubMed

    Ren, Xiaowei; Li, Shanshan; Shen, Changyu; Yu, Zhangsheng

    2018-06-15

    Subdistribution hazard model for competing risks data has been applied extensively in clinical researches. Variable selection methods of linear effects for competing risks data have been studied in the past decade. There is no existing work on selection of potential nonlinear effects for subdistribution hazard model. We propose a two-stage procedure to select the linear and nonlinear covariate(s) simultaneously and estimate the selected covariate effect(s). We use spectral decomposition approach to distinguish the linear and nonlinear parts of each covariate and adaptive LASSO to select each of the 2 components. Extensive numerical studies are conducted to demonstrate that the proposed procedure can achieve good selection accuracy in the first stage and small estimation biases in the second stage. The proposed method is applied to analyze a cardiovascular disease data set with competing death causes. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2013-01-01

    Summary In cancer diagnosis studies, high-throughput gene profiling has been extensively conducted, searching for genes whose expressions may serve as markers. Data generated from such studies have the “large d, small n” feature, with the number of genes profiled much larger than the sample size. Penalization has been extensively adopted for simultaneous estimation and marker selection. Because of small sample sizes, markers identified from the analysis of single datasets can be unsatisfactory. A cost-effective remedy is to conduct integrative analysis of multiple heterogeneous datasets. In this article, we investigate composite penalization methods for estimation and marker selection in integrative analysis. The proposed methods use the minimax concave penalty (MCP) as the outer penalty. Under the homogeneity model, the ridge penalty is adopted as the inner penalty. Under the heterogeneity model, the Lasso penalty and MCP are adopted as the inner penalty. Effective computational algorithms based on coordinate descent are developed. Numerical studies, including simulation and analysis of practical cancer datasets, show satisfactory performance of the proposed methods. PMID:24578589

  7. Transition to Turbulence in curved pipe

    NASA Astrophysics Data System (ADS)

    Hashemi, Amirreza; Loth, Francis

    2014-11-01

    Studies have shown that transitional turbulence in a curved pipe is delayed significantly compared with straight pipes. These analytical, numerical and experimental studies employed a helical geometry that is infinitely long such that the effect of the inlet and outlet can be neglected. The present study examined transition to turbulence in a finite curved pipe with a straight inlet/outlet and a 180 degrees curved pipe with a constant radius of curvature and diameter (D). We have employed the large scale direct numerical simulation (DNS) by using the spectral element method, nek5000, to simulate the flow field within curved pipe geometry with different curvature radii and Reynolds numbers to determine the point of the transition to turbulence. Long extensions for the inlet (5D) and outlet (20D) were used to diminish the effect of the boundary conditions. Our numerical results for radius of curvatures of 1.5D and 5D show transition turbulence is near Re = 3000. This is delayed compared with a straight pipe (Re = 2200) but still less that observed for helical geometries (Reynolds number less than 5000). Our research aims to describe the critical Reynolds number for transition to turbulence for a finite curved pipe at various curvature radii.

  8. A comprehensive view of the web-resources related to sericulture

    PubMed Central

    Singh, Deepika; Chetia, Hasnahana; Kabiraj, Debajyoti; Sharma, Swagata; Kumar, Anil; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-01-01

    Recent progress in the field of sequencing and analysis has led to a tremendous spike in data and the development of data science tools. One of the outcomes of this scientific progress is development of numerous databases which are gaining popularity in all disciplines of biology including sericulture. As economically important organism, silkworms are studied extensively for their numerous applications in the field of textiles, biomaterials, biomimetics, etc. Similarly, host plants, pests, pathogens, etc. are also being probed to understand the seri-resources more efficiently. These studies have led to the generation of numerous seri-related databases which are extremely helpful for the scientific community. In this article, we have reviewed all the available online resources on silkworm and its related organisms, including databases as well as informative websites. We have studied their basic features and impact on research through citation count analysis, finally discussing the role of emerging sequencing and analysis technologies in the field of seri-data science. As an outcome of this review, a web portal named SeriPort, has been created which will act as an index for the various sericulture-related databases and web resources available in cyberspace. Database URL: http://www.seriport.in/ PMID:27307138

  9. Genome-wide association implicates numerous genes and pleiotropy underlying ecological trait variation in natural populations of Populus trichocarpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKown, Athena; Klapste, Jaroslav; Guy, Robert

    2014-01-01

    To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).

  10. Orbital evolution studies of planet-crossing asteroids

    NASA Astrophysics Data System (ADS)

    Hahn, Gerhard; Lagerkvist, Claes-Ingvar

    The orbits of 26 planet-crossing Aten-Apollo-Amor asteroids are predicted on the basis of numerical integrations covering 33,000 or 100,000 yrs; the values reported supplement the preliminary findings of Hahn and Lagerkvist (1987). A solar-system dynamics model accounting for the effects of all planets from Venus to Neptune is employed, along with the 15th-order integration algorithm RADAU (Everhart, 1985). The results are presented in extensive tables and graphs and discussed in detail.

  11. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    NASA Astrophysics Data System (ADS)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  12. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  13. Two-dimensional homogeneous isotropic fluid turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam; Perlekar, Prasad; Pandit, Rahul

    2015-03-01

    We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse- and forward-cascade régimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments.

  14. Drag reduction by polymer additives in decaying turbulence.

    PubMed

    Kalelkar, Chirag; Govindarajan, Rama; Pandit, Rahul

    2005-07-01

    We present results from a systematic numerical study of decaying turbulence in a dilute polymer solution by using a shell-model version of the finitely extensible nonlinear elastic and Peterlin equations. Our study leads to an appealing definition of the drag reduction for the case of decaying turbulence. We exhibit several new results, such as the potential-energy spectrum of the polymer, hitherto unobserved features in the temporal evolution of the kinetic-energy spectrum, and characterize intermittency in such systems. We compare our results with the Gledzer-Ohkitani-Yamada shell model for fluid turbulence.

  15. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  16. Numeric Databases in Chemical Thermodynamics at the National Institute of Standards and Technology

    PubMed Central

    Chase, Malcolm W.

    1989-01-01

    During the past year the activities of the Chemical Thermodynamics Data Center and the JANAF Thermochemical Tables project have been combined to obtain an extensive collection of thermodynamic information for many chemical species, including the elements. Currently available are extensive bibliographic collections and data files of heat capacity, enthalpy, vapor pressure, phase transitions, etc. Future plans related to materials science are to improve the metallic oxide temperature dependent tabulations, upgrade the recommended values periodically, and maintain the bibliographic citations and the thermochemical data current. The recommended thermochemical information is maintained on-line, and tied to the calculational routines within the data center. Recent thermodynamic evaluations on the elements and oxides will be discussed, as well as studies in related activities at NIST. PMID:28053395

  17. Single Pass Streaming BLAST on FPGAs*†

    PubMed Central

    Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom

    2008-01-01

    Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828

  18. Dynamic fracture responses of alumina and two ceramic composites

    NASA Technical Reports Server (NTRS)

    Yang, Kwan-Ho; Kobayashi, Albert S.

    1990-01-01

    A hybrid experimental-numerical procedure was used to characterize the dynamic fracture response of Al2O3 and TiB2-particulate/SiC-matrix and SiC-whisker/Al2O3-matrix composites. Unlike metals and polymers, dynamic arrest stress intensity factors (SIFs) did not exist in the monolithic ceramics and the two ceramic composites considered. Thus a running crack in these materials cannot be arrested by lowering the driving force, i.e., the dynamic SIF. Fractography study of the alumina specimens showed that the area of transgranular failure varied from about 3 percent to about 16 percent for rapid crack extensions in statically and impact loaded specimens, respectively. The influence of kinematic constraints which enforces transgranular flat crack extension, despite the higher fracture energy of transgranular fracture, is discussed.

  19. Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Collier, N.; Knepley, M.

    2015-12-01

    The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).

  20. The Paradox of Mitochondrial Dysfunction and Extended Longevity

    PubMed Central

    Munkácsy, Erin; Rea, Shane L.

    2014-01-01

    Mitochondria play numerous, essential roles in the life of eukaryotes. Disruption of mitochondrial function in humans is often pathological or even lethal. Surprisingly, in some organisms mitochondrial dysfunction can result in life extension. This paradox has been studied most extensively in the long-lived Mit mutants of the nematode Caenorhabditis elegans. In this review, we explore the major responses that are activated following mitochondrial dysfunction in these animals and how these responses potentially act to extend their life. We focus our attention on five broad areas of current research – reactive oxygen species signaling, the mitochondrial unfolded protein response, autophagy, metabolic adaptation, and the roles played by various transcription factors. Lastly, we also examine why disruption of complexes I and II differ in their ability to induce the Mit phenotype and extend lifespan. PMID:24699406

  1. Preschool children use space, rather than counting, to infer the numerical magnitude of digits: Evidence for a spatial mapping principle.

    PubMed

    Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2017-01-01

    A milestone in numerical development is the acquisition of counting principles which allow children to exactly determine the numerosity of a given set. Moreover, a canonical left-to-right spatial layout for representing numbers also emerges during preschool. These foundational aspects of numerical competence have been extensively studied, but there is sparse knowledge about the interplay between the acquisition of the cardinality principle and spatial mapping of numbers in early numerical development. The present study investigated how these skills concurrently develop before formal schooling. Preschool children were classified according to their performance in Give-a-Number and Number-to-position tasks. Experiment 1 revealed three qualitatively different groups: (i) children who did not master the cardinality principle and lacked any consistent spatial mapping for digits, (ii) children who mastered the cardinality principle and yet failed in spatial mapping, and (iii) children who mastered the cardinality principle and displayed consistent spatial mapping. This suggests that mastery of the cardinality principle does not entail the emergence of spatial mapping. Experiment 2 confirmed the presence of these three developmental stages and investigated their relation with a digit comparison task. Crucially, only children who displayed a consistent spatial mapping of numbers showed the ability to compare digits by numerical magnitude. A congruent (i.e., numerically ordered) positioning of numbers onto a visual line as well as the concept that moving rightwards (in Western cultures) conveys an increase in numerical magnitude mark the mastery of a spatial mapping principle. Children seem to rely on this spatial organization to achieve a full understanding of the magnitude relations between digits. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  3. A stochastic vortex structure method for interacting particles in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad F.; Marshall, Jeffrey S.; Grant, John R.

    2018-01-01

    In a recent study, we have proposed a new synthetic turbulence method based on stochastic vortex structures (SVSs), and we have demonstrated that this method can accurately predict particle transport, collision, and agglomeration in homogeneous, isotropic turbulence in comparison to direct numerical simulation results. The current paper extends the SVS method to non-homogeneous, anisotropic turbulence. The key element of this extension is a new inversion procedure, by which the vortex initial orientation can be set so as to generate a prescribed Reynolds stress field. After validating this inversion procedure for simple problems, we apply the SVS method to the problem of interacting particle transport by a turbulent planar jet. Measures of the turbulent flow and of particle dispersion, clustering, and collision obtained by the new SVS simulations are shown to compare well with direct numerical simulation results. The influence of different numerical parameters, such as number of vortices and vortex lifetime, on the accuracy of the SVS predictions is also examined.

  4. A typology of childhood problems among chronically homeless adults and its association with housing and clinical outcomes.

    PubMed

    Tsai, Jack; Edens, Ellen L; Rosenheck, Robert A

    2011-08-01

    Studies of chronically homeless adults have not adequately investigated the impact of adverse childhood experiences. The current retrospective, longitudinal study profiles the childhood experiences reported by 738 participants in an 11-site supported housing initiative and examines how their childhood profile is related to their homeless history, their psychosocial status before entry into supported housing, and their outcomes once enrolled in supported housing. A two-step cluster analysis revealed three childhood profiles: Relatively Numerous Childhood Problems, Disrupted Family, and Relatively Few Childhood Problems. Results found that participants with Relatively Numerous Childhood Problems were significantly younger when they were first homeless and had worse drug use before entry into supported housing than other participants. There were no differences in housing, substance use, or mental and physical health outcomes once participants were enrolled in supported housing. Prevention of homelessness should focus, to the extent possible, on individuals with extensive childhood problems.

  5. Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N .; Pidugu, S. B.

    1999-01-01

    The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.

  6. A dynamic analysis of the motion of a low-wing general aviation aircraft about its calculated equilibrium flat spin mode

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Barlow, J. B.

    1980-01-01

    The properties of the flat spin mode of a general aviation configuration have been studied through analysis of rotary balance data, numerical simulation, and analytical study of the equilibrium state. The equilibrium state is predicted well from rotary balance data. The variations of yawing moment and pitching moment as functions of sideslip have been shown to be of great importance in obtaining accurate modeling. These dependencies are not presently available with sufficient accuracy from previous tests or theories. The stability of the flat spin mode has been examined extensively using numerical linearization, classical perturbation methods, and reduced order modeling. The stability exhibited by the time histories and the eigenvalue analyses is shown to be strongly dependent on certain static cross derivatives and more so on the dynamic derivatives. Explicit stability criteria are obtained from the reduced order models.

  7. Quantifying spatial distribution of spurious mixing in ocean models.

    PubMed

    Ilıcak, Mehmet

    2016-12-01

    Numerical mixing is inevitable for ocean models due to tracer advection schemes. Until now, there is no robust way to identify the regions of spurious mixing in ocean models. We propose a new method to compute the spatial distribution of the spurious diapycnic mixing in an ocean model. This new method is an extension of available potential energy density method proposed by Winters and Barkan (2013). We test the new method in lock-exchange and baroclinic eddies test cases. We can quantify the amount and the location of numerical mixing. We find high-shear areas are the main regions which are susceptible to numerical truncation errors. We also test the new method to quantify the numerical mixing in different horizontal momentum closures. We conclude that Smagorinsky viscosity has less numerical mixing than the Leith viscosity using the same non-dimensional constant.

  8. Formation and maintenance of tubular membrane projections: experiments and numerical calculations.

    PubMed

    Umeda, Tamiki; Inaba, Takehiko; Ishijima, Akihiko; Takiguchi, Kingo; Hotani, Hirokazu

    2008-01-01

    To study the mechanical properties of lipid membranes, we manipulated liposomes by using a system comprising polystyrene beads and laser tweezers, and measured the force required to transform their shapes. When two beads pushed the membrane from inside, spherical liposomes transformed into a lemon-shape. Then a discontinuous shape transformation occurred to form a membrane tube from either end of the liposomes, and the force dropped drastically. We analyzed these processes using a mathematical model based on the bending elasticity of the membranes. Numerical calculations showed that when the bead size was taken into account, the model reproduced both the liposomal shape transformation and the force-extension relation. This result suggests that the size of the beads is responsible for the existence of a force barrier for the tube formation.

  9. On the design and optimisation of new fractal antenna using PSO

    NASA Astrophysics Data System (ADS)

    Rani, Shweta; Singh, A. P.

    2013-10-01

    An optimisation technique for newly shaped fractal structure using particle swarm optimisation with curve fitting is presented in this article. The aim of particle swarm optimisation is to find the geometry of the antenna for the required user-defined frequency. To assess the effectiveness of the presented method, a set of representative numerical simulations have been done and the results are compared with the measurements from experimental prototypes built according to the design specifications coming from the optimisation procedure. The proposed fractal antenna resonates at the 5.8 GHz industrial, scientific and medical band which is suitable for wireless telemedicine applications. The antenna characteristics have been studied using extensive numerical simulations and are experimentally verified. The antenna exhibits well-defined radiation patterns over the band.

  10. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic

    NASA Astrophysics Data System (ADS)

    Ros, Elena; Pérez-Gussinyé, Marta; Araújo, Mario; Thoaldo Romeiro, Marco; Andrés-Martínez, Miguel; Morgan, Jason P.

    2017-12-01

    Rifted continental margins may present a predominantly magmatic continent-ocean transition (COT), or one characterized by large exposures of serpentinized mantle. In this study we use numerical modeling to show the importance of the lower crustal strength in controlling the amount and onset of melting and serpentinization during rifting. We propose that the relative timing between both events controls the nature of the COT. Numerical experiments for half-extension velocities <=10 mm/yr suggest there is a genetic link between margin tectonic style and COT nature that strongly depends on the lower crustal strength. Our results imply that very slow extension velocities (< 5 mm/yr) and a strong lower crust lead to margins characterized by large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins can be either narrow symmetric or asymmetric and present a COT with exhumed serpentinized mantle underlain by some magmatic products. In contrast, a weak lower crust promotes margins with a gentle crustal tapering, small faults dipping both ocean- and landward and small syn-rift subsidence. Their COT is predominantly magmatic at any ultra-slow extension velocity and perhaps underlain by some serpentinized mantle. These margins can also be either symmetric or asymmetric. Our models predict that magmatic underplating mostly underlies the wide margin at weak asymmetric conjugates, whereas the wide margin is mainly underlain by serpentinized mantle at strong asymmetric margins. Based on this conceptual template, we propose different natures for the COTs in the South Atlantic.

  11. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest.

    PubMed

    Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker

    2014-01-01

    Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.

  12. Thinning factor distributions viewed through numerical models of continental extension

    NASA Astrophysics Data System (ADS)

    Svartman Dias, Anna Eliza; Hayman, Nicholas W.; Lavier, Luc L.

    2016-12-01

    A long-standing question surrounding rifted margins concerns how the observed fault-restored extension in the upper crust is usually less than that calculated from subsidence models or from crustal thickness estimates, the so-called "extension discrepancy." Here we revisit this issue drawing on recently completed numerical results. We extract thinning profiles from four end-member geodynamic model rifts with varying width and asymmetry and propose tectonic models that best explain those results. We then relate the spatial and temporal evolution of upper to lower crustal thinning, or crustal depth-dependent thinning (DDT), and crustal thinning to mantle thinning, or lithospheric DDT, which are difficult to achieve in natural systems due to the lack of observations that constrain thinning at different stages between prerift extension and lithospheric breakup. Our results support the hypothesis that crustal DDT cannot be the main cause of the extension discrepancy, which may be overestimated because of the difficulty in recognizing distributed deformation, and polyphase and detachment faulting in seismic data. More importantly, the results support that lithospheric DDT is likely to dominate at specific stages of rift evolution because crustal and mantle thinning distributions are not always spatially coincident and at times are not even balanced by an equal magnitude of thinning in two dimensions. Moreover, either pure or simple shear models can apply at various points of time and space depending on the type of rift. Both DDT and pure/simple shear variations across space and time can result in observed complex fault geometries, uplift/subsidence, and thermal histories.

  13. Extensive theoretical/numerical comparative studies on H2 and generalised H2 norms in sampled-data systems

    NASA Astrophysics Data System (ADS)

    Kim, Jung Hoon; Hagiwara, Tomomichi

    2017-11-01

    This paper is concerned with linear time-invariant (LTI) sampled-data systems (by which we mean sampled-data systems with LTI generalised plants and LTI controllers) and studies their H2 norms from the viewpoint of impulse responses and generalised H2 norms from the viewpoint of the induced norms from L2 to L∞. A new definition of the H2 norm of LTI sampled-data systems is first introduced through a sort of intermediate standpoint of those for the existing two definitions. We then establish unified treatment of the three definitions of the H2 norm through a matrix function G(τ) defined on the sampling interval [0, h). This paper next considers the generalised H2 norms, in which two types of the L∞ norm of the output are considered as the temporal supremum magnitude under the spatial 2-norm and ∞-norm of a vector-valued function. We further give unified treatment of the generalised H2 norms through another matrix function F(θ) which is also defined on [0, h). Through a close connection between G(τ) and F(θ), some theoretical relationships between the H2 and generalised H2 norms are provided. Furthermore, appropriate extensions associated with the treatment of G(τ) and F(θ) to the closed interval [0, h] are discussed to facilitate numerical computations and comparisons of the H2 and generalised H2 norms. Through theoretical and numerical studies, it is shown that the two generalised H2 norms coincide with neither of the three H2 norms of LTI sampled-data systems even though all the five definitions coincide with each other when single-output continuous-time LTI systems are considered as a special class of LTI sampled-data systems. To summarise, this paper clarifies that the five control performance measures are mutually related with each other but they are also intrinsically different from each other.

  14. Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment

    NASA Astrophysics Data System (ADS)

    Boulanger, Joan; Charette, André

    2005-03-01

    This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.

  15. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  16. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  17. An extension of the Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    Bordenave, Charles; Germain, Pierre; Trogdon, Thomas

    2015-12-01

    We show how the derivation of the Derrida-Lebowitz-Speer-Spohn equation can be prolonged to obtain a new equation, generalizing the models obtained in the paper by these authors. We then investigate its properties from both an analytical and numerical perspective. Specifically, a numerical method is presented to approximate solutions of the prolonged equation. Using this method, we investigate the relationship between the solutions of the prolonged equation and the Tracy-Widom GOE distribution.

  18. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  19. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  20. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  1. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  2. Force-controlled absorption in a fully-nonlinear numerical wave tank

    NASA Astrophysics Data System (ADS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  3. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor.

    PubMed

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-06-10

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.

  4. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system

    NASA Astrophysics Data System (ADS)

    Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.

    2015-10-01

    We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.

  5. Pterocarpus officinalis Jacq. Bloodwood Legumeminosae, Legume Family, lotoideae, Pea Subfamily

    Treesearch

    Peter L. Weaver

    1997-01-01

    Pterocarpus officinalis Jacq., called palo de pollo in Puerto Rico, bloodwood in Guyana and Panama, and by numerous other names throughout its extensive range, is an evergreen tree that reaches 40m in height

  6. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed

    Enderlein, J

    2000-04-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.

  7. Interaction of non-radially symmetric camphor particles

    NASA Astrophysics Data System (ADS)

    Ei, Shin-Ichiro; Kitahata, Hiroyuki; Koyano, Yuki; Nagayama, Masaharu

    2018-03-01

    In this study, the interaction between two non-radially symmetric camphor particles is theoretically investigated and the equation describing the motion is derived as an ordinary differential system for the locations and the rotations. In particular, slightly modified non-radially symmetric cases from radial symmetry are extensively investigated and explicit motions are obtained. For example, it is theoretically shown that elliptically deformed camphor particles interact so as to be parallel with major axes. Such predicted motions are also checked by real experiments and numerical simulations.

  8. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  9. Sheet, ligament and droplet formation in swirling primary atomization

    NASA Astrophysics Data System (ADS)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  10. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  11. CONORBIT: constrained optimization by radial basis function interpolation in trust regions

    DOE PAGES

    Regis, Rommel G.; Wild, Stefan M.

    2016-09-26

    Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less

  12. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    NASA Astrophysics Data System (ADS)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  13. Numerical model of the transition from continental rifting to oceanization: the case study of the Ligure-Piemontese ocean.

    NASA Astrophysics Data System (ADS)

    Roda, M.; Marotta, A. M.; Conte, K.; Spalla, M. I.

    2015-12-01

    The transition from continental rifting to oceanization has been investigated by mean of a 2D thermo-mechanical numerical model in which the formation of oceanic crust by mantle serpentinization, due to the hydration of the uprising peridotite, as been implemented. Model predictions have been compared with natural data related to the Permian-Triassic thinning affecting the continental lithosphere of the Alpine domain, in order to identify which portions of the present Alpine-Apennine system, preserving the imprints of Permian-Triassic high temperature (HT) metamorphism, is compatible, in terms of lithostratigraphy and tectono-metamorphic evolution, with a lithospheric extension preceding the opening of the Ligure-Piemontese oceanic basin. At this purpose age, petrological and structural data from the Alpine and Apennine ophiolite complexes are compared with model predictions from the oceanization stage. Our comparative analysis supports the thesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start on a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture. The HT Permian-Triassic metamorphic re-equilibration overprints an inherited tectonic and metamorphic setting consequent to the Variscan subduction and collision, making the Alps a key case history to explore mechanisms responsible for the re-activation of orogenic scars.

  14. Geologic and aeromagnetic maps of the Fossil Ridge area and vicinity, Gunnison County, Colorado

    USGS Publications Warehouse

    DeWitt, Ed; Zech, R.S.; Chase, C.G.; Zartman, R.E.; Kucks, R.P.; Bartelson, Bruce; Rosenlund, G.C.; Earley, Drummond

    2002-01-01

    This data set includes a GIS geologic map database of an Early Proterozoic metavolcanic and metasedimentary terrane extensively intruded by Early and Middle Proterozoic granitic plutons. Laramide to Tertiary deformation and intrusion of felsic plutons have created numerous small mineral deposits that are described in the tables and are shown on the figures in the accompanying text pamphlet. Also included in the pamphlet are numerous chemical analyses of igneous and meta-igneous bodies of all ages in tables and in summary geochemical diagrams. The text pamphlet also contains a detailed description of map units and discussions of the aeromagnetic survey, igneous and metmorphic rocks, and mineral deposits. The printed map sheet and browse graphic pdf file include the aeromagnetic map of the study area, as well as figures and photographs. Purpose: This GIS geologic map database is provided to facilitate the presentation and analysis of earth-science data for this region of Colorado. This digital map database may be displayed at any scale or projection. However, the geologic data in this coverage are not intended for use at a scale other than 1:30,000. Supplemental useful data accompanying the database are extensive geochemical and mineral deposits data, as well as an aeromagnetic map.

  15. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  16. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  17. Extension and comparison of neoclassical models for poloidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, W. M.

    2008-01-15

    Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived within a common framework, extended to include additional physics and numerically compared. The importance of new physics phenomena not usually included in poloidal rotation calculations (e.g., poloidal electric field, VxB force resulting from enhanced radial particle flow arising from the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim-Diamond-Groebner, and Stacey-Sigmar poloidal rotation models are presented.

  18. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method

    NASA Astrophysics Data System (ADS)

    Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank

    2018-02-01

    Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.

  19. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.

  20. Thermofluid Analysis of Magnetocaloric Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan

    While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While themore » goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.« less

  1. Numerical and analytical modeling of the end-loaded split (ELS) test specimens made of multi-directional coupled composite laminates

    NASA Astrophysics Data System (ADS)

    Samborski, Sylwester; Valvo, Paolo S.

    2018-01-01

    The paper deals with the numerical and analytical modelling of the end-loaded split test for multi-directional laminates affected by the typical elastic couplings. Numerical analysis of three-dimensional finite element models was performed with the Abaqus software exploiting the virtual crack closure technique (VCCT). The results show possible asymmetries in the widthwise deflections of the specimen, as well as in the strain energy release rate (SERR) distributions along the delamination front. Analytical modelling based on a beam-theory approach was also conducted in simpler cases, where only bending-extension coupling is present, but no out-of-plane effects. The analytical results matched the numerical ones, thus demonstrating that the analytical models are feasible for test design and experimental data reduction.

  2. Numerical model for learning concepts of streamflow simulation

    USGS Publications Warehouse

    DeLong, L.L.; ,

    1993-01-01

    Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.

  3. Mathematical problems arising in interfacial electrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tseluiko, Dmitri

    In this work we consider the nonlinear stability of thin films in the presence of electric fields. We study a perfectly conducting thin film flow down an inclined plane in the presence of an electric field which is uniform in its undisturbed state, and normal to the plate at infinity. In addition, the effect of normal electric fields on films lying above, or hanging from, horizontal substrates is considered. Systematic asymptotic expansions are used to derive fully nonlinear long wave model equations for the scaled interface motion and corresponding flow fields. For the case of an inclined plane, higher order terms are need to be retained to regularize the problem in the sense that the long wave approximation remains valid for long times. For the case of a horizontal plane the fully nonlinear evolution equation which is derived at the leading order, is asymptotically correct and no regularization procedure is required. In both physical situations, the effect of the electric field is to introduce a non-local term which arises from the potential region above the liquid film, and enters through the electric Maxwell stresses at the interface. This term is always linearly destabilizing and produces growth rates proportional to the cubic power of the wavenumber - surface tension is included and provides a short wavelength cut-off, that is, all sufficiently short waves are linearly stable. For the case of film flow down an inclined plane, the fully nonlinear equation can produce singular solutions (for certain parameter values) after a finite time, even in the absence of an electric field. This difficulty is avoided at smaller amplitudes where the weakly nonlinear evolution is governed by an extension of the Kuramoto-Sivashinsky (KS) equation. Global existence and uniqueness results are proved, and refined estimates of the radius of the absorbing ball in L2 are obtained in terms of the parameters of the equations for a generalized class of modified KS equations. The established estimates are compared with numerical solutions of the equations which in turn suggest an optimal upper bound for the radius of the absorbing ball. A scaling argument is used to explain this, and a general conjecture is made based on extensive computations. We also carry out a complete study of the nonlinear behavior of competing physical mechanisms: long wave instability above a critical Reynolds number, short wave damping due to surface tension and intermediate growth due to the electric field. Through a combination of analysis and extensive numerical experiments, we elucidate parameter regimes that support non-uniform travelling waves, time-periodic travelling waves and complex nonlinear dynamics including chaotic interfacial oscillations. It is established that a sufficiently high electric field will drive the system to chaotic oscillations, even when the Reynolds number is smaller than the critical value below which the non-electrified problem is linearly stable. A particular case of this is Stokes flow, which is known to be stable for this class of problems (an analogous statement holds for horizontally supported films also). Our theoretical results indicate that such highly stable flows can be rendered unstable by using electric fields. This opens the way for possible heat and mass transfer applications which can benefit significantly from interfacial oscillations and interfacial turbulence. For the case of a horizontal plane, a weakly nonlinear theory is not possible due to the absence of the shear flow generated by the gravitational force along the plate when the latter is inclined. We study the fully nonlinear equation, which in this case is asymptotically correct and is obtained at the leading order. The model equation describes both overlying and hanging films - in the former case gravity is stabilizing while in the latter it is destabilizing. The numerical and theoretical analysis of the fully nonlinear evolution is complicated by the fact that the coefficients of the highest order terms (surface tension in this instance) are nonlinear. We implement a fully implicit two level numerical scheme and perform numerical experiments. We also prove global boundedness of positive periodic smooth solutions, using an appropriate energy functional. This global boundedness result is seen in all our numerical results. Through a combination of analysis and extensive numerical experiments we present evidence for global existence of positive smooth solutions. This means, in turn, that the film does not touch the wall in finite time but asymptotically at infinite time. Numerical solutions are presented to support such phenomena.

  4. Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces

    NASA Astrophysics Data System (ADS)

    Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.

    2015-11-01

    The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.

  5. Numerical study of water mitigation effects on blast wave

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hung, K. C.; Chong, O. Y.

    2005-11-01

    The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones Wilkins Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1 3 are found to be most practical.

  6. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    NASA Astrophysics Data System (ADS)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-10-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.

  7. The Silicon Trypanosome: a test case of iterative model extension in systems biology

    PubMed Central

    Achcar, Fiona; Fadda, Abeer; Haanstra, Jurgen R.; Kerkhoven, Eduard J.; Kim, Dong-Hyun; Leroux, Alejandro E.; Papamarkou, Theodore; Rojas, Federico; Bakker, Barbara M.; Barrett, Michael P.; Clayton, Christine; Girolami, Mark; Luise Krauth-Siegel, R.; Matthews, Keith R.; Breitling, Rainer

    2016-01-01

    The African trypanosome, Trypanosoma brucei, is a unicellular parasite causing African Trypanosomiasis (sleeping sickness in humans and nagana in animals). Due to some of its unique properties, it has emerged as a popular model organism in systems biology. A predictive quantitative model of glycolysis in the bloodstream form of the parasite has been constructed and updated several times. The Silicon Trypanosome (SilicoTryp) is a project that brings together modellers and experimentalists to improve and extend this core model with new pathways and additional levels of regulation. These new extensions and analyses use computational methods that explicitly take different levels of uncertainty into account. During this project, numerous tools and techniques have been developed for this purpose, which can now be used for a wide range of different studies in systems biology. PMID:24797926

  8. Standardized Pearson type 3 density function area tables

    NASA Technical Reports Server (NTRS)

    Cohen, A. C.; Helm, F. R.; Sugg, M.

    1971-01-01

    Tables constituting extension of similar tables published in 1936 are presented in report form. Single and triple parameter gamma functions are discussed. Report tables should interest persons concerned with development and use of numerical analysis and evaluation methods.

  9. Comparison of numerical model simulations and SFO wake vortex windline measurements

    DOT National Transportation Integrated Search

    2003-06-23

    To provide quantitative support for the Simultaneous Offset Instrument Approach (SOIA) procedure, an extensive data collection effort was undertaken at San Francisco International Airport by the Federal Aviation Administration (FAA, U.S. Dept. of Tra...

  10. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    DTIC Science & Technology

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  11. A fourth-order box method for solving the boundary layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1977-01-01

    A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.

  12. Extensions and improvements on XTRAN3S

    NASA Technical Reports Server (NTRS)

    Borland, C. J.

    1989-01-01

    Improvements to the XTRAN3S computer program are summarized. Work on this code, for steady and unsteady aerodynamic and aeroelastic analysis in the transonic flow regime has concentrated on the following areas: (1) Maintenance of the XTRAN3S code, including correction of errors, enhancement of operational capability, and installation on the Cray X-MP system; (2) Extension of the vectorization concepts in XTRAN3S to include additional areas of the code for improved execution speed; (3) Modification of the XTRAN3S algorithm for improved numerical stability for swept, tapered wing cases and improved computational efficiency; and (4) Extension of the wing-only version of XTRAN3S to include pylon and nacelle or external store capability.

  13. Final Report for''Numerical Methods and Studies of High-Speed Reactive and Non-Reactive Flows''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwendeman, D W

    2002-11-20

    The work carried out under this subcontract involved the development and use of an adaptive numerical method for the accurate calculation of high-speed reactive flows on overlapping grids. The flow is modeled by the reactive Euler equations with an assumed equation of state and with various reaction rate models. A numerical method has been developed to solve the nonlinear hyperbolic partial differential equations in the model. The method uses an unsplit, shock-capturing scheme, and uses a Godunov-type scheme to compute fluxes and a Runge-Kutta error control scheme to compute the source term modeling the chemical reactions. An adaptive mesh refinementmore » (AMR) scheme has been implemented in order to locally increase grid resolution. The numerical method uses composite overlapping grids to handle complex flow geometries. The code is part of the ''Overture-OverBlown'' framework of object-oriented codes [1, 2], and the development has occurred in close collaboration with Bill Henshaw and David Brown, and other members of the Overture team within CASC. During the period of this subcontract, a number of tasks were accomplished, including: (1) an extension of the numerical method to handle ''ignition and grow'' reaction models and a JWL equations of state; (2) an improvement in the efficiency of the AMR scheme and the error estimator; (3) an addition of a scheme of numerical dissipation designed to suppress numerical oscillations/instabilities near expanding detonations and along grid overlaps; and (4) an exploration of the evolution to detonation in an annulus and of detonation failure in an expanding channel.« less

  14. Comparison of four stable numerical methods for Abel's integral equation

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.; Mejia, Carlos E.

    1991-01-01

    The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.

  15. Effects of Tube Diameter and Tubeside Fin Geometry on the Heat Transfer Performance of Air-Cooled Condensers

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Honda, Hiroshi

    A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.

  16. Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    2002-07-01

    Ferroelectric ceramics exhibit a permanent remanent polarization, and shock depoling of these materials to achieve pulsed sources of electrical power was proposed in the late 1950s. During the following twenty years, extensive studies were conducted to examine the shock response of ferroelectric ceramics primarily based on lead zirconate titanate (PZT). Under limited conditions, relatively simple analytical models were found to adequately describe the observed electrical behavior. A more complex behavior was indicated over broader conditions, however, resulting in the incorporation of shock-induced conductivity and dielectric relaxation into analytical models. Unfortunately, few experimental studies were undertaken over the next twenty years, and the development of more comprehensive models was inhibited. In recent years, a strong interest in advancing numerical simulation capabilities has motivated new experimental studies and corresponding model development. More than seventy gas gun experiments have examined several ferroelectric ceramics, with most experiments on lead zirconate titanate having a Zr:Ti ratio of 95:5 and modified with 2% niobium (PZT 95/5). This material is nominally ferroelectric but is near an antiferroelectric phase boundary, and depoling results from a shock-driven phase transition. Experiments have examined unpoled, normally poled, and axially poled PZT 95/5 over broad ranges of shock pressure and peak electric field. The extensive base of new data provides quantitative insights into both the stress and field dependencies of depoling kinetics, and the significance of pore collapse at higher stresses. The results are being actively utilized to develop and refine material response models used in numerical simulations of pulsed power devices.

  17. SELECTION AND CALIBRATION OF SUBSURFACE REACTIVE TRANSPORT MODELS USING A SURROGATE-MODEL APPROACH

    EPA Science Inventory

    While standard techniques for uncertainty analysis have been successfully applied to groundwater flow models, extension to reactive transport is frustrated by numerous difficulties, including excessive computational burden and parameter non-uniqueness. This research introduces a...

  18. Errors in finite-difference computations on curvilinear coordinate systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. W.; Thompson, J. F.

    1980-01-01

    Curvilinear coordinate systems were used extensively to solve partial differential equations on arbitrary regions. An analysis of truncation error in the computation of derivatives revealed why numerical results may be erroneous. A more accurate method of computing derivatives is presented.

  19. Jupiter: Lord of the Planets.

    ERIC Educational Resources Information Center

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  20. Numerical Responses of Saproxylic Beetles to Rapid Increases in Dead Wood Availability following Geometrid Moth Outbreaks in Sub-Arctic Mountain Birch Forest

    PubMed Central

    Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker

    2014-01-01

    Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak. PMID:24911056

  1. Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox-Rabinovitz, M. S.

    The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.

  2. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

    NASA Astrophysics Data System (ADS)

    Villar, Paula I.; Soba, Alejandro

    2017-07-01

    We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.

  3. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  4. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse.

    PubMed

    Hadar, Aviad; Hadas, Itay; Lazarovits, Avi; Alyagon, Uri; Eliraz, Daniel; Zangen, Abraham

    2017-01-01

    Smartphone usage is now integral to human behavior. Recent studies associate extensive usage with a range of debilitating effects. We sought to determine whether excessive usage is accompanied by measurable neural, cognitive and behavioral changes. Subjects lacking previous experience with smartphones (n = 35) were compared to a matched group of heavy smartphone users (n = 16) on numerous behavioral and electrophysiological measures recorded using electroencephalogram (EEG) combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex (rPFC). In a second longitudinal intervention, a randomly selected sample of the original non-users received smartphones for 3 months while the others served as controls. All measurements were repeated following this intervention. Heavy users showed increased impulsivity, hyperactivity and negative social concern. We also found reduced early TMS evoked potentials in the rPFC of this group, which correlated with severity of self-reported inattention problems. Heavy users also obtained lower accuracy rates than nonusers in a numerical processing. Critically, the second part of the experiment revealed that both the numerical processing and social cognition domains are causally linked to smartphone usage. Heavy usage was found to be associated with impaired attention, reduced numerical processing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC) excitability. Memory impairments were not detected. Novel usage over short period induced a significant reduction in numerical processing capacity and changes in social cognition.

  5. Magmatism and deformation during continental breakup

    NASA Astrophysics Data System (ADS)

    Keir, Derek

    2013-04-01

    The rifting of continents and the transition to seafloor spreading is characterised by extensional faulting and thinning of the lithosphere, and is sometimes accompanied by voluminous intrusive and extrusive magmatism. In order to understand how these processes develop over time to break continents apart, we have traditionally relied on interpreting the geological record at the numerous fully developed, ancient rifted margins around the world. In these settings, however, it is difficult to discriminate between different mechanisms of extension and magmatism because the continent-ocean transition is typically buried beneath thick layers of volcanic and sedimentary rocks, and the tectonic and volcanic activity that characterised breakup has long-since ceased. Ongoing continental breakup in the African and Arabian rift systems offers a unique opportunity to address these problems because it exposes several sectors of tectonically active rift sector development spanning the transition from embryonic continental rifting in the south to incipient seafloor spreading in the north. Here I synthesise exciting, multidisciplinary observational and modelling studies using geophysical, geodetic, petrological and numerical techniques that uniquely constrain the distribution, time-scales, and interactions between extension and magmatism during the progressive breakup of the African Plate. This new research has identified the previously unrecognised role of rapid and episodic dike emplacement in accommodating a large proportion of extension during continental rifting. We are now beginning to realise that changes in the dominant mechanism for strain over time (faulting, stretching and magma intrusion) impact dramatically on magmatism and rift morphology. The challenge now is to take what we're learned from East Africa and apply it to the rifted margins whose geological record documents breakup during entire Wilson Cycles.

  6. Tidal modulation on the Changjiang River plume in summer

    NASA Astrophysics Data System (ADS)

    WU, H.

    2011-12-01

    Tide effects on the structure of the near-field Changjiang River Plume and on the extension of the far-field plume have often been neglected in analysis and numerical simulations, which is the focus of this study. Numerical experiments highlighted the crucial role of the tidal forcing in modulating the Changjiang River plume. Without the tidal forcing, the plume results in an unrealistic upstream extension along the Jiangsu Coast. With the tidal forcing, the vertical mixing increases, resulting in a strong horizontal salinity gradient at the northern side of the Changjiang River mouth along the Jiangsu Coast, which acts as a dynamic barrier and restricts the northward migration of the plume. Furthermore, the tidal forcing produces a bi-directional plume structure in the near field and the plume separation is located at the head of the submarine canyon. A significant bulge occurs around the head of submarine canyon and rotates anticyclonically, which carries large portion of the diluted water towards the northeast and merges into the far-field plume. A portion of the diluted water moves towards the southeast, which is mainly caused by tidal ratification. This bi-directional plume structure is more evident under certain wind condition. During the neap tide with the reduced tidal energy, the near-field plume extends farther offshore and the bulge becomes less evident. These dynamic behaviors are maintained and fundamentally important in the region around the river mouth even under the summer monsoon and the shelf currents, although in the far field the wind forcing and shelf currents eventually dominate the plume extension.
    H. Wu

  7. Exploring tectonomagmatic controls on mid-ocean ridge faulting and morphology with 3-D numerical models

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.

    2016-12-01

    Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.

  8. Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence

    NASA Astrophysics Data System (ADS)

    dell'Isola, Francesco; Lekszycki, Tomasz; Pawlikowski, Marek; Grygoruk, Roman; Greco, Leopoldo

    2015-12-01

    In this paper, we study a metamaterial constructed with an isotropic material organized following a geometric structure which we call pantographic lattice. This relatively complex fabric was studied using a continuous model (which we call pantographic sheet) by Rivlin and Pipkin and includes two families of flexible fibers connected by internal pivots which are, in the reference configuration, orthogonal. A rectangular specimen having one side three times longer than the other is cut at 45° with respect to the fibers in reference configuration, and it is subjected to large-deformation plane-extension bias tests imposing a relative displacement of shorter sides. The continuum model used, the presented numerical models and the extraordinary advancements of the technology of 3D printing allowed for the design of some first experiments, whose preliminary results are shown and seem to be rather promising. Experimental evidence shows three distinct deformation regimes. In the first regime, the equilibrium total deformation energy depends quadratically on the relative displacement of terminal specimen sides: Applied resultant force depends linearly on relative displacement. In the second regime, the applied force varies nonlinearly on relative displacement, but the behavior remains elastic. In the third regime, damage phenomena start to occur until total failure, but the exerted resultant force continues to be increasing and reaches a value up to several times larger than the maximum shown in the linear regime before failure actually occurs. Moreover, the total energy needed to reach structural failure is larger than the maximum stored elastic energy. Finally, the volume occupied by the material in the fabric is a small fraction of the total volume, so that the ratio weight/resistance to extension is very advantageous. The results seem to require a refinement of the used theoretical and numerical methods to transform the presented concept into a promising technological prototype.

  9. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  10. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.

    PubMed

    Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta

    2017-08-01

    Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Laboratory band strengths of methane and their application to the atmospheres of Jupiter, Saturn, Uranus, Neptune, and Titan. II - The red region 6000-7600 A

    NASA Technical Reports Server (NTRS)

    Lutz, B. L.; Owen, T.; Cess, R. D.

    1982-01-01

    Lutz et al. (1976) have reported the first quantitative analyses of the strengths of the blue-green bands of methane which dominate the visible spectra of the outer planets. The present investigation represents an extension of the first study to include a number of bands between 6000 and 7500 A. The objective of this extension is to establish the validity of the scaled numerical curve of growth of the first study further into the saturated region and to test the apparent pressure independence of the high-overtone bands over a large pressure range. In addition, it is desired to provide a set of homogeneously determined band strengths and curves of growth over a large spectral region and over a large range of band strengths. This will make it possible to investigate feasible apparent dependences of planetary methane abundances on wavelength and band strength as a probe of the scattering processes in the planetary atmospheres.

  12. Logic regression and its extensions.

    PubMed

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Nikzad, Sonia; Mohan, Gokula; Ali, Hapipah Mohd; Kadir, Habsah Abdul

    2015-07-10

    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.

  14. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities

    PubMed Central

    Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Nikzad, Sonia; Mohan, Gokula; Ali, Hapipah Mohd; Kadir, Habsah Abdul

    2015-01-01

    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities. PMID:26184167

  15. A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr

    2013-02-15

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less

  16. An efficient numerical method for solving the Boltzmann equation in multidimensions

    NASA Astrophysics Data System (ADS)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  17. Middle atmospheric electrodynamic modification by particle precipitation at the South Atlantic magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Dutra, S. L. G.; Pinto, O., Jr.

    1987-01-01

    Evidence for a localized middle atmospheric electrodynamic modification at low latitudes (southern Brazilian coast) of the South Atlantic Magnetic Anomaly (SAMA), in association with enhanced geomagnetic activity, are presented in a unified way combining recent observational efforts and related numerical studies. They involve a distortion effect in the fair weather electric field at balloon altitudes. This effect is attributed to a local intensification of energetic electron precipitation through a related middle atmospheric ionization enhancement and is elucidated by numeric simulation. From the electric field measurements and the numeric simulation, the intensification of precipitation is considered to occur in fairly narrow regions at the observed low L values (around L = 1.13) of the SAMA, with horizontal extensions of the order of a few hundred kilometers. A physical mechanism that could be responsible for this sort of intensification is suggested. Furthermore, a comparison of the phenomenon of middle atmospheric electrodynamic modification at the SAMA with a similar one at auroral latitudes, in response to enhanced solar and geomagnetic activity, is also given.

  18. Direct numerical simulations of on-demand vortex generators: Mathematical formulation

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, Petros

    1994-01-01

    The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).

  19. On the chaotic diffusion in multidimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.

    2018-01-01

    We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

  20. Direct numerical simulations of on-demand vortex generators: Mathematical formulation

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros

    1994-12-01

    The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).

  1. Computational Study of Chaotic and Ordered Solutions of the Kuramoto-Sivashinsky Equation

    NASA Technical Reports Server (NTRS)

    Smyrlis, Yiorgos S.; Papageorgiou, Demetrios T.

    1996-01-01

    We report the results of extensive numerical experiments on the Kuramoto-Sivashinsky equation in the strongly chaotic regime as the viscosity parameter is decreased and increasingly more linearly unstable modes enter the dynamics. General initial conditions are used and evolving states do not assume odd-parity. A large number of numerical experiments are employed in order to obtain quantitative characteristics of the dynamics. We report on different routes to chaos and provide numerical evidence and construction of strange attractors with self-similar characteristics. As the 'viscosity' parameter decreases the dynamics becomes increasingly more complicated and chaotic. In particular it is found that regular behavior in the form of steady state or steady state traveling waves is supported amidst the time-dependent and irregular motions. We show that multimodal steady states emerge and are supported on decreasing windows in parameter space. In addition we invoke a self-similarity property of the equation, to show that these profiles are obtainable from global fixed point attractors of the Kuramoto-Sivashinsky equation at much larger values of the viscosity.

  2. Numerical Analysis of Infiltration Into a Sand Profile Bounded by a Capillary Fringe

    NASA Astrophysics Data System (ADS)

    Curtis, Alan A.; Watson, Keith K.

    1980-04-01

    The rapid response sometimes observed in a tile drain system following surface ponding of water is discussed in terms of the air compressibility effect. An earlier numerical study describing water movement into a bounded profile with a lower boundary impermeable to the passage of both air and water is reviewed with particular reference to the validity of the time-dependent boundary condition transformation used in simulating the inhibiting effects of the air pressure increase on infiltration. The extension of the transformation approach to a profile bounded by a capillary fringe is then considered in detail, and the results of numerical analyses are presented for infiltration into two columns of a fine sand initially in hydraulic equilibrium from a prior gravity drainage regime. The shorter column develops a steady state flow condition at short times which is consistent with earlier experimental findings. In contrast, the pressure of the entrapped air in the longer column gradually increases as infiltration proceeds until the analysis is terminated when air escape through the lower boundary is imminent.

  3. Survey of International Trade/Economics Textbooks.

    ERIC Educational Resources Information Center

    Lucier, Richard L.

    1992-01-01

    Reviews 14 international economics textbooks to help instructors with selection. Includes organization and structure, topics covered, and characteristics of the texts. Suggests considerations such as course length, level of abstraction desired, opinion of numerically based graphical analysis, extensiveness of examples and applications, and whether…

  4. Supersymmetric Q-balls: A numerical study

    NASA Astrophysics Data System (ADS)

    Campanelli, L.; Ruggieri, M.

    2008-02-01

    We study numerically a class of nontopological solitons, the Q-balls, arising in a supersymmetric extension of the standard model with low-energy, gauge-mediated symmetry breaking. Taking into account the exact form of the supersymmetric potential giving rise to Q-balls, we find that there is a lower limit on the value of the charge Q in order to make them classically stable: Q≳5×102Qcr, where Qcr is constant depending on the parameters defining the potential and can be in the range 1≲Qcr≲108÷16. If Q is the baryon number, stability with respect to the decay into protons requires Q≳1017Qcr, while if the gravitino mass is greater then m3/2≳61MeV, no stable gauge-mediation supersymmetric Q-balls exist. Finally, we find that energy and radius of Q-balls can be parametrized as E˜ξEQ3/4 and R˜ξRQ1/4, where ξE and ξR are slowly varying functions of the charge.

  5. Faster PET reconstruction with a stochastic primal-dual hybrid gradient method

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Matthias J.; Markiewicz, Pawel; Chambolle, Antonin; Richtárik, Peter; Schott, Jonathan; Schönlieb, Carola-Bibiane

    2017-08-01

    Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.

  6. An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Ward, R. C.

    1973-01-01

    This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.

  7. Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children's Numerical Abilities.

    PubMed

    Evans, Tanya M; Kochalka, John; Ngoon, Tricia J; Wu, Sarah S; Qin, Shaozheng; Battista, Christian; Menon, Vinod

    2015-08-19

    Early numerical proficiency lays the foundation for acquiring quantitative skills essential in today's technological society. Identification of cognitive and brain markers associated with long-term growth of children's basic numerical computation abilities is therefore of utmost importance. Previous attempts to relate brain structure and function to numerical competency have focused on behavioral measures from a single time point. Thus, little is known about the brain predictors of individual differences in growth trajectories of numerical abilities. Using a longitudinal design, with multimodal imaging and machine-learning algorithms, we investigated whether brain structure and intrinsic connectivity in early childhood are predictive of 6 year outcomes in numerical abilities spanning childhood and adolescence. Gray matter volume at age 8 in distributed brain regions, including the ventrotemporal occipital cortex (VTOC), the posterior parietal cortex, and the prefrontal cortex, predicted longitudinal gains in numerical, but not reading, abilities. Remarkably, intrinsic connectivity analysis revealed that the strength of functional coupling among these regions also predicted gains in numerical abilities, providing novel evidence for a network of brain regions that works in concert to promote numerical skill acquisition. VTOC connectivity with posterior parietal, anterior temporal, and dorsolateral prefrontal cortices emerged as the most extensive network predicting individual gains in numerical abilities. Crucially, behavioral measures of mathematics, IQ, working memory, and reading did not predict children's gains in numerical abilities. Our study identifies, for the first time, functional circuits in the human brain that scaffold the development of numerical skills, and highlights potential biomarkers for identifying children at risk for learning difficulties. Children show substantial individual differences in math abilities and ease of math learning. Early numerical abilities provide the foundation for future academic and professional success in an increasingly technological society. Understanding the early identification of poor math skills has therefore taken on great significance. This work provides important new insights into brain structure and connectivity measures that can predict longitudinal growth of children's math skills over a 6 year period, and may eventually aid in the early identification of children who might benefit from targeted interventions. Copyright © 2015 the authors 0270-6474/15/3511743-08$15.00/0.

  8. A theoretical extension of the soil freezing curve paradigm

    NASA Astrophysics Data System (ADS)

    Amiri, Erfan A.; Craig, James R.; Kurylyk, Barret L.

    2018-01-01

    Numerical models of permafrost evolution in porous media typically rely upon a smooth continuous relation between pore ice saturation and sub-freezing temperature, rather than the abrupt phase change that occurs in pure media. Soil scientists have known for decades that this function, known as the soil freezing curve (SFC), is related to the soil water characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive effects experienced during both soil freezing and drying. Herein we demonstrate that other factors beyond the SFC-SWCC relationship can influence the potential range over which pore water phase change occurs. In particular, we provide a theoretical extension for the functional form of the SFC based upon the presence of spatial heterogeneity in both soil thermal conductivity and the freezing point depression of water. We infer the functional form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous systems with prescribed statistical distributions of water and soil properties. The proposed SFC paradigm extension has the appealing features that it (1) is determinable from measurable soil and water properties, (2) collapses into an abrupt phase transition for homogeneous media, (3) describes a wide range of heterogeneity within a single functional expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.

  9. [Modified posterior exenteration (radical oophorectomy type II) as a part of an extensive surgery of ovarian cancer--case report].

    PubMed

    Knapp, Paweł; Łukaszewicz, Jerzy; Knapp, Piotr

    2013-06-01

    Epithelial ovarian cancer remains to be the most deadly gynecologic cancer among the female population. Carcinogenesis and abdomen extension are the reasons why ovarian cancer is still examined in advances stages. Ovarian cancer frequent metastasizes to the uterus, rectosigmoid colon, and other pelvic structures by intraperitoneal seeding of tumor deposits, as well as direct extension. Multiple modalities of therapy are utilized in the management of the disease. Numerous medical trials and research programs have demonstrated the most important role of surgery in the treatment of this disease. A vast majority of authors are of the opinion that the surgical interventions have a major influence on the overall survival (OS) and progression free survival (PFS) in ovarian cancer cases. The paper presents a case of a 35-year-old woman diagnosed with advanced ovarian cancer who underwent modified posterior exenteration as a part of extensive cytoreductive surgery

  10. On the structure of existence regions for sinks of the Hénon map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galias, Zbigniew, E-mail: galias@agh.edu.pl; Tucker, Warwick, E-mail: warwick@math.uu.se

    2014-03-15

    An extensive search for stable periodic orbits (sinks) for the Hénon map in a small neighborhood of the classical parameter values is carried out. Several parameter values which generate a sink are found and verified by rigorous numerical computations. Each found parameter value is extended to a larger region of existence using a simplex continuation method. The structure of these regions of existence is investigated. This study shows that for the Hénon map, there exist sinks close to the classical case.

  11. Coupled lasers: phase versus chaos synchronization.

    PubMed

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  12. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  13. Development of Prior Image-Based, High-Quality, Low-Dose Kilovoltage Cone Beam CT for Use in Adaptive Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2013-05-01

    for initial test of object coverage for these scanning trajectories. I have also acquired real data of physical phantoms by using a clinical CBCT system...scan. To test the extension of axial coverage, I car- ried out a simulated data study using numerical disk and anthropomorphic XCAT phantoms [15]. As an...imaging model in Eq. (1), I investigated the choice of data divergence, such as the Euclidean distance or Kullback - Leibler (K-L) divergence, which are

  14. Radiative interactions in transient energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1985-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in transient energy transfer processes in gaseous systems. The nongray radiative formulations are based on the wide-band model correlations for molecular absorption. Various relations for the radiative flux are developed; these are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The methods presented in this study can be extended easily to investigate the radiative interactions in realistic flows of hydrogen-air species in the scramjet engine.

  15. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  16. Nonequilibrium Phase Transition in a Model for Social Influence

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Marsili, Matteo; Vespignani, Alessandro

    2000-10-01

    We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.

  17. Freak waves in random oceanic sea states.

    PubMed

    Onorato, M; Osborne, A R; Serio, M; Bertone, S

    2001-06-18

    Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.

  18. Modeling Real-Time Applications with Reusable Design Patterns

    NASA Astrophysics Data System (ADS)

    Rekhis, Saoussen; Bouassida, Nadia; Bouaziz, Rafik

    Real-Time (RT) applications, which manipulate important volumes of data, need to be managed with RT databases that deal with time-constrained data and time-constrained transactions. In spite of their numerous advantages, RT databases development remains a complex task, since developers must study many design issues related to the RT domain. In this paper, we tackle this problem by proposing RT design patterns that allow the modeling of structural and behavioral aspects of RT databases. We show how RT design patterns can provide design assistance through architecture reuse of reoccurring design problems. In addition, we present an UML profile that represents patterns and facilitates further their reuse. This profile proposes, on one hand, UML extensions allowing to model the variability of patterns in the RT context and, on another hand, extensions inspired from the MARTE (Modeling and Analysis of Real-Time Embedded systems) profile.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Kevin; Popp, James

    This DOE grant award for was for the period June 1, 2013 to March 31, 2016. Popp was awarded an internship in the Visiting Faculty Program at FNAL in summer of 2015; consequently the unused portion of summer salary funds allowed us to apply for a no-cost extension with our remaining funds until March 31, 2017. That support furnished us with the means to carry out numerous successful projects for Mu2e for nearly four years. Up to now, the driving force to our work has been dictated primarily by the Mu2e Project cost and schedule needs. Our work has beenmore » under the purview of three of the Working Groups to which we belong: Target Station, Electron Tracker, and Stopping Target Monitor. We have carried out a mix of bench-top testing tasks locally, more elaborate work at Fermilab every summer, and extensive software development and simulation studies.« less

  20. Surface cracks in a plate of finite width under extension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  1. Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains

    NASA Astrophysics Data System (ADS)

    Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.

    The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...

  2. Development of a Three-Dimensional, Unstructured Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph C.; Stern, Eric C.; Muppidi, Suman; Palmer, Grant E.; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. This extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  3. Unitary evolution of the quantum Universe with a Brown-Kuchař dust

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2015-12-01

    We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.

  4. Subreflector extension for improved efficiencies in Cassegrain antennas - GTD/PO analysis. [Geometrical Theory of Diffraction/Physical Optics

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1986-01-01

    Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.

  5. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor

    PubMed Central

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-01-01

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935

  6. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger.

    PubMed

    Consolo, Filippo; Fiore, Gianfranco B; Pelosi, Alessandra; Reggiani, Stefano; Redaelli, Alberto

    2015-06-01

    We developed a numerical model, based on multi-physics computational fluid dynamics (CFD) simulations, to assist the design process of a plastic hollow-fiber bundle blood heat exchanger (BHE) integrated within the INSPIRE(TM), a blood oxygenator (OXY) for cardiopulmonary by-pass procedures, recently released by Sorin Group Italia. In a comparative study, we analyzed five different geometrical design solutions of the BHE module. Quantitative geometrical-dependent parameters providing a comprehensive evaluation of both the hemo- and thermo-dynamics performance of the device were extracted to identify the best-performing prototypical solution. A convenient design configuration was identified, characterized by (i) a uniform blood flow pattern within the fiber bundle, preventing blood flow shunting and the onset of stagnation/recirculation areas and/or high velocity pathways, (ii) an enhanced blood heating efficiency, and (iii) a reduced blood pressure drop. The selected design configuration was then prototyped and tested to experimentally characterize the device performance. Experimental results confirmed numerical predictions, proving the effectiveness of CFD modeling as a reliable tool for in silico identification of suitable working conditions of blood handling medical devices. Notably, the numerical approach limited the need for extensive prototyping, thus reducing the corresponding machinery costs and time-to-market. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Numerically evaluating the bispectrum in curved field-space— with PyTransport 2.0

    NASA Astrophysics Data System (ADS)

    Ronayne, John W.; Mulryne, David J.

    2018-01-01

    We extend the transport framework for numerically evaluating the power spectrum and bispectrum in multi-field inflation to the case of a curved field-space metric. This method naturally accounts for all sub- and super-horizon tree level effects, including those induced by the curvature of the field-space. We present an open source implementation of our equations in an extension of the publicly available PyTransport code. Finally we illustrate how our technique is applied to examples of inflationary models with a non-trivial field-space metric.

  8. Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Boffetta, Guido; Falkovich, Gregory; Kolokolov, Igor; Lebedev, Vladimir

    2014-12-01

    An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binotti, M.; Zhu, G.; Gray, A.

    An analytical approach, as an extension of one newly developed method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is proposed to treat the geometrical impact of three-dimensional (3-D) effects on parabolic trough optical performance. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. In addition, the new code has been carefully validated against ray-tracing simulation results and available numerical solutions. This new analytical approach to treating 3-D effects will facilitate further understanding and analysis of the optical performance of trough collectors as a function of incidence angle.

  10. Rule-Based Statistical Calculations on a Database Abstract.

    DTIC Science & Technology

    1983-06-01

    quadruples 17 L.6.6. Our methds ~ in distributed systems 17 L.6.7. Easy extensions 17 17. The datibms abstract as a database 17 17.1.w S orae mu is 1.7.2...the largest item in the intersection of two sets cannot be any larger that the minima of the maxima of the two sets for some numeric attribute. On the...from "range analysis" of arbitrary numeric attributes. Suppose the length range of tankers is from 300 to 1000 feet and that of American ships 50 to

  11. Dynamic Modeling of Back-arc Extension in the Aegean Sea and Western Anatolia

    NASA Astrophysics Data System (ADS)

    Mazlum, Ziya; Göğüş, Oğuz H.; Sözbilir, Hasan; Karabulut, Hayrullah; Pysklywec, Russell N.

    2015-04-01

    Western Anatolian-Aegean regions are characterized by large-scale lithospheric thinning and extensional deformation. While many geological observations suggest the formation of rift basins, normal faulting, exhumation of metamorphic rocks, and back-arc volcanism, the primary cause and the geodynamic driving mechanisms for the lithospheric thinning and extension are not well understood. Previous studies suggest three primary geodynamic hypotheses to address the extension in the Aegean-west Anatolia: 1) Slab retreat/roll-back model, inferred by the southward younging magmatism and metamorphic exhumations; 2) Gravitational collapse of the overthickened (post orogenic) lithosphere, interpreted by the structural studies that suggests tectonic mode switching from contraction to extension; 3) Lateral extrusion (escape tectonics) associated with the continental collision in East Anatolia. We use 2-D thermo-mechanical numerical subduction experiments to investigate how subduction retreat and related back-arc basin opening are controlled by a) changing length and thickness of the subducting plate, b) the dip angle of the subducting slab and c) various thickness and thermal properties of the back-arc lithosphere. Subsequently, we explore the surface response to the subduction retreat model in conjunction with the gravitational (orogenic) collapse in the presumed back-arc region. Quantitative model predictions (e.g., crustal thickness, extension rate) are tested against a wide range of available geological and geophysical observations from the Aegean and west Anatolia regions and these results are reconciled with regional tectonic observations. Our model results are interpreted in the context of different surface response in the extensional regime (back-arc) for the Aegean and western Anatolia, where these two regions have been presumably segmented by the right lateral transfer fault system (Izmir-Balıkesir transfer zone).

  12. SELECTING RELEVANT TEST SPECIES FOR ECOLOGICAL RISK ASSESSMENTS FOR PESTICIDES

    EPA Science Inventory

    In many countries, numerous tests are required prior to chemical registration for the protection of human health and the environment from the unintended effects of chemical releases. The species used in these tests are quite often familiar to scientists, have an extensive histor...

  13. Teaching Biology to Visually Handicapped Students. Resource Manual.

    ERIC Educational Resources Information Center

    Ricker, Kenneth S.

    This resource manual presents numerous techniques for adapting science activities to the visually handicapped student, applicable to introductory biology courses in which microscopes are used extensively in the laboratory. Chapters include information on the following: alternative microscopic viewing techniques, physical models, tactile diagrams,…

  14. Influence of Scattering on Ballistic Nanotransistor Design

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Svizhenko, Alexei; Biegel, Bryan, A. (Technical Monitor)

    2002-01-01

    Importance of this work: (1) This is the first work to model electron-phonon scattering within a quantum mechanical approach to nanotransistors. The simulations use the non equilibrium Green's function method. (2) A simple equation which captures the importance of scattering as a function of the spatial location from source to drain is presented. This equation helps interpret the numerical simulations. (3) We show that the resistance per unit length in the source side is much larger than in the drain side. Thus making scattering in the source side of the device much more important than scattering in the drain side. Numerical estimates of ballisticity for 10nm channel length devices in the presence of of electron-phonon scattering are given. Based on these calculations, we propose that to achieve a larger on-current in nanotransistors, it is crucial to keep the highly doped source extension region extremely small, even if this is at the cost of making the highly doped drain extension region longer.

  15. Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Kumar, Manoj; Haldar, Subhasis; Deswal, S. S.; Gupta, Mridula; Gupta, R. S.

    2017-09-01

    A charge plasma technique based dopingless (DL) accumulation mode (AM) junctionless (JL) cylindrical surrounding gate (CSG) MOSFET has been proposed and extensively investigated. Proposed device has no physical junction at source to channel and channel to drain interface. The complete silicon pillar has been considered as undoped. The high free electron density or induced N+ region is designed by keeping the work function of source/drain metal contacts lower than the work function of undoped silicon. Thus, its fabrication complexity is drastically reduced by curbing the requirement of high temperature doping techniques. The electrical/analog characteristics for the proposed device has been extensively investigated using the numerical simulation and are compared with conventional junctionless cylindrical surrounding gate (JL-CSG) MOSFET with identical dimensions. For the numerical simulation purpose ATLAS-3D device simulator is used. The results show that the proposed device is more short channel immune to conventional JL-CSG MOSFET and suitable for faster switching applications due to higher I ON/ I OFF ratio.

  16. Computation of rare transitions in the barotropic quasi-geostrophic equations

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bouchet, Freddy

    2015-01-01

    We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.

  17. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  18. A comparison between GO/aperture-field and physical-optics methods for offset reflectors

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1984-01-01

    Both geometrical optics (GO)/aperture-field and physical-optics (PO) methods are used extensively in the diffraction analysis of offset parabolic and dual reflectors. An analytical/numerical comparative study is performed to demonstrate the limitations of the GO/aperture-field method for accurately predicting the sidelobe and null positions and levels. In particular, it is shown that for offset parabolic reflectors and for feeds located at the focal point, the predicted far-field patterns (amplitude) by the GO/aperture-field method will always be symmetric even in the offset plane. This, of course, is inaccurate for the general case and it is shown that the physical-optics method can result in asymmetric patterns for cases in which the feed is located at the focal point. Representative numerical data are presented and a comparison is made with available measured data.

  19. Numerical study of the geometry of the phase space of the Augmented Hill Three-Body problem

    NASA Astrophysics Data System (ADS)

    Farrés, Ariadna; Jorba, Àngel; Mondelo, Josep-Maria

    2017-09-01

    The Augmented Hill Three-Body problem is an extension of the classical Hill problem that, among other applications, has been used to model the motion of a solar sail around an asteroid. This model is a 3 degrees of freedom (3DoF) Hamiltonian system that depends on four parameters. This paper describes the bounded motions (periodic orbits and invariant tori) in an extended neighbourhood of some of the equilibrium points of the model. An interesting feature is the existence of equilibrium points with a 1:1 resonance, whose neighbourhood we also describe. The main tools used are the computation of periodic orbits (including their stability and bifurcations), the reduction of the Hamiltonian to centre manifolds at equilibria, and the numerical approximation of invariant tori. It is remarkable how the combination of these techniques allows the description of the dynamics of a 3DoF Hamiltonian system.

  20. Integrated numerical modeling of a laser gun injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Benson, S.; Bisognano, J.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ``conditioning for final bunching`` is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittancemore » and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source.« less

  1. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model

    NASA Astrophysics Data System (ADS)

    Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.

    2017-12-01

    Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.

  2. Identification and enumeration of staphylococci from the eye during soft contact lens wear.

    PubMed

    Leitch, E C; Harmis, N Y; Corrigan, K M; Willcox, M D

    1998-04-01

    An extensive study was conducted to identify and enumerate staphylococcal microbiota found on ocular sites during asymptomatic soft contact lens (SCL) wear. A biochemical identification system separately grouped the eight clinically relevant staphylococci. Total counts and isolation frequencies from SCLs and ocular sites were evaluated. The epidermidis group was the most numerous isolate from extended wear (EW) lenses; the capitis/warneri group was the most numerous (p < 0.05) from daily wear (DW) lenses. In both DW and EW, the greatest isolation frequency (p < 0.05) was recorded for the capitis/warneri group. The remaining six groups were isolated infrequently and in low numbers. These results show that, in addition to Staphylococcus epidermidis, other staphylococcal species may be important members of the normal microbiota of the ocular surface during SCL wear. Furthermore, an increase and a shift in staphylococcal microbiota between DW and EW regimes was highlighted.

  3. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  4. Detailed Comparison of DNS to PSE for Oblique Breakdown at Mach 3

    NASA Technical Reports Server (NTRS)

    Mayer, Christian S. J.; Fasel, Hermann F.; Choudhari, Meelan; Chang, Chau-Lyan

    2010-01-01

    A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer. Their downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using Direct Numerical Simulations (DNS) and Parabolized Stability Equations (PSE). This abstract is the last part of an extensive study of the complete transition process initiated by oblique breakdown at Mach 3. In contrast to the previous simulations, the symmetry condition in the spanwise direction is removed for the simulation presented in this abstract. By removing the symmetry condition, we are able to confirm that the flow is indeed symmetric over the entire computational domain. Asymmetric modes grow in the streamwise direction but reach only small amplitude values at the outflow. Furthermore, this abstract discusses new time-averaged data from our previous simulation CASE 3 and compares PSE data obtained from NASA's LASTRAC code to DNS results.

  5. Different mechanisms of cluster explosion within a unified smooth particle hydrodynamics Thomas-Fermi approach: Optical and short-wavelength regimes compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusek, Marian; Orlowski, Arkadiusz

    2005-04-01

    The dynamics of small ({<=}55 atoms) argon clusters ionized by an intense femtosecond laser pulse is studied using a time-dependent Thomas-Fermi model. The resulting Bloch-like hydrodynamic equations are solved numerically using the smooth particle hydrodynamics method without the necessity of grid simulations. As follows from recent experiments, absorption of radiation and subsequent ionization of clusters observed in the short-wavelength laser frequency regime (98 nm) differs considerably from that in the optical spectral range (800 nm). Our theoretical approach provides a unified framework for treating these very different frequency regimes and allows for a deeper understanding of the underlying cluster explosionmore » mechanisms. The results of our analysis following from extensive numerical simulations presented in this paper are compared both with experimental findings and with predictions of other theoretical models.« less

  6. Simulating propagation of coherent light in random media using the Fredholm type integral equation

    NASA Astrophysics Data System (ADS)

    Kraszewski, Maciej; Pluciński, Jerzy

    2017-06-01

    Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.

  7. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  8. The minimal residual QR-factorization algorithm for reliably solving subset regression problems

    NASA Technical Reports Server (NTRS)

    Verhaegen, M. H.

    1987-01-01

    A new algorithm to solve test subset regression problems is described, called the minimal residual QR factorization algorithm (MRQR). This scheme performs a QR factorization with a new column pivoting strategy. Basically, this strategy is based on the change in the residual of the least squares problem. Furthermore, it is demonstrated that this basic scheme might be extended in a numerically efficient way to combine the advantages of existing numerical procedures, such as the singular value decomposition, with those of more classical statistical procedures, such as stepwise regression. This extension is presented as an advisory expert system that guides the user in solving the subset regression problem. The advantages of the new procedure are highlighted by a numerical example.

  9. Numerical modelling of closed-cell aluminium foam under dynamic loading

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  10. On the internal representation of numerical magnitude and physical size.

    PubMed

    Fitousi, Daniel

    2014-01-01

    A nascent idea in the numerical cognition literature--the analogical hypothesis (Pinel, Piazza, Bihan, & Dehaene, 2004)--assumes a common noisy code for the representation of symbolic (e.g., numerals) and nonsymbolic (e.g., numerosity, physical size, luminance) magnitudes. The present work subjected this assumption to various tests from the perspective of General Recognition Theory (GRT; Ashby &Townsend, 1986)--a multidimensional extension of Signal Detection Theory (Green & Swets, 1966). The GRT was applied to the dimensions of numerical magnitude and physical size with the following goals: (a) characterizing the internal representation of these dimensions in the psychological space, and (b) assessing various types of (in)dependence and separability governing the perception of these dimensions. The results revealed various violations of independence and separability with Stroop incongruent, but not with Stroop congruent stimuli. The outcome suggests that there are deep differences in architecture between Stroop congruent and incongruent stimuli that reach well beyond the semantic relationship involved.

  11. Measurement and numerical simulation of a small centrifugal compressor characteristics at small or negative flow rate

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2017-04-01

    For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.

  12. Numerical Study of Plasmonic Efficiency of Gold Nanostripes for Molecule Detection

    PubMed Central

    2015-01-01

    In plasmonics, the accurate computation of the electromagnetic field enhancement is necessary in determining the amplitude and the spatial extension of the field around nanostructures. Here, the problem of the interaction between an electromagnetic excitation and gold nanostripes is solved. An optimization scheme, including an adaptive remeshing process with error estimator, is used to solve the problem through a finite element method. The variations of the electromagnetic field amplitude and the plasmonic active zones around nanostructures for molecule detection are studied in this paper taking into account the physical and geometrical parameters of the nanostripes. The evolution between the sizes and number of nanostripes is shown. PMID:25734184

  13. Étude statistique et dynamique de la propagation d'épidémies dans un réseau de petit mondeStatistical and dynamical study of the epidemics propagation in a small world network

    NASA Astrophysics Data System (ADS)

    Zekri, Nouredine; Clerc, Jean Pierre

    We study numerically in this work the statistical and dynamical properties of the clusters in a one dimensional small world model. The parameters chosen correspond to a realistic network of children of school age where a disease like measles can propagate. Extensive results on the statistical behavior of the clusters around the percolation threshold, as well as the evoltion with time, are discussed. To cite this article: N. Zekri, J.P. Clerc, C. R. Physique 3 (2002) 741-747.

  14. On the dynamical basis of the classification of normal galaxies

    PubMed Central

    Haass, J.; Bertin, G.; Lin, C. C.

    1982-01-01

    Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies. Images PMID:16593200

  15. Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.

    2017-07-01

    The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.

  16. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  17. Thermal lattice BGK models for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    1998-11-01

    As an alternative in modeling fluid dynamics, the Lattice Boltzmann method has attracted considerable attention. In this thesis, we shall present a general form of thermal Lattice BGK. This form can handle large differences in density, temperature, and high Mach number. This generalized method can easily model gases with different adiabatic index values. The numerical transport coefficients of this model are estimated both theoretically and numerically. Their dependency on the sizes of integration steps in time and space, and on the flow velocity and temperature, are studied and compared with other established CFD methods. This study shows that the numerical viscosity of the Lattice Boltzmann method depends linearly on the space interval, and on the flow velocity as well for supersonic flow. This indicates this method's limitation in modeling high Reynolds number compressible thermal flow. On the other hand, the Lattice Boltzmann method shows promise in modeling micro-flows, i.e., gas flows in micron-sized devices. A two-dimensional code has been developed based on the conventional thermal lattice BGK model, with some modifications and extensions for micro- flows and wall-fluid interactions. Pressure-driven micro- channel flow has been simulated. Results are compared with experiments and simulations using other methods, such as a spectral element code using slip boundary condition with Navier-Stokes equations and a Direct Simulation Monte Carlo (DSMC) method.

  18. Numerical and Experimental Investigation of the Effects of Acceleration Disturbances on Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan

    2000-01-01

    Normal vibrational modes on large spacecraft are excited by crew activity, operating machinery, and other mechanical disturbances. Periodic engine burns for maintaining vehicle attitude and random impulse type disturbances also contribute to the acceleration environment of a Spacecraft. Accelerations from these vibrations (often referred to as g-jitter) are several orders of magnitude larger than the residual accelerations from atmospheric drag and gravity gradient effects. Naturally, the effects of such accelerations have been a concern to prospective experimenters wishing to take advantage of the microgravity environment offered by spacecraft operating in low Earth orbit and the topic has been studied extensively, both numerically and analytically. However, these studies have not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter could use to assess how his/her experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling thereby providing comparative theoretical and experimental data. The modeling, it is hoped will provide a predictive tool that can be used for assessing experiment response to Spacecraft vibrations.

  19. 17 CFR 10.26 - Motions and other papers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... procedural orders. Motions for procedural orders, including motions for extension of time, may be acted on at any time, without awaiting a response thereto. Any party adversely affected by such order may request reconsideration, vacation or modification of the order. (d) Dilatory motions. Repetitive or numerous motions...

  20. 17 CFR 10.26 - Motions and other papers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedural orders. Motions for procedural orders, including motions for extension of time, may be acted on at any time, without awaiting a response thereto. Any party adversely affected by such order may request reconsideration, vacation or modification of the order. (d) Dilatory motions. Repetitive or numerous motions...

  1. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1984-01-01

    The technical progress of researches on alternatives for jet engine control is reported. Extensive numerical testing is included. It is indicated that optimal inputs contribute significantly to the process of calculating tensor approximations for nonlinear systems, and that the resulting approximations may be order-reduced in a systematic way.

  2. Revisiting Isotherm Analyses Using R: Comparison of Linear, Non-linear, and Bayesian Techniques

    EPA Science Inventory

    Extensive adsorption isotherm data exist for an array of chemicals of concern on a variety of engineered and natural sorbents. Several isotherm models exist that can accurately describe these data from which the resultant fitting parameters may subsequently be used in numerical ...

  3. Training a New Breed of Automated Manufacturing Technology Practitioners.

    ERIC Educational Resources Information Center

    Bainter, Jack J.

    1986-01-01

    A boom in industrial robotics has led numerous vocational institutions to launch extensive training programs in this specialty. ITT Educational Services offers two curriculum programs to train future manufacturing engineers. The firm's national director describes this model curriculum for meeting the needs of today's workforce. (JN)

  4. 38 CFR Appendix B to Part 4 - Numerical Index of Disabilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...

  5. 38 CFR Appendix B to Part 4 - Numerical Index of Disabilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...

  6. 38 CFR Appendix B to Part 4 - Numerical Index of Disabilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...

  7. 38 CFR Appendix B to Part 4 - Numerical Index of Disabilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...

  8. 38 CFR Appendix B to Part 4 - Numerical Index of Disabilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...

  9. The 106th Congress: What to Watch.

    ERIC Educational Resources Information Center

    Fege, Arnold F.

    1999-01-01

    The Improving America's School Act funds numerous small programs that dissipate its purpose and increase its vulnerability. Congress is debating extension of federal roles into areas such as social promotion, parental rights, reading programs, class-size reduction, and national voluntary tests. Changing budget rules pits education against military…

  10. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

    USDA-ARS?s Scientific Manuscript database

    The extensive use of DNA barcoding technology in a large inventory of Macrolepidoptera and their parasitoids is documented. The methodology used and its practical applications are summarized, and numerous examples of how DNA barcoding has untangled complexes of cryptic species of butterflies, moths...

  11. Fidelity study of superconductivity in extended Hubbard models

    NASA Astrophysics Data System (ADS)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  12. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.

    PubMed

    Aggarwal, Bharat B; Yuan, Wei; Li, Shiyou; Gupta, Subash C

    2013-09-01

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  14. Numerical Simulation with Experimental Validation of the Draping Behavior of Woven Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Pasupuleti, Praveen; Zhao, Selina

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process. In this step, the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the tows may change significantly compared to the initial orientations. Accurate prediction of the tow orientations after molding is important for evaluating the structural performance of the final part. This paper investigates the fiber angle changes for carbon fiber woven fabrics during draping over a truncatedmore » pyramid tool designed and fabricated at the General Motors Research Labs. This aspect of study is a subset of the broad study conducted under the purview of a Department of Energy project funded to GM in developing state of the art computational tools for integrated manufacturing and structural performance prediction of carbon fiber composites. Fabric bending, picture frame testing, and bias-extension evaluations were carried out to determine the material parameters for these fabrics. The PAM-FORM computer program was used to model the draping behavior of these fabrics. Following deformation, fiber angle changes at different locations on the truncated pyramid were measured experimentally. The predicted angles matched the experimental results well as measured along the centerline and at several different locations on the deformed fabric. Details of the test methods used as well as the numerical results with various simulation parameters will be provided.« less

  15. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  16. Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts.

    PubMed

    Homuth, Georg; Wahl, Simone; Müller, Christian; Schurmann, Claudia; Mäder, Ulrike; Blankenberg, Stefan; Carstensen, Maren; Dörr, Marcus; Endlich, Karlhans; Englbrecht, Christian; Felix, Stephan B; Gieger, Christian; Grallert, Harald; Herder, Christian; Illig, Thomas; Kruppa, Jochen; Marzi, Carola S; Mayerle, Julia; Meitinger, Thomas; Metspalu, Andres; Nauck, Matthias; Peters, Annette; Rathmann, Wolfgang; Reinmaa, Eva; Rettig, Rainer; Roden, Michael; Schillert, Arne; Schramm, Katharina; Steil, Leif; Strauch, Konstantin; Teumer, Alexander; Völzke, Henry; Wallaschofski, Henri; Wild, Philipp S; Ziegler, Andreas; Völker, Uwe; Prokisch, Holger; Zeller, Tanja

    2015-10-15

    Obesity, defined as pathologically increased body mass index (BMI), is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D.

  17. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse

    PubMed Central

    Hadas, Itay; Lazarovits, Avi; Alyagon, Uri; Eliraz, Daniel; Zangen, Abraham

    2017-01-01

    Background Smartphone usage is now integral to human behavior. Recent studies associate extensive usage with a range of debilitating effects. We sought to determine whether excessive usage is accompanied by measurable neural, cognitive and behavioral changes. Method Subjects lacking previous experience with smartphones (n = 35) were compared to a matched group of heavy smartphone users (n = 16) on numerous behavioral and electrophysiological measures recorded using electroencephalogram (EEG) combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex (rPFC). In a second longitudinal intervention, a randomly selected sample of the original non-users received smartphones for 3 months while the others served as controls. All measurements were repeated following this intervention. Results Heavy users showed increased impulsivity, hyperactivity and negative social concern. We also found reduced early TMS evoked potentials in the rPFC of this group, which correlated with severity of self-reported inattention problems. Heavy users also obtained lower accuracy rates than nonusers in a numerical processing. Critically, the second part of the experiment revealed that both the numerical processing and social cognition domains are causally linked to smartphone usage. Conclusion Heavy usage was found to be associated with impaired attention, reduced numerical processing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC) excitability. Memory impairments were not detected. Novel usage over short period induced a significant reduction in numerical processing capacity and changes in social cognition. PMID:28678870

  18. Critical Parameters of the Initiation Zone for Spontaneous Dynamic Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Galis, M.; Pelties, C.; Kristek, J.; Moczo, P.; Ampuero, J. P.; Mai, P. M.

    2014-12-01

    Numerical simulations of rupture propagation are used to study both earthquake source physics and earthquake ground motion. Under linear slip-weakening friction, artificial procedures are needed to initiate a self-sustained rupture. The concept of an overstressed asperity is often applied, in which the asperity is characterized by its size, shape and overstress. The physical properties of the initiation zone may have significant impact on the resulting dynamic rupture propagation. A trial-and-error approach is often necessary for successful initiation because 2D and 3D theoretical criteria for estimating the critical size of the initiation zone do not provide general rules for designing 3D numerical simulations. Therefore, it is desirable to define guidelines for efficient initiation with minimal artificial effects on rupture propagation. We perform an extensive parameter study using numerical simulations of 3D dynamic rupture propagation assuming a planar fault to examine the critical size of square, circular and elliptical initiation zones as a function of asperity overstress and background stress. For a fixed overstress, we discover that the area of the initiation zone is more important for the nucleation process than its shape. Comparing our numerical results with published theoretical estimates, we find that the estimates by Uenishi & Rice (2004) are applicable to configurations with low background stress and small overstress. None of the published estimates are consistent with numerical results for configurations with high background stress. We therefore derive new equations to estimate the initiation zone size in environments with high background stress. Our results provide guidelines for defining the size of the initiation zone and overstress with minimal effects on the subsequent spontaneous rupture propagation.

  19. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    NASA Astrophysics Data System (ADS)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  20. Aeroacoustics of Turbulent High-Speed Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1996-01-01

    Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.

  1. Processing-microstructure relationships in thermotropic liquid crystalline polymers: Experimental and numerical modeling studies

    NASA Astrophysics Data System (ADS)

    Fang, Jun

    Thermotropic liquid crystalline polymers (TLCPs) are a class of promising engineering materials for high-demanding structural applications. Their excellent mechanical properties are highly correlated to the underlying molecular orientation states, which may be affected by complex flow fields during melt processing. Thus, understanding and eventually predicting how processing flows impact molecular orientation is a critical step towards rational design work in order to achieve favorable, balanced physical properties in finished products. This thesis aims to develop deeper understanding of orientation development in commercial TLCPs during processing by coordinating extensive experimental measurements with numerical computations. In situ measurements of orientation development of LCPs during processing are a focal point of this thesis. An x-ray capable injection molding apparatus is enhanced and utilized for time-resolved measurements of orientation development in multiple commercial TLCPs during injection molding. Ex situ wide angle x-ray scattering is also employed for more thorough characterization of molecular orientation distributions in molded plaques. Incompletely injection molded plaques ("short shots") are studied to gain further insights into the intermediate orientation states during mold filling. Finally, two surface orientation characterization techniques, near edge x-ray absorption fine structure (NEXAFS) and infrared attenuated total reflectance (FTIR-ATR) are combined to investigate the surface orientation distribution of injection molded plaques. Surface orientation states are found to be vastly different from their bulk counterparts due to different kinematics involved in mold filling. In general, complex distributions of orientation in molded plaques reflect the spatially varying competition between shear and extension during mold filling. To complement these experimental measurements, numerical calculations based on the Larson-Doi polydomain model are performed. The implementation of the Larson-Doi in complex processing flows is performed using a commercial process modeling software suite (MOLDFLOWRTM), exploiting a nearly exact analogy between the Larson-Doi model and a fiber orientation model that has been widely used in composites processing simulations. The modeling scheme is first verified by predicting many qualitative and quantitative features of molecular orientation distributions in isothermal extrusion-fed channel flows. In coordination with experiments, the model predictions are found to capture many qualitative features observed in injection molded plaques (including short shots). The final, stringent test of Larson-Doi model performance is prediction of in situ transient orientation data collected during mold filling. The model yields satisfactory results, though certain numerical approximations limit performance near the mold front.

  2. High resolution 2D numerical models from rift to break-up: Crustal hyper-extension, Margin asymmetry, Sequential faulting

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan

    2013-04-01

    Numerical modelling is a powerful tool to integrate a multitude of geological and geophysical data while addressing fundamental questions of passive margin formation such as the occurrence of crustal hyper-extension, (a-)symmetries between conjugate margin pairs, and the sometimes significant structural differences between adjacent margin segments. This study utilises knowledge gathered from two key examples of non-magmatic, asymmetric, conjugate margin pairs, i.e. Iberia-New Foundland and Southern Africa-Brazil, where many published seismic lines provide solid knowledge on individual margin geometry. While both margins involve crustal hyper-extension, it is much more pronounced in the South Atlantic. We investigate the evolution of these two margin pairs by carefully constraining our models with detailed plate kinematic history, laboratory-based rheology, and melt fraction evaluation of mantle upwelling. Our experiments are consistent with observed fault patterns, crustal thickness, and basin stratigraphy. We conduct 2D thermomechanical rift models using the finite element code SLIM3D that operates with nonlinear stress- and temperature-dependent elasto-visco-plastic rheology, with parameters provided by laboratory experiments on major crustal and upper mantle rocks. In our models we also calculate the melt fraction within the upwelling asthenosphere, which allows us to control whether the model indeed corresponds to the non-magmatic margin type or not. Our modelling highlights two processes as fundamental for the formation of hyper-extension and margin asymmetry at non-magmatic margins: (1) Strain hardening in the rift center due to cooling of upwelling mantle material (2) The formation of a weak crustal domain adjacent to the rift center caused by localized viscous strain softening and heat transfer from the mantle. Simultaneous activity of both processes promotes lateral rift migration in a continuous way that generates a wide layer of hyper-extended crust on one side of the rift basin. This mechanism implies that syn-rift deformation at the distal margin postdates faulting at the proximal margin by several million years. The succession of events holds intriguing implications not only for peak heat flow migration but also for processes like serpentinization and magmatic underplating.

  3. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    PubMed

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models

    NASA Astrophysics Data System (ADS)

    Giordano, Stefano

    2017-12-01

    Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force-extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force-extension response, whereas the isometric condition causes a sawtooth-like force-extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.

  5. Continuous Morphological Variation Correlated with Genome Size Indicates Frequent Introgressive Hybridization among Diphasiastrum Species (Lycopodiaceae) in Central Europe

    PubMed Central

    Hanušová, Kristýna; Ekrt, Libor; Vít, Petr; Kolář, Filip; Urfus, Tomáš

    2014-01-01

    Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together) suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation. PMID:24932509

  6. College Scholarships for Latino Students: Are Opportunities Being Missed?

    ERIC Educational Resources Information Center

    Marquez, Amalia

    2006-01-01

    Previous research by The Tomas Rivera Policy Institute (TRPI) has demonstrated that extensive college financial aid opportunities are available in the form of scholarships, grants, and loans; yet many Latino students and their parents are not aware that numerous grants and scholarships are earmarked especially for them. This report provides…

  7. Emergency watershed treatments on burned lands in southwestern Oregon

    Treesearch

    Ed Gross; Ivars Steinblums; Curt Ralston; Howard Jubas

    1989-01-01

    Following extensive, natural wildfires on the Siskiyou National Forest in southwest Oregon during fall 1987, numerous rehabilitation measures were applied to severely burned public and private forest watersheds. Treatments were designed to prevent offsite degradation of water quality and fisheries, to minimize soil erosion and productivity losses, and to prevent...

  8. Metro nature, environmental health, and economic value

    Treesearch

    Kathleen L. Wolf; Alicia S.T. Robbins

    2015-01-01

    Background: Nearly 40 years of research provides an extensive body of evidence about human health, well-being, and improved function benefits associated with experiences of nearby nature in cities.Objectives: We demonstrate the numerous opportunities for future research efforts that link metro nature, human health and well-being outcomes,...

  9. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  10. ESTIMATION OF INFILTRATION RATE IN THE VADOSE ZONE: COMPILATION OF SIMPLE MATHEMATICAL MODELS - VOLUME I

    EPA Science Inventory

    The unsaturated or vadose zone provides a complex system for the simulation of water movement and contaminant transport and fate. Numerous models are available for performing simulations related to the movement of water. There exists extensive documentation of these models. Ho...

  11. Happily Ever After? Teens and Fairy Tales.

    ERIC Educational Resources Information Center

    Tuccillo, Diane P.

    2001-01-01

    Argues, from the author's experience and with supporting quotes from many teenagers, that modern retellings of classic fairy tales can be very popular with teenage readers. Discusses numerous such stories, and offers an extensive list of retold fairy tales, organized into: Cinderella stories, Beauty and the Beast stories, Sleeping Beauty stories,…

  12. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  13. Ultraviolet light (UV) and UV-ozone interventions reduce shiga toxin-producing Escherichia coli (STEC) on contaminated fresh beef

    USDA-ARS?s Scientific Manuscript database

    Although numerous chemical interventions have been implemented and validated to decontaminate meat and meat products during the harvesting process, more novel technologies are under development. UV light ionizing irradiation has been used extensively in pharmaceutical and medical device companies to...

  14. Aspen Root Sucker Formation and Apical Dominance

    Treesearch

    Robert E. Farmer

    1962-01-01

    Root suckering is the primary mode of regeneration in the aspens, Populus tremuloides Michx. and P. grandidentata Michx. When stems of these species are cut, numerous suckers originating in the root pericycle are formed on their extensive lateral root systems. During their first season of growth, suckers ordinarily reach a height...

  15. A REVIEW OF ACID COPPER PLATING BATH LIFE EXTENSION AND COPPER RECOVERY FROM ACID COPPER BATHS

    EPA Science Inventory

    Large quantities of hazardous waste, most in aqueous solution or sludges, are being produced at numerous metal plating and processing facilities in the U.S. Regulatory pressures, future liability, and limited landfill space have driven the cost of metal waste disposal to level...

  16. Onion and weed response to mustard (Sinapis alba) seed meal

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic onion production is often difficult and expensive, requiring numerous cultivations and extensive hand-weeding. Onion safety and weed control with mustard seed meal (MSM) derived from Sinapis alba was evaluated in greenhouse and field trials. MSM applied at 110, 220, and 440 g...

  17. Hyperfast Numerical Integration of Ocean Surface Wave Dynamics Extensions to Higher Order

    DTIC Science & Technology

    2008-09-30

    Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1 10125 Torino, Italy Phone: (+39) 11-670-7451 or (+39) 11-329...Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  18. Chemical Safety Alert: Emergency Isolation for Hazardous Material Fluid Transfer Systems - Application and Limitations of Excess Flow Valves

    EPA Pesticide Factsheets

    While excess flow valves (EFV) are in extensive service and have prevented numerous pipe or hose breaks from becoming much more serious incidents, experience shows that in some cases the EFV did not perform as intended, usually because of misapplication.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Giovanni; Rabiti, Cristian; Pizzocri, Davide

    PolyPole is a numerical algorithm for the calculation of intra-granular fission gas release. In particular, the algorithm solves the gas diffusion problem in a fuel grain in time-varying conditions. The program has been extensively tested. PolyPole combines a high accuracy with a high computational efficiency and is ideally suited for application in fuel performance codes.

  20. A modal analysis of lamellar diffraction gratings in conical mountings

    NASA Technical Reports Server (NTRS)

    Li, Lifeng

    1992-01-01

    A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.

  1. Analytic solutions for Long's equation and its generalization

    NASA Astrophysics Data System (ADS)

    Humi, Mayer

    2017-12-01

    Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.

  2. Extension, validation and application of the NASCAP code

    NASA Technical Reports Server (NTRS)

    Katz, I.; Cassidy, J. J., III; Mandell, M. J.; Schnuelle, G. W.; Steen, P. G.; Parks, D. E.; Rotenberg, M.; Alexander, J. H.

    1979-01-01

    Numerous extensions were made in the NASCAP code. They fall into three categories: a greater range of definable objects, a more sophisticated computational model, and simplified code structure and usage. An important validation of NASCAP was performed using a new two dimensional computer code (TWOD). An interactive code (MATCHG) was written to compare material parameter inputs with charging results. The first major application of NASCAP was performed on the SCATHA satellite. Shadowing and charging calculation were completed. NASCAP was installed at the Air Force Geophysics Laboratory, where researchers plan to use it to interpret SCATHA data.

  3. Numerical study of wave propagation around an underground cavity: acoustic case

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the physical equations and the numerical algorithms it is possible for us to investigate the wave field over a large bandwidth of wave numbers. This means we can apply our calculations for a wide range of parameters, while keeping the numerical error explicitly under control. The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an underground nuclear test, help to set a rigorous scientific base of OSI and contribute to bringing the Treaty into force.

  4. A novel approach to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system

    NASA Astrophysics Data System (ADS)

    Jain, Anuj Kumar; Rastogi, Vikas; Agrawal, Atul Kumar

    2018-01-01

    The main focus of this paper is to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system through extended Lagrangian formalism, where symmetries are broken in terms of the rotor stiffness. The complete insight of dynamic behaviour of multi-rotor-system with asymmetries is evaluated through extension of Lagrangian equation with a case study. In this work, a dynamic mathematical model of a multi-rotor-system through a novel approach of extension of Lagrangian mechanics is developed, where the system is having asymmetries due to varying stiffness. The amplitude and the natural frequency of the rotor are obtained analytically through the proposed methodology. The bond graph modeling technique is used for modeling the asymmetric rotor. Symbol-shakti® software is used for the simulation of the model. The effects of the stiffness of multi-rotor-system on amplitude and frequencies are studied using numerical simulation. Simulation results show a considerable agreement with the theoretical results obtained through extended Lagrangian formalism. It is further shown that amplitude of the rotor increases inversely the stiffness of the rotor up to a certain limit, which is also affirmed theoretically.

  5. Evaluating imbalances of adverse events during biosimilar development

    PubMed Central

    Vana, Alicia M.; Freyman, Amy W.; Reich, Steven D.; Yin, Donghua; Li, Ruifeng; Anderson, Scott; Jacobs, Ira A.; Zacharchuk, Charles M.; Ewesuedo, Reginald

    2016-01-01

    ABSTRACT Biosimilars are designed to be highly similar to approved or licensed (reference) biologics and are evaluated based on the totality of evidence from extensive analytical, nonclinical and clinical studies. As part of the stepwise approach recommended by regulatory agencies, the first step in the clinical evaluation of biosimilarity is to conduct a pharmacokinetics similarity study in which the potential biosimilar is compared with the reference product. In the context of biosimilar development, a pharmacokinetics similarity study is not necessarily designed for a comparative assessment of safety. Development of PF-05280014, a potential biosimilar to trastuzumab, illustrates how a numerical imbalance in an adverse event in a small pharmacokinetics study can raise questions on safety that may require additional clinical trials. PMID:27050730

  6. Anesthesia for collagenase clostridium histolyticum injection in patients with dupuytren disease: A cohort analysis.

    PubMed

    Sanjuan-Cerveró, Rafael; Carrera-Hueso, Francisco J; Vazquez-Ferreiro, Pedro; Peimer, Clayton A

    2018-04-12

    Procedural pain is one of the most common adverse effects reported by patients with Dupuytren disease (DD) treated with collagenase clostridium histolyticum (CCH). The aim of this study was to assess the effectiveness of wrist block before CCH injection in reducing procedural pain and to analyze its impact on adverse effects. We performed a prospective, single-center study in which we compared two groups of patients in a consecutive cohort. In the first group (NO-BLOCK), wrist block was only performed before finger extension, whereas in the second group (BLOCK), it was performed before CCH injection and finger extension. Pain was assessed on a 10-item numerical rating scale. Our results show that pain scores were clearlylower in the BLOCK group than in the NO-BLOCK group: 4.72 vs. 0.61 for CCH injection and 3.43 vs. 0.82 for finger extension. Patients who rated CCH injection pain with a score of 4 or higher were 11 times more likely to experience pain during extension. There was a weak correlation between the use of wrist block for CCH injection and the occurrence of skin lacerations (Spearman's rho = -0.222, p < 0.01) and the presence of pruritus (Spearman's rho = 0.183, p < 0.07). In conclusion, wrist block before CCH injection is an effective measure of decreasing perceived pain throughout the different stages of CCH treatment in patients with DD. Copyright © 2018 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  8. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  9. Mathematical, numerical and experimental analysis of the swirling flow at a Kaplan runner outlet

    NASA Astrophysics Data System (ADS)

    Muntean, S.; Ciocan, T.; Susan-Resiga, R. F.; Cervantes, M.; Nilsson, H.

    2012-11-01

    The paper presents a novel mathematical model for a-priori computation of the swirling flow at Kaplan runners outlet. The model is an extension of the initial version developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial velocity and of the variable rothalpy. Simple analytical expressions are derived for these additional data from three-dimensional numerical simulations of the Kaplan turbine. The final results, i.e. velocity components profiles, are validated against experimental data at two operating points, with the same Kaplan runner blades opening, but variable discharge.

  10. Inertial floaters in stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sozza, A.; De Lillo, F.; Boffetta, G.

    2018-01-01

    We investigate numerically the dynamics and statistics of inertial particles transported by stratified turbulence, in the case of particle density intermediate in the average density profile of the fluid. Under these conditions, particles tend to form a thin layer around the corresponding fluid isopycnal. The thickness of the resulting layer is determined by a balance between buoyancy (which attracts the particle to the isopycnal) and inertia (which prevents them from following it exactly). By means of extensive numerical simulations, we explore the parameter space of the system and we find that in a range of parameters particles form fractal clusters within the layer.

  11. Effects of absorption on multiple scattering by random particulate media: exact results.

    PubMed

    Mishchenko, Michael I; Liu, Li; Hovenier, Joop W

    2007-10-01

    We employ the numerically exact superposition T-matrix method to perform extensive computations of elec nottromagnetic scattering by a volume of discrete random medium densely filled with increasingly absorbing as well as non-absorbing particles. Our numerical data demonstrate that increasing absorption diminishes and nearly extinguishes certain optical effects such as depolarization and coherent backscattering and increases the angular width of coherent backscattering patterns. This result corroborates the multiple-scattering origin of such effects and further demonstrates the heuristic value of the concept of multiple scattering even in application to densely packed particulate media.

  12. Language and the origin of numerical concepts.

    PubMed

    Gelman, Rochel; Gallistel, C R

    2004-10-15

    Reports of research with the Pirahã and Mundurukú Amazonian Indians of Brazil lend themselves to discussions of the role of language in the origin of numerical concepts. The research findings indicate that, whether or not humans have an extensive counting list, they share with nonverbal animals a language-independent representation of number, with limited, scale-invariant precision. What causal role, then, does knowledge of the language of counting serve? We consider the strong Whorfian proposal, that of linguistic determinism; the weak Whorfian hypothesis, that language influences how we think; and that the "language of thought" maps to spoken language or symbol systems.

  13. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE PAGES

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    2017-11-20

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  14. Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers

    NASA Astrophysics Data System (ADS)

    Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.

    2018-01-01

    SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.

  15. Numerical Study of Controlling Jet Flow and Noise using Pores on Nozzle Inner Wall

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Shi, Zhixiao; Lai, Huanxin

    2018-04-01

    In this paper, the feasibility of controlling the subsonic jet flow and its noise using pores of blind holes added on the nozzle inner wall is explored numerically. These pores are intended to introduce disturbances to the shear layer so as to change the flow mixing. This passive strategy has not been attempted so far. A convergent nozzle with a cylindrical extension is selected as the baseline case. Three nozzles with pores on the inner wall are set up. Validations of the numerical settings are carried out, then the compressible turbulent jets at the exit Mach number M j = 0.6 in the four nozzles are calculated by large eddy simulations (LES), while the radiated sounds are predicted by the FW-H acoustic analogy. The results show that the blind holes have produced some effects on weakening the turbulence intensity in the shear layer. Comparison reveals that both temporal and spatial correlations of the turbulent fluctuations in the modified cases are suppressed to some extent. Meanwhile, the porous nozzles are shown to suppress the pairing of vortices and enhance the flow mixing, and therefore, the development of shear layer and the fragmentation of large scale vortices are accelerated.

  16. Numerical study on the influence of boss cap fins on efficiency of controllable-pitch propeller

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Wang, Zhanzhi; Qi, Wanjiang

    2013-03-01

    Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.

  17. Evaluation of mechanical deformation and distributive magnetic loads with different mechanical constraints in two parallel conducting bars

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Lee, Se-Hee

    2017-08-01

    Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.

  18. Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Fradkov, V. E.

    1996-01-01

    We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.

  19. Correlating heat and mass transfer coefficients for thermosolutal convection within a porous annulus of a circular shape: case of internal pollutants spreading

    NASA Astrophysics Data System (ADS)

    Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled

    2018-07-01

    The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.

  20. Correlating heat and mass transfer coefficients for thermosolutal convection within a porous annulus of a circular shape: case of internal pollutants spreading

    NASA Astrophysics Data System (ADS)

    Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled

    2018-02-01

    The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.

  1. Numerical Experiments on the Role of the Lower Crust in the Development of Extension-driven Gneiss Domes

    NASA Astrophysics Data System (ADS)

    Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.

    2016-12-01

    Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in boudinage of the whole crust, which generates significant upward flow from the buoyant asthenosphere.

  2. Photochemistry in the Atmospheres of Denver and Mexico City

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.

    2016-12-01

    The composition of atmospheres in and downwind of urban centers has been the subject of study for decades. While early campaigns involved measurements exclusively from the ground, more recent studies have included airborne-based observations. Improved understanding has hinged critically on the development of instrumentation for better qualitifcation of pollutants, and measurement of previously unobserved species in the gas and particulate phases. Comprehensive, well-planned studies have, over time, led to more detailed understanding of chemical transformations and thus improved model representations and directions for further research. This presentation focuses on findings from two case studies of urban atmospheres, namely the MILAGRO study in the Mexico City metropolitan area and the FRAPPE study in the Denver metropolitan region. Both studies made use of extensive ground-based networks and multiple aircraft platforms. The data collected during these studies have been combined with numerical models to derive assessments of the evolution of atmospheric composition due to photochemistry, mixing, and surface processes. Here, analysis of MILAGRO data focuses on the evolution of outflow downwind of the urban region. In FRAPPE, the focus is the possible role of oil and gas exploration on urban air quality. These findings are used to assess the accuracy of current numerical models to reproduce observations, and to point toward areas possibly needing further study.

  3. Black holes in higher derivative gravity.

    PubMed

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.

  4. Pouching a draining duodenal cutaneous fistula: a case study.

    PubMed

    Zwanziger, P J

    1999-01-01

    Blockage of the mesenteric artery typically causes necrosis to the colon, requiring extensive surgical resection. In severe cases, the necrosis requires removal of the entire colon, creating numerous problems for the WOC nurse when pouching the opening created for effluent. This article describes the management of a draining duodenal fistula in a middle-aged woman, who survived surgery for a blocked mesenteric artery that necessitated the removal of the majority of the small and large intestine. Nutrition, skin management, and pouch options are described over a number of months as the fistula evolved and a stoma was created.

  5. Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory.

    PubMed

    Delorme, Mathieu; Wiese, Kay Jörg

    2015-11-20

    Fractional Brownian motion is a non-Markovian Gaussian process X_{t}, indexed by the Hurst exponent H. It generalizes standard Brownian motion (corresponding to H=1/2). We study the probability distribution of the maximum m of the process and the time t_{max} at which the maximum is reached. They are encoded in a path integral, which we evaluate perturbatively around a Brownian, setting H=1/2+ϵ. This allows us to derive analytic results beyond the scaling exponents. Extensive numerical simulations for different values of H test these analytical predictions and show excellent agreement, even for large ϵ.

  6. Cassini Solstice Mission Maneuver Experience: Year One

    NASA Technical Reports Server (NTRS)

    Wagner, Sean V.; Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun; Stumpf, Paul W.; Valerino, Powtawche N.

    2011-01-01

    The Cassini-Huygens spacecraft began its four-year Prime Mission to study Saturn's system in July 2004. Two tour extensions followed: a two-year Equinox Mission beginning in July 2008 and a seven-year Solstice Mission starting in September 2010. This paper highlights Cassini maneuver activities from June 2010 through June 2011, covering the transition from the Equinox to Solstice Mission. This interval included 38 scheduled maneuvers, nine targeted Titan flybys, three targeted Enceladus flybys, and one close Rhea flyby. In addition, beyond the demanding nominal navigation schedule, numerous unforeseen challenges further complicated maneuver operations. These challenges will be discussed in detail.

  7. Membrane formation in liquids by adding an antagonistic salt

    NASA Astrophysics Data System (ADS)

    Sadakane, Koichiro; Seto, Hideki

    2018-03-01

    Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  8. Investigating the origin of ultrahigh-energy cosmic rays with CRPropa

    NASA Astrophysics Data System (ADS)

    Bouchachi, Dallel; Attallah, Reda

    2016-07-01

    Ultrahigh-energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. Yet, their sources and acceleration mechanisms are still unknown. To better understand the origin of these particles, we carried out extensive numerical simulations of their propagation in extragalactic space. We used the public CRPropa code which considers all relevant particle interactions and magnetic deflections. We examined the energy spectrum, the mass composition, and the distribution of arrival directions under different scenarios. Such a study allows, in particular, to properly interpret the data of modern experiments like "The Pierre Auger Observatory" and "The Telescope Array".

  9. Modeling the surface evapotranspiration over the southern Great Plains

    NASA Technical Reports Server (NTRS)

    Liljegren, J. C.; Doran, J. C.; Hubbe, J. M.; Shaw, W. J.; Zhong, S.; Collatz, G. J.; Cook, D. R.; Hart, R. L.

    1996-01-01

    We have developed a method to apply the Simple Biosphere Model of Sellers et al to calculate the surface fluxes of sensible heat and water vapor at high spatial resolution over the domain of the US DOE's Cloud and Radiation Testbed (CART) in Kansas and Oklahoma. The CART, which is within the GCIP area of interest for the Mississippi River Basin, is an extensively instrumented facility operated as part of the DOE's Atmospheric Radiation Measurement (ARM) program. Flux values calculated with our method will be used to provide lower boundary conditions for numerical models to study the atmosphere over the CART domain.

  10. Analysis of castellated steel beam with oval openings

    NASA Astrophysics Data System (ADS)

    Tudjono, S.; Sunarto; Han, A. L.

    2017-11-01

    A castellated steel beam is per definition a wide flange (WF) or I shaped steel profile with openings, to reduce self-weight and improve the effectiveness in terms of material use. Recently, extensive study on these castellated steel beams has been conducted, involving different shapes in web openings. The main goal of these research works was to evaluate and analyze its optimum opening sizes and shapes configuration. More in-depth research work to the behavior and the influence of holes to WF beams need to be conducted. In this paper, an oval shaped web opening is chosen as alternate. The study involves a modification in the variation of oval web openings both in the horizontally and vertically direction. An experimental and numerical study based on the finite element method conducted with the Abaqus/CAE 6.12 software is used to analyze the buckling behavior of the web. The obtained results from the experimental test specimens are in good agreement with the obtained results from the finite element analysis. Furthermore, the numerical model can be expanded to be used as analyzing tool in evaluating and studying the effect and influencing factors of a variation in opening’s parameters.

  11. Probing numerical Laplace inversion methods for two and three-site molecular exchange between interconnected pore structures.

    PubMed

    Silletta, Emilia V; Franzoni, María B; Monti, Gustavo A; Acosta, Rodolfo H

    2018-01-01

    Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T 2 -T 2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Miniscrews for orthodontic anchorage: a review of available systems.

    PubMed

    Alkadhimi, Aslam; Al-Awadhi, Ebrahim A

    2018-03-15

    In recent years, extensive research has introduced novel ways of reinforcing orthodontic anchorage using a variety of devices temporarily anchored in bone (miniscrews). Currently, there are numerous manufacturers with different miniscrew designs on the market. The aim of this paper is to discuss the key design features of different miniscrew systems on the market. Furthermore, to present clinical selection criteria of miniscrews in different settings taking into account the determinant factors. Review of the literature was carried out using the following search methods: MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). The search was focused on studies published until January 2018. We studied each individual miniscrew from all the identified manufacturers in details. All the features were then summarised and presented as a clinical guideline for the selection of miniscrews. In this article, we reviewed the development of miniscrews and outlined the general design features of miniscrews as well as specific design features of the current miniscrews in the market. Extensive research of the current products was carried out to help clinicians better understand the difference between the various designs of miniscrews that can be used.

  13. Initial applications of the non-Maxwellian extension of the full-wave TORIC v.5 code in the mid/high harmonic and minority heating regimes

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Phillips, C. K.

    2015-11-01

    A non Maxwellian extension of the full wave TORIC v.5 code in the mid/high harmonic and minority heating regimes has been revisited. In both regimes the treatment of the non-Maxwellian ions is needed in order to improve the analysis of combined fast wave (FW) and neutral beam injection (NBI) heated discharges in the current fusion devices. Additionally, this extension is also needed in time-dependent analysis where the combined heating experiments are generally considered. Initial numerical cases with thermal ions and with a non-Maxwellian ions are presented for both regimes. The simulations are then compared with results from the AORSA code, which has already been extended to include non-Maxwellian ions. First attempts to apply this extension in a self-consistent way with the NUBEAM module, which is included in the TRANSP code, are also discussed. Work supported by US DOE Contracts # DE-FC02-01ER54648 and DE-AC02-09CH11466.

  14. The Need and Keys for a New Generation Network Adjustment Software

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Blázquez, M.; Navarro, J. A.; Sastre, J.

    2012-07-01

    Orientation and calibration of photogrammetric and remote sensing instruments is a fundamental capacity of current mapping systems and a fundamental research topic. Neither digital remote sensing acquisition systems nor direct orientation gear, like INS and GNSS technologies, made block adjustment obsolete. On the contrary, the continuous flow of new primary data acquisition systems has challenged the capacity of the legacy block adjustment systems - in general network adjustment systems - in many aspects: extensibility, genericity, portability, large data sets capacity, metadata support and many others. In this article, we concentrate on the extensibility and genericity challenges that current and future network systems shall face. For this purpose we propose a number of software design strategies with emphasis on rigorous abstract modeling that help in achieving simplicity, genericity and extensibility together with the protection of intellectual proper rights in a flexible manner. We illustrate our suggestions with the general design approach of GENA, the generic extensible network adjustment system of GeoNumerics.

  15. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  16. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  17. Automatic labeling of MR brain images through extensible learning and atlas forests.

    PubMed

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic atlas datasets and obtain accurate results. © 2017 American Association of Physicists in Medicine.

  18. Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease.

    PubMed

    Ponnusamy, Ravikumar; McNerney, M Windy; Moghadam, Shahrzad; Salehi, Ahmad

    2017-11-08

    Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome. Copyright © 2017. Published by Elsevier B.V.

  19. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    PubMed

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  20. Diattenuation of brain tissue and its impact on 3D polarized light imaging

    PubMed Central

    Menzel, Miriam; Reckfort, Julia; Weigand, Daniel; Köse, Hasan; Amunts, Katrin; Axer, Markus

    2017-01-01

    3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI. PMID:28717561

  1. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqiang; Yu, Tongxi

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  2. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Tenkanen, Tuomas V. I.; Tranberg, Anders; Vuorinen, Aleksi; Weir, David J.

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2) L × U(1) Y gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  3. Crack Growth Behavior in the Threshold Region for High Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.

  4. Theoretical Perspectives on Student Success: Understanding the Contributions of the Disciplines

    ERIC Educational Resources Information Center

    Perna, Laura W.; Thomas, Scott L.

    2008-01-01

    Over the past fifty years, federal and state governments, colleges and universities, and other organizations have developed and supported numerous policies and practices that are designed to promote student success. Among the most extensive and visible efforts are the federally sponsored programs established under the Higher Education Act of 1965,…

  5. Separation from Loved Ones in the Fear of Death

    ERIC Educational Resources Information Center

    Bath, Debra M.

    2010-01-01

    Individuals' death anxiety or fear of death has been extensively investigated, and there are numerous conceptualizations used in the literature, including a distinction between the dimensions of death and dying of self, and death and dying of others. This article addresses a gap in the literature and re-examines the relationship between these two…

  6. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut

    USDA-ARS?s Scientific Manuscript database

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a tran...

  7. Tissue Paper Economics and Other Hidden Dimensions of the Studio Model of Art Instruction.

    ERIC Educational Resources Information Center

    Hamblen, Karen A.

    1983-01-01

    Despite calls for change and numerous proposed alternatives, art education remains committed to the studio model. The retention of the status quo may be related to the economics of art studio materials and especially to the extensive advertising of art supply companies in art teachers' journals. (Author/IS)

  8. Evaluation of Radon Outreach Programming in Chaffee and Park Counties, Colorado

    ERIC Educational Resources Information Center

    Jones, Kurt M.

    2015-01-01

    Colorado State University Extension in Chaffee and Park Counties conducted numerous outreach educational activities between 2007 and 2010. A follow-up evaluation was conducted to determine whether one outreach activity was more effective at encouraging individuals to test their homes for radon or to mitigate their homes. Participants in the…

  9. Fire in the eastern United States: influence on wildlife habitat

    Treesearch

    D. H. Van Lear; R. F. Harlow

    2002-01-01

    Fire is a major influence shaping wildlife habitats in the eastern United States. Lightning- and Indian-ignited fires burned frequently and extensively over the pre-Columbian landscape and shaped the character of numerous ecosystems. Depending upon the frequency, intensity, and severity of the fires, various assemblages of plants developed along environmental gradients...

  10. A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents

    DTIC Science & Technology

    2012-09-30

    for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow

  11. An Introduction to the Conjugate Gradient Method that Even an Idiot Can Understand

    DTIC Science & Technology

    1994-03-07

    to Omar Ghattas, who taught me much of what I know about numerical methods, and provided me with extensive comments on the first draft of this article...Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst, Templates for the solution of linear systems: Building blocks for iterative

  12. Later Language Development: The School-Age and Adolescent Years. Second Edition.

    ERIC Educational Resources Information Center

    Nippold, Marilyn A.

    This book focuses on the more advanced language abilities of upper grade youth and adolescents. It discusses how language develops from childhood to adulthood. The book compiles, integrates, and interprets the extensive research on this population for numerous topics. It is useful to anyone seeking an increased understanding of the relationships…

  13. Stability analysis of cylinders with circular cutouts

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.

    1973-01-01

    The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.

  14. Recovery from Large-Scale Crises: Guidelines for Crisis Teams and Administrators

    ERIC Educational Resources Information Center

    Communique, 2018

    2018-01-01

    The United States has recently experienced numerous large-scale crises that resulted in high death tolls and extensive property damage. Critical incidents such as suicide contagion, natural disasters, or mass casualty events have the potential to cause traumatic reactions and significantly affect children's sense of safety and security. School…

  15. Pancreatic Neuroendocrine Tumor with Atypical Radiologic Presentation.

    PubMed

    Singh, Ramandeep; Calhoun, Sean; Shin, Minchul; Katz, Robert

    2008-01-01

    An atypical radiographic presentation of a rare non-functional pancreatic neuroendocrine tumor as seen on US, CT and MRI is described. Radiographic-pathologic correlation via gross autopsy specimens and immuno-histochemical staining demonstrates the pancreas to be markedly enlarged with extensive calcifications and numerous tiny cysts secondary to diffuse neoplastic infiltration without a focal mass.

  16. The forgotten flora of la Frontera

    Treesearch

    Thomas R. Van Devender; Ana L. Reina G.

    2005-01-01

    About 1,500 collections from within 100 kilometers of the Arizona border in Sonora yielded noteworthy records for 164 plants including 44 new species (12 non-native) for Sonora and 12 (six non-native) for Mexico, conservation species, and regional endemics. Many common widespread species were poorly collected. Southern range extensions (120 species) were more numerous...

  17. A new algorithm for DNS of turbulent polymer solutions using the FENE-P model

    NASA Astrophysics Data System (ADS)

    Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James

    2004-11-01

    Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.

  18. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages.

    PubMed

    Kim, Hee Jung; Park, Jeong-Soo

    2017-03-01

    The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

  19. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

    PubMed Central

    Kim, Hee Jung; Park, Jeong-Soo

    2017-01-01

    ABSTRACT The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed. PMID:28484739

  20. Double-blind, Randomized, 8-week Placebo-controlled followed by a 16-week open label extension study, with the LPA1 receptor antagonist SAR100842 for Patients With Diffuse Cutaneous Systemic Sclerosis.

    PubMed

    Allanore, Yannick; Distler, Oliver; Jagerschmidt, Alexandre; Illiano, Stephane; Ledein, Laetitia; Boitier, Eric; Agueusop, Inoncent; Denton, Christopher P; Khanna, Dinesh

    2018-05-06

    Preclinical studies suggest a role for lysophosphatidic acid (LPA) in the pathogenesis of systemic sclerosis (SSc). SAR100842, a potent selective oral antagonist of LPA1 receptor, was assessed for safety, biomarkers and clinical efficacy in patients with diffuse cutaneous SSc (dcSSc). An 8-week double-blind, randomized, placebo-controlled study followed by a 16-week open label extension with SAR100842 was performed in patients with early dcSSc and a baseline Rodnan skin score (mRSS) of at least 15. The primary endpoint was safety during the double-blind phase of the trial. Exploratory endpoints included the identification of a LPA-induced gene signature in patients 'skin. 17 of 32 subjects were randomized to placebo and 15 to SAR100842; 30 patients participated in the extension study. The most frequent adverse events reported for SAR100842 during the blinded phase were headache, diarrhea, nausea and fall and the safety profile was acceptable during the extension part. At Week 8, mean reduction in mRSS was numerically greater in the SAR100842 compared to placebo (mean change [SD]: -3.57 [4.18] versus -2.76 [4.85]; difference [95% CI]: -1.2 [-4.37 to 2.02], p=0.46). A greater reduction of LPA related genes was observed in skin of SAR100842 group at Week 8, indicating LPA 1 target engagement. SAR100842, a selective orally available LPA 1 receptor antagonist, was well tolerated in patients with dcSSc. MRSS improved during the study although not reaching significance, and additional gene signature analysis suggested target engagement. These results need to be confirmed in a larger controlled trial. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  2. Engineering optical properties using plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good agreement with the numerical simulations. The mechanically tunable plasmonic nanostructure could serve as a platform for dynamically tunable nanophotonic devices such as sensors and tunable filters.

  3. Measuring suicidality using the personality assessment inventory: a convergent validity study with federal inmates.

    PubMed

    Patry, Marc W; Magaletta, Philip R

    2015-02-01

    Although numerous studies have examined the psychometric properties and clinical utility of the Personality Assessment Inventory in correctional contexts, only two studies to date have specifically focused on suicide ideation. This article examines the convergent validity of the Suicide Ideation Scale and the Suicide Potential Index on the Personality Assessment Inventory in a large, nontreatment sample of male and female federal inmates (N = 1,120). The data indicated robust validity support for both the Suicide Ideation Scale and Suicide Potential Index, which were each correlated with a broad group of validity indices representing multiple assessment modalities. Recommendations for future research to build upon these findings through replication and extension are made. © The Author(s) 2014.

  4. Fidelity study of superconductivity in extended Hubbard models

    DOE PAGES

    Plonka, N.; Jia, C. J.; Wang, Y.; ...

    2015-07-08

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less

  5. Average activity of excitatory and inhibitory neural populations

    NASA Astrophysics Data System (ADS)

    Roulet, Javier; Mindlin, Gabriel B.

    2016-09-01

    We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations.

  6. Observations of marine stratocumulus clouds during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Randall, David A.; Nicholls, Stephen

    1988-01-01

    The First International Satellite Cloud Climatology Project Regional Experiment (FIRE) to study extensive fields of stratocumulus clouds off the coast of California is presented. Measurements on the regional and detailed local scales were taken, allowing for a wide interpretation of the mean, turbulent, microphysical, radiative, and chemical characteristics of stratocumulus. Multiple aircraft and ground-based remote-sensing systems were used to study the time evolution of the boundary layer structure over a three-week period, and probes from tethered balloons were used to measure turbulence and to collect cloud-microphysical and cloud-radiative data. The observations provide a base for studying the generation maintenance and dissipation of stratocumulus clouds, and could aid in developing numerical models and improved methods for retrieving cloud properties by satellite.

  7. Average activity of excitatory and inhibitory neural populations

    PubMed Central

    Mindlin, Gabriel B.

    2016-01-01

    We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations. PMID:27781447

  8. Validation of a Wave Data Assimilation System Based on SWAN

    NASA Astrophysics Data System (ADS)

    Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.

    2013-04-01

    SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.

  9. A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model

    NASA Astrophysics Data System (ADS)

    Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled

    2017-02-01

    We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer-Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in [16] for the isentropic Baer-Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila's Godunov-type scheme [39] and Tokareva-Toro's HLLC scheme [44]. The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.

  10. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

    NASA Astrophysics Data System (ADS)

    Markou, A. A.; Manolis, G. D.

    2018-03-01

    Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  11. A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coquel, Frédéric, E-mail: frederic.coquel@cmap.polytechnique.fr; Hérard, Jean-Marc, E-mail: jean-marc.herard@edf.fr; Saleh, Khaled, E-mail: saleh@math.univ-lyon1.fr

    We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer–Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in for the isentropic Baer–Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound aremore » also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer–Nunziato model, namely Schwendeman–Wahle–Kapila's Godunov-type scheme and Tokareva–Toro's HLLC scheme . The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, I.; Sinclair, C.I.K.; Magne, E.

    This paper describes the life extension of a semi-submersible drilling rig built in the early 1970`s. A nominal design life of 20 years was estimated at the time of building; however, in the interim period, numerous improvements have been made in fatigue life estimation ad life improvement techniques, raising the possibility that a further 20 years of operation could be considered. The life extension strategy made use of a number of aspects of offshore technology which were not available at the time of construction of the rig. Finite element studies and results from offshore research programs were used to gaugemore » the effect of fatigue life improvement techniques. The program demonstrated the feasibility of extending the operation of the rig for a further 20 years, with the interval between in-service inspection increased to every five years. It also provided a valuable database of fracture toughness data for the rig materials, which may be used in future work to address reliability issues.« less

  13. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingchun; Yang, Feng; Fu, Yi

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signalingmore » pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.« less

  14. Development of an Unstructured, Three-Dimensional Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph; Stern, Eric; Palmer, Grant; Muppidi, Suman; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. The extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries as well as multi-dimensional physics, which have been shown to be important in some scenarios and are not captured by one-dimensional models. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  15. TrustBuilder2: A Reconfigurable Framework for Trust Negotiation

    NASA Astrophysics Data System (ADS)

    Lee, Adam J.; Winslett, Marianne; Perano, Kenneth J.

    To date, research in trust negotiation has focused mainly on the theoretical aspects of the trust negotiation process, and the development of proof of concept implementations. These theoretical works and proofs of concept have been quite successful from a research perspective, and thus researchers must now begin to address the systems constraints that act as barriers to the deployment of these systems. To this end, we present TrustBuilder2, a fully-configurable and extensible framework for prototyping and evaluating trust negotiation systems. TrustBuilder2 leverages a plug-in based architecture, extensible data type hierarchy, and flexible communication protocol to provide a framework within which numerous trust negotiation protocols and system configurations can be quantitatively analyzed. In this paper, we discuss the design and implementation of TrustBuilder2, study its performance, examine the costs associated with flexible authorization systems, and leverage this knowledge to identify potential topics for future research, as well as a novel method for attacking trust negotiation systems.

  16. Mechanical Properties of Single Collagen Fibrils Revealed by Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John; Phillips, Charlotte; Grandbois, Michel

    2004-03-01

    In the field of biomechanics, collagen fibrils are believed to be robust mechanical structures characterized by a low extensibility. Until very recently, information on the mechanical properties of collagen fibrils could only be derived from ensemble measurements performed on complete tissues such as bone, skin and tendon. Here we measure force-elongation/relaxation profiles of single collagen fibrils using atomic force microscopy-based force spectroscopy. The elongation profiles indicate that in vitro assembled heterotrimeric type I collagen fibrils are characterized by a large extensibility. Numerous discontinuities and a plateau in the force profile indicate major reorganization occurs within the fibrils in the 1.5 -- 4.5 nN range. Our study demonstrates that newly assembled collagen fibrils are robust structures with a significant reserve of elasticity that could play a determinant role in cellular motion in the context of tissue growth and morphogenesis. In contrast, homotrimeric collagen fibrils corresponding to osteogenesis imperfecta pathology exhibit a marked difference in their elasticity profile.

  17. Evidence for preferential flow through sandstone aquifers in Southern Wisconsin

    USGS Publications Warehouse

    Swanson, S.K.; Bahr, J.M.; Bradbury, K.R.; Anderson, K.M.

    2006-01-01

    Sandstones often escape extensive hydrogeologic characterization due to their high primary porosity and perceived homogeneity of permeability. This study provides evidence for laterally extensive, high permeability zones in the Tunnel City Group, an undeformed, Cambrian-aged sandstone unit that exists in the subsurface throughout much of central and southern Wisconsin, USA. Several discrete high-permeability zones were identified in boreholes using flow logging and slug tests, and the interconnectedness of the features was tested using a site-specific numerical model for springs in the region. Explicit incorporation of a high-permeability layer leads to improvements in the flux calibration over simulations that lack the features, thus supporting the hydraulic continuity of high-permeability zones in the sandstone aquifer over tens of kilometers. The results suggest that stratigraphically controlled heterogeneities like contrasts in lithology or bedding-plane fractures, which have been shown to strongly influence the flow of groundwater in more heterogeneous sedimentary rocks, may also deserve close examination in sandstone aquifers. ?? 2005 Elsevier B.V. All rights reserved.

  18. Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns

    PubMed Central

    Ribeiro, Haroldo V.; Zunino, Luciano; Lenzi, Ervin K.; Santoro, Perseu A.; Mendes, Renio S.

    2012-01-01

    Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to fractal landscapes generated numerically where we compare our measures with the Hurst exponent; liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; and Ising surfaces where our method identified the critical temperature and also proved to be stable. PMID:22916097

  19. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  20. Polarization and dynamical properties of VCSELs-based photonic neuron subject to optical pulse injection

    NASA Astrophysics Data System (ADS)

    Xiang, Shuiying; Wen, Aijun; Zhang, Hao; Li, Jiafu; Guo, Xingxing; Shang, Lei; Lin, Lin

    2016-11-01

    The polarization-resolved nonlinear dynamics of vertical-cavity surface-emitting lasers (VCSELs) subject to orthogonally polarized optical pulse injection are investigated numerically based on the spin flip model. By extensive numerical bifurcation analysis, the responses dynamics of photonic neuron based on VCSELs under the arrival of external stimuli of orthogonally polarized optical pulse injection are mainly discussed. It is found that, several neuron-like dynamics, such as phasic spiking of a single abrupt large amplitude pulse followed with or without subthreshold oscillation, and tonic spiking with multiple periodic pulses, are successfully reproduced in the numerical model of VCSELs. Besides, the effects of stimuli strength, pump current, frequency detuning, as well as the linewidth enhancement factor on the neuron-like response dynamics are examined carefully. The operating parameters ranges corresponding to different neuron-like dynamics are further identified. Thus, the numerical model and simulation results are very useful and interesting for the ultrafast brain-inspired neuromorphic photonics systems based on VCSELs.

  1. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  2. Sustainable management of harbours : a numerical approach for the assessment of waters quality

    NASA Astrophysics Data System (ADS)

    Bonamano, Simone; Madonia, Alice; Piazzolla, Daniele; Paladini de Mendoza, Francesco; Piermattei, Viviana; Scanu, Sergio; Melchiorri, Cristiano; Marcelli, Marco

    2017-04-01

    Within the Water Framework Directive (WFD), harbours must reach or maintain the good ecological potential, being classified as heavily modified water bodies. To fulfill this task and to comply the Marine Spatial Planning (MSP) principles, port managers have to monitor the water quality that can be compromised by the numerous activities including the realization of new infrastructures. The port of Civitavecchia, located on the central west coast of Italy, is undergoing to major structural changes to become one of the first ports of the Mediterranean in terms of passenger traffic and goods, thus requiring the development of management tools for the predictive assessment of harbour water quality. This study focused on the evaluation of water degradation within Civitavecchia port trough the calculation of Flushing time (FT) and the development of the new Flushing Efficiency Index (FEI). FT was calculated through the use of a numerical model under different scenarios selected combining different weather conditions with the new port configurations. FT values was then used to estimate the FEI for the evaluation of the improvement (positive values) or the deterioration (negative values) of water quality in the different zones of the port. The increase in the harbour basin size due to the embankment extension results in high values of FT, particularly in the inner part of the port, in accordance with the highest values of the Enrichment Factor (EF) of the trace metals found in the sediment. The correlation between FT and EF confirms that renewal time can be used as a proxy to evaluate the water quality conditions in the harbour basin, as also stated by the WFD guidelines. Also the results of FEI calculation indicate the potential occurrence of water degradation due to the embankment extension. Otherwise, the realization of a second entrance in the southern part of Civitavecchia port produces FEI positive values, highlighting a drastic improvement in harbour water renewal. Consistent with Blue Growth and Bluemed initiatives, the new tools developed in this study support the sustainable management of port activities, thereby also contributing to the development of new "blue jobs."

  3. Initiation of diapirism by regional extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, M.P.A.; Vendeville, B.C.

    Initiation of diapirism is one of the least understood aspects of salt tectonics. Sedimentary differential loading is a favorite explanation, but special conditions such as focused sedimentation are needed to trigger diapirism by differential loading. Compilation of published data from 18 of the world's salt-diapir provinces shows that salt upwelling is consistently linked in time with regional extension, whether thin-skinned or thick-skinned. Extended salt basins typically develop salt structures, whereas nonextended basins typically do not. In some basins containing thick salt (SW Iran), diapirism was delayed as long as 400 Ma until the basin was regionally extended. In other saltmore » provinces (Maritime Alps), episodic growth of salt diapirs correlates with episodic regional extension during opening of the Neo-Tethys and Atlantic Oceans. Once initiated, salt diapirism can continue after regional extension is succeeded by contraction or quiescence. Thus even in salt basins overprinted by inversion or orogenic contraction (Morocco, Lusitania, Basque-Cantabrian, North Sea), the diapirs were initiated during extension on divergent continental margins or in intracontinental rifts. This observed temporal link between extension and diapirism is consistent with physical and numerical modeling, which demonstrates that extensional faulting of the overburden directly causes diapirism whether the salt was deposited before, during, or after rifting. Where the overburden is thinned by extension, pressurized salt wells up in response to the shifting positions of fault blocks.« less

  4. A validation of LTRAN2 with high frequency extensions by comparisons with experimental measurements of unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Hessenius, K. A.; Goorjian, P. M.

    1981-01-01

    A high frequency extension of the unsteady, transonic code LTRAN2 was created and is evaluated by comparisons with experimental results. The experimental test case is a NACA 64A010 airfoil in pitching motion at a Mach number of 0.8 over a range of reduced frequencies. Comparisons indicate that the modified code is an improvement of the original LTRAN2 and provides closer agreement with experimental lift and moment coefficients. A discussion of the code modifications, which involve the addition of high frequency terms of the boundary conditions of the numerical algorithm, is included.

  5. Control of photon storage time using phase locking.

    PubMed

    Ham, Byoung S

    2010-01-18

    A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.

  6. Robust Inference of Risks of Large Portfolios

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han; Vickers, Byron

    2016-01-01

    We propose a bootstrap-based robust high-confidence level upper bound (Robust H-CLUB) for assessing the risks of large portfolios. The proposed approach exploits rank-based and quantile-based estimators, and can be viewed as a robust extension of the H-CLUB procedure (Fan et al., 2015). Such an extension allows us to handle possibly misspecified models and heavy-tailed data, which are stylized features in financial returns. Under mixing conditions, we analyze the proposed approach and demonstrate its advantage over H-CLUB. We further provide thorough numerical results to back up the developed theory, and also apply the proposed method to analyze a stock market dataset. PMID:27818569

  7. Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory

    NASA Astrophysics Data System (ADS)

    Grisey, A.; Yon, S.; Pechoux, T.; Letort, V.; Lafitte, P.

    2017-03-01

    Treatment time reduction is a key issue to expand the use of high intensity focused ultrasound (HIFU) surgery, especially for benign pathologies. This study aims at quantitatively assessing the potential reduction of the treatment time arising from moving the focal point during long pulses. In this context, the optimization of the focal point trajectory is crucial to achieve a uniform thermal dose repartition and avoid boiling. At first, a numerical optimization algorithm was used to generate efficient trajectories. Thermal conduction was simulated in 3D with a finite difference code and damages to the tissue were modeled using the thermal dose formula. Given an initial trajectory, the thermal dose field was first computed, then, making use of Pontryagin's maximum principle, the trajectory was iteratively refined. Several initial trajectories were tested. Then, an ex vivo study was conducted in order to validate the efficicency of the resulting optimized strategies. Single pulses were performed at 3MHz on fresh veal liver samples with an Echopulse and the size of each unitary lesion was assessed by cutting each sample along three orthogonal planes and measuring the dimension of the whitened area based on photographs. We propose a promising approach to significantly shorten HIFU treatment time: the numerical optimization algorithm was shown to provide a reliable insight on trajectories that can improve treatment strategies. The model must now be improved in order to take in vivo conditions into account and extensively validated.

  8. An efficient finite element method for simulation of droplet spreading on a topologically rough surface

    NASA Astrophysics Data System (ADS)

    Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan

    2017-11-01

    We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.

  9. Impact of implementation choices on quantitative predictions of cell-based computational models

    NASA Astrophysics Data System (ADS)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  10. Fitted Fourier-pseudospectral methods for solving a delayed reaction-diffusion partial differential equation in biology

    NASA Astrophysics Data System (ADS)

    Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.

    2017-07-01

    In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.

  11. DG-IMEX Stochastic Galerkin Schemes for Linear Transport Equation with Random Inputs and Diffusive Scalings

    DOE PAGES

    Chen, Zheng; Liu, Liu; Mu, Lin

    2017-05-03

    In this paper, we consider the linear transport equation under diffusive scaling and with random inputs. The method is based on the generalized polynomial chaos approach in the stochastic Galerkin framework. Several theoretical aspects will be addressed. Additionally, a uniform numerical stability with respect to the Knudsen number ϵ, and a uniform in ϵ error estimate is given. For temporal and spatial discretizations, we apply the implicit–explicit scheme under the micro–macro decomposition framework and the discontinuous Galerkin method, as proposed in Jang et al. (SIAM J Numer Anal 52:2048–2072, 2014) for deterministic problem. Lastly, we provide a rigorous proof ofmore » the stochastic asymptotic-preserving (sAP) property. Extensive numerical experiments that validate the accuracy and sAP of the method are conducted.« less

  12. Numerical study of the flow in a three-dimensional thermally driven cavity

    NASA Astrophysics Data System (ADS)

    Rauwoens, Pieter; Vierendeels, Jan; Merci, Bart

    2008-06-01

    Solutions for the fully compressible Navier-Stokes equations are presented for the flow and temperature fields in a cubic cavity with large horizontal temperature differences. The ideal-gas approximation for air is assumed and viscosity is computed using Sutherland's law. The three-dimensional case forms an extension of previous studies performed on a two-dimensional square cavity. The influence of imposed boundary conditions in the third dimension is investigated as a numerical experiment. Comparison is made between convergence rates in case of periodic and free-slip boundary conditions. Results with no-slip boundary conditions are presented as well. The effect of the Rayleigh number is studied. Results are computed using a finite volume method on a structured, collocated grid. An explicit third-order discretization for the convective part and an implicit central discretization for the acoustic part and for the diffusive part are used. To stabilize the scheme an artificial dissipation term for the pressure and the temperature is introduced. The discrete equations are solved using a time-marching method with restrictions on the timestep corresponding to the explicit parts of the solver. Multigrid is used as acceleration technique.

  13. Leveraging Gibbs Ensemble Molecular Dynamics and Hybrid Monte Carlo/Molecular Dynamics for Efficient Study of Phase Equilibria.

    PubMed

    Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi

    2016-11-08

    We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.

  14. High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kosovichev, Alexander; Levy, Doron

    2004-01-01

    We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.

  15. Factors that affect coseismic folds in an overburden layer

    NASA Astrophysics Data System (ADS)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  16. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  17. Exploring the world of human development and reproduction.

    PubMed

    Red-Horse, Kristy; Drake, Penelope M; Fisher, Susan

    2014-01-01

    Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation.

  18. Effects of elevated line sources on turbulent mixing in channel flow

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2016-11-01

    Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.

  19. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  20. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  1. Meshfree and efficient modeling of swimming cells

    NASA Astrophysics Data System (ADS)

    Gallagher, Meurig T.; Smith, David J.

    2018-05-01

    Locomotion in Stokes flow is an intensively studied problem because it describes important biological phenomena such as the motility of many species' sperm, bacteria, algae, and protozoa. Numerical computations can be challenging, particularly in three dimensions, due to the presence of moving boundaries and complex geometries; methods which combine ease of implementation and computational efficiency are therefore needed. A recently proposed method to discretize the regularized Stokeslet boundary integral equation without the need for a connected mesh is applied to the inertialess locomotion problem in Stokes flow. The mathematical formulation and key aspects of the computational implementation in matlab® or GNU Octave are described, followed by numerical experiments with biflagellate algae and multiple uniflagellate sperm swimming between no-slip surfaces, for which both swimming trajectories and flow fields are calculated. These computational experiments required minutes of time on modest hardware; an extensible implementation is provided in a GitHub repository. The nearest-neighbor discretization dramatically improves convergence and robustness, a key challenge in extending the regularized Stokeslet method to complicated three-dimensional biological fluid problems.

  2. Direct Numerical Simulation of Pebble Bed Flows: Database Development and Investigation of Low-Frequency Temporal Instabilities

    DOE PAGES

    Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.

    2017-02-20

    Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less

  3. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions

    PubMed Central

    Nahmani, Marc; Lanahan, Conor; DeRosier, David; Turrigiano, Gina G.

    2017-01-01

    Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets. PMID:28348224

  4. Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: Analytical approximation

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.

  5. Numerical analysis of hypersonic turbulent film cooling flows

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  6. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  7. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  8. On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H2 microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka

    2015-04-01

    A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.

  9. The NLO jet vertex in the small-cone approximation for kt and cone algorithms

    NASA Astrophysics Data System (ADS)

    Colferai, D.; Niccoli, A.

    2015-04-01

    We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet "radius" R = 0 .5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.

  10. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  11. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Y.; Pline, A.

    1994-01-01

    Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.

  12. The numerical approach adopted in toba computer code for mass and heat transfer dynamic analysis of metal hydride hydrogen storage beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Osery, I.A.

    1983-12-01

    Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less

  13. Ghrelin and Neurodegenerative Disorders-a Review.

    PubMed

    Shi, Limin; Du, Xixun; Jiang, Hong; Xie, Junxia

    2017-03-01

    Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.

  14. Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice

    NASA Astrophysics Data System (ADS)

    Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.

    2016-10-01

    Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.

  15. Direct Numerical Simulation of Pebble Bed Flows: Database Development and Investigation of Low-Frequency Temporal Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.

    Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less

  16. Primary care management of patients following bariatric surgery.

    PubMed

    Doolen, Jessica L; Miller, Sally K

    2005-11-01

    To evaluate the nutritional, psychosocial, and other primary care issues faced by nurse practitioners (NPs) and their patients in the long-term management of the increasing population of patients who have had bariatric surgery. An extensive review of the literature provides the foundation for development of assessment and management strategies highlighted in a case study. Management of the patient after bariatric surgery does not end with successful surgical healing. Numerous long-term implications, including significant psychosocial and nutritional issues, require the informed attention of the primary care provider for the rest of the life span. Each year an increasing number of obese patients pursue a surgical solution to obesity, up to an estimated 100,000 in 2004. Numerous long-term health implications are specific to this population. NPs can improve the quality of primary care to these patients by being informed regarding the different procedures and their impact on physiologic phenomena, and the psychosocial issues inherent to extreme weight loss.

  17. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  18. Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Purba; Sahoo, Sumanya Sekhar; Biswas, Saikat; Mohanty, Bedangadas; Majumdar, Nayana; Mukhopadhyay, Supratik

    2018-02-01

    ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.

  19. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  20. Numerical Simulation for Predicting Fatigue Damage Progress in Notched CFRP Laminates by Using Cohesive Elements

    NASA Astrophysics Data System (ADS)

    Okabe, Tomonaga; Yashiro, Shigeki

    This study proposes the cohesive zone model (CZM) for predicting fatigue damage growth in notched carbon-fiber-reinforced composite plastic (CFRP) cross-ply laminates. In this model, damage growth in the fracture process of cohesive elements due to cyclic loading is represented by the conventional damage mechanics model. We preliminarily investigated whether this model can appropriately express fatigue damage growth for a circular crack embedded in isotropic solid material. This investigation demonstrated that this model could reproduce the results with the well-established fracture mechanics model plus the Paris' law by tuning adjustable parameters. We then numerically investigated the damage process in notched CFRP cross-ply laminates under tensile cyclic loading and compared the predicted damage patterns with those in experiments reported by Spearing et al. (Compos. Sci. Technol. 1992). The predicted damage patterns agreed with the experiment results, which exhibited the extension of multiple types of damage (e.g., splits, transverse cracks and delaminations) near the notches.

Top