Sample records for extensive simulations show

  1. simulation of the DNA force-extension curve

    NASA Astrophysics Data System (ADS)

    Shinaberry, Gregory; Mikhaylov, Ivan; Balaeff, Alexander

    A molecular dynamics simulation study of the force-extension curve of double-stranded DNA is presented. Extended simulations of the DNA at multiple points along the force-extension curve are conducted with DNA end-to-end length constrained at each point. The calculated force-extension curve qualitatively reproduces the experimental one. The DNA conformational ensemble at each extension shows that the famous plateau of the force-extension curve results from B-DNA melting, whereas the formation of the earlier-predicted novel DNA conformation called 'zip-DNA' takes place at extensions past the plateau. An extensive analysis of the DNA conformational ensemble in terms of base configuration, backbone configuration, solvent interaction energy, etc., is conducted in order to elucidate the physical origin of DNA elasticity and the main interactions responsible for the shape of the force-extension curve.

  2. Influence of lumbar spine extension on vertical jump height during maximal squat jumping.

    PubMed

    Blache, Yoann; Monteil, Karine

    2014-01-01

    The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.

  3. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  4. In Vivo Investigation of the Effectiveness of a Hyper-viscoelastic Model in Simulating Brain Retraction

    NASA Astrophysics Data System (ADS)

    Li, Ping; Wang, Weiwei; Zhang, Chenxi; An, Yong; Song, Zhijian

    2016-07-01

    Intraoperative brain retraction leads to a misalignment between the intraoperative positions of the brain structures and their previous positions, as determined from preoperative images. In vitro swine brain sample uniaxial tests showed that the mechanical response of brain tissue to compression and extension could be described by the hyper-viscoelasticity theory. The brain retraction caused by the mechanical process is a combination of brain tissue compression and extension. In this paper, we first constructed a hyper-viscoelastic framework based on the extended finite element method (XFEM) to simulate intraoperative brain retraction. To explore its effectiveness, we then applied this framework to an in vivo brain retraction simulation. The simulation strictly followed the clinical scenario, in which seven swine were subjected to brain retraction. Our experimental results showed that the hyper-viscoelastic XFEM framework is capable of simulating intraoperative brain retraction and improving the navigation accuracy of an image-guided neurosurgery system (IGNS).

  5. Lightweight computational steering of very large scale molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show howmore » this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.« less

  6. Simulations of stretching a flexible polyelectrolyte with varying charge separation

    DOE PAGES

    Stevens, Mark J.; Saleh, Omar A.

    2016-07-22

    We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removedmore » the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.« less

  7. Molecular Dynamics Simulations of the Temperature Induced Unfolding of Crambin Follow the Arrhenius Equation.

    PubMed

    Dalby, Andrew; Shamsir, Mohd Shahir

    2015-01-01

    Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation.

  8. Molecular Dynamics Simulations of the Temperature Induced Unfolding of Crambin Follow the Arrhenius Equation.

    PubMed Central

    Dalby, Andrew; Shamsir, Mohd Shahir

    2015-01-01

    Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation. PMID:26539292

  9. In Vivo Investigation of the Effectiveness of a Hyper-viscoelastic Model in Simulating Brain Retraction

    PubMed Central

    Li, Ping; Wang, Weiwei; Zhang, Chenxi; An, Yong; Song, Zhijian

    2016-01-01

    Intraoperative brain retraction leads to a misalignment between the intraoperative positions of the brain structures and their previous positions, as determined from preoperative images. In vitro swine brain sample uniaxial tests showed that the mechanical response of brain tissue to compression and extension could be described by the hyper-viscoelasticity theory. The brain retraction caused by the mechanical process is a combination of brain tissue compression and extension. In this paper, we first constructed a hyper-viscoelastic framework based on the extended finite element method (XFEM) to simulate intraoperative brain retraction. To explore its effectiveness, we then applied this framework to an in vivo brain retraction simulation. The simulation strictly followed the clinical scenario, in which seven swine were subjected to brain retraction. Our experimental results showed that the hyper-viscoelastic XFEM framework is capable of simulating intraoperative brain retraction and improving the navigation accuracy of an image-guided neurosurgery system (IGNS). PMID:27387301

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Mark J.; Saleh, Omar A.

    We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removedmore » the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.« less

  11. Evolution of Flow channels and Dipolarization Using THEMIS Observations and Global MHD Simulations

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; McPherron, R. L.; Nishimura, Y.

    2017-12-01

    We have extensively analyzed a substorm on March 14, 2008 for which we have observations from THEMIS spacecraft located beyond 9 RE near 2100 local time. The available data include an extensive network of all sky cameras and ground magnetometers that establish the times of various auroral and magnetic events. This arrangement provided an excellent data set with which to investigate meso-scale structures in the plasma sheet. We have used a global magnetohydrodynamic simulation to investigate the structure and dynamics of the magnetotail current sheet during this substorm. Both earthward and tailward flows were found in the observations as well as the simulations. The simulation shows that the flow channels follow tortuous paths that are often reflected or deflected before arriving at the inner magnetosphere. The simulation shows a sequence of fast flows and dipolarization events similar to what is seen in the data, though not at precisely the same times or locations. We will use our simulation results combined with the observations to investigate the global convection systems and current sheet structure during this event, showing how meso-scale structures fit into the context of the overall tail dynamics during this event. Our study includes determining the location, timing and strength of several current wedges and expansion onsets during an 8-hour interval.

  12. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE PAGES

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; ...

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  13. Faculty Perspectives on Effective Integration of Simulation into a Baccalaureate Nursing Curriculum

    ERIC Educational Resources Information Center

    Howell, Linda Jane

    2017-01-01

    Research shows that use of high fidelity simulation (HFS) as a teaching strategy requires extensive amounts of faculty time and financial resources for faculty development and equipment. This project study addressed the challenges encountered in the integration of HFS into a Midwestern metropolitan baccalaureate nursing program. The purpose of…

  14. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.

    PubMed

    Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.

  15. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments

    PubMed Central

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691

  16. Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty.

    PubMed

    Yamamoto, Michiro; Murakami, Yukimi; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Hirata, Hitoshi

    2016-04-02

    Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A "two rings" method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score. Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation. We showed that four-dimensional, preoperative simulation can be generated by adding the rotation axis to the one-position, three-dimensional computed tomography image of the affected arm. This method is feasible for elbow debridement arthroplasty.

  17. The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures

    ERIC Educational Resources Information Center

    Ceulemans, Eva; Van Mechelen, Iven; Leenen, Iwin

    2007-01-01

    Hierarchical classes models are quasi-order retaining Boolean decomposition models for N-way N-mode binary data. To fit these models to data, rationally started alternating least squares (or, equivalently, alternating least absolute deviations) algorithms have been proposed. Extensive simulation studies showed that these algorithms succeed quite…

  18. Feasibility study for a numerical aerodynamic simulation facility. Volume 3: FMP language specification/user manual

    NASA Technical Reports Server (NTRS)

    Kenner, B. G.; Lincoln, N. R.

    1979-01-01

    The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.

  19. Radiosity diffusion model in 3D

    NASA Astrophysics Data System (ADS)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  20. Extending quantum mechanics entails extending special relativity

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Srikanth, R.

    2016-05-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.

  1. Primitive chain network simulations for entangled DNA solutions

    NASA Astrophysics Data System (ADS)

    Masubuchi, Yuichi; Furuichi, Kenji; Horio, Kazushi; Uneyama, Takashi; Watanabe, Hiroshi; Ianniruberto, Giovanni; Greco, Francesco; Marrucci, Giuseppe

    2009-09-01

    Molecular theories for polymer rheology are based on conformational dynamics of the polymeric chain. Hence, measurements directly related to molecular conformations appear more appealing than indirect ones obtained from rheology. In this study, primitive chain network simulations are compared to experimental data of entangled DNA solutions [Teixeira et al., Macromolecules 40, 2461 (2007)]. In addition to rheological comparisons of both linear and nonlinear viscoelasticities, a molecular extension measure obtained by Teixeira et al. through fluorescent microscopy is compared to simulations, in terms of both averages and distributions. The influence of flow on conformational distributions has never been simulated for the case of entangled polymers, and how DNA molecular individualism extends to the entangled regime is not known. The linear viscoelastic response and the viscosity growth curve in the nonlinear regime are found in good agreement with data for various DNA concentrations. Conversely, the molecular extension measure shows significant departures, even under equilibrium conditions. The reason for such discrepancies remains unknown.

  2. The Fire and Fuels Extension to the Forest Vegetation Simulator

    Treesearch

    Elizabeth Reinhardt; Nicholas L. Crookston

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...

  3. Filtering in Hybrid Dynamic Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2000-01-01

    We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).

  4. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  5. Direct simulations of chemically reacting turbulent mixing layers, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, Ralph W.; Mcmurtry, Patrick A.; Jou, Wen-Huei; Riley, James J.; Givi, Peyman

    1988-01-01

    The results of direct numerical simulations of chemically reacting turbulent mixing layers are presented. This is an extension of earlier work to a more detailed study of previous three dimensional simulations of cold reacting flows plus the development, validation, and use of codes to simulate chemically reacting shear layers with heat release. Additional analysis of earlier simulations showed good agreement with self similarity theory and laboratory data. Simulations with a two dimensional code including the effects of heat release showed that the rate of chemical product formation, the thickness of the mixing layer, and the amount of mass entrained into the layer all decrease with increasing rates of heat release. Subsequent three dimensional simulations showed similar behavior, in agreement with laboratory observations. Baroclinic torques and thermal expansion in the mixing layer were found to produce changes in the flame vortex structure that act to diffuse the pairing vortices, resulting in a net reduction in vorticity. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers were shown to result from vorticity generation by baroclinic torques.

  6. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.

    PubMed Central

    Zhang, B; Evans, J S

    2001-01-01

    Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble. PMID:11159428

  7. An overview of the fire and fuels extension to the forest vegetation simulator

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston

    2000-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...

  8. Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins.

    PubMed

    Cossio-Pérez, Rodrigo; Palma, Juliana; Pierdominici-Sottile, Gustavo

    2017-04-24

    Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.

  9. Simulation of realistic retinoscopic measurement

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Chen, Ying-Ling; Baker, K.; Lewis, J. W.; Swartz, T.; Jiang, Y.; Wang, M.

    2007-03-01

    Realistic simulation of ophthalmic measurements on normal and diseased eyes is presented. We use clinical data of ametropic and keratoconus patients to construct anatomically accurate three-dimensional eye models and simulate the measurement of a streak retinoscope with all the optical elements. The results show the clinical observations including the anomalous motion in high myopia and the scissors reflex in keratoconus. The demonstrated technique can be applied to other ophthalmic instruments and to other and more extensively abnormal eye conditions. It provides promising features for medical training and for evaluating and developing ocular instruments.

  10. The statistical significance of error probability as determined from decoding simulations for long codes

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.

  11. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    ERIC Educational Resources Information Center

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  12. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.

  13. The muon component in extensive air showers and new p+C data in fixed target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurer, C.; Bluemer, J.; Engel, R.

    2007-03-19

    One of the most promising approaches to determine the energy spectrum and composition of the cosmic rays with energies above 1015 eV is the measurement of the number of electrons and muons produced in extensive air showers (EAS). Therefore simulation of air showers using electromagnetic and hadronic interaction models are necessary. These simulations show uncertainties which come mainly from hadronic interaction models. One aim of this work is to specify the low energy hadronic interactions which are important for the muon production in EAS. Therefore we simulate extensive air showers with a modified version of the simulation package CORSIKA. Inmore » particular we investigate in detail the energy and the phase space regions of secondary particle production, which are most important for muon production. This phase space region is covered by fixed target experiments at CERN. In the second part of this work we present preliminary momentum spectra of secondary {pi}+ and {pi}- in p+C collisions at 12 GeV/c measured with the HARP spectrometer at the PS accelerator at CERN. In addition we use the new p+C NA49 data at 158 GeV/c to check the reliability of hadronic interaction models for muon production in EAS. Finally, possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.« less

  14. Suppressing correlations in massively parallel simulations of lattice models

    NASA Astrophysics Data System (ADS)

    Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle

    2017-11-01

    For lattice Monte Carlo simulations parallelization is crucial to make studies of large systems and long simulation time feasible, while sequential simulations remain the gold-standard for correlation-free dynamics. Here, various domain decomposition schemes are compared, concluding with one which delivers virtually correlation-free simulations on GPUs. Extensive simulations of the octahedron model for 2 + 1 dimensional Kardar-Parisi-Zhang surface growth, which is very sensitive to correlation in the site-selection dynamics, were performed to show self-consistency of the parallel runs and agreement with the sequential algorithm. We present a GPU implementation providing a speedup of about 30 × over a parallel CPU implementation on a single socket and at least 180 × with respect to the sequential reference.

  15. Complete wetting of graphene by biological lipids

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2016-03-01

    Graphene nanosheets have been demonstrated to extract large amounts of lipid molecules directly out of the cell membrane of bacteria and thus cause serious damage to the cell's integrity. This interesting phenomenon, however, is so far not well understood theoretically. Here through extensive molecular dynamics simulations and theoretical analyses, we show that this phenomenon can be categorized as a complete wetting of graphene by membrane lipids in water. A wetting-based theory was utilized to associate the free energy change during the microscopic extraction of a lipid with the spreading parameter for the macroscopic wetting. With a customized thermodynamic cycle for detailed energetics, we show that the dispersive adhesion between graphene and lipids plays a dominant role during this extraction as manifested by the curved graphene. Our simulation results suggest that biological lipids can completely wet the concave, flat or even convex (with a small curvature) surface of a graphene sheet.Graphene nanosheets have been demonstrated to extract large amounts of lipid molecules directly out of the cell membrane of bacteria and thus cause serious damage to the cell's integrity. This interesting phenomenon, however, is so far not well understood theoretically. Here through extensive molecular dynamics simulations and theoretical analyses, we show that this phenomenon can be categorized as a complete wetting of graphene by membrane lipids in water. A wetting-based theory was utilized to associate the free energy change during the microscopic extraction of a lipid with the spreading parameter for the macroscopic wetting. With a customized thermodynamic cycle for detailed energetics, we show that the dispersive adhesion between graphene and lipids plays a dominant role during this extraction as manifested by the curved graphene. Our simulation results suggest that biological lipids can completely wet the concave, flat or even convex (with a small curvature) surface of a graphene sheet. Electronic supplementary information (ESI) available: The movie showing the simulation trajectory for the extraction of lipids from the membrane. See DOI: 10.1039/C6NR00202A

  16. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  17. Epithelial cancers and photon migration: Monte Carlo simulations and diffuse reflectance measurements

    NASA Astrophysics Data System (ADS)

    Tubiana, Jerome; Kass, Alex J.; Newman, Maya Y.; Levitz, David

    2015-07-01

    Detecting pre-cancer in epithelial tissues such as the cervix is a challenging task in low-resources settings. In an effort to achieve low cost cervical cancer screening and diagnostic method for use in low resource settings, mobile colposcopes that use a smartphone as their engine have been developed. Designing image analysis software suited for this task requires proper modeling of light propagation from the abnormalities inside tissues to the camera of the smartphones. Different simulation methods have been developed in the past, by solving light diffusion equations, or running Monte Carlo simulations. Several algorithms exist for the latter, including MCML and the recently developed MCX. For imaging purpose, the observable parameter of interest is the reflectance profile of a tissue under some specific pattern of illumination and optical setup. Extensions of the MCX algorithm to simulate this observable under these conditions were developed. These extensions were validated against MCML and diffusion theory for the simple case of contact measurements, and reflectance profiles under colposcopy imaging geometry were also simulated. To validate this model, the diffuse reflectance profiles of tissue phantoms were measured with a spectrometer under several illumination and optical settings for various homogeneous tissues phantoms. The measured reflectance profiles showed a non-trivial deviation across the spectrum. Measurements of an added absorber experiment on a series of phantoms showed that absorption of dye scales linearly when fit to both MCX and diffusion models. More work is needed to integrate a pupil into the experiment.

  18. Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS.

    PubMed

    Grindon, Christina; Harris, Sarah; Evans, Tom; Novik, Keir; Coveney, Peter; Laughton, Charles

    2004-07-15

    Molecular modelling played a central role in the discovery of the structure of DNA by Watson and Crick. Today, such modelling is done on computers: the more powerful these computers are, the more detailed and extensive can be the study of the dynamics of such biological macromolecules. To fully harness the power of modern massively parallel computers, however, we need to develop and deploy algorithms which can exploit the structure of such hardware. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a scalable molecular dynamics code including long-range Coulomb interactions, which has been specifically designed to function efficiently on parallel platforms. Here we describe the implementation of the AMBER98 force field in LAMMPS and its validation for molecular dynamics investigations of DNA structure and flexibility against the benchmark of results obtained with the long-established code AMBER6 (Assisted Model Building with Energy Refinement, version 6). Extended molecular dynamics simulations on the hydrated DNA dodecamer d(CTTTTGCAAAAG)(2), which has previously been the subject of extensive dynamical analysis using AMBER6, show that it is possible to obtain excellent agreement in terms of static, dynamic and thermodynamic parameters between AMBER6 and LAMMPS. In comparison with AMBER6, LAMMPS shows greatly improved scalability in massively parallel environments, opening up the possibility of efficient simulations of order-of-magnitude larger systems and/or for order-of-magnitude greater simulation times.

  19. Impact Of Resolving Submesoscale Features On Modeling The Gulf Stream System

    NASA Astrophysics Data System (ADS)

    Chassignet, E.; Xu, X.

    2016-02-01

    Despite being one the best-known circulation pattern of the world ocean, the representation of the Gulf Stream, especially its energetic extension east of the New England Seamounts Chains in the western North Atlantic Ocean, has been a major challenge for ocean general circulation models even at eddy-rich resolutions. Here we show that, for the first time, a simulation of the North Atlantic circulation at 1/50° resolution realistically represents the narrow, energetic jet near 55°W when compared to observations, whereas similarly configured simulations at 1/25° and 1/12° resolution do not. This result highlights the importance of submesoscale features in driving the energetic Gulf Stream extension in the western North Atlantic. The results are discussed in terms of mesoscale and submesoscale energy power spectra.

  20. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  1. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  2. Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Kumar, Manoj; Haldar, Subhasis; Deswal, S. S.; Gupta, Mridula; Gupta, R. S.

    2017-09-01

    A charge plasma technique based dopingless (DL) accumulation mode (AM) junctionless (JL) cylindrical surrounding gate (CSG) MOSFET has been proposed and extensively investigated. Proposed device has no physical junction at source to channel and channel to drain interface. The complete silicon pillar has been considered as undoped. The high free electron density or induced N+ region is designed by keeping the work function of source/drain metal contacts lower than the work function of undoped silicon. Thus, its fabrication complexity is drastically reduced by curbing the requirement of high temperature doping techniques. The electrical/analog characteristics for the proposed device has been extensively investigated using the numerical simulation and are compared with conventional junctionless cylindrical surrounding gate (JL-CSG) MOSFET with identical dimensions. For the numerical simulation purpose ATLAS-3D device simulator is used. The results show that the proposed device is more short channel immune to conventional JL-CSG MOSFET and suitable for faster switching applications due to higher I ON/ I OFF ratio.

  3. A framework for visualization of battlefield network behavior

    NASA Astrophysics Data System (ADS)

    Perzov, Yury; Yurcik, William

    2006-05-01

    An extensible network simulation application was developed to study wireless battlefield communications. The application monitors node mobility and depicts broadcast and unicast traffic as expanding rings and directed links. The network simulation was specially designed to support fault injection to show the impact of air strikes on disabling nodes. The application takes standard ns-2 trace files as an input and provides for performance data output in different graphical forms (histograms and x/y plots). Network visualization via animation of simulation output can be saved in AVI format that may serve as a basis for a real-time battlefield awareness system.

  4. A glacier runoff extension to the Precipitation Runoff Modeling System

    Treesearch

    A. E. Van Beusekom; R. J. Viger

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while...

  5. Poverty Simulations: Building Relationships among Extension, Schools, and the Community

    ERIC Educational Resources Information Center

    Franck, Karen L.; Barnes, Shelly; Harrison, Julie

    2016-01-01

    Poverty simulations can be effective experiential learning tools for educating community members about the impact of poverty on families. The project described here includes survey results from three simulations with community leaders and teachers. This project illustrated how such workshops can help Extension professionals extend their reach and…

  6. Real-time maritime scene simulation for ladar sensors

    NASA Astrophysics Data System (ADS)

    Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.

    2011-06-01

    Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.

  7. Interaction of Salicylate and a Terpenoid Plant Extract with Model Membranes: Reconciling Experiments and Simulations

    PubMed Central

    Khandelia, Himanshu; Witzke, Sarah; Mouritsen, Ole G.

    2010-01-01

    We investigate the effects of two structurally similar small cyclic molecules: salicylic acid and perillic acid on a zwitterionic model lipid bilayer, and show that both molecules might have biological activity related to membrane thinning. Salicylic acid is a nonsteroidal antiinflammatory drug, some of the pharmacological properties of which arise from its interaction with the lipid bilayer component of the plasma membrane. Prior simulations show that salicylate orders zwitterionic lipid membranes. However, this is in conflict with Raman scattering and vesicle fluctuation analysis data, which suggest the opposite. We show using extensive molecular dynamics simulations, cumulatively >2.5 μs, that salicylic acid indeed disorders membranes with concomitant membrane thinning and that the conflict arose because prior simulations suffered from artifacts related to the sodium-ion induced condensation of zwitterionic lipids modeled by the Berger force field. Perillic acid is a terpenoid plant extract that has antiinfective and anticancer properties, and is extensively used in eastern medicine. We found that perillic acid causes large-scale membrane thinning and could therefore exert its antimicrobial properties via a membrane-lytic mechanism reminiscent of antimicrobial peptides. Being more amphipathic, perillic acid is more potent in disrupting lipid headgroup packing, and significantly modifies headgroup dipole orientation. Like salicylate, the membrane thinning effect of perillic acid is masked by the presence of sodium ions. As an alternative to sodium cations, we advocate the straightforward solution of using larger countercations like potassium or tetra-methyl-ammonium that will maintain electroneutrality but not interact strongly with, and thus not condense, the lipid bilayer. PMID:21156130

  8. A Novel Automatic Phase Selection Device: Design and Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Li, Haitao; Li, Na; Zhang, Nan; Lv, Wei; Cui, Xiaojiang

    2018-01-01

    At present, AICD completion is an effective way to slow down the bottom water cone. Effective extension of the period without water production. According on the basis of investigating the AICD both at home and abroad, this paper designed a new type of AICD, and with the help of fluid numerical simulation software, the internal flow field was analysed, and its structure is optimized. The simulation results show that the tool can restrict the flow of water well, and the flow of oil is less.

  9. Infrared propagators of Yang-Mills theory from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tissier, Matthieu; Wschebor, Nicolas

    2010-11-15

    We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in d=4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in d=3 and naturally explains the peculiarities of the propagators in d=2.

  10. Computer Simulation of Artillery S&A Mechanism (Involute Gear Train and Straight-Sided Verge Runaway Escapement)

    DTIC Science & Technology

    1982-11-01

    Report) IS. SUPPLEMENTARY NOTES It. KEY WORDS (Contin~ue an reverse aide It neoocemry and Identity by block number) Gear train S&A mechanism M739 fuze...as in the escapement. A simulation run with the dimensions of the M739 safing and arming mechanism showed excellent agreament with experimental...well as all non-impact contact forces. This program was extensively tested for the configuration no. 2 data (fig. 2) of the M739 fuze S&A mechanism

  11. Structure and dynamics of solvated polyethylenimine chains

    NASA Astrophysics Data System (ADS)

    Beu, Titus A.; Farcaş, Alexandra

    2017-12-01

    Polimeric gene-delivery carriers have attracted great interest in recent years, owing to their applicability in gene therapy. In particular, cationic polymers represent the most promising delivery vectors for nucleic acids into the cells. This study presents extensive atomistic molecular dynamics simulations of linear polyethylenimine chains. The simulations show that the variation of the chain size and protonation fraction causes a substantial change of the diffusion coefficient. Examination of the solvated chains suggests the possibility of controlling the polymer diffusion mobility in solution.

  12. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunet, M.; Sabourin, F.

    2005-08-05

    This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of amore » beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements.« less

  13. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  14. Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces

    NASA Astrophysics Data System (ADS)

    Kalcher, Immanuel; Schulz, Julius C. F.; Dzubiella, Joachim

    2010-10-01

    We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.

  15. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes.

    PubMed

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi Mbamba, Christian; Tait, Stephan; Gernaey, Krist V; Jeppsson, Ulf; Batstone, Damien J

    2016-05-15

    This paper proposes a series of extensions to functionally upgrade the IWA Anaerobic Digestion Model No. 1 (ADM1) to allow for plant-wide phosphorus (P) simulation. The close interplay between the P, sulfur (S) and iron (Fe) cycles requires a substantial (and unavoidable) increase in model complexity due to the involved three-phase physico-chemical and biological transformations. The ADM1 version, implemented in the plant-wide context provided by the Benchmark Simulation Model No. 2 (BSM2), is used as the basic platform (A0). Three different model extensions (A1, A2, A3) are implemented, simulated and evaluated. The first extension (A1) considers P transformations by accounting for the kinetic decay of polyphosphates (XPP) and potential uptake of volatile fatty acids (VFA) to produce polyhydroxyalkanoates (XPHA) by phosphorus accumulating organisms (XPAO). Two variant extensions (A2,1/A2,2) describe biological production of sulfides (SIS) by means of sulfate reducing bacteria (XSRB) utilising hydrogen only (autolithotrophically) or hydrogen plus organic acids (heterorganotrophically) as electron sources, respectively. These two approaches also consider a potential hydrogen sulfide ( [Formula: see text] inhibition effect and stripping to the gas phase ( [Formula: see text] ). The third extension (A3) accounts for chemical iron (III) ( [Formula: see text] ) reduction to iron (II) ( [Formula: see text] ) using hydrogen ( [Formula: see text] ) and sulfides (SIS) as electron donors. A set of pre/post interfaces between the Activated Sludge Model No. 2d (ASM2d) and ADM1 are furthermore proposed in order to allow for plant-wide (model-based) analysis and study of the interactions between the water and sludge lines. Simulation (A1 - A3) results show that the ratio between soluble/particulate P compounds strongly depends on the pH and cationic load, which determines the capacity to form (or not) precipitation products. Implementations A1 and A2,1/A2,2 lead to a reduction in the predicted methane/biogas production (and potential energy recovery) compared to reference ADM1 predictions (A0). This reduction is attributed to two factors: (1) loss of electron equivalents due to sulfate [Formula: see text] reduction by XSRB and storage of XPHA by XPAO; and, (2) decrease of acetoclastic and hydrogenotrophic methanogenesis due to [Formula: see text] inhibition. Model A3 shows the potential for iron to remove free SIS (and consequently inhibition) and instead promote iron sulfide (XFeS) precipitation. It also reduces the quantities of struvite ( [Formula: see text] ) and calcium phosphate ( [Formula: see text] ) that are formed due to its higher affinity for phosphate anions. This study provides a detailed analysis of the different model assumptions, the effect that operational/design conditions have on the model predictions and the practical implications of the proposed model extensions in view of plant-wide modelling/development of resource recovery strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The role of potassium, magnesium and calcium in the Enhanced Biological Phosphorus Removal treatment plants.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2005-09-01

    Cations as potassium and magnesium play an important role in maintaining the stability of Enhanced Biological Phosphorus Removal (EBPR) process. In this paper potassium, magnesium and calcium behaviour in EBPR treatment plants has been studied. An ASM2d model extension which takes into account the role of potassium and magnesium in the EBPR process has been developed. Finally, a simulation of the effect on P removal of a shortage of K and Mg was studied. The experimental results showed that K and Mg play an important role in the EBPR process being cotransported with P into and out of bacterial cells. It has been observed that calcium is not involved in P release and uptake. The values of the molar ratios K/P (0.28 mol K mol P(-1)) and Mg/P (0.36 mol Mg mol P(-1)) were obtained accomplishing the charge balance, with different K/Mg mass ratios and without phosphorus precipitation. Model predictions accurately reproduced experimental data. The simulations carried out showed the important effect of the K and Mg influent concentration for P removal efficiency. The results illustrate that the proposed ASM2d model extension must be considered in order to accurately simulate the phosphorus removal process.

  17. Neighbour-die effect on the measurement of wafer-level flip-chip LED dies in production lines

    NASA Astrophysics Data System (ADS)

    Chen, Tengfei; Wan, Zirui; Li, Bin

    2017-11-01

    The light from the side surfaces of the test flip-chip light-emitting diode (FCLED) dies is reflected, refracted or absorbed by neighbour dies during the measurement of wafer-level FCLED dies in production lines. A notable measurement deviation is caused by the neighbour-die effect, which is not considered in current industry practice. In this paper, Monte Carlo ray-tracing simulations are used to study the measurement deviations caused by the neighbour-die effect and extension ratios of the film. The simulation results show that the maximal deviation of radiant flux impinging the photodiode can reach 5.5%, if the die is tested without any neighbour dies, or is surrounded by a set of neighbour dies at an extension ratio of 1.1. Moreover, the dependence between the measurement results and neighbour cases for different extension ratios is also investigated. Then, a modified calibration method is proposed and studied. The proposed technique can be used to improve the calibration and measurement accuracy of the test equipment used for measurement of wafer-level FCLED dies in production lines.

  18. Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2009-01-01

    Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.

  19. Building the ECON extension: Functionality and lessons learned

    Treesearch

    Fred C. Martin

    2008-01-01

    The functionality of the ECON extension to FVS is described with emphasis on the ability to dynamically interact with all elements of the FVS simulation process. Like other extensions, ECON is fully integrated within FVS. This integration allows: (1) analysis of multiple alternative tree-removal actions within a single simulation without altering “normal” stand...

  20. Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations

    PubMed Central

    Skjaerven, Lars; Grant, Barry; Muga, Arturo; Teigen, Knut; McCammon, J. Andrew; Reuter, Nathalie; Martinez, Aurora

    2011-01-01

    GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. PMID:21423709

  1. Chapter 2: Fire and Fuels Extension: Model description

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Julee A. Greenough; Donald C. E. Robinson; Werner A. Kurz

    2003-01-01

    The Fire and Fuels Extension to the Forest Vegetation Simulator is a model that simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models are used to represent forest stand development (the Forest Vegetation Simulator, Wykoff and others 1982), fire behavior (Rothermel 1972, Van Wagner 1977, and...

  2. Single polymer dynamics under large amplitude oscillatory extension

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    2016-09-01

    Understanding the conformational dynamics of polymers in time-dependent flows is of key importance for controlling materials properties during processing. Despite this importance, however, it has been challenging to study polymer dynamics in controlled time-dependent or oscillatory extensional flows. In this work, we study the dynamics of single polymers in large-amplitude oscillatory extension (LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is generated using a feedback-controlled stagnation point device known as the Stokes trap, thereby generating an oscillatory planar extensional flow with alternating principal axes of extension and compression. Our results show that polymers experience periodic cycles of compression, reorientation, and extension in LAOE, and dynamics are generally governed by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency (Deborah number De). Single molecule experiments are compared to BD simulations with and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and good agreement is obtained across a range of parameters. Moreover, transient bulk stress in LAOE is determined from simulations using the Kramers relation, which reveals interesting and unique rheological signatures for this time-dependent flow. We further construct a series of single polymer stretch-flow rate curves (defined as single molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from the linear to nonlinear response regimes are interpreted in the context of accumulated fluid strain in LAOE.

  3. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    NASA Astrophysics Data System (ADS)

    Nijland, Linda; Arentze, Theo; Timmermans, Harry

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individuals indicate the importance of incorporating those pre-planned activities in the new generation of dynamic travel demand models. Elaborating and combining previous work on event-driven activity generation, the aim of this paper is to develop and illustrate an extension of a need-based model of activity generation that takes into account possible influences of pre-planned activities and events. This paper describes the theory and shows the results of simulations of the extension. The simulation was conducted for six different activities, and the parameter values used were consistent with an earlier estimation study. The results show that the model works well and that the influences of the parameters are consistent, logical, and have clear interpretations. These findings offer further evidence of face and construct validity to the suggested modeling approach.

  4. Skylab

    NASA Image and Video Library

    1973-05-01

    This photograph was taken during testing of an emergency procedure to free jammed solar array panels on the Skylab workshop. A metal strap became tangled over one of the folded solar array panels when Skylab lost its micrometeoroid shield during the launch. This photograph shows astronauts Schweickart and Gibson in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) using various cutting tools and methods developed by the MSFC to free the jammed solar wing. Extensive testing and many hours of practice in simulators such as the NBS tank helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.

  5. ReaxFF Study of the Oxidation of Softwood Lignin in View of Carbon Fiber Production

    DOE PAGES

    Beste, Ariana

    2014-10-06

    We investigate the oxidative, thermal conversion of softwood lignin by performing molecular dynamics simulations based on a reactive force field (ReaxFF). The lignin samples are constructed from coniferyl alcohol units, which are connected through linkages that are randomly selected from a natural distribution of linkages in softwood. The goal of this work is to simulate the oxidative stabilization step during carbon fiber production from lignin precursor. We find that at simulation conditions where stabilization reactions occur, the lignin fragments have already undergone extensive degradation. The 5-5 linkage shows the highest reactivity towards cyclization and dehydrogenation.

  6. An Electrostatic Precipitator System for the Martian Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  7. Hard sphere perturbation theory for fluids with soft-repulsive-core potentials

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor; Stell, George

    2004-03-01

    The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g0(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n⩽6), and predicts free energies that are within 0.3kT of simulation results up to the fluid freezing point.

  8. A new approach to characterize the effect of fabric deformation on thermal protective performance

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Xiaohui; Lu, Yehu; Wang, Yunyi

    2012-04-01

    It is very important to evaluate thermal protective performance (TPP) in laboratory-simulated fire scenes as accurately as possible. For this paper, to thoroughly understand the effect of fabric deformation on basic physical properties and TPP of flame-retardant fabrics exposed to flash fire, a new modified TPP testing apparatus was developed. Different extensions were employed to simulate the various extensions displayed during different body motions. The tests were also carried out with different air gaps. The results showed a significant decrease in air permeability after deformation. However, the change of thickness was slight. The fabric deformation had a complicated effect on thermal protection with different air gaps. The change of TPP depended on the balance between the surface contact area and the thermal insulation. The newly developed testing apparatus could be well employed to evaluate the effect of deformation on TPP of flame-resistant fabrics.

  9. Sheet, ligament and droplet formation in swirling primary atomization

    NASA Astrophysics Data System (ADS)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  10. Appendices to the model description document for a computer program for the emulation/simulation of a space station environmental control and life support system

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    A Model Description Document for the Emulation Simulation Computer Model was already published. The model consisted of a detailed model (emulation) of a SAWD CO2 removal subsystem which operated with much less detailed (simulation) models of a cabin, crew, and condensing and sensible heat exchangers. The purpose was to explore the utility of such an emulation simulation combination in the design, development, and test of a piece of ARS hardware, SAWD. Extensions to this original effort are presented. The first extension is an update of the model to reflect changes in the SAWD control logic which resulted from test. Also, slight changes were also made to the SAWD model to permit restarting and to improve the iteration technique. The second extension is the development of simulation models for more pieces of air and water processing equipment. Models are presented for: EDC, Molecular Sieve, Bosch, Sabatier, a new condensing heat exchanger, SPE, SFWES, Catalytic Oxidizer, and multifiltration. The third extension is to create two system simulations using these models. The first system presented consists of one air and one water processing system. The second consists of a potential air revitalization system.

  11. Appendices to the user's manual for a computer program for the emulation/simulation of a space station environmental control and life support system

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    A user's Manual for the Emulation Simulation Computer Model was published previously. The model consisted of a detailed model (emulation) of a SAWD CO2 removal subsystem which operated with much less detailed (simulation) models of a cabin, crew, and condensing and sensible heat exchangers. The purpose was to explore the utility of such an emulation/simulation combination in the design, development, and test of a piece of ARS hardware - SAWD. Extensions to this original effort are presented. The first extension is an update of the model to reflect changes in the SAWD control logic which resulted from the test. In addition, slight changes were also made to the SAWD model to permit restarting and to improve the iteration technique. The second extension is the development of simulation models for more pieces of air and water processing equipment. Models are presented for: EDC, Molecular Sieve, Bosch, Sabatier, a new condensing heat exchanger, SPE, SFWES, Catalytic Oxidizer, and multifiltration. The third extension is to create two system simulations using these models. The first system presented consists of one air and one water processing system, the second a potential Space Station air revitalization system.

  12. The effect of resistance level and stability demands on recruitment patterns and internal loading of spine in dynamic flexion and extension using a simple trunk model.

    PubMed

    Zeinali-Davarani, Shahrokh; Shirazi-Adl, Aboulfazl; Dariush, Behzad; Hemami, Hooshang; Parnianpour, Mohamad

    2011-07-01

    The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.

  13. Coil extensions improve line shapes by removing field distortions

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  14. Richtmyer-Meshkov flow in elastic solids.

    PubMed

    Piriz, A R; López Cela, J J; Tahir, N A; Hoffmann, D H H

    2006-09-01

    Richtmyer-Meshkov flow is studied by means of an analytical model which describes the asymptotic oscillations of a corrugated interface between two perfectly elastic solids after the interaction with a shock wave. The model shows that the flow stability is due to the restoring effect of the elastic force. It provides a simple approximate but still very accurate formula for the oscillation period. It also shows that as it is observed in numerical simulations, the amplitude oscillates around a mean value equal to the post-shock amplitude, and that this is a consequence of the stress free conditions of the material immediately after the shock interaction. Extensive numerical simulations are presented to validate the model results.

  15. Pit formation observed in a multilayer dielectric coating as a result of simulated space environmental exposure

    NASA Astrophysics Data System (ADS)

    Fuqua, Peter D.; Presser, Nathan; Barrie, James D.; Meshishnek, Michael J.; Coleman, Dianne J.

    2002-06-01

    Certain spaceborne telescope designs require that dielectric-coated lenses be exposed to the energetic electrons and protons associated with the space environment. Test coupons that were exposed to a simulated space environment showed extensive pitting as a result of dielectric breakdown. A typical pit was 50-100 mum at the surface and extended to the substrate material, in which a 10-mum-diameter melt region was found. Pitting was not observed on similar samples that had also been overcoated with a transparent conductive thin film. Measurement of the bidirectional reflectance distribution transfer function showed that pitting caused a fivefold to tenfold increase in the scattering of visible light.

  16. Fast animation of lightning using an adaptive mesh.

    PubMed

    Kim, Theodore; Lin, Ming C

    2007-01-01

    We present a fast method for simulating, animating, and rendering lightning using adaptive grids. The "dielectric breakdown model" is an elegant algorithm for electrical pattern formation that we extend to enable animation of lightning. The simulation can be slow, particularly in 3D, because it involves solving a large Poisson problem. Losasso et al. recently proposed an octree data structure for simulating water and smoke, and we show that this discretization can be applied to the problem of lightning simulation as well. However, implementing the incomplete Cholesky conjugate gradient (ICCG) solver for this problem can be daunting, so we provide an extensive discussion of implementation issues. ICCG solvers can usually be accelerated using "Eisenstat's trick," but the trick cannot be directly applied to the adaptive case. Fortunately, we show that an "almost incomplete Cholesky" factorization can be computed so that Eisenstat's trick can still be used. We then present a fast rendering method based on convolution that is competitive with Monte Carlo ray tracing but orders of magnitude faster, and we also show how to further improve the visual results using jittering.

  17. Freak waves in random oceanic sea states.

    PubMed

    Onorato, M; Osborne, A R; Serio, M; Bertone, S

    2001-06-18

    Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.

  18. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  19. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  20. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.; Mamaluy, D.; Cyr, E. C.

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less

  1. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    DOE PAGES

    Gao, X.; Mamaluy, D.; Cyr, E. C.; ...

    2016-05-10

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less

  2. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    PubMed Central

    Fan, Xiwei; Tang, Bo-Hui; Wu, Hua; Yan, Guangjian; Li, Zhao-Liang

    2015-01-01

    Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST) retrieval error of 11.0 K when using the generalized split-window (GSW) algorithm with a cirrus optical depth (COD) at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies. PMID:25928059

  3. An actuator extension transformation for a motion simulator and an inverse transformation applying Newton-Raphson's method

    NASA Technical Reports Server (NTRS)

    Dieudonne, J. E.

    1972-01-01

    A set of equations which transform position and angular orientation of the centroid of the payload platform of a six-degree-of-freedom motion simulator into extensions of the simulator's actuators has been derived and is based on a geometrical representation of the system. An iterative scheme, Newton-Raphson's method, has been successfully used in a real time environment in the calculation of the position and angular orientation of the centroid of the payload platform when the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by using only one Newton-Raphson iteration per integration step of the real time environment.

  4. Boat, wake, and wave real-time simulation

    NASA Astrophysics Data System (ADS)

    Świerkowski, Leszek; Gouthas, Efthimios; Christie, Chad L.; Williams, Owen M.

    2009-05-01

    We describe the extension of our real-time scene generation software VIRSuite to include the dynamic simulation of small boats and their wakes within an ocean environment. Extensive use has been made of the programmabilty available in the current generation of GPUs. We have demonstrated that real-time simulation is feasible, even including such complexities as dynamical calculation of the boat motion, wake generation and calculation of an FFTgenerated sea state.

  5. Quadriceps force during knee extension in different replacement scenarios with a modular partial prosthesis.

    PubMed

    Calliess, Tilman; Schado, Ssuheib; Richter, Berna I; Becher, Christoph; Ezechieli, Marco; Ostermeier, Sven

    2014-02-01

    Previous biomechanical studies have shown that bi-cruciate retaining knee replacement does not significantly alter normal knee kinematics, however, there are no data on the influence of a combined medial and patellofemoral bi-compartimental arthroplasty. The purpose of this in vitro study was to evaluate the effect of different replacement scenarios with a modular partial knee replacement system on the amount of quadriceps force required to extend the knee during an isokinetic extension cycle. Ten human knee specimens were tested in a kinematic knee simulator under (1) physiologic condition and after subsequent implantation of (2) a medial unicondylar and (3) a trochlear replacement. An isokinetic extension cycle of the knee with a constant extension moment of 31 Nm was simulated. The resulting quadriceps extension force was measured from 120° to full knee extension. The quadriceps force curve described a typically sinusoidal characteristic before and after each replacement scenario. The isolated medial replacement resulted in a slightly, but significantly higher maximum quadriceps force (1510 N vs. 1585 N, P = 0.006) as well as the subsequent trochlear replacement showed an additional increase (1801 N, P = 0.008). However, for both replacements no significant difference to the untreated condition could be detected in mid-flexion (10-50°). When considering a bi-compartimental replacement an increase of required maximum quadriceps force needed to extend the knee has to keep in mind. However, the close to physiological movement in mid-flexion suggests that patients with a bi-crutiate retaining arthroplasty might have an advantage in knee stability compared to total knee arthroplasty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Simulations of material mixing in laser-driven reshock experiments

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.

    2013-02-01

    We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.

  7. Promotion of cooperation by adaptive interaction: The role of heterogeneity in neighborhoods

    NASA Astrophysics Data System (ADS)

    Han, Xu; Zhao, Xiaowei; Xia, Haoxiang

    2018-07-01

    Evolution of cooperation in prisoner's dilemma games has been studied extensively in the past decades. Recent studies have investigated the effect of adaptive interaction intensity on spatial prisoner's dilemma, showing that if individuals can adjust their interaction intensity with each opponent at the same extent, cooperation can be promoted in a proper scale. However, the previous studies about adaptive interaction willingness do not consider the heterogeneity of the opponents. In this paper, a simulative model is developed to examine whether and how the interactive diversity influences cooperation in the spatial prisoner's dilemma games, in which individuals consider the corresponding behavior of different opponents. The simulation results show that the proposed mechanism can effectively promote cooperation, and the average payoff of the system can significantly be improved by high interaction intensity between cooperators. In addition, we also show four kinds of different individuals to analyze the evolution progresses. The simulations show that cooperators on the boundary decrease their interaction willingness, which makes the boundary defectors lose their opportunity to participate in the interaction and be invaded by cooperators.

  8. A model for growth of a single fungal hypha based on well-mixed tanks in series: simulation of nutrient and vesicle transport in aerial reproductive hyphae.

    PubMed

    Balmant, Wellington; Sugai-Guérios, Maura Harumi; Coradin, Juliana Hey; Krieger, Nadia; Furigo Junior, Agenor; Mitchell, David Alexander

    2015-01-01

    Current models that describe the extension of fungal hyphae and development of a mycelium either do not describe the role of vesicles in hyphal extension or do not correctly describe the experimentally observed profile for distribution of vesicles along the hypha. The present work uses the n-tanks-in-series approach to develop a model for hyphal extension that describes the intracellular transport of nutrient to a sub-apical zone where vesicles are formed and then transported to the tip, where tip extension occurs. The model was calibrated using experimental data from the literature for the extension of reproductive aerial hyphae of three different fungi, and was able to describe different profiles involving acceleration and deceleration of the extension rate. A sensitivity analysis showed that the supply of nutrient to the sub-apical vesicle-producing zone is a key factor influencing the rate of extension of the hypha. Although this model was used to describe the extension of a single reproductive aerial hypha, the use of the n-tanks-in-series approach to representing the hypha means that the model has the flexibility to be extended to describe the growth of other types of hyphae and the branching of hyphae to form a complete mycelium.

  9. Python-based geometry preparation and simulation visualization toolkits for STEPS

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2014-01-01

    STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754

  10. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  11. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    NASA Astrophysics Data System (ADS)

    España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M

    2009-03-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  12. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity.

  13. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  14. Radiographic diagnosis of sagittal plane rotational displacement in pelvic fractures: a cadaveric model and clinical case study.

    PubMed

    Shui, Xiaolong; Ying, Xiaozhou; Kong, Jianzhong; Feng, Yongzeng; Hu, Wei; Guo, Xiaoshan; Wang, Gang

    2015-08-01

    Our objective was to measure the sagittal plane rotational (flexion and extension) displacement of hemipelvis radiologically and analyze the ratio of flexion and extension displacement of unstable pelvic fractures. We used 8 cadaveric models to study the radiographic evidence of pelvic fractures in the sagittal plane. We performed pelvic osteotomy on 8 cadavers to simulate anterior and posterior pelvic ring injury. Radiological data were measured in the flexion and extension group under different angles (5°, 10°, 15°, 20°, and 25°). We retrospectively reviewed 164 patients who were diagnosed with a unilateral fracture of the pelvis. Pelvic ring displacement was identified and recorded radiographically in cadaveric models. The flexion and extension displacement of pelvic fractures was measured in terms of the vertical distance of fracture from the top of iliac crest to the pubic tubercle (CD) or from the top of iliac crest to the lowest point of ischial tuberosity (AB). Fifty-seven pelves showed flexion displacement and 15 showed extension displacement. Closed reduction including internal fixation and external fixation was successfully used in 141 cases (86.0 %). The success rates of closed reduction in flexion and extension displacement groups were 77 and 73 %, respectively, which were lower than in unstable pelvic ring fractures. The sagittal plane rotation (flexion and extension) displacement of pelvic fractures could be measured by special points and lines on the radiographs. Minimally invasive reduction should be based on clearly identified differences between the sagittal plane rotation and the vertical displacement of pelvic fractures.

  15. A novel approach to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system

    NASA Astrophysics Data System (ADS)

    Jain, Anuj Kumar; Rastogi, Vikas; Agrawal, Atul Kumar

    2018-01-01

    The main focus of this paper is to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system through extended Lagrangian formalism, where symmetries are broken in terms of the rotor stiffness. The complete insight of dynamic behaviour of multi-rotor-system with asymmetries is evaluated through extension of Lagrangian equation with a case study. In this work, a dynamic mathematical model of a multi-rotor-system through a novel approach of extension of Lagrangian mechanics is developed, where the system is having asymmetries due to varying stiffness. The amplitude and the natural frequency of the rotor are obtained analytically through the proposed methodology. The bond graph modeling technique is used for modeling the asymmetric rotor. Symbol-shakti® software is used for the simulation of the model. The effects of the stiffness of multi-rotor-system on amplitude and frequencies are studied using numerical simulation. Simulation results show a considerable agreement with the theoretical results obtained through extended Lagrangian formalism. It is further shown that amplitude of the rotor increases inversely the stiffness of the rotor up to a certain limit, which is also affirmed theoretically.

  16. Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments.

    PubMed

    Symeonidis, Vasileios; Em Karniadakis, George; Caswell, Bruce

    2005-08-12

    Dissipative particle dynamics simulations of several bead-spring representations of polymer chains in dilute solution are used to demonstrate the correct static scaling laws for the radius of gyration. Shear flow results for the wormlike chain simulating single DNA molecules compare well with average extensions from experiments, irrespective of the number of beads. However, coarse graining with more than a few beads degrades the agreement of the autocorrelation of the extension.

  17. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    PubMed

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  18. 3D numerical simulations of multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.

  19. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  20. Skylab

    NASA Image and Video Library

    1973-05-01

    This photograph was taken in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) during the testing of an emergency procedure to deploy a twin-pole sunshade to protect the orbiting workshop from overheating due to the loss of its thermal shield. The spacecraft suffered damage to its sunshield during its launch on May 14, 1973. This photograph shows the base plate used to hold the twin-pole in place, the bag to hold the fabric sail, and the lines that were used to draw the sail into place. Extensive testing and many hours of practice in simulators, such as the NBS, helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.

  1. About increase of the large transvere momentum processes fraction in hA interactions at energies 5.10(14) - 10(16) eV according to the data on E.A.S. hadrons

    NASA Technical Reports Server (NTRS)

    Danilova, T. V.; Dubovy, A. G.; Erlykin, A. D.; Nesterova, N. M.; Chubenko, A. P.

    1985-01-01

    The lateral distributions of extensive air showers (EAS) hadrons obtained at Tien-Shan array are compared with the simulations. The simulation data have been treated in the same way as experimental data, including the recording method. The comparison shows that the experimental hadron lateral distributions are wider than simulated ones. On the base of this result the conclusion is drawn that the fraction of processes with large p (perpendicular) increases in hadron-air interactions at energies 5 x 10 to the 14 to 10 to the 16 eV compared with accelerator data in p-p interactions at lower energies.

  2. Study of the Time Response of a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Simani, S.; Alvisi, S.; Venturini, M.

    2014-12-01

    This paper addresses the design of an advanced control strategy for a typical hydroelectric dynamic process, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solution, the proposed methodology relies on an adaptive control designed by means of the on-line identification of the system model under monitoring. Extensive simulations and comparison with respect to a classic hydraulic turbine speed PID regulator show the effectiveness of the proposed modelling and control tools.

  3. Influence of Scattering on Ballistic Nanotransistor Design

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Svizhenko, Alexei; Biegel, Bryan, A. (Technical Monitor)

    2002-01-01

    Importance of this work: (1) This is the first work to model electron-phonon scattering within a quantum mechanical approach to nanotransistors. The simulations use the non equilibrium Green's function method. (2) A simple equation which captures the importance of scattering as a function of the spatial location from source to drain is presented. This equation helps interpret the numerical simulations. (3) We show that the resistance per unit length in the source side is much larger than in the drain side. Thus making scattering in the source side of the device much more important than scattering in the drain side. Numerical estimates of ballisticity for 10nm channel length devices in the presence of of electron-phonon scattering are given. Based on these calculations, we propose that to achieve a larger on-current in nanotransistors, it is crucial to keep the highly doped source extension region extremely small, even if this is at the cost of making the highly doped drain extension region longer.

  4. Performance of laminar-flow leading-edge test articles in cloud encounters

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.

    1987-01-01

    An extensive data bank of concurrent measurements of laminar flow (LF), particle concentration, and aircraft charging state was gathered for the first time. From this data bank, 13 flights in the simulated airline service (SAS) portion were analyzed to date. A total of 6.86 hours of data at one-second resolution were analyzed. An extensive statistical analysis, for both leading-edge test articles, shows that there is a significant effect of cloud and haze particles on the extent of laminar flow obtained. Approximately 93 percent of data points simulating LFC flight were obtained in clear air conditions; approximately 7 percent were obtained in cloud and haze. These percentages are consistent with earlier USAF and NASA estimates and results. The Hall laminar flow loss criteria was verified qualitatively. Larger particles and higher particle concentrations have a more marked effect on LF than do small particles. A particle spectrometer of a charging patch are both acceptable as diagnostic indicators of the presence of particles detrimental to laminar flow.

  5. Hybrid thermal link-wise artificial compressibility method

    NASA Astrophysics Data System (ADS)

    Obrecht, Christian; Kuznik, Frédéric

    2015-10-01

    Thermal flow prediction is a subject of interest from a scientific and engineering points of view. Our motivation is to develop an accurate, easy to implement and highly scalable method for convective flows simulation. To this end, we present an extension to the link-wise artificial compressibility method (LW-ACM) for thermal simulation of weakly compressible flows. The novel hybrid formulation uses second-order finite difference operators of the energy equation based on the same stencils as the LW-ACM. For validation purposes, the differentially heated cubic cavity was simulated. The simulations remained stable for Rayleigh numbers up to Ra =108. The Nusselt numbers at isothermal walls and dynamics quantities are in good agreement with reference values from the literature. Our results show that the hybrid thermal LW-ACM is an effective and easy-to-use solution to solve convective flows.

  6. The Resource Usage Aware Backfilling

    NASA Astrophysics Data System (ADS)

    Guim, Francesc; Rodero, Ivan; Corbalan, Julita

    Job scheduling policies for HPC centers have been extensively studied in the last few years, especially backfilling based policies. Almost all of these studies have been done using simulation tools. All the existent simulators use the runtime (either estimated or real) provided in the workload as a basis of their simulations. In our previous work we analyzed the impact on system performance of considering the resource sharing (memory bandwidth) of running jobs including a new resource model in the Alvio simulator. Based on this studies we proposed the LessConsume and LessConsume Threshold resource selection policies. Both are oriented to reduce the saturation of the shared resources thus increasing the performance of the system. The results showed how both resource allocation policies shown how the performance of the system can be improved by considering where the jobs are finally allocated.

  7. An empirical potential for simulating vacancy clusters in tungsten.

    PubMed

    Mason, D R; Nguyen-Manh, D; Becquart, C S

    2017-12-20

    We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-energy defect structures and formation energies with high accuracy. A significant difference to other popular embedded-atom empirical potentials for tungsten is the correct prediction of surface energies. Interstitial properties and short-range pairwise behaviour remain similar to the Ackford-Thetford potential on which it is based, making this potential well-suited to simulations of microstructural evolution following irradiation damage cascades. Using atomistic kinetic Monte Carlo simulations, we predict vacancy cluster dissociation in the range 1100-1300 K, the temperature range generally associated with stage IV recovery.

  8. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    USGS Publications Warehouse

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  9. SiMon: Simulation Monitor for Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  10. New theory for crack-tip twinning in fcc metals

    NASA Astrophysics Data System (ADS)

    Andric, Predrag; Curtin, W. A.

    2018-04-01

    Dislocation emission from a crack tip is a necessary mechanism for crack tip blunting and toughening. In fcc metals under Mode I loading, a first partial dislocation is emitted, followed either by a trailing partial dislocation ("ductile" behaviour) or a twinning partial dislocation ("quasi-brittle"). The twinning tendency is usually estimated using the Tadmor and Hai extension of the Rice theory. Extensive molecular statics simulations reveal that the predictions of the critical stress intensity factor for crack tip twinning are always systematically lower (20-35%) than observed. Analyses of the energy change during nucleation reveal that twin partial emission is not accompanied by creation of a surface step while emission of the trailing partial creates a step. The absence of the step during twinning motivates a modified model for twinning nucleation that accounts for the fact that nucleation does not occur directly at the crack tip. Predictions of the modified theory are in excellent agreement with all simulations that show twinning. Emission of the trailing partial dislocation, including the step creation, is predicted using a model recently introduced to accurately predict the first partial emission and shows why twinning is preferred. A second mode of twinning is found wherein the crack first advances by cleavage and then emits the twinning partial at the new crack tip; this mode dominates for emission beyond the first twinning partial. These new theories resolve all the discrepancies between the Tadmor twinning analysis and simulations, and have various implications for fracture behaviour and transitions.

  11. Climate Envelope Modeling and Dispersal Simulations Show Little Risk of Range Extension of the Shipworm, Teredo navalis (L.), in the Baltic Sea

    PubMed Central

    Appelqvist, Christin; Al-Hamdani, Zyad K.; Jonsson, Per R.; Havenhand, Jon N.

    2015-01-01

    The shipworm, Teredo navalis, is absent from most of the Baltic Sea. In the last 20 years, increased frequency of T. navalis has been reported along the southern Baltic Sea coasts of Denmark, Germany, and Sweden, indicating possible range-extensions into previously unoccupied areas. We evaluated the effects of historical and projected near-future changes in salinity, temperature, and oxygen on the risk of spread of T. navalis in the Baltic. Specifically, we developed a simple, GIS-based, mechanistic climate envelope model to predict the spatial distribution of favourable conditions for adult reproduction and larval metamorphosis of T. navalis, based on published environmental tolerances to these factors. In addition, we used a high-resolution three-dimensional hydrographic model to simulate the probability of spread of T. navalis larvae within the study area. Climate envelope modeling showed that projected near-future climate change is not likely to change the overall distribution of T. navalis in the region, but will prolong the breeding season and increase the risk of shipworm establishment at the margins of the current range. Dispersal simulations indicated that the majority of larvae were philopatric, but those that spread over a wider area typically spread to areas unfavourable for their survival. Overall, therefore, we found no substantive evidence for climate-change related shifts in the distribution of T. navalis in the Baltic Sea, and no evidence for increased risk of spread in the near-future. PMID:25768305

  12. Synthesis of generalized surface plasmon beams

    NASA Astrophysics Data System (ADS)

    Martinez-Niconoff, G.; Munoz-Lopez, J.; Martinez-Vara, P.

    2009-08-01

    Surface plasmon modes can be considered as the analogous to plane waves for homogeneous media. The extension to partially coherent surface plasmon beams is obtained by means of the incoherent superposition of the interference between surface plasmon modes whose profile is controlled associating a probability density function to the structural parameters implicit in their representation. We show computational simulations for cosine, Bessel, gaussian and dark hollow surface plasmon beams.

  13. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling.

    PubMed

    Rauscher, Sarah; Neale, Chris; Pomès, Régis

    2009-10-13

    Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.

  14. Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II

    Treesearch

    Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard

    2009-01-01

    Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...

  15. Three Dimensional Hybrid Simulations of Super-Alfvénic Laser Ablation Experiments in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph

    2014-10-01

    We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.

  16. Effects of the Extended Water Retention Curve on Coupled Heat and Water Transport in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Mohanty, B.

    2017-12-01

    Understanding and simulating coupled heat and water transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere. The theory of Philip and de Vries (1957) and its extensions (de Vries, 1958; Milly, 1982), although physically incomplete, are still adopted successfully to describe the coupled heat and water movement in field soils. However, the adsorptive water retention, which was ignored in Philip and de Vries theory and its extensions for characterizing soil hydraulic parameters, was shown to be non-negligible for soil moisture and evaporation flux calculation in dry field soils based on a recent synthetic analysis (Mohanty and Yang, 2013). In this study, we attempt to comprehensively investigate the effects of full range water retention curve on coupled heat and water transport simulation with a focus on soil moisture content, temperature and soil evaporative flux, based on two synthetic (sand and loam) and two field sites (Riverside, California and Audubon, Arizona) analysis. The results of synthetic sand and loam numerical modeling showed that when neglecting the adsorptive water retention, the resulting simulated soil water content would be larger, and the evaporative flux would be lower, respectively, compared to that obtained by the full range water retention curve mode. The simulated temperature did not show significant difference with or without accounting for adsorptive water retention. The evaporation underestimation when neglecting the adsorptive water retention is mainly caused by isothermal hydraulic conductivity underprediction. These synthetic findings were further corroborated by the Audubon, Arizona field site experimental results. The results from Riverside, California field experimental site showed that the soil surface can reach very dry status, although the soil profile below the drying front is not dry, which also to some extent justifies the necessity of employing full range water retention function in such generally not quite dry scenarios.

  17. Comparative study on gene set and pathway topology-based enrichment methods.

    PubMed

    Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim

    2015-10-22

    Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.

  18. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    NASA Astrophysics Data System (ADS)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  19. Bifurcation of the Kuroshio Extension at the Shatsky Rise

    NASA Astrophysics Data System (ADS)

    Hurlburt, Harley E.; Metzger, E. Joseph

    1998-04-01

    A 1/16° six-layer Pacific Ocean model north of 20°S is used to investigate the bifurcation of the Kuroshio Extension at the main Shatsky Rise and the pathway of the northern branch from the bifurcation to the subarctic front. Upper ocean-topographic coupling via a mixed barotropic-baroclinic instability is essential to this bifurcation and to the formation and mean pathway of the northern branch as are several aspects of the Shatsky Rise complex of topography and the latitude of the Kuroshio Extension in relation to the topography. The flow instabilities transfer energy to the abyssal layer where it is constrained by geostrophic contours of the bottom topography. The topographically constrained abyssal currents in turn steer upper ocean currents, which do not directly impinge on the bottom topography. This includes steering of mean pathways. Obtaining sufficient coupling requires very fine resolution of mesoscale variability and sufficient eastward penetration of the Kuroshio as an unstable inertial jet. Resolution of 1/8° for each variable was not sufficient in this case. The latitudinal extent of the main Shatsky Rise (31°N-36°N) and the shape of the downward slope on the north side are crucial to the bifurcation at the main Shatsky Rise, with both branches passing north of the peak. The well-defined, relatively steep and straight eastern edge of the Shatsky Rise topographic complex (30°N-42°N) and the southwestward abyssal flow along it play a critical role in forming the rest of the Kuroshio northern branch which flows in the opposite direction. A deep pass between the main Shatsky Rise and the rest of the ridge to the northeast helps to link the northern fork of the bifurcation at the main rise to the rest of the northern branch. Two 1/16° "identical twin" interannual simulations forced by daily winds 1981-1995 show that the variability in this region is mostly nondeterministic on all timescales that could be examined (up to 7 years in these 15-year simulations). A comparison of climatologically forced and interannual simulations over the region 150°E-180°E, 29°N-47°N showed greatly enhanced abyssal and upper ocean eddy kinetic energy and much stronger mean abyssal currents east of the Emperor Seamount Chain (about 170°E) in the interannual simulations but little difference west of 170°E. This greatly enhanced the upper ocean-topographic coupling in the interannual simulations east of 170°E. This coupling affected the latitudinal positioning of the eastward branches of the Kuroshio Extension and tended to reduce latitudinal movement compared to the climatologically forced simulation, including a particularly noticeable impact from the Hess Rise. Especially in the interannual simulations, effects of almost all topographic features in the region could be seen in the mean upper ocean currents (more so than in instantaneous currents), including meanders and bifurcations of major and minor currents, closed circulations, and impacts from depressions and rises of large and small amplitudes.

  20. Stable lattice Boltzmann model for Maxwell equations in media

    NASA Astrophysics Data System (ADS)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  1. Tempest simulations of kinetic GAM mode and neoclassical turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dimits, A. M.

    2007-11-01

    TEMPEST is a nonlinear five dimensional (3d2v) gyrokinetic continuum code for studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry. The 4D TEMPEST code correctly produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons in homogeneous plasmas. For large q=4 to 9, the Tempest simulations show that a series of resonance at higher harmonics v||=φGqR0/n with n=4 become effective. The TEMPEST simulation also shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual with neoclassical transport, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude. Our 5D gyrokinetic code is built on 4D Tempest neoclassical code with extension to a fifth dimension in toroidal direction and with 3D domain decompositions. Progress on performing 5D neoclassical turbulence simulations will be reported.

  2. NEVESIM: event-driven neural simulation framework with a Python interface.

    PubMed

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.

  3. NEVESIM: event-driven neural simulation framework with a Python interface

    PubMed Central

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291

  4. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.

  5. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components. PMID:22242154

  6. A Model for Growth of a Single Fungal Hypha Based on Well-Mixed Tanks in Series: Simulation of Nutrient and Vesicle Transport in Aerial Reproductive Hyphae

    PubMed Central

    Balmant, Wellington; Sugai-Guérios, Maura Harumi; Coradin, Juliana Hey; Krieger, Nadia; Furigo Junior, Agenor; Mitchell, David Alexander

    2015-01-01

    Current models that describe the extension of fungal hyphae and development of a mycelium either do not describe the role of vesicles in hyphal extension or do not correctly describe the experimentally observed profile for distribution of vesicles along the hypha. The present work uses the n-tanks-in-series approach to develop a model for hyphal extension that describes the intracellular transport of nutrient to a sub-apical zone where vesicles are formed and then transported to the tip, where tip extension occurs. The model was calibrated using experimental data from the literature for the extension of reproductive aerial hyphae of three different fungi, and was able to describe different profiles involving acceleration and deceleration of the extension rate. A sensitivity analysis showed that the supply of nutrient to the sub-apical vesicle-producing zone is a key factor influencing the rate of extension of the hypha. Although this model was used to describe the extension of a single reproductive aerial hypha, the use of the n-tanks-in-series approach to representing the hypha means that the model has the flexibility to be extended to describe the growth of other types of hyphae and the branching of hyphae to form a complete mycelium. PMID:25785863

  7. Fatigue reassessment for lifetime extension of offshore wind monopile substructures

    NASA Astrophysics Data System (ADS)

    Ziegler, Lisa; Muskulus, Michael

    2016-09-01

    Fatigue reassessment is required to decide about lifetime extension of aging offshore wind farms. This paper presents a methodology to identify important parameters to monitor during the operational phase of offshore wind turbines. An elementary effects method is applied to analyze the global sensitivity of residual fatigue lifetimes to environmental, structural and operational parameters. Therefore, renewed lifetime simulations are performed for a case study which consists of a 5 MW turbine with monopile substructure in 20 m water depth. Results show that corrosion, turbine availability, and turbulence intensity are the most influential parameters. This can vary strongly for other settings (water depth, turbine size, etc.) making case-specific assessments necessary.

  8. Consequences of increased longevity for wealth, fertility, and population growth

    NASA Astrophysics Data System (ADS)

    Bogojević, A.; Balaž, A.; Karapandža, R.

    2008-01-01

    We present, solve and numerically simulate a simple model that describes the consequences of increased longevity for fertility rates, population growth and the distribution of wealth in developed societies. We look at the consequences of the repeated use of life extension techniques and show that they represent a novel commodity whose introduction will profoundly influence key aspects of the economy and society in general. In particular, we uncover two phases within our simplified model, labeled as ‘mortal’ and ‘immortal’. Within the life extension scenario it is possible to have sustainable economic growth in a population of stable size, as a result of dynamical equilibrium between the two phases.

  9. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  10. Transition from coherence to bistability in a model of financial markets

    NASA Astrophysics Data System (ADS)

    D'Hulst, R.; Rodgers, G. J.

    2001-04-01

    We present a model describing the competition between information transmission and decision making in financial markets. The solution of this simple model is recalled, and possible variations discussed. It is shown numerically that despite its simplicity, it can mimic a size effect comparable to a crash localized in time. Two extensions of this model are presented that allow to simulate the demand process. One of these extensions has a coherent stable equilibrium and is self-organized, while the other has a bistable equilibrium, with a spontaneous segregation of the population of agents. A new model is introduced to generate a transition between those two equilibriums. We show that the coherent state is dominant up to an equal mixing of the two extensions. We focus our attention on the microscopic structure of the investment rate, which is the main parameter of the original model. A constant investment rate seems to be a very good approximation.

  11. Simulability of observables in general probabilistic theories

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.; Heinosaari, Teiko; Leppäjärvi, Leevi

    2018-06-01

    The existence of incompatibility is one of the most fundamental features of quantum theory and can be found at the core of many of the theory's distinguishing features, such as Bell inequality violations and the no-broadcasting theorem. A scheme for obtaining new observables from existing ones via classical operations, the so-called simulation of observables, has led to an extension of the notion of compatibility for measurements. We consider the simulation of observables within the operational framework of general probabilistic theories and introduce the concept of simulation irreducibility. While a simulation irreducible observable can only be simulated by itself, we show that any observable can be simulated by simulation irreducible observables, which in the quantum case correspond to extreme rank-1 positive-operator-valued measures. We also consider cases where the set of simulators is restricted in one of two ways: in terms of either the number of simulating observables or their number of outcomes. The former is seen to be closely connected to compatibility and k compatibility, whereas the latter leads to a partial characterization for dichotomic observables. In addition to the quantum case, we further demonstrate these concepts in state spaces described by regular polygons.

  12. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit.

    PubMed

    Bernal, M A; Bordage, M C; Brown, J M C; Davídková, M; Delage, E; El Bitar, Z; Enger, S A; Francis, Z; Guatelli, S; Ivanchenko, V N; Karamitros, M; Kyriakou, I; Maigne, L; Meylan, S; Murakami, K; Okada, S; Payno, H; Perrot, Y; Petrovic, I; Pham, Q T; Ristic-Fira, A; Sasaki, T; Štěpán, V; Tran, H N; Villagrasa, C; Incerti, S

    2015-12-01

    Understanding the fundamental mechanisms involved in the induction of biological damage by ionizing radiation remains a major challenge of today's radiobiology research. The Monte Carlo simulation of physical, physicochemical and chemical processes involved may provide a powerful tool for the simulation of early damage induction. The Geant4-DNA extension of the general purpose Monte Carlo Geant4 simulation toolkit aims to provide the scientific community with an open source access platform for the mechanistic simulation of such early damage. This paper presents the most recent review of the Geant4-DNA extension, as available to Geant4 users since June 2015 (release 10.2 Beta). In particular, the review includes the description of new physical models for the description of electron elastic and inelastic interactions in liquid water, as well as new examples dedicated to the simulation of physicochemical and chemical stages of water radiolysis. Several implementations of geometrical models of biological targets are presented as well, and the list of Geant4-DNA examples is described. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Payload crew training complex simulation engineer's handbook

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1984-01-01

    The Simulation Engineer's Handbook is a guide for new engineers assigned to Experiment Simulation and a reference for engineers previously assigned. The experiment simulation process, development of experiment simulator requirements, development of experiment simulator hardware and software, and the verification of experiment simulators are discussed. The training required for experiment simulation is extensive and is only referenced in the handbook.

  14. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  15. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  17. Finite element modeling of mitral leaflet tissue using a layered shell approximation

    PubMed Central

    Ratcliffe, Mark B.; Guccione, Julius M.

    2012-01-01

    The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an existing anisotropic constitutive law from literature. Then, the concept is implemented in a finite element (FE) model by overlapping and merging two layers of transversely isotropic membrane elements in LS-DYNA, which homogenizes the response. The FE model is then used to simulate various biaxial extension tests and out-of-plane pressure loading. Both the analytical and FE model show good agreement with experimental biaxial extension data, and show good mutual agreement. This confirms that the layered composite approximation presented in the current study is able to capture the exponential stiffening seen in both the circumferential and radial directions of mitral leaflets. PMID:22971896

  18. S-192 analysis: Conventional and special data processing techniques. [Michigan

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Morganstern, J.; Cicone, R.; Sarno, J.; Lambeck, P.; Malila, W.

    1975-01-01

    The author has identified the following significant results. Multispectral scanner data gathered over test sites in southeast Michigan were analyzed. This analysis showed the data to be somewhat deficient especially in terms of the limited signal range in most SDOs and also in regard to SDO-SDO misregistration. Further analysis showed that the scan line straightening algorithm increased the misregistration of the data. Data were processed using the conic format. The effects of such misregistration on classification accuracy was analyzed via simulation and found to be significant. Results of employing conventional as well as special, unresolved object, processing techniques were disappointing due, at least in part, to the limited signal range and noise content of the data. Application of a second class of special processing techniques, signature extension techniques, yielded better results. Two of the more basic signature extension techniques seemed to be useful in spite of the difficulties.

  19. Time domain simulations of preliminary breakdown pulses in natural lightning.

    PubMed

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  20. Time domain simulations of preliminary breakdown pulses in natural lightning

    PubMed Central

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-01-01

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Key Points Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations PMID:26664815

  1. Universality of (2+1)-dimensional restricted solid-on-solid models

    NASA Astrophysics Data System (ADS)

    Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle

    2016-08-01

    Extensive dynamical simulations of restricted solid-on-solid models in D =2 +1 dimensions have been done using parallel multisurface algorithms implemented on graphics cards. Numerical evidence is presented that these models exhibit Kardar-Parisi-Zhang surface growth scaling, irrespective of the step heights N . We show that by increasing N the corrections to scaling increase, thus smaller step-sized models describe better the asymptotic, long-wave-scaling behavior.

  2. Numerical Experiments Investigating the Source of Explosion S-Waves

    DTIC Science & Technology

    2007-09-01

    simulations in this study are based on the well-recorded 1993 Nonproliferation experiment (NPE) ( chemical kiloton). A regional 3-dimensional model...1-kiloton chemical explosion at the NTS. NPE details and research reports can be found in Denny and Stull (1994). Figure 3 shows the extensive...T., D. Helmberger, and G. Engen (1985). Evidence for tectonic release from underground nuclear explosions in long period S waves, Bull. Seismol. Soc

  3. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  4. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  5. An object oriented Python interface for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  6. Hierarchical Testing with Automated Document Generation for Amanzi, ASCEM's Subsurface Flow and Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.

    2013-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).

  7. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    NASA Astrophysics Data System (ADS)

    Pan, Juyi; Qin, Ming; Chen, Songying

    FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress-strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10-3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3-43.4 MPa. The maximum value of stress-strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10-4. On the crack tip, the stress changed as 32.24-40.16 MPa, the strain is at 1.292 × 10-4-1.897 × 10-4.

  8. Ultra-high resolution electron microscopy

    DOE PAGES

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed tomore » describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.« less

  9. Topographica: Building and Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or NEURON Components

    PubMed Central

    Bednar, James A.

    2008-01-01

    Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement) to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate. PMID:19352443

  10. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  11. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044

  12. Live tree carbon stock equivalence of fire and fuels extension to the Forest Vegetation Simulator and Forest Inventory and Analysis approaches

    Treesearch

    James E. Smith; Coeli M. Hoover

    2017-01-01

    The carbon reports in the Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) provide two alternate approaches to carbon estimates for live trees (Rebain 2010). These are (1) the FFE biomass algorithms, which are volumebased biomass equations, and (2) the Jenkins allometric equations (Jenkins and others 2003), which are diameter based. Here, we...

  13. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    NASA Astrophysics Data System (ADS)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; Kalinkin, Alexander A.

    2017-02-01

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, which is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,'bottom-up' and 'top-down', are illustrated. Preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.

  14. A Simulation Analysis of an Extension of One-Dimensional Speckle Correlation Method for Detection of General In-Plane Translation

    PubMed Central

    Hrabovský, Miroslav

    2014-01-01

    The purpose of the study is to show a proposal of an extension of a one-dimensional speckle correlation method, which is primarily intended for determination of one-dimensional object's translation, for detection of general in-plane object's translation. In that view, a numerical simulation of a displacement of the speckle field as a consequence of general in-plane object's translation is presented. The translation components a x and a y representing the projections of a vector a of the object's displacement onto both x- and y-axes in the object plane (x, y) are evaluated separately by means of the extended one-dimensional speckle correlation method. Moreover, one can perform a distinct optimization of the method by reduction of intensity values representing detected speckle patterns. The theoretical relations between the translation components a x and a y of the object and the displacement of the speckle pattern for selected geometrical arrangement are mentioned and used for the testifying of the proposed method's rightness. PMID:24592180

  15. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1990-02-01

    semiconductors at the samefrequency. Large-signal computer simulations show that diamond IMPATTs can operate at 35 GHZ with 8.26 W, at 60 GHz producing...been the most extensively utilized substrates to date. Submitted to -Proceedings of NATO Advanced Rc.carch Wwkshop on the Physics and Chemitry of...backscatter configuration using 514.5nm I Ar ion laser radiation. The scattered light was dispersed with a computer controlled triple monochromator and

  16. Unipolar distributions of junctional Myosin II identify cell stripe boundaries that drive cell intercalation throughout Drosophila axis extension

    PubMed Central

    Tetley, Robert J; Blanchard, Guy B; Fletcher, Alexander G; Adams, Richard J; Sanson, Bénédicte

    2016-01-01

    Convergence and extension movements elongate tissues during development. Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental boundaries and two further boundaries within each parasegment, concomitant with a doubling of cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation, behaving as mechanical barriers and providing a mechanism for how cells remain ordered during GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling, suggesting pair-rule gene control. Our results are consistent with recent work showing that a combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for Myosin II polarization that we tested in a vertex-based simulation. DOI: http://dx.doi.org/10.7554/eLife.12094.001 PMID:27183005

  17. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills.

    PubMed

    van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J

    2011-01-01

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.

  18. Electromagnetic panel deployment and retraction using the geomagnetic field in LEO satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka

    2015-12-01

    Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.

  19. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  20. Effects of including surface depressions in the application of the Precipitation-Runoff Modeling System in the Upper Flint River Basin, Georgia

    USGS Publications Warehouse

    Viger, Roland J.; Hay, Lauren E.; Jones, John W.; Buell, Gary R.

    2010-01-01

    This report documents an extension of the Precipitation Runoff Modeling System that accounts for the effect of a large number of water-holding depressions in the land surface on the hydrologic response of a basin. Several techniques for developing the inputs needed by this extension also are presented. These techniques include the delineation of the surface depressions, the generation of volume estimates for the surface depressions, and the derivation of model parameters required to describe these surface depressions. This extension is valuable for applications in basins where surface depressions are too small or numerous to conveniently model as discrete spatial units, but where the aggregated storage capacity of these units is large enough to have a substantial effect on streamflow. In addition, this report documents several new model concepts that were evaluated in conjunction with the depression storage functionality, including: ?hydrologically effective? imperviousness, rates of hydraulic conductivity, and daily streamflow routing. All of these techniques are demonstrated as part of an application in the Upper Flint River Basin, Georgia. Simulated solar radiation, potential evapotranspiration, and water balances match observations well, with small errors for the first two simulated data in June and August because of differences in temperatures from the calibration and evaluation periods for those months. Daily runoff simulations show increasing accuracy with streamflow and a good fit overall. Including surface depression storage in the model has the effect of decreasing daily streamflow for all but the lowest flow values. The report discusses the choices and resultant effects involved in delineating and parameterizing these features. The remaining enhancements to the model and its application provide a more realistic description of basin geography and hydrology that serve to constrain the calibration process to more physically realistic parameter values.

  1. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  2. Design and evaluation of a DAMQ multiprocessor network with self-compacting buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; O`Krafka, B.W.O.; Vassiliadis, S.

    1994-12-31

    This paper describes a new approach to implement Dynamically Allocated Multi-Queue (DAMQ) switching elements using a technique called ``self-compacting buffers``. This technique is efficient in that the amount of hardware required to manage the buffers is relatively small; it offers high performance since it is an implementation of a DAMQ. The first part of this paper describes the self-compacting buffer architecture in detail, and compares it against a competing DAMQ switch design. The second part presents extensive simulation results comparing the performance of a self compacting buffer switch against an ideal switch including several examples of k-ary n-cubes and deltamore » networks. In addition, simulation results show how the performance of an entire network can be quickly and accurately approximated by simulating just a single switching element.« less

  3. Simulation of effect of anti-radar stealth principle

    NASA Astrophysics Data System (ADS)

    Zhao, Borao; Xing, Shuchen; Li, Chunyi

    1988-02-01

    The paper presents simulation methods and results of the anti-radar stealth principle, proving that anti-radar stealth aircraft can drastically reduce the combat efficiency of an air defense radar system. In particular, when anti-radar stealth aircraft are coordinated with jamming as a self-defense soft weapon, the discovery probability, response time and hit rate of the air defense radar system are much lower, with extensive reduction in jamming power and maximum exposure distance of self-defense and long-range support. The paper describes an assumed combat situation and construction of a calculation model for the aircraft survival rate, as well as simulation results and analysis. Four figures show an enemy bomber attacking an airfield, as well as the effects of the radar effective reflecting surface on discovery probability, guidance radius, aircraft survival and exposure distance (for long-range support and jamming).

  4. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    PubMed

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  5. Effect of suspension kinematic on 14 DOF vehicle model

    NASA Astrophysics Data System (ADS)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  6. Extensible Adaptable Simulation Systems: Supporting Multiple Fidelity Simulations in a Common Environment

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.

  7. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  8. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  9. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  10. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.; Parris, B. L.

    1980-01-01

    Data are presented that show the effects of motion system cues, g-seat cues, and pilot experience on pilot performance during takeoffs with engine failures, during in-flight precision turns, and during landings with wind shear. Eight groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The basic cueing system was a fixed-base type (no-motion cueing) with visual cueing. The other three systems were produced by the presence of either a motion system or a g-seat, or both. Extensive statistical analysis of the data was performed and representative performance means were examined. These data show that the addition of motion system cueing results in significant improvement in pilot performance for all three tasks; however, the use of g-seat cueing, either alone or in conjunction with the motion system, provides little if any performance improvement for these tasks and for this aircraft type.

  11. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  12. Incorporating inertia into multiagent systems

    NASA Astrophysics Data System (ADS)

    Man, W. C.; Chau, H. F.

    2006-03-01

    We consider a model that demonstrates the crucial role of inertia and stickiness in multiagent systems, based on the minority game. The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity toward changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.

  13. Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments †

    PubMed Central

    Guerra, Edmundo

    2018-01-01

    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation. PMID:29701722

  14. Wake Vortex Transport in Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2000-01-01

    A sensitivity study for aircraft wake vortex transport has been conducted using a validated large eddy simulation (LES) model. The study assumes neutrally stratified and nonturbulent environments and includes the consequences of the ground. The numerical results show that the nondimensional lateral transport is primarily influenced by the magnitude of the ambient crosswind and is insensitive to aircraft type. In most of the simulations, the ground effect extends the lateral position of the downwind vortex about one initial vortex spacing (b(sub o)) in the downstream direction. Further extension by as much as one b(sub o) occurs when the downwind vortex remains 'in ground effect' (IGE) for relatively long periods of time. Results also show that a layer-averaged ambient wind velocity can be used to bound the time for lateral transport of wake vortices to insure safe operations on a parallel runway.

  15. Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments.

    PubMed

    Trujillo, Juan-Carlos; Munguia, Rodrigo; Guerra, Edmundo; Grau, Antoni

    2018-04-26

    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.

  16. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic.

    PubMed

    Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan

    2015-01-01

    Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.

  17. A penalized framework for distributed lag non-linear models.

    PubMed

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  18. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.

    PubMed

    Guo, Tian; Cibin, Raj; Chaubey, Indrajeet; Gitau, Margaret; Arnold, Jeffrey G; Srinivasan, Raghavan; Kiniry, James R; Engel, Bernard A

    2018-02-01

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. Simulated results from bioenergy crop scenarios were compared with those from the baseline. The results showed that simulated annual crop yields were similar to observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (3.74Mg/ha/yr) with Miscanthus production on highly erodible areas and marginal land (17.49Mg/ha/yr) provided the highest biofeedstock production (279,000Mg/yr). Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of bioenergy crops on highly erodible areas and marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment and nutrient losses under corn stover removal could be offset with the combination of other bioenergy crops. Potential areas for bioenergy crop production when meeting the criteria above were small (10.88km 2 ), thus the ability to produce biomass and improve water quality was not substantial. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Revealing electronic open quantum systems with subsystem TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtal, Alisa, E-mail: alisa.krishtal@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustratemore » the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.« less

  20. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  1. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  2. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  3. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  4. Investigation in Simulated Vertical Descent of the Characteristics of a Cargo-Dropping Device having Extensible Rotating Blades

    NASA Technical Reports Server (NTRS)

    Stone, Ralph W., Jr.; Hultz, Burton E.

    1949-01-01

    The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.

  5. A parallel simulated annealing algorithm for standard cell placement on a hypercube computer

    NASA Technical Reports Server (NTRS)

    Jones, Mark Howard

    1987-01-01

    A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.

  6. The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk

    DOE PAGES

    Li, Shengtai; Li, Hui

    2016-05-31

    Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less

  7. A new coarse-grained model for E. coli cytoplasm: accurate calculation of the diffusion coefficient of proteins and observation of anomalous diffusion.

    PubMed

    Hasnain, Sabeeha; McClendon, Christopher L; Hsu, Monica T; Jacobson, Matthew P; Bandyopadhyay, Pradipta

    2014-01-01

    A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI.

  8. From conscious thought to automatic action: A simulation account of action planning.

    PubMed

    Martiny-Huenger, Torsten; Martiny, Sarah E; Parks-Stamm, Elizabeth J; Pfeiffer, Elisa; Gollwitzer, Peter M

    2017-10-01

    We provide a theoretical framework and empirical evidence for how verbally planning an action creates direct perception-action links and behavioral automaticity. We argue that planning actions in an if (situation)-then (action) format induces sensorimotor simulations (i.e., activity patterns reenacting the event in the sensory and motor brain areas) of the anticipated situation and the intended action. Due to their temporal overlap, these activity patterns become linked. Whenever the previously simulated situation is encountered, the previously simulated action is partially reactivated through spreading activation and thus more likely to be executed. In 4 experiments (N = 363), we investigated the relation between specific if-then action plans worded to activate simulations of elbow flexion versus extension movements and actual elbow flexion versus extension movements in a subsequent, ostensibly unrelated categorization task. As expected, linking a critical stimulus to intended actions that implied elbow flexion movements (e.g., grabbing it for consumption) subsequently facilitated elbow flexion movements upon encountering the critical stimulus. However, linking a critical stimulus to actions that implied elbow extension movements (e.g., pointing at it) subsequently facilitated elbow extension movements upon encountering the critical stimulus. Thus, minor differences (i.e., exchanging the words "point at" with "grab") in verbally formulated action plans (i.e., conscious thought) had systematic consequences on subsequent actions. The question of how conscious thought can induce stimulus-triggered action is illuminated by the provided theoretical framework and the respective empirical evidence, facilitating the understanding of behavioral automaticity and human agency. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    NASA Astrophysics Data System (ADS)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  10. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  11. Probing the neutrino mass hierarchy with the rise time of a supernova burst

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.; Chakraborty, Sovan; Fischer, Tobias; Hüdepohl, Lorenz; Janka, Hans-Thomas; Mirizzi, Alessandro

    2012-04-01

    The rise time of a Galactic supernova (SN) ν¯e light curve, observable at a high-statistics experiment such as the Icecube Cherenkov detector, can provide a diagnostic tool for the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ13. Thanks to the combination of matter suppression of collective effects at early post-bounce times on one hand and the presence of the ordinary Mikheyev-Smirnov-Wolfenstein effect in the outer layers of the SN on the other hand, a sufficiently fast rise time on O(100)ms scale is indicative of an inverted mass hierarchy. We investigate results from an extensive set of stellar core-collapse simulations, providing a first exploration of the astrophysical robustness of these features. We find that for all the models analyzed (sharing the same weak interaction microphysics) the rise times for the same hierarchy are similar not only qualitatively, but also quantitatively, with the signals for the two classes of hierarchies significantly separated. We show via Monte Carlo simulations that the two cases should be distinguishable at IceCube for SNe at a typical Galactic distance 99% of the time. Finally, a preliminary survey seems to show that the faster rise time for inverted hierarchy as compared to normal hierarchy is a qualitatively robust feature predicted by several simulation groups. Since the viability of this signature ultimately depends on the quantitative assessment of theoretical/numerical uncertainties, our results motivate an extensive campaign of comparison of different code predictions at early accretion times with implementation of microphysics of comparable sophistication, including effects such as nucleon recoils in weak interactions.

  12. Effect of damage on elastically tailored composite laminates

    NASA Technical Reports Server (NTRS)

    Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor

    1991-01-01

    A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.

  13. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  14. One trait, many signals: different information on male quality is enclosed within the same trait in a blenny fish

    NASA Astrophysics Data System (ADS)

    Locatello, Lisa; Pizzolon, Matteo; Rasotto, Maria Berica

    2012-10-01

    Colourful ornaments are traditionally evaluated as one trait. However, they could consist of several components, such as total size, colour intensity and extension, each possibly bearing its own message about one aspect of quality. Males of the blenny Salaria pavo exhibit a colourful head crest and solely care for eggs. During the breeding season, the head crest shows a yellow colouration, the intensity and relative extension of which are independent of crest size. Here, we show that: (1) carotenoids are responsible for the head crest yellow patch; (2) activating the immune system by injecting the bacterial antigen lipopolysaccharides affects both the intensity and extent of the yellow colouration; and (3) females assess males on the basis of colour patch expression. However, the response of the yellow patch to the immune challenge was dependent on head crest size. Indeed, males with a larger head crest reacted better to the simulated infection, sustaining a level of yellow patch close to pre-challenge size.

  15. Swarm Counter-Asymmetric-Threat (CAT) 6-DOF Dynamics Simulation

    DTIC Science & Technology

    2005-07-01

    NAWCWD TP 8593 Swarm Counter-Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation by James Bobinchak Weapons and Energetics...mathematical models used in the swarm counter- asymmetric-threat ( CAT ) simulation and the results of extensive Monte Carlo simulations. The swarm CAT ...Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation (U) 6. AUTHOR(S) James Bobinchak and Gary Hewer 7. PERFORMING ORGANIZATION NAME(S) AND

  16. A Modular and Extensible Architecture Integrating Sensors, Dynamic Displays of Anatomy and Physiology, and Automated Instruction for Innovations in Clinical Education

    ERIC Educational Resources Information Center

    Nelson, Douglas Allen, Jr.

    2017-01-01

    Adoption of simulation in healthcare education has increased tremendously over the past two decades. However, the resources necessary to perform simulation are immense. Simulators are large capital investments and require specialized training for both instructors and simulation support staff to develop curriculum using the simulator and to use the…

  17. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    PubMed

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  18. Molecular Dynamics Simulation of Mahkota Dewa (Phaleria Macrocarpa) Extract in Subcritical Water Extraction Process

    NASA Astrophysics Data System (ADS)

    Hashim, N. A.; Mudalip, S. K. Abdul; Harun, N.; Che Man, R.; Sulaiman, S. Z.; Arshad, Z. I. M.; Shaarani, S. M.

    2018-05-01

    Mahkota Dewa (Phaleria Macrocarpa), a good source of saponin, flavanoid, polyphenol, alkaloid, and mangiferin has an extensive range of medicinal effects. The intermolecular interactions between solute and solvents such as hydrogen bonding considered as an important factor that affect the extraction of bioactive compounds. In this work, molecular dynamics simulation was performed to elucidate the hydrogen bonding exists between Mahkota Dewa extracts and water during subcritical extraction process. A bioactive compound in the Mahkota Dewa extract, namely mangiferin was selected as a model compound. The simulation was performed at 373 K and 4.0 MPa using COMPASS force field and Ewald summation method available in Material Studio 7.0 simulation package. The radial distribution functions (RDF) between mangiferin and water signify the presence of hydrogen bonding in the extraction process. The simulation of the binary mixture of mangiferin:water shows that strong hydrogen bonding was formed. It is suggested that, the intermolecular interaction between OH2O••HMR4(OH1) has been identified to be responsible for the mangiferin extraction process.

  19. On the Subgrid-Scale Modeling of Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle; Zeman, Otto

    1990-01-01

    A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.

  20. Local rules simulation of the kinetics of virus capsid self-assembly.

    PubMed

    Schwartz, R; Shor, P W; Prevelige, P E; Berger, B

    1998-12-01

    A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided.

  1. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  2. Faunus: An object oriented framework for molecular simulation

    PubMed Central

    Lund, Mikael; Trulsson, Martin; Persson, Björn

    2008-01-01

    Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331

  3. A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite

    USGS Publications Warehouse

    Engesgaard, Peter; Kipp, Kenneth L.

    1992-01-01

    A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.

  4. Atomic scale simulations of vapor cooled carbon clusters

    NASA Astrophysics Data System (ADS)

    Bogana, M. P.; Colombo, L.

    2007-03-01

    By means of atomistic simulations we observed the formation of many topologically non-equivalent carbon clusters formed by the condensation of liquid droplets, including: (i) standard fullerenes and onion-like structures, (ii) clusters showing extremely complex surfaces with both positive and negative curvatures and (iii) complex endohedral structures. In this work we offer a thorough structural characterization of the above systems, as well as an attempt to correlate the resulting structure to the actual protocol of growth. The IR and Raman responses of some exotic linear carbon structures have been further investigated, finding good agreement with experimental evidence of carbinoid structures in cluster-assembled films. Towards the aim of fully understanding the process of cluster-to-cluster coalescence dynamics, we further simulated an aerosol of amorphous carbon clusters at controlled temperatures. Various annealing temperatures and times have been observed, identifying different pathways for cluster ripening, ranging from simple coalescence to extensive reconstruction.

  5. Anonymity and Historical-Anonymity in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Bettini, Claudio; Mascetti, Sergio; Wang, X. Sean; Freni, Dario; Jajodia, Sushil

    The problem of protecting user’s privacy in Location-Based Services (LBS) has been extensively studied recently and several defense techniques have been proposed. In this contribution, we first present a categorization of privacy attacks and related defenses. Then, we consider the class of defense techniques that aim at providing privacy through anonymity and in particular algorithms achieving “historical k- anonymity” in the case of the adversary obtaining a trace of requests recognized as being issued by the same (anonymous) user. Finally, we investigate the issues involved in the experimental evaluation of anonymity based defense techniques; we show that user movement simulations based on mostly random movements can lead to overestimate the privacy protection in some cases and to overprotective techniques in other cases. The above results are obtained by comparison to a more realistic simulation with an agent-based simulator, considering a specific deployment scenario.

  6. TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    DOE PAGES

    Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; ...

    2015-04-16

    Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family ofmore » molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.« less

  7. Cutting the Wires: Modularization of Cellular Networks for Experimental Design

    PubMed Central

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-01

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264

  8. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Treesearch

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  9. Closed Environment Module - Modularization and extension of the Virtual Habitat

    NASA Astrophysics Data System (ADS)

    Plötner, Peter; Czupalla, Markus; Zhukov, Anton

    2013-12-01

    The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS's for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.

  10. A Component-Based Extension Framework for Large-Scale Parallel Simulations in NEURON

    PubMed Central

    King, James G.; Hines, Michael; Hill, Sean; Goodman, Philip H.; Markram, Henry; Schürmann, Felix

    2008-01-01

    As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator software represents only a part of a chain of tools ranging from setup, simulation, interaction with virtual environments to analysis and visualizations. Previously published approaches to abstracting simulator engines have not received wide-spread acceptance, which in part may be to the fact that they tried to address the challenge of solving the model specification problem. Here, we present an approach that uses a neurosimulator, in this case NEURON, to describe and instantiate the network model in the simulator's native model language but then replaces the main integration loop with its own. Existing parallel network models are easily adopted to run in the presented framework. The presented approach is thus an extension to NEURON but uses a component-based architecture to allow for replaceable spike exchange components and pluggable components for monitoring, analysis, or control that can run in this framework alongside with the simulation. PMID:19430597

  11. Three-Dimensional Multiscale Modeling of Dendritic Spacing Selection During Al-Si Directional Solidification

    NASA Astrophysics Data System (ADS)

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-08-01

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. We focus on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

  12. Statistical mechanics of a cat's cradle

    NASA Astrophysics Data System (ADS)

    Shen, Tongye; Wolynes, Peter G.

    2006-11-01

    It is believed that, much like a cat's cradle, the cytoskeleton can be thought of as a network of strings under tension. We show that both regular and random bond-disordered networks having bonds that buckle upon compression exhibit a variety of phase transitions as a function of temperature and extension. The results of self-consistent phonon calculations for the regular networks agree very well with computer simulations at finite temperature. The analytic theory also yields a rigidity onset (mechanical percolation) and the fraction of extended bonds for random networks. There is very good agreement with the simulations by Delaney et al (2005 Europhys. Lett. 72 990). The mean field theory reveals a nontranslationally invariant phase with self-generated heterogeneity of tautness, representing 'antiferroelasticity'.

  13. Numerical Simulation on the Dynamic Splitting Tensile Test of reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuan; Jia, Haokai; Jing, Lin

    2018-03-01

    The research for crack resistance was of RC was based on the split Hopkinson bar and numerical simulate software LS-DYNA3D. In the research, the difference of dynamic splitting failure modes between plane concrete and reinforced concrete were completed, and the change rule of tensile stress distribution with reinforcement ratio was studied; also the effect rule with the strain rate and the crack resistance was also discussed by the radial tensile stress time history curve of RC specimen under different loading speeds. The results shows that the reinforcement in the concrete can impede the crack extension, defer the failure time of concrete, increase the tension intensity of concrete; with strain rate of concrete increased, the crack resistance of RC increased.

  14. Recognition of three dimensional obstacles by an edge detection scheme. [for Mars roving vehicle using laser range finder

    NASA Technical Reports Server (NTRS)

    Reed, M. A.

    1974-01-01

    The need for an obstacle detection system on the Mars roving vehicle was assumed, and a practical scheme was investigated and simulated. The principal sensing device on this vehicle was taken to be a laser range finder. Both existing and original algorithms, ending with thresholding operations, were used to obtain the outlines of obstacles from the raw data of this laser scan. A theoretical analysis was carried out to show how proper value of threshold may be chosen. Computer simulations considered various mid-range boulders, for which the scheme was quite successful. The extension to other types of obstacles, such as craters, was considered. The special problems of bottom edge detection and scanning procedure are discussed.

  15. Simulation of transmission electron microscope images of biological specimens.

    PubMed

    Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O

    2011-09-01

    We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  16. Using Genotype Abundance to Improve Phylogenetic Inference

    PubMed Central

    Mesin, Luka; Victora, Gabriel D; Minin, Vladimir N; Matsen, Frederick A

    2018-01-01

    Abstract Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phylogenetic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity maturation. PMID:29474671

  17. Diagnosis of the GLAS climate model's stationary planetary waves using a linearized steady state model

    NASA Technical Reports Server (NTRS)

    Youngblut, C.

    1984-01-01

    Orography and geographically fixed heat sources which force a zonally asymmetric motion field are examined. An extensive space-time spectral analysis of the GLAS climate model (D130) response and observations are compared. An updated version of the model (D150) showed a remarkable improvement in the simulation of the standing waves. The main differences in the model code are an improved boundary layer flux computation and a more realistic specification of the global boundary conditions.

  18. A Mobile IPv6 based Distributed Mobility Management Mechanism of Mobile Internet

    NASA Astrophysics Data System (ADS)

    Yan, Shi; Jiayin, Cheng; Shanzhi, Chen

    A flatter architecture is one of the trends of mobile Internet. Traditional centralized mobility management mechanism faces the challenges such as scalability and UE reachability. A MIPv6 based distributed mobility management mechanism is proposed in this paper. Some important network entities and signaling procedures are defined. UE reachability is also considered in this paper through extension to DNS servers. Simulation results show that the proposed approach can overcome the scalability problem of the centralized scheme.

  19. ARC-1969-AC-42137

    NASA Image and Video Library

    1969-02-05

    Height-Control Test Apparatus (HICONTA) Simulator mounted to the exterior of the 40x80ft W.T. Building N-221B and provided extensive vertical motion simulating airplanes, helicopter and V/STOL aircraft

  20. In-flight simulation investigation of rotorcraft pitch-roll cross coupling

    NASA Technical Reports Server (NTRS)

    Watson, Douglas C.; Hindson, William S.

    1988-01-01

    An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.

  1. Signal treatments to reduce heavy vehicle crash-risk at metropolitan highway intersections.

    PubMed

    Archer, Jeffery; Young, William

    2009-05-01

    Heavy vehicle red-light running at intersections is a common safety problem that has severe consequences. This paper investigates alternative signal treatments that address this issue. A micro-simulation analysis approach was adopted as a precursor to a field trial. The simulation model emulated traffic conditions at a known problem intersection and provided a baseline measure to compare the effects of: an extension of amber time; an extension of green for heavy vehicles detected in the dilemma zone at the onset of amber; an extension of the all-red safety-clearance time based on the detection of vehicles considered likely to run the red light at two detector locations during amber; an extension of the all-red safety-clearance time based on the detection of potential red-light runners during amber or red; and a combination of the second and fourth alternatives. Results suggested safety improvements for all treatments. An extension of amber provided the best safety effect but is known to be prone to behavioural adaptation effects and wastes traffic movement time unnecessarily. A green extension for heavy vehicles detected in the dilemma zone and an all-red extension for potential red-light runners were deemed to provide a sustainable safety improvement and operational efficiency.

  2. Impact of Extensive Urbanization on Summertime Rainfall in the Beijing Region and the Role of Local Precipitation Recycling

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei

    2018-04-01

    In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.

  3. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool

    NASA Astrophysics Data System (ADS)

    Lynch, Cheryl L.; Graham, Geoff M.; Popovic, Milos R.

    2011-08-01

    Functional electrical stimulation (FES) applications are frequently evaluated in simulation prior to testing in human subjects. Such simulations are usually based on the typical muscle responses to electrical stimulation, which may result in an overly optimistic assessment of likely real-world performance. We propose a novel method for simulating FES applications that includes non-ideal muscle behaviour during electrical stimulation resulting from muscle fatigue, spasms and tremors. A 'non-idealities' block that can be incorporated into existing FES simulations and provides a realistic estimate of real-world performance is described. An implementation example is included, showing how the non-idealities block can be incorporated into a simulation of electrically stimulated knee extension against gravity for both a proportional-integral-derivative controller and a sliding mode controller. The results presented in this paper illustrate that the real-world performance of a FES system may be vastly different from the performance obtained in simulation using nominal muscle models. We believe that our non-idealities block should be included in future simulations that involve muscle response to FES, as this tool will provide neural engineers with a realistic simulation of the real-world performance of FES systems. This simulation strategy will help engineers and organizations save time and money by preventing premature human testing. The non-idealities block will become available free of charge at www.toronto-fes.ca in late 2011.

  4. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions

    USDA-ARS?s Scientific Manuscript database

    Simulation models are extensively used to predict agricultural productivity and greenhouse gas (GHG) emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multisp...

  5. Dual Interlocked Logic for Single-Event Transient Mitigation

    DTIC Science & Technology

    2017-03-01

    SPICE simulation and fault-injection analysis. Exemplar SPICE simulations have been performed in a 32nm partially- depleted silicon-on-insulator...in this work. The model has been validated at the 32nm SOI technology node with extensive heavy-ion data [7]. For the SPICE simulations, three

  6. Link Connectivity and Coverage of Underwater Cognitive Acoustic Networks under Spectrum Constraint

    PubMed Central

    Wang, Qiu; Cheang, Chak Fong

    2017-01-01

    Extensive attention has been given to the use of cognitive radio technology in underwater acoustic networks since the acoustic spectrum became scarce due to the proliferation of human aquatic activities. Most of the recent studies on underwater cognitive acoustic networks (UCANs) mainly focus on spectrum management or protocol design. Few efforts have addressed the quality-of-service (QoS) of UCANs. In UCANs, secondary users (SUs) have lower priority to use acoustic spectrum than primary users (PUs) with higher priority to access spectrum. As a result, the QoS of SUs is difficult to ensure in UCANs. This paper proposes an analytical model to investigate the link connectivity and the probability of coverage of SUs in UCANs. In particular, this model takes both topological connectivity and spectrum availability into account, though spectrum availability has been ignored in most recent studies. We conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Simulation results show that our proposed model is quite accurate. Besides, our results also imply that the link connectivity and the probability of coverage of SUs heavily depend on both the underwater acoustic channel conditions and the activities of PUs. PMID:29215561

  7. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE PAGES

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; ...

    2017-03-20

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  8. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  9. Quantitative phase and amplitude imaging using Differential-Interference Contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Preza, Chrysanthe; O'Sullivan, Joseph A.

    2009-02-01

    We present an extension of the development of an alternating minimization (AM) method for the computation of a specimen's complex transmittance function (magnitude and phase) from DIC images. The ability to extract both quantitative phase and amplitude information from two rotationally-diverse DIC images (i.e., acquired by rotating the sample) extends previous efforts in computational DIC microscopy that have focused on quantitative phase imaging only. Simulation results show that the inverse problem at hand is sensitive to noise as well as to the choice of the AM algorithm parameters. The AM framework allows constraints and penalties on the magnitude and phase estimates to be incorporated in a principled manner. Towards this end, Green and De Pierro's "log-cosh" regularization penalty is applied to the magnitude of differences of neighboring values of the complex-valued function of the specimen during the AM iterations. The penalty is shown to be convex in the complex space. A procedure to approximate the penalty within the iterations is presented. In addition, a methodology to pre-compute AM parameters that are optimal with respect to the convergence rate of the AM algorithm is also presented. Both extensions of the AM method are investigated with simulations.

  10. LOOS: an extensible platform for the structural analysis of simulations.

    PubMed

    Romo, Tod D; Grossfield, Alan

    2009-01-01

    We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.

  11. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing.

    PubMed

    Holmes, T J; Liu, Y H

    1989-11-15

    A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.

  12. Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran

    NASA Astrophysics Data System (ADS)

    Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.

    2018-02-01

    Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 < R 2 and 0.5 < NS). In the case of nitrogen loss, the model performed an almost good simulation (0.6 < R 2 and 0.47 < NS), but phosphorus simulation yielded better results (0.76 < R 2 and 0.66 < NS). The results showed that cultivated lands had higher loss of nitrogen and phosphorus than other types of land use. Among the various forms of nitrogen and phosphorus, the loss of organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.

  13. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species with Application to DSMC Simulations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for near-equilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion.

  14. Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II

    USGS Publications Warehouse

    DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.

    2017-01-01

    Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.

  15. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    NASA Astrophysics Data System (ADS)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture influenced the LCar retrieval accuracy.

  16. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation.

    PubMed

    Eastman, Peter; Friedrichs, Mark S; Chodera, John D; Radmer, Randall J; Bruns, Christopher M; Ku, Joy P; Beauchamp, Kyle A; Lane, Thomas J; Wang, Lee-Ping; Shukla, Diwakar; Tye, Tony; Houston, Mike; Stich, Timo; Klein, Christoph; Shirts, Michael R; Pande, Vijay S

    2013-01-08

    OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added.

  17. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation

    PubMed Central

    Eastman, Peter; Friedrichs, Mark S.; Chodera, John D.; Radmer, Randall J.; Bruns, Christopher M.; Ku, Joy P.; Beauchamp, Kyle A.; Lane, Thomas J.; Wang, Lee-Ping; Shukla, Diwakar; Tye, Tony; Houston, Mike; Stich, Timo; Klein, Christoph; Shirts, Michael R.; Pande, Vijay S.

    2012-01-01

    OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added. PMID:23316124

  18. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  19. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  20. Validation of a Wave Data Assimilation System Based on SWAN

    NASA Astrophysics Data System (ADS)

    Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.

    2013-04-01

    SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.

  1. Simulated Radioscapholunate Fusion Alters Carpal Kinematics While Preserving Dart-Thrower's Motion

    PubMed Central

    Calfee, Ryan P.; Leventhal, Evan L.; Wilkerson, Jim; Moore, Douglas C.; Akelman, Edward; Crisco, Joseph J.

    2014-01-01

    Purpose Midcarpal degeneration is well documented after radioscapholunate fusion. This study tested the hypothesis that radioscapholunate fusion alters the kinematic behavior of the remaining lunotriquetral and midcarpal joints, with specific focus on the dart-thrower's motion. Methods Simulated radioscapholunate fusions were performed on 6 cadaveric wrists in an anatomically neutral posture. Two 0.060-in. carbon fiber pins were placed from proximal to distal across the radiolunate and radioscaphoid joints, respectively. The wrists were passively positioned in a custom jig toward a full range of motion along the orthogonal axes as well as oblique motions, with additional intermediate positions along the dart-thrower's path. Using a computed tomography– based markerless bone registration technique, each carpal bone's three-dimensional rotation was defined as a function of wrist flexion/extension from the pinned neutral position. Kinematic data was analyzed against data collected on the same wrist prior to fixation using hierarchical linear regression analysis and paired Student's t-tests. Results After simulated fusion, wrist motion was restricted to an average flexion-extension arc of 48°, reduced from 77°, and radial-ulnar deviation arc of 19°, reduced from 33°. The remaining motion was maximally preserved along the dart-thrower's path from radial-extension toward ulnar-flexion. The simulated fusion significantly increased rotation through the scaphotrapezial joint, scaphocapitate joint, triquetrohamate joint, and lunotriquetral joint. For example, in the pinned wrist, the rotation of the hamate relative to the triquetrum increased 85%. Therefore, during every 10° of total wrist motion, the hamate rotated an average of nearly 8° relative to the triquetrum after pinning versus 4° in the normal state. Conclusions Simulated radioscapholunate fusion altered midcarpal and lunotriquetral kinematics. The increased rotations across these remaining joints provide one potential explanation for midcarpal degeneration after radioscapholunate fusion. Additionally, this fusion model confirms the dart-thrower's hypothesis, as wrist motion after simulated radioscapholunate fusion was primarily preserved from radial-extension toward ulnar-flexion. PMID:18406953

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xin, E-mail: xinshih86029@gmail.com; Zhao, Xiangmo, E-mail: xinshih86029@gmail.com; Hui, Fei, E-mail: xinshih86029@gmail.com

    Clock synchronization in wireless sensor networks (WSNs) has been studied extensively in recent years and many protocols are put forward based on the point of statistical signal processing, which is an effective way to optimize accuracy. However, the accuracy derived from the statistical data can be improved mainly by sufficient packets exchange, which will consume the limited power resources greatly. In this paper, a reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization is proposed to optimize sync accuracy without expending additional sync packets. As a contribution, a linear weighted fusion scheme for multiple clock deviations ismore » constructed with the collaborative sensing of clock timestamp. And the fusion weight is defined by the covariance of sync errors for different clock deviations. Extensive simulation results show that the proposed approach can achieve better performance in terms of sync overhead and sync accuracy.« less

  3. Statistical Optimality in Multipartite Ranking and Ordinal Regression.

    PubMed

    Uematsu, Kazuki; Lee, Yoonkyung

    2015-05-01

    Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.

  4. Electron Thermal Transport due to Magnetic Diffusion in the MST RFP

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Anderson, J. K.; den Hartog, D. J.; Forest, C. B.; Kasten, C. P.; Schnack, D. D.; Stephens, H. D.

    2011-10-01

    Comparison of measurements made in the MST RFP to the results from extensive nonlinear resistive MHD simulations has provided two key observations. First, trapped particles reduce electron thermal diffusion; inclusion of this effect is required for quantitative agreement of simulation to measurement. Second, the structure and evolution of long-wavelength temperature fluctuations measured in MST shows remarkable qualitative similarity to fluctuations appearing in a finite-pressure simulation. These simulations were run at parameters matching those of 400 kA discharges in MST (S ~ 4 ×106). In a zero β simulation, the measured χe is compared to the thermal diffusion due to parallel losses along diffusing magnetic field lines, χst =v∥Dmag . Agreement is only found if the reduction in χst due to trapped particles is taken into account. In a second simulation, the pressure field was evolved self consistently assuming Ohmic heating and anisotropic thermal conduction. Fluctuations in the simulated temperature are very similar in character and time evolution to temperature fluctuations measured in MST. This includes m = 1 , n = 6 fluctuations that flatten the temperature profile as well as m = 1 , n = 5 fluctuations that generate hot island structures near the core shortly after sawtooth crashes. This work supported by the US DOE and NSF.

  5. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach.

    PubMed

    Curuksu, Jeremy; Zacharias, Martin

    2009-03-14

    Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.

  6. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration.

    PubMed

    See, Eugene Yong-Shun; Toh, Siew Lok; Goh, James Cho-Hong

    2011-10-01

    The aim of this study was to develop a tissue engineering approach in regenerating the annulus fibrosus (AF) as part of an overall strategy to produce a tissue-engineered intervertebral disc (IVD) replacement. To determine whether a rehabilitative simulation regime on bone marrow–derived mesenchymal stem cell cell-sheet is able to aid the regeneration of the AF. No previous study has used bone marrow–derived mesenchymal stem cell cell-sheets simulated by a rehabilitative regime to regenerate the AF. The approach was to use bone marrow–derived stem cells to form cell-sheets and incorporating them onto silk scaffolds to simulate the native lamellae of the AF. The in vitro experimental model used to study the efficacy of such a system was made up of the tissue engineering AF construct wrapped around a silicone disc to form a simulated IVD-like assembly. The assembly was cultured within a custom-designed bioreactor that provided a compressive mechanical stimulation onto the silicone disc. The silicone nucleus pulposus would bulge radially and compress the simulated AF to mimic the physiological conditions. The simulated IVD-like assembly was compressed using a rehabilitative regime that lasted for 4 weeks at 0.25 Hz, for 15 minutes each day. With the rehabilitative regime, the cell-sheets remained viable but showed a decrease in cell numbers and viability. Gene expression analysis showed significant upregulation of IVD-related genes and there was an increased ratio of collagen type II to collagen type I found within the extracellular matrix. The results suggested that a rehabilitative regime caused extensive remodeling to take place within the simulated IVD-like assembly, producing extracellular matrix similar to that found in the inner AF.

  7. Fast image-based mitral valve simulation from individualized geometry.

    PubMed

    Villard, Pierre-Frederic; Hammer, Peter E; Perrin, Douglas P; Del Nido, Pedro J; Howe, Robert D

    2018-04-01

    Common surgical procedures on the mitral valve of the heart include modifications to the chordae tendineae. Such interventions are used when there is extensive leaflet prolapse caused by chordae rupture or elongation. Understanding the role of individual chordae tendineae before operating could be helpful to predict whether the mitral valve will be competent at peak systole. Biomechanical modelling and simulation can achieve this goal. We present a method to semi-automatically build a computational model of a mitral valve from micro CT (computed tomography) scans: after manually picking chordae fiducial points, the leaflets are segmented and the boundary conditions as well as the loading conditions are automatically defined. Fast finite element method (FEM) simulation is carried out using Simulation Open Framework Architecture (SOFA) to reproduce leaflet closure at peak systole. We develop three metrics to evaluate simulation results: (i) point-to-surface error with the ground truth reference extracted from the CT image, (ii) coaptation surface area of the leaflets and (iii) an indication of whether the simulated closed leaflets leak. We validate our method on three explanted porcine hearts and show that our model predicts the closed valve surface with point-to-surface error of approximately 1 mm, a reasonable coaptation surface area, and absence of any leak at peak systole (maximum closed pressure). We also evaluate the sensitivity of our model to changes in various parameters (tissue elasticity, mesh accuracy, and the transformation matrix used for CT scan registration). We also measure the influence of the positions of the chordae tendineae on simulation results and show that marginal chordae have a greater influence on the final shape than intermediate chordae. The mitral valve simulation can help the surgeon understand valve behaviour and anticipate the outcome of a procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness

    NASA Astrophysics Data System (ADS)

    Jaschonek, Stefan; Diezemann, Gregor

    2017-03-01

    We present a detailed study of the parameter dependence of force probe molecular dynamics (FPMD) simulations. Using a well studied calix[4]arene catenane dimer as a model system, we systematically vary the pulling velocity and the stiffness of the applied external potential. This allows us to investigate how the results of pulling simulations operating in the constant velocity mode (force-ramp mode) depend on the details of the simulation setup. The system studied has the further advantage of showing reversible rebinding meaning that we can monitor the opening and the rebinding transition. Many models designed to extract kinetic information from rupture force distributions work in the limit of soft springs and all quantities are found to depend solely on the so-called loading rate, the product of spring stiffness and pulling velocity. This approximation is known to break down when stiff springs are used, a situation often encountered in molecular simulations. We find that while some quantities only depend on the loading rate, others show an explicit dependence on the spring constant used in the FPMD simulation. In particular, the force versus extension curves show an almost stiffness independent rupture force but the force jump after the rupture transition does depend roughly linearly on the value of the stiffness. The kinetic rates determined from the rupture force distributions show a dependence on the stiffness that can be understood in terms of the corresponding dependence of the characteristic forces alone. These dependencies can be understood qualitatively in terms of a harmonic model for the molecular free energy landscape. It appears that the pulling velocities employed are so large that the crossover from activated dynamics to diffusive dynamics takes place on the time scale of our simulations. We determine the effective distance of the free energy minima of the closed and the open configurations of the system from the barrier via an analysis of the hydrogen-bond network with results in accord with earlier simulations. We find that the system is quite brittle in the force regime monitored in the sense that the barrier is located near to the closed state.

  9. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.

    PubMed

    Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

  10. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction

    PubMed Central

    Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods. PMID:28800608

  11. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities.

    PubMed

    Van Haver, Annemieke; De Roo, Karel; De Beule, Matthieu; Labey, Luc; De Baets, Patrick; Dejour, David; Claessens, Tom; Verdonk, Peter

    2015-06-01

    Trochlear dysplasia appears in different geometrical variations. The Dejour classification is widely used to grade the severity of trochlear dysplasia and to decide on treatment. To investigate the effect of trochlear dysplasia on patellofemoral biomechanics and to determine if different types of trochlear dysplasia have different effects on patellofemoral biomechanics. Controlled laboratory study. Trochlear dysplasia was simulated in 4 cadaveric knees by replacing the native cadaveric trochlea with different types of custom-made trochlear implants, manufactured with 3-dimensional printing. For each knee, 5 trochlear implants were designed: 1 implant simulated the native trochlea (control condition), and 4 implants simulated 4 types of trochlear dysplasia. The knees were subjected to 3 biomechanical tests: a squat simulation, an open chain extension simulation, and a patellar stability test. The patellofemoral kinematics, contact area, contact pressure, and stability were compared between the control condition (replica implants) and the trochlear dysplastic condition and among the subgroups of trochlear dysplasia. The patellofemoral joint in the trochlear dysplastic group showed increased internal rotation, lateral tilt, and lateral translation; increased contact pressures; decreased contact areas; and decreased stability when compared with the control group. Within the trochlear dysplastic group, the implants graded as Dejour type D showed the largest deviations for the kinematical parameters, and the implants graded as Dejour types B and D showed the largest deviations for the patellofemoral contact areas and pressures. Patellofemoral kinematics, contact area, contact pressure, and stability are significantly affected by trochlear dysplasia. Of all types of trochlear dysplasia, the models characterized with a pronounced trochlear bump showed the largest deviations in patellofemoral biomechanics. Investigating the relationship between the shape of the trochlea and patellofemoral biomechanics can provide insight into the short-term effects (maltracking, increased pressures, and instability) and long-term effects (osteoarthritis) of different types of trochlear dysplasia. Furthermore, this investigation provides an empirical explanation for better treatment outcomes of trochleoplasty for Dejour types B and D dysplasia. © 2015 The Author(s).

  12. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.

    1976-01-01

    Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.

  13. Grandmothering and cognitive resources are required for the emergence of menopause and extensive post-reproductive lifespan.

    PubMed

    Aimé, Carla; André, Jean-Baptiste; Raymond, Michel

    2017-07-01

    Menopause, the permanent cessation of ovulation, occurs in humans well before the end of the expected lifespan, leading to an extensive post-reproductive period which remains a puzzle for evolutionary biologists. All human populations display this particularity; thus, it is difficult to empirically evaluate the conditions for its emergence. In this study, we used artificial neural networks to model the emergence and evolution of allocation decisions related to reproduction in simulated populations. When allocation decisions were allowed to freely evolve, both menopause and extensive post-reproductive life-span emerged under some ecological conditions. This result allowed us to test various hypotheses about the required conditions for the emergence of menopause and extensive post-reproductive life-span. Our findings did not support the Maternal Hypothesis (menopause has evolved to avoid the risk of dying in childbirth, which is higher in older women). In contrast, results supported a shared prediction from the Grandmother Hypothesis and the Embodied Capital Model. Indeed, we found that extensive post-reproductive lifespan allows resource reallocation to increase fertility of the children and survival of the grandchildren. Furthermore, neural capital development and the skill intensiveness of the foraging niche, rather than strength, played a major role in shaping the age profile of somatic and cognitive senescence in our simulated populations. This result supports the Embodied Capital Model rather than the Grand-Mother Hypothesis. Finally, in simulated populations where menopause had already evolved, we found that reduced post-reproductive lifespan lead to reduced children's fertility and grandchildren's survival. The results are discussed in the context of the evolutionary emergence of menopause and extensive post-reproductive life-span.

  14. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  15. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.

    PubMed

    Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta

    2017-08-01

    Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Underestimation of the Tambora effects in North American taiga ecosystems

    NASA Astrophysics Data System (ADS)

    Gennaretti, Fabio; Boucher, Etienne; Nicault, Antoine; Gea-Izquierdo, Guillermo; Arseneault, Dominique; Berninger, Frank; Savard, Martine M.; Bégin, Christian; Guiot, Joel

    2018-03-01

    The Tambora eruption (1815 AD) was one of the major eruptions of the last two millennia and has no equivalents over the last two centuries. Here, we collected an extensive network of early meteorological time series, climate simulation data and numerous, well-replicated proxy records from Eastern Canada to analyze the strength and the persistence of the Tambora impact on the regional climate and forest processes. Our results show that the Tambora impacts on the terrestrial biosphere were stronger than previously thought, and not only affected tree growth and carbon uptake for a longer period than registered in the regional climate, but also determined forest demography and structure. Increased tree mortality, four times higher than the background level, indicates that the Tambora climatic impact propagated to influence the structure of the North American taiga for several decades. We also show that the Tambora signal is more persistent in observed data (temperature, river ice dynamics, forest growth, tree mortality) than in simulated ones (climate and forest-growth simulations), indicating that our understanding of the mechanisms amplifying volcanic perturbations on climates and ecosystems is still limited, notably in the North American taiga.

  17. Architecture and inherent robustness of a bacterial cell-cycle control system.

    PubMed

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  18. Analytical condition inspection and extension of time between overhaul of F3-30 engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, M.; Ikeyama, M.; Abe, S.

    1992-04-01

    F3-30 is the low-bypass-ratio turbofan engine developed to power the T-4 intermediate trainer for the Japan Air Self Defense Force (JASDF). The actual field service was started in Sept., 1988. This paper reports on the program to extend time between overhaul (TBO) of the F3-30 which has been running. Analytical condition inspection (ACI) and accelerated mission testing (AMT) were conducted to confirm sufficient durability to extend TBO. Most deteriorations of parts and performance due to AMT were also found by ACI after field operation with approximately the same deterioration rate. On the other hand, some deteriorations were found by ACImore » only. These results show that ACI after field operation is also necessary to confirm the TBO extension, although AMT simulates the deterioration in field operations very well. The deteriorations that would be caused by the field operation during one extended-TBO were estimated with the results of ACI and AMT, and it was concluded that the F3-30 has sufficient durability for TBO extension to the next step.« less

  19. The effect of lunate position on range of motion after a four-corner arthrodesis: a biomechanical simulation study.

    PubMed

    Dvinskikh, N A; Blankevoort, L; Strackee, S D; Grimbergen, C A; Streekstra, G J

    2011-04-29

    A four-corner arthrodesis of the wrist is a salvage procedure for the treatment of specific wrist disorders, to achieve a movable, stable and pain free joint. However, a partial arthrodesis limits the postoperative range of motion (ROM). The goal of this study is to understand the mechanism of the reduction of the ROM and to evaluate the effect of the orientation of the lunate in the four-corner arthrodesis on the range of motion by using a biomechanical model, containing articular contacts and ligaments. Multi-body models of a normal wrist and a four-corner arthrodesis wrist with different orientation of the lunate were used for simulations of flexion-extension motion (FEM) and radial-ulnar deviation motion (RUD). The ROM of the postoperative wrist was reduced from 145° to 82° of the total arc of FEM and from 73° to 41.5° of the total arc of RUD. The model simulations show that the range of motion reduction is caused by overtension of the extrinsic wrist ligaments. Different positioning of the lunate changes the balance between the contact forces and ligament forces in the wrist. This explains the effect on the postoperative range of motion. The 20° flexed lunate did not give any gain in the extension motion of the wrist, caused joint luxation in flexion and limitation in RUD. The 30° extended lunate caused overtension of the extrinsic ligaments attached to the lunate. The ROM in this case is dramatically reduced. The model simulations suggest that the neutral position of the lunate seems to be most favorable for mobility of the wrist after a four-corner arthrodesis procedure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Deductibles in health insurance

    NASA Astrophysics Data System (ADS)

    Dimitriyadis, I.; Öney, Ü. N.

    2009-11-01

    This study is an extension to a simulation study that has been developed to determine ruin probabilities in health insurance. The study concentrates on inpatient and outpatient benefits for customers of varying age bands. Loss distributions are modelled through the Allianz tool pack for different classes of insureds. Premiums at different levels of deductibles are derived in the simulation and ruin probabilities are computed assuming a linear loading on the premium. The increase in the probability of ruin at high levels of the deductible clearly shows the insufficiency of proportional loading in deductible premiums. The PH-transform pricing rule developed by Wang is analyzed as an alternative pricing rule. A simple case, where an insured is assumed to be an exponential utility decision maker while the insurer's pricing rule is a PH-transform is also treated.

  1. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    PubMed

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF. Copyright © 2010 Wiley Periodicals, Inc.

  2. Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification

    DOE PAGES

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; ...

    2015-05-27

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues formore » investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.« less

  3. CFD analysis of onshore oil pipelines in permafrost

    NASA Astrophysics Data System (ADS)

    Nardecchia, Fabio; Gugliermetti, Luca; Gugliermetti, Franco

    2017-07-01

    Underground pipelines are built all over the world and the knowledge of their thermal interaction with the soil is crucial for their design. This paper studies the "thermal influenced zone" produced by a buried pipeline and the parameters that can influence its extension by 2D-steady state CFD simulations with the aim to improve the design of new pipelines in permafrost. In order to represent a real case, the study is referred to the Eastern Siberia-Pacific Ocean Oil Pipeline at the three stations of Mo'he, Jiagedaqi and Qiqi'har. Different burial depth sand diameters of the pipe are analyzed; the simulation results show that the effect of the oil pipeline diameter on the thermal field increases with the increase of the distance from the starting station.

  4. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  5. Effects of Network Characteristics on Reaching the Payoff-Dominant Equilibrium in Coordination Games: A Simulation study.

    PubMed

    Buskens, Vincent; Snijders, Chris

    2016-01-01

    We study how payoffs and network structure affect reaching the payoff-dominant equilibrium in a [Formula: see text] coordination game that actors play with their neighbors in a network. Using an extensive simulation analysis of over 100,000 networks with 2-25 actors, we show that the importance of network characteristics is restricted to a limited part of the payoff space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if network density is larger, the network is more centralized, and segmentation of the network is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network is more segmented and less centralized. Persistence of heterogeneous behavior is not related to network density.

  6. Phase diagram, correlation gap, and critical properties of the Coulomb glass

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo; Goethe, Martin

    2009-03-01

    We investigate the lattice Coulomb glass model in three dimensions via extensive Monte Carlo simulations. 1. No evidence for an equilibrium glass phase is found down to very low temperatures, contrary to mean-field predictions, although the correlation length increases rapidly near T=0. 2. The single-particle density of states near the Coulomb gap satisfies the scaling law g(e,T)=T^λf(e/T) with λ 2.2. 3. A charge-ordered phase exists at low disorder. The phase transition from the fluid to the charge ordered phase is consistent with the Random Field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. Results from nonequilibrium simulations will also be briefly discussed. Reference: M.Goethe and M.Palassini, arXiv:0810.1047

  7. Use of Flowtran Simulation in Education

    ERIC Educational Resources Information Center

    Clark, J. Peter; Sommerfeld, Jude T.

    1976-01-01

    Describes the use in chemical engineering education of FLOWTRAN, a large steady-state simulator of chemical processes with extensive facilities for physical and thermodynamic data-handling and a large library of equipment modules, including cost estimation capability. (MLH)

  8. Demonstrating an Order-of-Magnitude Sampling Enhancement in Molecular Dynamics Simulations of Complex Protein Systems.

    PubMed

    Pan, Albert C; Weinreich, Thomas M; Piana, Stefano; Shaw, David E

    2016-03-08

    Molecular dynamics (MD) simulations can describe protein motions in atomic detail, but transitions between protein conformational states sometimes take place on time scales that are infeasible or very expensive to reach by direct simulation. Enhanced sampling methods, the aim of which is to increase the sampling efficiency of MD simulations, have thus been extensively employed. The effectiveness of such methods when applied to complex biological systems like proteins, however, has been difficult to establish because even enhanced sampling simulations of such systems do not typically reach time scales at which convergence is extensive enough to reliably quantify sampling efficiency. Here, we obtain sufficiently converged simulations of three proteins to evaluate the performance of simulated tempering, a member of a widely used class of enhanced sampling methods that use elevated temperature to accelerate sampling. Simulated tempering simulations with individual lengths of up to 100 μs were compared to (previously published) conventional MD simulations with individual lengths of up to 1 ms. With two proteins, BPTI and ubiquitin, we evaluated the efficiency of sampling of conformational states near the native state, and for the third, the villin headpiece, we examined the rate of folding and unfolding. Our comparisons demonstrate that simulated tempering can consistently achieve a substantial sampling speedup of an order of magnitude or more relative to conventional MD.

  9. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    NASA Astrophysics Data System (ADS)

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  10. Hybrid testing of lumbar CHARITE discs versus fusions.

    PubMed

    Panjabi, Manohar; Malcolmson, George; Teng, Edward; Tominaga, Yasuhiro; Henderson, Gweneth; Serhan, Hassan

    2007-04-20

    An in vitro human cadaveric biomechanical study. To quantify effects on operated and other levels, including adjacent levels, due to CHARITE disc implantations versus simulated fusions, using follower load and the new hybrid test method in flexion-extension and bilateral torsion. Spinal fusion has been associated with long-term accelerated degeneration at adjacent levels. As opposed to the fusion, artificial discs are designed to preserve motion and diminish the adjacent-level effects. Five fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension and bilateral torsion with 400 N follower load. Intact specimen total ranges of motion were determined with +/-10 Nm unconstrained pure moments. The intact range of motion was used as input for the hybrid tests of 5 constructs: 1) CHARITE disc at L5-S1; 2) fusion at L5-S1; 3) CHARITE discs at L4-L5 and L5-S1; 4) CHARITE disc at L4-L5 and fusion at L5-S1; and 5) 2-level fusion at L4-L5-S1. Using repeated-measures single factor analysis of variance and Bonferroni statistical tests (P < 0.05), intervertebral motion redistribution of each construct was compared with the intact. In flexion-extension, 1-level CHARITE disc preserved motion at the operated and other levels, while 2-level CHARITE showed some amount of other-level effects. In contrast, 1- and 2-level fusions increased other-level motions (average, 21.0% and 61.9%, respectively). In torsion, both 1- and 2-level discs preserved motions at all levels. The 2-level simulated fusion increased motions at proximal levels (22.9%), while the 1-level fusion produced no significant changes. In general, CHARITE discs preserved operated- and other-level motions. Fusion simulations affected motion redistribution at other levels, including adjacent levels.

  11. [Fair health financing and catastrophic health expenditures: potential impact of the coverage extension of the popular health insurance in Mexico].

    PubMed

    Knaul, Felicia; Arreola-Ornelas, Héctor; Méndez, Oscar; Martínez, Alejandra

    2005-01-01

    To assess the impact on fair health financing and household catastrophic health expenditures of the implementation of the Popular Health Insurance (Seguro Popular de Salud). Data analyzed in this study come from the National Income and Expenditure Household Survey (Encuesta Nacional de Ingresos y Gastos de los Hogares, ENIGH), 2000, and the National Health Insurance and Expenditure Survey, (Encuesta Nacional de Aseguramiento y Gasto en Salud, ENAGS), 2001. Estimations are based on projections of extension of the Popular Health Insurance under different conditions of coverage and out-of-pocket expenditure reductions in the uninsured population. The mathematic simulation model assumes applying the new Popular Health Insurance financial structure to the 2000 expenditure values reported by ENIGH, given the probability of affiliation by households. The model of determinants of affiliation to the Popular Health Insurance yielded three significant variables: being in income quintiles I and II, being a female head of household, and that a household member had a medical visit in the past year. Simulation results show that important impacts on the performance of the Mexican Health System will occur in terms of fair financing and catastrophic expenditures, even before achieving the universal coverage goal in 2010. A reduction of 40% in out-of-pocket expenditures and a Popular Health Insurance coverage of 100% will decrease catastrophic health expenditures from 3.4% to 1.6%. Our results show that the reduction of out-of-pocket expenditures generated by the new financing and health provision Popular Health Insurance model, will improve the financial fairness index and the financial contribution to the health system, and will decrease the percentage of households with catastrophic expenditures, even before reaching universal coverage. A greater impact may be expected due to coverage extension initiating in the poorest communities that have a very restricted and progressive financial contribution.

  12. On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H2 microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka

    2015-04-01

    A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.

  13. Large-eddy simulations of a forced homogeneous isotropic turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Cai, Wei-Hua; Li, Feng-Chen

    2014-03-01

    Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.

  14. GeNN: a code generation framework for accelerated brain simulations

    NASA Astrophysics Data System (ADS)

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  15. GeNN: a code generation framework for accelerated brain simulations.

    PubMed

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-07

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  16. GeNN: a code generation framework for accelerated brain simulations

    PubMed Central

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369

  17. Complex Langevin Simulations of QCD at Finite Density - Progress Report

    NASA Astrophysics Data System (ADS)

    Sinclair, D. K.; Kogut, J. B.

    2018-03-01

    We simulate lattice QCD at finite quark-number chemical potential to study nuclear matter, using the complex Langevin equation (CLE). The CLE is used because the fermion determinant is complex so that standard methods relying on importance sampling fail. Adaptive methods and gauge-cooling are used to prevent runaway solutions. Even then, the CLE is not guaranteed to give correct results. We are therefore performing extensive testing to determine under what, if any, conditions we can achieve reliable results. Our earlier simulations at β = 6/g2 = 5.6, m = 0.025 on a 124 lattice reproduced the expected phase structure but failed in the details. Our current simulations at β = 5.7 on a 164 lattice fail in similar ways while showing some improvement. We are therefore moving to even weaker couplings to see if the CLE might produce the correct results in the continuum (weak-coupling) limit, or, if it still fails, whether it might reproduce the results of the phase-quenched theory. We also discuss action (and other dynamics) modifications which might improve the performance of the CLE.

  18. Transport simulations of linear plasma generators with the B2.5-Eirene and EMC3-Eirene codes

    DOE PAGES

    Rapp, Juergen; Owen, Larry W.; Bonnin, X.; ...

    2014-12-20

    Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. For this research, the codes B2.5-Eirene and EMC3-Eirene were extensively used for design studies of the planned Material Plasma Exposure eXperiment (MPEX). Effects on the target plasma of the gas fueling and pumping locations, heating power, device length, magnetic configuration and transport model were studied with B2.5-Eirene. Effects of tilted or vertical targets were calculated with EMC3-Eirene and showed that spreading the incident flux over a larger area leads to lower density, higher temperature and off-axis profile peaking in front of themore » target. In conclusion, the simulations indicate that with sufficient heating power MPEX can reach target plasma conditions that are similar to those expected in the ITER divertor. B2.5-Eirene simulations of the MAGPIE experiment have been carried out in order to establish an additional benchmark with experimental data from a linear device with helicon wave heating.« less

  19. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz

    2016-08-01

    Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.

  20. Time- and temperature-dependent migration studies of Irganox 1076 from plastics into foods and food simulants.

    PubMed

    Beldì, G; Pastorelli, S; Franchini, F; Simoneau, C

    2012-01-01

    The study provides an exhaustive set of migration data for octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (Irganox 1076) from low-density polyethylene (LDPE) in several food matrices. Irganox 1076 was used as a model migrant because it represents one of the typical substances used as an antioxidant in food packaging polymers. Kinetic (time-dependent) migration studies of Irganox 1076 were performed for selected foodstuffs chosen with different physical-chemical properties and in relation to the actual European food consumption market. The effect of fat content and of the temperature of storage on the migration from plastic packaging was evaluated. The results show that migration increased with fat content and storage temperature. All data obtained from real foods were also compared with data obtained from simulants tested in the same conditions. In all studied cases, the kinetics in simulants were higher than those in foodstuffs. The work provides data valuable for the extension of the validation of migration model developed on simulants to foodstuffs themselves.

  1. Climate Change Impact on Air Quality in High Resolution Simulation for Central Europe

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Huszar, P.; Belda, M.

    2009-04-01

    Recently the effects of climate change on air-quality and vice-versa are studied quite extensively. In fact, even at regional and local scale especially the impact of climate change on the atmospheric composition and photochemical smog formation conditions can be significant when expecting e.g. more frequent appearance of heat waves etc. For the purpose of qualifying and quantifying the magnitude of such effects and to study the potential of climate forcing due to atmospheric chemistry/aerosols on regional scale, chemistry-transport model was coupled to RegCM on the Department of Meteorology and Environmental Protection, Faculty of Mathematics and Physics, Charles University in Prague, for the simulations in framework of the EC FP6 Project CECILIA. Off-line one way coupling enables the simulation of distribution of pollutants over 1991-2001 in very high resolution of 10 km is compared to the EMEP observations for the area of Central Europe. Simulations driven by climate change boundary conditions for time slices 1991-2000, 2041-2050 and 2091-2100 are presented to show the effect of climate change on the air quality in the region.

  2. TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.

    PubMed

    Li, Min; Liu, Fengjiao; Zhang, John Z H

    2016-12-13

    Coarse-grained (CG) models are desirable for studying large and complex biological systems. In this paper, we propose a new two-bead multipole force field (TMFF) in which electric multipoles up to the quadrupole are included in the CG force field. The inclusion of electric multipoles in the proposed CG force field enables a more realistic description of the anisotropic electrostatic interactions in the protein system and, thus, provides an improvement over the standard isotropic two-bead CG models. In order to test the accuracy of the new CG force field model, extensive molecular dynamics simulations were carried out for a series of benchmark protein systems. These simulation studies showed that the TMFF model can realistically reproduce the structural and dynamical properties of proteins, as demonstrated by the close agreement of the CG results with those from the corresponding all-atom simulations in terms of root-mean-square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the protein backbones. The current two-bead model is highly coarse-grained and is 50-fold more efficient than all-atom method in MD simulation of proteins in explicit water.

  3. Plasma sheet low-entropy flow channels and dipolarization fronts from macro to micro scales: Global MHD and PIC simulations

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Sitnov, M. I.; Lyon, J.

    2016-12-01

    Observations show that much of plasma and magnetic flux transport in the magnetotail occurs in the form of discrete activations such as bursty bulk flows (BBFs). These flow structures are typically associated with strong peaks of the Z-component of the magnetic field normal to the magnetotail current sheet (dipolarization fronts, DFs), as well as density and flux tube entropy depletions also called plasma bubbles. Extensive observational analysis of these structures has been carried out using data from Geotail spacecraft and more recently from Cluster, THEMIS, and MMS multi-probe missions. Global magnetohydrodynamic (MHD) simulations of the magnetosphere reveal similar plasma sheet flow bursts, in agreement with regional MHD and particle-in-cell (PIC) models. We present results of high-resolution simulations using the Lyon-Fedder-Mobarry (LFM) global MHD model and analyze the properties of the bursty flows including their structure and evolution as they propagate from the mid-tail region into the inner magnetosphere. We highlight similarities and differences with the corresponding observations and discuss comparative properties of plasma bubbles and DFs in our global MHD simulations with their counterparts in 3D PIC simulations.

  4. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.

    PubMed

    Beentjes, Casper H L; Baker, Ruth E

    2018-05-25

    Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.

  5. Disruption of Giant Molecular Clouds by Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Harper-Clark, Elizabeth

    The lifetime of a Giant Molecular Cloud (GMC) and the total mass of stars that form within it are crucial to the understanding of star formation rates across a whole galaxy. In particular, the stars within a GMC may dictate its disruption and the quenching of further star formation. Indeed, observations show that the Milky Way contains GMCs with extensive expanding bubbles while the most massive stars are still alive. Simulating entire GMCs is challenging, due to the large variety of physics that needs to be included, and the computational power required to accurately simulate a GMC over tens of millions of years. Using the radiative-magneto-hydrodynamic code Enzo, I have run many simulations of GMCs. I obtain robust results for the fraction of gas converted into stars and the lifetimes of the GMCs: (A) In simulations with no stellar outputs (or "feedback''), clusters form at a rate of 30% of GMC mass per free fall time; the GMCs were not disrupted but contained forming stars. (B) Including ionization gas pressure or radiation pressure into the simulations, both separately and together, the star formation was quenched at between 5% and 21% of the original GMC mass. The clouds were fully disrupted within two dynamical times after the first cluster formed. The radiation pressure contributed the most to the disruption of the GMC and fully quenched star formation even without ionization. (C) Simulations that included supernovae showed that they are not dynamically important to GMC disruption and have only minor effects on subsequent star formation. (D) The inclusion of a few micro Gauss magnetic field across the cloud slightly reduced the star formation rate but accelerated GMC disruption by reducing bubble shell disruption and leaking. These simulations show that new born stars quench further star formation and completely disrupt the parent GMC. The low star formation rate and the short lifetimes of GMCs shown here can explain the low star formation rate across the whole galaxy.

  6. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  7. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  8. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  9. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Astrophysics Data System (ADS)

    Chamis, C. C.; Singhal, S. N.

    1993-02-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  10. New Prediction Model for Probe Specificity in an Allele-Specific Extension Reaction for Haplotype-Specific Extraction (HSE) of Y Chromosome Mixtures

    PubMed Central

    Rothe, Jessica; Watkins, Norman E.; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3′ terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3′ terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3′ terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%. PMID:23049901

  11. Cutting the wires: modularization of cellular networks for experimental design.

    PubMed

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-07

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures.

    PubMed

    Rothe, Jessica; Watkins, Norman E; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3' terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3' terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3' terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.

  13. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  14. Effect of mechanical load on the shuttling operation of molecular muscles

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2009-06-01

    We use molecular dynamics simulations to investigate the effect of mechanical force on stimulus-induced deformation of rotaxane-based artificial molecular muscles. The study shows that a small external force slows down the shuttling motion and leads to longer actuation time for a muscle to reach its full extension. Further increase in the force can significantly reduce the traveling distance of the ring, leading to reduced strain output. A force larger than 28 pN can completely suppress the shuttling motion, suggesting a limit of force output of molecular muscles.

  15. Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Boffetta, Guido; Falkovich, Gregory; Kolokolov, Igor; Lebedev, Vladimir

    2014-12-01

    An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.

  16. Coherent forward scattering as a signature of Anderson metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Miniatura, Christian; Cherroret, Nicolas; Delande, Dominique

    2017-04-01

    We show that the coherent forward scattering (CFS) interference peak amplitude sharply jumps from zero to a finite value upon crossing a metal-insulator transition. Extensive numerical simulations reveal that the CFS peak contrast obeys the one-parameter scaling hypothesis and gives access to the critical exponents of the transition. We also discover that the critical CFS peak directly controls the spectral compressibility at the transition where eigenfunctions are multifractal, and we demonstrate the universality of this property with respect to various types of disorder.

  17. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

    PubMed Central

    Lu, Kelin; Zhou, Rui

    2016-01-01

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883

  18. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  19. The kinetic origin of delayed yielding in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Y. F.; Liu, X. D.; Wang, S.

    2016-06-20

    Recent experiments showed that irreversible structural change or plasticity could occur in metallic glasses (MGs) even within the apparent elastic limit after a sufficiently long waiting time. To explain this phenomenon, a stochastic shear transformation model is developed based on a unified rate theory to predict delayed yielding in MGs, which is validated afterwards through extensive atomistic simulations carried out on different MGs. On a fundamental level, an analytic framework is established in this work that links time, stress, and temperature altogether into a general yielding criterion for MGs.

  20. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  1. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.

    PubMed

    Lu, Kelin; Zhou, Rui

    2016-08-15

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.

  2. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.

    2017-12-01

    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  3. Directional variance adjustment: bias reduction in covariance matrices based on factor analysis with an application to portfolio optimization.

    PubMed

    Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven

    2013-01-01

    Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.

  4. Polyelectrolyte bundles

    NASA Astrophysics Data System (ADS)

    Limbach, H. J.; Sayar, M.; Holm, C.

    2004-06-01

    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.

  5. Directional Variance Adjustment: Bias Reduction in Covariance Matrices Based on Factor Analysis with an Application to Portfolio Optimization

    PubMed Central

    Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven

    2013-01-01

    Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016

  6. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that canmore » account for the effect.« less

  7. Minimizing Dispersion in FDTD Methods with CFL Limit Extension

    NASA Astrophysics Data System (ADS)

    Sun, Chen

    The CFL extension in FDTD methods is receiving considerable attention in order to reduce the computational effort and save the simulation time. One of the major issues in the CFL extension methods is the increased dispersion. We formulate a decomposition of FDTD equations to study the behaviour of the dispersion. A compensation scheme to reduce the dispersion in CFL extension is constructed and proposed. We further study the CFL extension in a FDTD subgridding case, where we improve the accuracy by acting only on the FDTD equations of the fine grid. Numerical results confirm the efficiency of the proposed method for minimising dispersion.

  8. Monte Carlo Simulation Using HyperCard and Lotus 1-2-3.

    ERIC Educational Resources Information Center

    Oulman, Charles S.; Lee, Motoko Y.

    Monte Carlo simulation is a computer modeling procedure for mimicking observations on a random variable. A random number generator is used in generating the outcome for the events that are being modeled. The simulation can be used to obtain results that otherwise require extensive testing or complicated computations. This paper describes how Monte…

  9. GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package

    PubMed Central

    Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-01-01

    The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538

  10. GneimoSim: a modular internal coordinates molecular dynamics simulation package.

    PubMed

    Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-12-05

    The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.

  11. Lattice gas simulations of dynamical geometry in two dimensions.

    PubMed

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  12. Numerical modeling of interface displacement in heterogeneously wetting porous media

    NASA Astrophysics Data System (ADS)

    Hiller, T.; Brinkmann, M.; Herminghaus, S.

    2013-12-01

    We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.

  13. Hot interstellar tunnels. 1: Simulation of interacting supernova remnants

    NASA Technical Reports Server (NTRS)

    Smith, B. W.

    1976-01-01

    The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.

  14. Effects of Geometric Details on Slat Noise Generation and Propagation

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockard, David P.

    2009-01-01

    The relevance of geometric details to the generation and propagation of noise from leading-edge slats is considered. Typically, such details are omitted in computational simulations and model-scale experiments thereby creating ambiguities in comparisons with acoustic results from flight tests. The current study uses two-dimensional, computational simulations in conjunction with a Ffowcs Williams-Hawkings (FW-H) solver to investigate the effects of previously neglected slat "bulb" and "blade" seals on the local flow field and the associated acoustic radiation. The computations show that the presence of the "blade" seal at the cusp in the simulated geometry significantly changes the slat cove flow dynamics, reduces the amplitudes of the radiated sound, and to a lesser extent, alters the directivity beneath the airfoil. Furthermore, the computations suggest that a modest extension of the baseline "blade" seal further enhances the suppression of slat noise. As a side issue, the utility and equivalence of FW-H methodology for calculating far-field noise as opposed to a more direct approach is examined and demonstrated.

  15. Inconsistencies in Numerical Simulations of Dynamical Systems Using Interval Arithmetic

    NASA Astrophysics Data System (ADS)

    Nepomuceno, Erivelton G.; Peixoto, Márcia L. C.; Martins, Samir A. M.; Rodrigues, Heitor M.; Perc, Matjaž

    Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.

  16. Transient Spectra in TDDFT: Corrections and Correlations

    NASA Astrophysics Data System (ADS)

    Parkhill, John; Nguyen, Triet

    We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP chromophore derivative. The method is an application of OSCF2, our dissipative extension of time-dependent density functional theory. We compare our simulated spectra directly with recent ultra-fast spectroscopic experiments, showing that they are usefully predicted. We also relate bleaches in the TA signal to Fermi-blocking which would be missed in a simplified model. An important ingredient in the method is the stationary-TDDFT correction scheme recently put forwards by Fischer, Govind, and Cramer which allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to predict both the energies of bleaches and induced absorptions, as well as the decay of the transient spectrum, with only the molecular structure as input. With remaining time we will discuss corrections which resolve the non-resonant behavior of driven TDDFT, and correlated corrections to mean-field dynamics.

  17. CAMx Ozone Source Attribution in the Eastern United States using Guidance from Observations during DISCOVER-AQ Maryland

    PubMed Central

    Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.; Dickerson, Russell R.

    2018-01-01

    A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA’s 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by −28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx-limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone. PMID:29618849

  18. CAMx Ozone Source Attribution in the Eastern United States using Guidance from Observations during DISCOVER-AQ Maryland.

    PubMed

    Goldberg, Daniel L; Vinciguerra, Timothy P; Anderson, Daniel C; Hembeck, Linda; Canty, Timothy P; Ehrman, Sheryl H; Martins, Douglas K; Stauffer, Ryan M; Thompson, Anne M; Salawitch, Ross J; Dickerson, Russell R

    2016-03-16

    A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NO y by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NO x , enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NO x -limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NO x reductions as well as the current contribution of EGUs to surface ozone.

  19. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject ofmore » extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.« less

  20. Derivation and Applicability of Asymptotic Results for Multiple Subtests Person-Fit Statistics

    PubMed Central

    Albers, Casper J.; Meijer, Rob R.; Tendeiro, Jorge N.

    2016-01-01

    In high-stakes testing, it is important to check the validity of individual test scores. Although a test may, in general, result in valid test scores for most test takers, for some test takers, test scores may not provide a good description of a test taker’s proficiency level. Person-fit statistics have been proposed to check the validity of individual test scores. In this study, the theoretical asymptotic sampling distribution of two person-fit statistics that can be used for tests that consist of multiple subtests is first discussed. Second, simulation study was conducted to investigate the applicability of this asymptotic theory for tests of finite length, in which the correlation between subtests and number of items in the subtests was varied. The authors showed that these distributions provide reasonable approximations, even for tests consisting of subtests of only 10 items each. These results have practical value because researchers do not have to rely on extensive simulation studies to simulate sampling distributions. PMID:29881053

  1. First-principles simulation for strong and ultra-short laser pulse propagation in dielectrics

    NASA Astrophysics Data System (ADS)

    Yabana, K.

    2016-05-01

    We develop a computational approach for interaction between strong laser pulse and dielectrics based on time-dependent density functional theory (TDDFT). In this approach, a key ingredient is a solver to simulate electron dynamics in a unit cell of solids under a time-varying electric field that is a time-dependent extension of the static band calculation. This calculation can be regarded as a constitutive relation, providing macroscopic electric current for a given electric field applied to the medium. Combining the solver with Maxwell equations for electromagnetic fields of the laser pulse, we describe propagation of laser pulses in dielectrics without any empirical parameters. An important output from the coupled Maxwell+TDDFT simulation is the energy transfer from the laser pulse to electrons in the medium. We have found an abrupt increase of the energy transfer at certain laser intensity close to damage threshold. We also estimate damage threshold by comparing the transferred energy with melting and cohesive energies. It shows reasonable agreement with measurements.

  2. Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems.

    PubMed

    Varga, Imre; Pipek, János

    2003-08-01

    We discuss some properties of the generalized entropies, called Rényi entropies, and their application to the case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent; however, their differences are free from these divergences, thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corroborate our expectations.

  3. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  4. A Three-Dimensional Eulerian Code for Simulation of High-Speed Multimaterial Interactions

    DTIC Science & Technology

    2011-08-01

    PDE -based extension. The extension process is done on only the host cells on a particular processor. After extension the parallel communication is...condensation shocks, explosive debris transport, detonation in heterogeneous media and so on. In these flows complex interactions occur between the...A.22] and ijΩ is the spin tensor. The Jaumann derivative is used to ensure objectivity of the stress tensor with respect to rotation

  5. GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model

    NASA Astrophysics Data System (ADS)

    Aklan, B.; Jakoby, B. W.; Watson, C. C.; Braun, H.; Ritt, P.; Quick, H. H.

    2015-06-01

    A simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop an accurate Monte Carlo (MC) simulation of a fully integrated 3T PET/MR hybrid imaging system (Siemens Biograph mMR). The PET/MR components of the Biograph mMR were simulated in order to allow a detailed study of variations of the system design on the PET performance, which are not easy to access and measure on a real PET/MR system. The 3T static magnetic field of the MR system was taken into account in all Monte Carlo simulations. The validation of the MC model was carried out against actual measurements performed on the PET/MR system by following the NEMA (National Electrical Manufacturers Association) NU 2-2007 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction, and count rate capability. The validated system model was then used for two different applications. The first application focused on investigating the effect of an extension of the PET field-of-view on the PET performance of the PET/MR system. The second application deals with simulating a modified system timing resolution and coincidence time window of the PET detector electronics in order to simulate time-of-flight (TOF) PET detection. A dedicated phantom was modeled to investigate the impact of TOF on overall PET image quality. Simulation results showed that the overall divergence between simulated and measured data was found to be less than 10%. Varying the detector geometry showed that the system sensitivity and noise equivalent count rate of the PET/MR system increased progressively with an increasing number of axial detector block rings, as to be expected. TOF-based PET reconstructions of the modeled phantom showed an improvement in signal-to-noise ratio and image contrast to the conventional non-TOF PET reconstructions. In conclusion, the validated MC simulation model of an integrated PET/MR system with an overall accuracy error of less than 10% can now be used for further MC simulation applications such as development of hardware components as well as for testing of new PET/MR software algorithms, such as assessment of point-spread function-based reconstruction algorithms.

  6. The Roland Maze Project school-based extensive air shower network

    NASA Astrophysics Data System (ADS)

    Feder, J.; Jȩdrzejczak, K.; Karczmarczyk, J.; Lewandowski, R.; Swarzyński, J.; Szabelska, B.; Szabelski, J.; Wibig, T.

    2006-01-01

    We plan to construct the large area network of extensive air shower detectors placed on the roofs of high school buildings in the city of Łódź. Detection points will be connected by INTERNET to the central server and their work will be synchronized by GPS. The main scientific goal of the project are studies of ultra high energy cosmic rays. Using existing town infrastructure (INTERNET, power supply, etc.) will significantly reduce the cost of the experiment. Engaging high school students in the research program should significantly increase their knowledge of science and modern technologies, and can be a very efficient way of science popularisation. We performed simulations of the projected network capabilities of registering Extensive Air Showers and reconstructing energies of primary particles. Results of the simulations and the current status of project realisation will be presented.

  7. Community Level Impact Assessment--Extension Applications.

    ERIC Educational Resources Information Center

    Woods, Mike D.; Doeksen, Gerald A.

    Using the Oklahoma State University (OSU) computerized community simulation model, extension professionals can provide local decision makers with information derived from an impact model that is dynamic, community specific, and easy to adapt to different communities. The four main sections of the OSU model are an economic account, a capital…

  8. Extensive Air Showers in the Classroom

    ERIC Educational Resources Information Center

    Badala, A.; Blanco, F.; La Rocca, P.; Pappalardo, G. S.; Pulvirenti, A.; Riggi, F.

    2007-01-01

    The basic properties of extensive air showers of particles produced in the interaction of a high-energy primary cosmic ray in the Earth's atmosphere are discussed in the context of educational cosmic ray projects involving undergraduate students and high-school teams. Simulation results produced by an air shower development code were made…

  9. Evaluation of traffic signal timing optimization methods using a stochastic and microscopic simulation program.

    DOT National Transportation Integrated Search

    2003-01-01

    This study evaluated existing traffic signal optimization programs including Synchro,TRANSYT-7F, and genetic algorithm optimization using real-world data collected in Virginia. As a first step, a microscopic simulation model, VISSIM, was extensively ...

  10. Design and verification of a simple 3D dynamic model of speed skating which mimics observed forces and motions.

    PubMed

    van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L

    2017-11-07

    Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Design of a mechanism to simulate the quasi-static moment-deflection behaviour of the osteoligamentous structure of the C3-C4 cervical spine segment in the flexion-extension and lateral bending directions.

    PubMed

    Chen, Samuel; Arsenault, Marc; Moglo, Kodjo

    2012-11-01

    The human neck is susceptible to traumatic injuries due to impacts as well as chronic injuries caused by loads such as those attributed to the wearing of heavy headgear. To facilitate the analysis of the loads that cause injuries to the cervical spine, it is possible to replicate the human neck's behaviour with mechanical devices. The goal of this work is to lay the foundation for the eventual development of a novel mechanism used to simulate the behaviour of the cervical spine during laboratory experiments. The research presented herein focuses on the design of a mechanism capable of reproducing the non-linear relationships between moments applied to the C3 vertebra and its corresponding rotations with respect to the C4 vertebra. The geometrical and mechanical properties of the mechanism are optimized based on the ability of the latter to replicate the load-deflection profile of the osteoligamentous structure of the C3-C4 vertebral pair in the flexion-extension and lateral bending directions. The results show that the proposed design concept is capable of faithfully replicating the non-linear behaviour of the motion segment within acceptable tolerances.

  12. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  13. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  14. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPDmore » simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.« less

  15. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species With Application to DSMC Simulations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2013-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for nearequilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion of the heating and is then compared to the total heating measured in flight.

  16. The effect of Ocean resolution, and external forcing in the correlation between SLP and Sea Ice Concentration in the Pre-PRIMAVERA GCMs

    NASA Astrophysics Data System (ADS)

    Fuentes-Franco, Ramon; Koenigk, Torben

    2017-04-01

    Recently, an observational study has shown that sea ice variations in Barents Sea seem to be important for the sign of the following winter NAO (Koenigk et al. 2016). It has also been found that amplitude and extension of the Sea Level Pressure (SLP) patterns are modulated by Greenland and Labrador Seas ice areas. Therefore, Earth System Models participating in the PRIMAVERA Project are used to study the impact of resolution in ocean models in reproducing the previously mentioned observed correlation patterns between Sea Ice Concentration (SIC) and the SLP. When using ensembles of high ocean resolution (0.25 degrees) and low ocean resolution (1 degree) simulations, we found that the correlation sign between sea ice concentration over the Central Arctic, the Barents/Kara Seas and the Northern Hemisphere is similar to observations in the higher ocean resolution ensemble, although the amplitude is underestimated. In contrast, the low resolution ensemble shows opposite correlation patterns compared to observations. In general, high ocean resolution simulations show more similar results to observations than the low resolution simulations. Similarly, in order to study the mentioned observed SIC-SLP relationship reported by Koenigk et al (2016), we analyzed the impact of the use of pre-industrial and historical external forcing in the simulations. When using same forcing ensembles, we found that the correlation sign between SIC and SLP does not show a systematic behavior dependent on the use of different external forcing (pre-industrial or present day) as it does when using different ocean resolutions.

  17. Molecular dynamics and metadynamics simulations of electrosprayed water nanodroplets including sodium bis(2-ethylhexyl)sulfosuccinate micelles.

    PubMed

    Longhi, Giovanna; Ceselli, Alberto; Fornili, Sandro L; Turco Liveri, Vincenzo

    2017-05-28

    The behavior of aqueous solutions of sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) under conditions of electrospray ionization (ESI) has been investigated by molecular dynamics (MD) and well-tempered metadynamics (WTM) simulations at 300 K and 400 K. We have examined water droplets with initial fixed numbers of water molecules (1000) and AOT - anions (100), and with sodium cations in the range of 70-130. At 300 K, all charged droplets show the water evaporation rate increasing with the absolute value of the initial droplet charge state (Z), accompanied by ejection of an increasing number of solvated sodium ions or by expulsion of AOT - anions depending on the sign of Z and by fragmentation in the case of high |Z|. At 400 K, the water evaporation becomes more rapid and the fission process more extensive. In all cases, the AOTNa molecules, arranged as a direct micelle inside the aqueous system, undergo a rapid inversion in vacuo so that the hydrophilic heads and sodium ions surrounded by water molecules move toward the droplet interior. At the end of the 100-ns MD simulations, some water molecules remain within the aggregates at both temperatures. The subsequent metadynamics simulations accelerate the droplet evolution and show that all systems become anhydrous, in agreement with the experimental results of ESI mass spectrometry. This complete water loss is accompanied by sodium counterion emission for positively charged aggregates at 300 K. The analysis shows how the temperature and droplet charge state affect the populations of the generated surfactant aggregates, providing information potentially useful in designing future ESI experimental conditions.

  18. Molecular dynamics and metadynamics simulations of electrosprayed water nanodroplets including sodium bis(2-ethylhexyl)sulfosuccinate micelles

    NASA Astrophysics Data System (ADS)

    Longhi, Giovanna; Ceselli, Alberto; Fornili, Sandro L.; Turco Liveri, Vincenzo

    2017-05-01

    The behavior of aqueous solutions of sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) under conditions of electrospray ionization (ESI) has been investigated by molecular dynamics (MD) and well-tempered metadynamics (WTM) simulations at 300 K and 400 K. We have examined water droplets with initial fixed numbers of water molecules (1000) and AOT- anions (100), and with sodium cations in the range of 70-130. At 300 K, all charged droplets show the water evaporation rate increasing with the absolute value of the initial droplet charge state (Z), accompanied by ejection of an increasing number of solvated sodium ions or by expulsion of AOT- anions depending on the sign of Z and by fragmentation in the case of high |Z|. At 400 K, the water evaporation becomes more rapid and the fission process more extensive. In all cases, the AOTNa molecules, arranged as a direct micelle inside the aqueous system, undergo a rapid inversion in vacuo so that the hydrophilic heads and sodium ions surrounded by water molecules move toward the droplet interior. At the end of the 100-ns MD simulations, some water molecules remain within the aggregates at both temperatures. The subsequent metadynamics simulations accelerate the droplet evolution and show that all systems become anhydrous, in agreement with the experimental results of ESI mass spectrometry. This complete water loss is accompanied by sodium counterion emission for positively charged aggregates at 300 K. The analysis shows how the temperature and droplet charge state affect the populations of the generated surfactant aggregates, providing information potentially useful in designing future ESI experimental conditions.

  19. Mechanism of CO 2 hydrogenation over Cu/ZrO 2(2̅12) interface from first-principles kinetics Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun; Liu, Zhi-Pan

    2010-10-01

    It has been a goal consistently pursued by chemists to understand and control the catalytic process over composite materials. In order to provide deeper insight on complex interfacial catalysis at the experimental conditions, we performed an extensive analysis on CO 2 hydrogenation over a Cu/ZrO 2 model catalyst by employing density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations based on the continuous stirred tank model. The free energy profiles are determined for the reaction at the oxygen-rich Cu/m-ZrO 2 (2̅12) interface, where all interfacial Zr are six-coordinated since the interface accumulates oxidative species at the reaction conditions. We show that not only methanol but also CO are produced through the formate pathway dominantly, whilst the reverse-water-gas-shift (RWGS) channel has only a minor contribution. H 2CO is a key intermediate species in the reaction pathway, the hydrogenation of which dictates the high temperature of CO 2 hydrogenation. The kinetics simulation shows that the CO 2 conversion is 1.20%, the selectivity towards methanol is 68% at 500 K and the activation energies for methanol and CO formation are 0.79 and 1.79 eV, respectively. The secondary reactions due to the product readsorption lower the overall turnover frequency (TOF) but increase the selectivity towards methanol by 16%. We also show that kMC is a more reliable tool for simulating heterogeneous catalytic processes compared to the microkinetics approach.

  20. Emissions from Open Burning of Simulated Military Waste from Forward Operating Bases

    EPA Science Inventory

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenar...

  1. Campus Energy Model for Control and Performance Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-09-19

    The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.

  2. Simulating Multivariate Nonnormal Data Using an Iterative Algorithm

    ERIC Educational Resources Information Center

    Ruscio, John; Kaczetow, Walter

    2008-01-01

    Simulating multivariate nonnormal data with specified correlation matrices is difficult. One especially popular method is Vale and Maurelli's (1983) extension of Fleishman's (1978) polynomial transformation technique to multivariate applications. This requires the specification of distributional moments and the calculation of an intermediate…

  3. Learning about Fossil Formation by Classroom Simulation.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Yoshida, Sarah J.

    1991-01-01

    Activities in which students build their own simulations of fossils, using seashells, chicken bones, toy dinosaurs, or leaves as models and plaster of paris, sand, mud, clay, or a mixture of gravel and clay as a matrix are presented. Curriculum extensions are included. (KR)

  4. Drape simulation and subjective assessment of virtual drape

    NASA Astrophysics Data System (ADS)

    Buyukaslan, E.; Kalaoglu, F.; Jevsnik, S.

    2017-10-01

    In this study, a commercial 3D virtual garment simulation software (Optitex) is used to simulate drape behaviours of five different fabrics. Mechanical properties of selected fabrics are measured by Fabric Assurance by Simple Testing (FAST) method. Measured bending, shear and extension properties of fabrics are inserted to the simulation software to achieve more realistic simulations. Simulation images of fabrics are shown to 27 people and they are asked to match real drape images of fabrics with simulated drape images. Fabric simulations of two fabrics were correctly matched by the majority of the test group. However, the other three fabrics’ simulations were mismatched by most of the people.

  5. Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Debbio, Luigi; Patella, Agostino; Pica, Claudio

    2010-05-01

    We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less

  6. Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations.

    PubMed

    Einert, T R; Sing, C E; Alexander-Katz, A; Netz, R R

    2011-12-01

    We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.

  7. Systematic Validation of Protein Force Fields against Experimental Data

    PubMed Central

    Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2012-01-01

    Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field—the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins—one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins. PMID:22384157

  8. Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    NASA Astrophysics Data System (ADS)

    Junghans, Christoph; Mniszewski, Susan; Voter, Arthur; Perez, Danny; Eidenbenz, Stephan

    2014-03-01

    We present an example of a new class of tools that we call application simulators, parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation (PDES). We demonstrate our approach with a TADSim application simulator that models the Temperature Accelerated Dynamics (TAD) method, which is an algorithmically complex member of the Accelerated Molecular Dynamics (AMD) family. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We further extend TADSim to model algorithm extensions to standard TAD, such as speculative spawning of the compute-bound stages of the algorithm, and predict performance improvements without having to implement such a method. Focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights into the TAD algorithm behavior and suggested extensions to the TAD method.

  9. Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest

    Treesearch

    Morris C. Johnson; Maureen C Kennedy; David L. Peterson

    2011-01-01

    We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We...

  10. Numerical simulations of water flow and tracer transport in soils at the USDA-ARS Beltsville OPE3 field site

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in USDA-ARS OPE3 field site and to compare simulation results with the detailed monitoring observations. The site has been studied for over 10 years with the extensive availabl...

  11. Mathematical modeling of high-pH chemical flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, D.; Lake, L.W.; Pope, G.A.

    1990-05-01

    This paper describes a generalized compositional reservoir simulator for high-pH chemical flooding processes. This simulator combines the reaction chemistry associated with these processes with the extensive physical- and flow-property modeling schemes of an existing micellar/polymer flood simulator, UTCHEM. Application of the model is illustrated for cases from a simple alkaline preflush to surfactant-enhanced alkaline-polymer flooding.

  12. Glyph-based analysis of multimodal directional distributions in vector field ensembles

    NASA Astrophysics Data System (ADS)

    Jarema, Mihaela; Demir, Ismail; Kehrer, Johannes; Westermann, Rüdiger

    2015-04-01

    Ensemble simulations are increasingly often performed in the geosciences in order to study the uncertainty and variability of model predictions. Describing ensemble data by mean and standard deviation can be misleading in case of multimodal distributions. We present first results of a glyph-based visualization of multimodal directional distributions in 2D and 3D vector ensemble data. Directional information on the circle/sphere is modeled using mixtures of probability density functions (pdfs), which enables us to characterize the distributions with relatively few parameters. The resulting mixture models are represented by 2D and 3D lobular glyphs showing direction, spread and strength of each principal mode of the distributions. A 3D extension of our approach is realized by means of an efficient GPU rendering technique. We demonstrate our method in the context of ensemble weather simulations.

  13. Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.; Carzoo, S. W.

    1984-01-01

    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.

  14. Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Abeles, J. A.; Corsetti, T. G.

    1985-01-01

    The formulation of the planetary boundary layer (PBL) and stratocumulus parametrizations in the UCLA general circulation model (GCM) are briefly summarized, and extensive new results are presented illustrating some aspects of the simulated seasonal changes of the global distributions of PBL depth, stratocumulus cloudiness, cloud-top entrainment instability, the cumulus mass flux, and related fields. Results from three experiments designed to reveal the sensitivity of the GCM results to aspects of the PBL and stratocumulus parametrizations are presented. The GCM results show that the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes, and that instability frequently occurs in association with cumulus convection over land. Cumulus convection acts as a very significant sink of PBL mass throughout the tropics and over the midlatitude continents in winter.

  15. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  16. The Genomic Impacts of Drift and Selection for Hybrid Performance in Maize

    PubMed Central

    Gerke, Justin P.; Edwards, Jode W.; Guill, Katherine E.; Ross-Ibarra, Jeffrey; McMullen, Michael D.

    2015-01-01

    Although maize is naturally an outcrossing organism, modern breeding utilizes highly inbred lines in controlled crosses to produce hybrids. The U.S. Department of Agriculture’s reciprocal recurrent selection experiment between the Iowa Stiff Stalk Synthetic (BSSS) and the Iowa Corn Borer Synthetic No. 1 (BSCB1) populations represents one of the longest running experiments to understand the response to selection for hybrid performance. To investigate the genomic impact of this selection program, we genotyped the progenitor lines and >600 individuals across multiple cycles of selection using a genome-wide panel of ∼40,000 SNPs. We confirmed previous results showing a steady temporal decrease in genetic diversity within populations and a corresponding increase in differentiation between populations. Thanks to detailed historical information on experimental design, we were able to perform extensive simulations using founder haplotypes to replicate the experiment in the absence of selection. These simulations demonstrate that while most of the observed reduction in genetic diversity can be attributed to genetic drift, heterozygosity in each population has fallen more than expected. We then took advantage of our high-density genotype data to identify extensive regions of haplotype fixation and trace haplotype ancestry to single founder inbred lines. The vast majority of regions showing such evidence of selection differ between the two populations, providing evidence for the dominance model of heterosis. We discuss how this pattern is likely to occur during selection for hybrid performance and how it poses challenges for dissecting the impacts of modern breeding and selection on the maize genome. PMID:26385980

  17. Variance in binary stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  18. Studying Variance in the Galactic Ultra-compact Binary Population

    NASA Astrophysics Data System (ADS)

    Larson, Shane L.; Breivik, Katelyn

    2017-01-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  19. Effects of flow rate on the migration of different plasticizers from PVC infusion medical devices

    PubMed Central

    Eljezi, Teuta; Clauson, Hélène; Lambert, Céline; Bouattour, Yassine; Chennell, Philip; Pereira, Bruno; Sautou, Valérie

    2018-01-01

    Infusion medical devices (MDs) used in hospitals are often made of plasticized polyvinylchloride (PVC). These plasticizers may leach out into infused solutions during clinical practice, especially during risk-situations, e.g multiple infusions in Intensive Care Units and thus may enter into contact with the patients. The migrability of the plasticizers is dependent of several clinical parameters such as temperature, contact time, nature of the simulant, etc… However, no data is available about the influence of the flow rate at which drug solutions are administrated. In this study, we evaluated the impact of different flow rates on the release of the different plasticizers during an infusion procedure in order to assess if they could expose the patients to more toxic amounts of plasticizers. Migration assays with different PVC infusion sets and extension lines were performed with different flow rates that are used in clinical practice during 1h, 2h, 4h, 8h and 24h, using a lipophilic drug simulant. From a clinical point of view, the results showed that, regardless of the plasticizer, the faster the flow rate, the higher the infused volume and the higher the quantities of plasticizers released, both from infusion sets and extension lines, leading to higher patient exposure. However, physically, there was no significant difference of the migration kinetics linked to the flow rate for a same medical device, reflecting complex interactions between the PVC matrix and the simulant. The migration was especially dependent on the nature and the composition of the medical device. PMID:29474357

  20. A biomechanical study of artificial cervical discs using computer simulation.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2008-04-15

    A virtual simulation model of the subaxial cervical spine was used to study the biomechanical effects of various disc prosthesis designs. To study the biomechanics of different design features of cervical disc arthroplasty devices. Disc arthroplasty is an alternative approach to cervical fusion surgery for restoring and maintaining motion at a diseased spinal segment. Different types of cervical disc arthroplasty devices exist and vary based on their placement and degrees of motion offered. A virtual dynamic model of the subaxial cervical spine was used to study 3 different prosthetic disc designs (PDD): (1) PDD-I: The center of rotation of a spherical joint located at the mid C5-C6 disc, (2) PDD-II: The center of rotation of a spherical joint located 6.5 mm below the mid C5-C6 disc, and (3) PDD-III: The center of rotation of a spherical joint in a plane located at the C5-C6 disc level. A constrained spherical joint placed at the disc level (PDD-I) significantly increased facet loads during extension. Lowering the rotational axis of the spherical joint towards the subjacent body (PDD-II) caused a marginal increase in facet loading during flexion, extension, and lateral bending. Lastly, unconstraining the spherical joint to move freely in a plane (PDD-III) minimized facet load build up during all loading modes. The simulation model showed the impact simple design changes may have on cervical disc dynamics. The predicted facet loads calculated from computer model have to be validated in the experimental study.

  1. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension

    NASA Astrophysics Data System (ADS)

    Ganesan, Nandhini; Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Yeo, Taejung; Sohn, Dong Kee; Doo, Seokgwang

    2016-08-01

    Lithium-Ion batteries used for electric vehicle applications are subject to large currents and various operation conditions, making battery pack design and life extension a challenging problem. With increase in complexity, modeling and simulation can lead to insights that ensure optimal performance and life extension. In this manuscript, an electrochemical-thermal (ECT) coupled model for a 6 series × 5 parallel pack is developed for Li ion cells with NCA/C electrodes and validated against experimental data. Contribution of the cathode to overall degradation at various operating conditions is assessed. Pack asymmetry is analyzed from a design and an operational perspective. Design based asymmetry leads to a new approach of obtaining the individual cell responses of the pack from an average ECT output. Operational asymmetry is demonstrated in terms of effects of thermal gradients on cycle life, and an efficient model predictive control technique is developed. Concept of reconfigurable battery pack is studied using detailed simulations that can be used for effective monitoring and extension of battery pack life.

  2. skelesim: an extensible, general framework for population genetic simulation in R.

    PubMed

    Parobek, Christian M; Archer, Frederick I; DePrenger-Levin, Michelle E; Hoban, Sean M; Liggins, Libby; Strand, Allan E

    2017-01-01

    Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares' complex capabilities, composing code and input files, a daunting bioinformatics barrier and a steep conceptual learning curve. skelesim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics and organizing data output, in a reproducible pipeline within the R environment. skelesim is designed to be an extensible framework that can 'wrap' around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skelesim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skelesim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skelesim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny). © 2016 John Wiley & Sons Ltd.

  3. skeleSim: an extensible, general framework for population genetic simulation in R

    PubMed Central

    Parobek, Christian M.; Archer, Frederick I.; DePrenger-Levin, Michelle E.; Hoban, Sean M.; Liggins, Libby; Strand, Allan E.

    2016-01-01

    Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares’ complex capabilities, composing code and input files, a daunting bioinformatics barrier, and a steep conceptual learning curve. skeleSim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics, and organizing data output, in a reproducible pipeline within the R environment. skeleSim is designed to be an extensible framework that can ‘wrap’ around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skeleSim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skeleSim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skeleSim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny). PMID:27736016

  4. Railroads and the Environment : Estimation of Fuel Consumption in Rail Transportation : Volume 3. Comparison of Computer Simulations with Field Measurements

    DOT National Transportation Integrated Search

    1978-09-01

    This report documents comparisons between extensive rail freight service measurements (previously presented in Volume II) and simulations of the same operations using a sophisticated train performance calculator computer program. The comparisons cove...

  5. Experimental model: dye penetration of extensive interim restorations used during endodontic treatment while under load in a multiple axis chewing simulator.

    PubMed

    Jensen, Arna-Lee; Abbott, Paul V

    2007-10-01

    The purpose of this study was to design an experimental model that allowed extensive endodontic interim restorations to be tested for dye penetration while under simulated masticatory load. Extracted premolar teeth had standardized mesio-occluso-distal cavities prepared, and the root canals were instrumented. A cotton wool pellet was placed in the pulp chamber, and the cavities were restored with Cavit, IRM, Ketac-Fil Plus, Ketac-Silver, or composite resin (Z100). They were subjected to the equivalent of 3 months of clinical load while exposed to methylene blue dye. Results of this study could not support IRM as a suitable interim endodontic restorative material to use in extensive cavities. The dye penetration in the Ketac-Fil Plus and Ketac-Silver specimens was not predictable, and the results suggested Cavit and Z100 composite resin require further investigations as potentially useful materials for this purpose.

  6. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  7. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.

    2016-02-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k

  8. Lateral eddy diffusivity estimates from simulated and observed drifter trajectories: a case study for the Agulhas Current system

    NASA Astrophysics Data System (ADS)

    Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne

    2017-04-01

    The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.

  9. Simulation and analysis of conjunctive use with MODFLOW's farm process

    USGS Publications Warehouse

    Hanson, R.T.; Schmid, W.; Faunt, C.C.; Lockwood, B.

    2010-01-01

    The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within " water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  10. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  11. Thermal lattice BGK models for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    1998-11-01

    As an alternative in modeling fluid dynamics, the Lattice Boltzmann method has attracted considerable attention. In this thesis, we shall present a general form of thermal Lattice BGK. This form can handle large differences in density, temperature, and high Mach number. This generalized method can easily model gases with different adiabatic index values. The numerical transport coefficients of this model are estimated both theoretically and numerically. Their dependency on the sizes of integration steps in time and space, and on the flow velocity and temperature, are studied and compared with other established CFD methods. This study shows that the numerical viscosity of the Lattice Boltzmann method depends linearly on the space interval, and on the flow velocity as well for supersonic flow. This indicates this method's limitation in modeling high Reynolds number compressible thermal flow. On the other hand, the Lattice Boltzmann method shows promise in modeling micro-flows, i.e., gas flows in micron-sized devices. A two-dimensional code has been developed based on the conventional thermal lattice BGK model, with some modifications and extensions for micro- flows and wall-fluid interactions. Pressure-driven micro- channel flow has been simulated. Results are compared with experiments and simulations using other methods, such as a spectral element code using slip boundary condition with Navier-Stokes equations and a Direct Simulation Monte Carlo (DSMC) method.

  12. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    PubMed

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  13. Low-cost three-dimensional millimeter-wave holographic imaging system based on a frequency-scanning antenna.

    PubMed

    Amin Nili, Vahid; Mansouri, Ehsan; Kavehvash, Zahra; Fakharzadeh, Mohammad; Shabany, Mahdi; Khavasi, Amin

    2018-01-01

    In this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations. The hybrid frequency and mechanical scanning structure, together with the proposed reconstruction method, yields a low-cost MMW imaging system with a satisfying performance. The extracted reconstruction formulations are validated through numerical simulations, which show comparable image quality with conventional MMW imaging systems, i.e., switched-array (SA) and phased-array (PA) structures. Extensive simulations are also performed in the presence of additive noise, demonstrating the acceptable robustness of the system against system noise compared to SA and comparable performance with PA. Finally, 3D reconstruction of the simulated data shows a depth resolution of better than 10 cm with minimum degradation of lateral resolution in the 10 GHz frequency bandwidth.

  14. Simulating the evolution of glyphosate resistance in grains farming in northern Australia.

    PubMed

    Thornby, David F; Walker, Steve R

    2009-09-01

    The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.

  15. A glacier runoff extension to the Precipitation Runoff Modeling System

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Viger, Roland

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  16. An Examination of Potential Causes of the Persistent Capillary Fringe Extension Observed During a Pumping Test in an Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Bunn, M. I.; Jones, J.; Endres, A. L.

    2008-12-01

    Hydrogeologists quantify the properties of unconfined aquifers by analyzing the data from pumping tests. The most appropriate method of incorporating flow contributions from the vadose zone into these analyses has been the subject of debate for decades. Recently, a highly detailed data set was collected during a seven- day pumping test at CFB Borden, Ontario (Bevan et al., 2005) which has allowed a close examination of the vadose zone response to pumping. Water table drawdown was monitored using pressure transducers in 11 monitoring wells, while moisture profiles were collected 19 times during the 7-day test using neutron logging. The Borden aquifer system is quite homogeneous, and numerical simulations using the variably saturated model InHM resulted in excellent reproduction of the observed hydraulic head drawdowns. Conversely, the simulated moisture profiles correlated poorly with neutron-logging-derived observed profiles. Specifically, the field results show delayed drawdown in the vadose zone, resulting in a persistent and significant extension of the capillary fringe, with the shape of the moisture profile remaining constant through the transition zone. Numerical simulations using various forms of the capillary pressure-saturation relationship with reasonable parameter sets were unable produce the extension. Neutron moisture profiles were selected from three locations (3, 5, and 15 m radial distance from the pumping well) at which an adjacent shallow deep piezometer pair could be used to accurately estimate water table location. Using this data in conjunction with the inverse modeling tool PEST, a set of van Genuchten capillary pressure-saturation parameters was generated to match each observed moisture profile. Horizontal and vertical hydraulic gradients and flow rates at the water table were generated using model output and compared to the fitted parameters. The van Genuchten parameter n was found to have significant scatter in both profile location and observation time when compared to any of the modeled results. The van Genuchten parameter alpha was found to vary linearly as a function of horizontal hydraulic gradient; further the results from all observation locations and times were found to follow the same linear relationship. The likely effects of consolidation, entrapped air, heterogeneity, and hydraulic gradients on the observed moisture profile were also evaluated. Results indicate a need for further investigation into the applicability of laboratory derived steady-state water retention curves for field scale simulations.

  17. On-Chip Transport of Biological Fluids in MEMS Devices

    DTIC Science & Technology

    1999-02-01

    this model has been extended for multi-dimensional geometries to simulate electroosmotic flow in microdevices. Electrophoresis model in CFD- ACE + will...integrated with CFD- ACE +. 7.0 REFERENCES 1. N. A. Patankar and H. H. Hu, "Numerical Simulation of Electroosmotic Flow," Analytical Chemistry, 70...Electroosmosis has been developed and successfully integrated with CFD- ACE + code. (ii) Extension of the above-mentioned model to simulate

  18. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  19. Driving-forces model on individual behavior in scenarios considering moving threat agents

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  20. Multivariable extrapolation of grand canonical free energy landscapes

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-12-01

    We derive an approach for extrapolating the free energy landscape of multicomponent systems in the grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of temperature and chemical potentials to another. This is accomplished by expanding the landscape in a Taylor series at each value of the order parameter which defines its macrostate phase space. The coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble. Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle, this enables a single flat-histogram simulation to provide complete thermodynamic information over a broad range of temperatures and chemical potentials. Using this, we also show how to combine a small number of simulations, each performed at different conditions, in a thermodynamically consistent fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This method may significantly increase the computational efficiency of biased grand canonical Monte Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach is amenable to high-throughput and data-intensive investigations where it is preferable to have a large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher accuracy.

  1. Modification of near-wall coherent structures in polymer drag reduced flow: simulation

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva

    2002-11-01

    Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.

  2. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  3. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin

    USDA-ARS?s Scientific Manuscript database

    Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence t...

  4. AN ENVIRONMENTAL SIMULATION MODEL FOR TRANSPORT AND FATE OF MERCURY IN SMALL RURAL CATCHMENTS

    EPA Science Inventory

    The development of an extensively modified version of the environmental model GLEAMS to simulate fate and transport of mercury in small catchments is presented. Methods for parameter estimation are proposed and in some cases simple relationships for mercury processes are derived....

  5. User's guide [Chapter 3

    Treesearch

    Nicholas L. Crookston; Donald C. E. Robinson; Sarah J. Beukema

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. This chapter presents the model's options, provides annotated examples, describes the outputs, and describes how to use and apply the model.

  6. Purpose and applications [Chapter 1

    Treesearch

    Nicholas L. Crookston

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. This chapter provides an introduction to the model by illustrating its purpose and chronicling some of the applications it has supported.

  7. Vortex breakdown in simple pipe bends

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  8. Probing the exchange statistics of one-dimensional anyon models

    NASA Astrophysics Data System (ADS)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  9. Observation and Modeling of the Generation Mechanism of Ion Upflow during Sudden Commencement

    NASA Astrophysics Data System (ADS)

    Zou, S.; Ozturk, D. S.; Li, C.; Varney, R. H.; Reimer, A.

    2017-12-01

    Sudden commencement (SC) induced by solar wind pressure enhancement can produce significant global impact on the coupled magnetosphere-ionosphere (MI) system, and its effects have been studied extensively using ground magnetometers and coherent scatter radars. However, very limited observations have been reported about the effects of SC on the ionospheric plasma. We study the ionosphere response to the SC using the Poker Flat incoherent scatter radar (PFISR) and numerical simulations. A detailed case study of SC during the 17 March 2015 storm was conducted. PFISR observed lifting of the F region ionosphere, transient field-aligned ion upflow, prompt but short-lived ion temperature increase, subsequent F region density decrease, and persistent electron temperature increase. A global magnetohydrodynamic (MHD) simulation has been carried out to characterize the SC-induced current, convection, and magnetic perturbations. Simulated magnetic perturbations at Poker Flat show a satisfactory agreement with observations. The simulation provides a global context for linking localized PFISR observations to large-scale dynamic processes in the MI system. Following the case study, we also perform a statistical study of the effects of SC on the ionosphere focusing on the magnetic local time and latitudinal asymmetries using PFISR and GPS TEC.

  10. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB₂/7050Al MMC.

    PubMed

    Xiong, Yifeng; Wang, Wenhu; Jiang, Ruisong; Lin, Kunyang; Shao, Mingwei

    2018-04-15

    The in-situ TiB₂/7050Al composite is a new kind of Al-based metal matrix composite (MMC) with super properties, such as low density, improved strength, and wear resistance. This paper, for a deep insight into its cutting performance, involves a study of the chip formation process and finite element simulation during orthogonal cutting in-situ TiB₂/7050Al MMC. With chips, material properties, cutting forces, and tool geometry parameters, the Johnson-Cook (J-C) constitutive equation of in-situ TiB₂/7050Al composite was established. Then, the cutting simulation model was established by applying the Abaqus-Explicit method, and the serrated chip, shear plane, strain rate, and temperature were analyzed. The experimental and simulation results showed that the obtained material's constitutive equation was of high reliability, and the saw-tooth chips occurred commonly under either low or high cutting speed and small or large feed rate. From result analysis, it was found that the mechanisms of chip formation included plastic deformation, adiabatic shear, shearing slip, and crack extension. In addition, it was found that the existence of small, hard particles reduced the ductility of the MMC and resulted in segmental chips.

  11. Can Asteroid Airbursts Cause Dangerous Tsunami?.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boslough, Mark B.

    I have performed a series of high-resolution hydrocode simulations to generate “source functions” for tsunami simulations as part of a proof-of-principle effort to determine whether or not the downward momentum from an asteroid airburst can couple energy into a dangerous tsunami in deep water. My new CTH simulations show enhanced momentum multiplication relative to a nuclear explosion of the same yield. Extensive sensitivity and convergence analyses demonstrate that results are robust and repeatable for simulations with sufficiently high resolution using adaptive mesh refinement. I have provided surface overpressure and wind velocity fields to tsunami modelers to use as time-dependent boundarymore » conditions and to test the hypothesis that this mechanism can enhance the strength of the resulting shallow-water wave. The enhanced momentum result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast alone, but not necessarily due to the originally-proposed mechanism. This result has significant implications for asteroid impact risk assessment and airburst-generated tsunami will be the focus of a NASA-sponsored workshop at the Ames Research Center next summer, with follow-on funding expected.« less

  12. A Review of Simulators with Haptic Devices for Medical Training.

    PubMed

    Escobar-Castillejos, David; Noguez, Julieta; Neri, Luis; Magana, Alejandra; Benes, Bedrich

    2016-04-01

    Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.

  13. Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations

    NASA Astrophysics Data System (ADS)

    Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis

    2018-04-01

    In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.

  14. A service life extension (SLEP) approach to operating aging aircraft beyond their original design lives

    NASA Astrophysics Data System (ADS)

    Pentz, Alan Carter

    With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.

  15. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  16. Simulator certification methods and the vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1981-01-01

    The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.

  17. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.

  18. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Measurement of beta-plus emitters by gamma-ray spectrometry.

    PubMed

    Lépy, Marie-Christine; Cassette, Philippe; Ferreux, Laurent

    2010-01-01

    The activity measurement of beta-plus emitters by gamma-ray spectrometry is studied. Experimental measurements are performed with (22)Na, (65)Zn and (64)Cu with sources included in a lead container. For these nuclides, the activity can be derived both from one photon emission peak and from the 511 keV annihilation peak, including annihilation in-flight correction and geometry correction computed by Monte Carlo simulation. The activity values obtained using the two types of peaks show satisfying agreement. The extension of the method to volume sources is discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  1. Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory.

    PubMed

    Delorme, Mathieu; Wiese, Kay Jörg

    2015-11-20

    Fractional Brownian motion is a non-Markovian Gaussian process X_{t}, indexed by the Hurst exponent H. It generalizes standard Brownian motion (corresponding to H=1/2). We study the probability distribution of the maximum m of the process and the time t_{max} at which the maximum is reached. They are encoded in a path integral, which we evaluate perturbatively around a Brownian, setting H=1/2+ϵ. This allows us to derive analytic results beyond the scaling exponents. Extensive numerical simulations for different values of H test these analytical predictions and show excellent agreement, even for large ϵ.

  2. Productive Information Foraging

    NASA Technical Reports Server (NTRS)

    Furlong, P. Michael; Dille, Michael

    2016-01-01

    This paper presents a new algorithm for autonomous on-line exploration in unknown environments. The objective of the algorithm is to free robot scientists from extensive preliminary site investigation while still being able to collect meaningful data. We simulate a common form of exploration task for an autonomous robot involving sampling the environment at various locations and compare performance with a simpler existing algorithm that is also denied global information. The result of the experiment shows that the new algorithm has a statistically significant improvement in performance with a significant effect size for a range of costs for taking sampling actions.

  3. Partial Return Yoke for MICE Step IV and Final Step

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Holger; Plate, Stephen; Berg, J.Scott

    2015-06-01

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  4. Partial return yoke for MICE step IV and final step

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, H.; Plate, S.; Berg, J. S.

    2015-05-03

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  5. Multi-layer composite mechanical modeling for the inhomogeneous biofilm mechanical behavior.

    PubMed

    Wang, Xiaoling; Han, Jingshi; Li, Kui; Wang, Guoqing; Hao, Mudong

    2016-08-01

    Experiments showed that bacterial biofilms are heterogeneous, for example, the density, the diffusion coefficient, and mechanical properties of the biofilm are different along the biofilm thickness. In this paper, we establish a multi-layer composite model to describe the biofilm mechanical inhomogeneity based on unified multiple-component cellular automaton (UMCCA) model. By using our model, we develop finite element simulation procedure for biofilm tension experiment. The failure limit and biofilm extension displacement obtained from our model agree well with experimental measurements. This method provides an alternative theory to study the mechanical inhomogeneity in biological materials.

  6. Wealth distribution under Yard-Sale exchange with proportional taxes

    NASA Astrophysics Data System (ADS)

    Bustos-Guajardo, R.; Moukarzel, Cristian F.

    2016-03-01

    Recent analysis of a Yard-Sale (YS) exchange model supplemented with redistributive proportional taxation suggested an asymptotic behavior P(w)˜1/wμ for the wealth distribution, with a parameter-dependent exponent μ. Revisiting this problem, it is here shown analytically, and confirmed by extensive numerical simulation, that the asymptotic behavior of P(w) is not power-law but rather a Gaussian. When taxation is weak, we furthermore show that a restricted-range power-law behavior appears for wealths around the mean value. The corresponding power-law exponent equals 3/2 when the return distribution has zero mean.

  7. Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.

    2016-04-01

    Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.

  8. Zero-profile hybrid fusion construct versus 2-level plate fixation to treat adjacent-level disease in the cervical spine.

    PubMed

    Healy, Andrew T; Sundar, Swetha J; Cardenas, Raul J; Mageswaran, Prasath; Benzel, Edward C; Mroz, Thomas E; Francis, Todd B

    2014-11-01

    Single-level anterior cervical discectomy and fusion (ACDF) is an established surgical treatment for cervical myelopathy. Within 10 years of undergoing ACDF, 19.2% of patients develop symptomatic adjacent-level degeneration. Performing ACDF adjacent to prior fusion requires exposure and removal of previously placed hardware, which may increase the risk of adverse outcomes. Zero-profile cervical implants combine an interbody spacer with an anterior plate into a single device that does not extend beyond the intervertebral disc space, potentially obviating the need to remove prior hardware. This study compared the biomechanical stability and adjacent-level range of motion (ROM) following placement of a zero-profile device (ZPD) adjacent to a single-level ACDF against a standard 2-level ACDF. In this in vitro biomechanical cadaveric study, multidirectional flexibility testing was performed by a robotic spine system that simulates flexion-extension, lateral bending, and axial rotation by applying a continuous pure moment load. Testing conditions were as follows: 1) intact, 2) C5-6 ACDF, 3) C4-5 ZPD supraadjacent to simulated fusion at C5-6, and 4) 2-level ACDF (C4-6). The sequence of the latter 2 test conditions was randomized. An unconstrained pure moment of 1.5 Nm with a 40-N simulated head weight load was applied to the intact condition first in all 3 planes of motion and then using the hybrid test protocol, overall intact kinematics were replicated subsequently for each surgical test condition. Intersegmental rotations were measured optoelectronically. Mean segmental ROM for operated levels and adjacent levels was recorded and normalized to the intact condition and expressed as a percent change from intact. A repeated-measures ANOVA was used to analyze the ROM between test conditions with a 95% level of significance. No statistically significant differences in immediate construct stability were found between construct Patterns 3 and 4, in all planes of motion (p > 0.05). At the operated level, C4-5, the zero-profile construct showed greater decreases in axial rotation (-45% vs -36%) and lateral bending (-55% vs -38%), whereas the 2-level ACDF showed greater decreases in flexion-extension (-40% vs -34%). These differences were marginal and not statistically significant. Adjacent-level motion was nearly equivalent, with minor differences in flexion-extension. When treating degeneration adjacent to a single-level ACDF, a zero-profile implant showed stabilizing potential at the operated level statistically similar to that of the standard revision with a 2-level plate. Revision for adjacent-level disease is common, and using a ZPD in this setting should be investigated clinically because it may be a faster, safer alternative.

  9. Anesthetics mechanism on a DMPC lipid membrane model: Insights from molecular dynamics simulations.

    PubMed

    Saeedi, Marzieh; Lyubartsev, Alexander P; Jalili, Seifollah

    2017-07-01

    To provide insight into the molecular mechanisms of local anesthetic action, we have carried out an extensive investigation of two amide type local anesthetics, lidocaine and articaine in both charged and uncharged forms, interacting with DMPC lipid membrane. We have applied both standard molecular dynamics simulations and metadynamics simulations to provide a detailed description of the free energy landscape of anesthetics embedded in the lipid bilayer. The global minimum of the free energy surface (equilibrium position of anesthetics in the lipid membrane) occurred around 1nm of the bilayer center. The uncharged anesthetics show more affinity to bind to this region compared to the charged drugs. The binding free energy of uncharged lidocaine in the membrane (-30.3kJ/mol) is higher than uncharged articaine (-24.0kJ/mol), which is in good agreement with higher lipid solubility of lidocaine relative to the articaine. The octanol/water partition coefficient of uncharged drugs was also investigated using expanded ensemble simulations. In addition, complementary standard MD simulations were carried out to study the partitioning behavior of multiple anesthetics inside the lipid bilayer. The results obtained here are in line with previously reported simulations and suggest that the different forms of anesthetics induce different structural modifications in the lipid bilayer, which can provide new insights into their complex membrane translocation phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An Extension of the Partial Credit Model with an Application to the Measurement of Change.

    ERIC Educational Resources Information Center

    Fischer, Gerhard H.; Ponocny, Ivo

    1994-01-01

    An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)

  11. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  12. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  13. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  14. Network Reliability: The effect of local network structure on diffusive processes

    PubMed Central

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2014-01-01

    This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321

  15. Synchronous Firefly Algorithm for Cluster Head Selection in WSN.

    PubMed

    Baskaran, Madhusudhanan; Sadagopan, Chitra

    2015-01-01

    Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.

  16. Statistical field estimators for multiscale simulations.

    PubMed

    Eapen, Jacob; Li, Ju; Yip, Sidney

    2005-11-01

    We present a systematic approach for generating smooth and accurate fields from particle simulation data using the notions of statistical inference. As an extension to a parametric representation based on the maximum likelihood technique previously developed for velocity and temperature fields, a nonparametric estimator based on the principle of maximum entropy is proposed for particle density and stress fields. Both estimators are applied to represent molecular dynamics data on shear-driven flow in an enclosure which exhibits a high degree of nonlinear characteristics. We show that the present density estimator is a significant improvement over ad hoc bin averaging and is also free of systematic boundary artifacts that appear in the method of smoothing kernel estimates. Similarly, the velocity fields generated by the maximum likelihood estimator do not show any edge effects that can be erroneously interpreted as slip at the wall. For low Reynolds numbers, the velocity fields and streamlines generated by the present estimator are benchmarked against Newtonian continuum calculations. For shear velocities that are a significant fraction of the thermal speed, we observe a form of shear localization that is induced by the confining boundary.

  17. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.

    PubMed

    Samanta, Susruta; Roccatano, Danilo

    2013-03-21

    Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water.

  18. Simulation of Subsurface Multiphase Contaminant Extraction Using a Bioslurping Well Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos de Souza, Michelle; Oostrom, Mart; White, Mark D.

    2016-07-12

    Subsurface simulation of multiphase extraction from wells is notoriously difficult. Explicit representation of well geometry requires small grid resolution, potentially leading to large computational demands. To reduce the problem dimensionality, multiphase extraction is mostly modeled using vertically-averaged approaches. In this paper, a multiphase well model approach is presented as an alternative to simplify the application. The well model, a multiphase extension of the classic Peaceman model, has been implemented in the STOMP simulator. The numerical solution approach accounts for local conditions and gradients in the exchange of fluids between the well and the aquifer. Advantages of this well model implementationmore » include the option to simulate the effects of well characteristics and operation. Simulations were conducted investigating the effects of extraction location, applied vacuum pressure, and a number of hydraulic properties. The obtained results were all consistent and logical. A major outcome of the test simulations is that, in contrast with common recommendations to extract from either the gas-NAPL or the NAPL-aqueous phase interface, the optimum extraction location should be in between these two levels. The new model implementation was also used to simulate extraction at a field site in Brazil. The simulation shows a good match with the field data, suggesting that the new STOMP well module may correctly represent oil removal. The field simulations depend on the quality of the site conceptual model, including the porous media and contaminant properties and the boundary and extraction conditions adopted. The new module may potentially be used to design field applications and analyze extraction data.« less

  19. Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computati...

  20. ESTIMATION OF INFILTRATION RATE IN THE VADOSE ZONE: COMPILATION OF SIMPLE MATHEMATICAL MODELS - VOLUME I

    EPA Science Inventory

    The unsaturated or vadose zone provides a complex system for the simulation of water movement and contaminant transport and fate. Numerous models are available for performing simulations related to the movement of water. There exists extensive documentation of these models. Ho...

  1. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    ERIC Educational Resources Information Center

    Simon, Nicole A.

    2013-01-01

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…

  2. No Friends but the Mountains: A Simulation on Kurdistan.

    ERIC Educational Resources Information Center

    Major, Marc R.

    1996-01-01

    Presents a simulation that focuses on Kurdish nationalism and the struggle for autonomy and independence from the states that rule over Kurdish lands. Students assume the roles of either one of the countries directly involved or the governing body of the United Nations. Includes extensive background material. (MJP)

  3. Chapter 4: Variant descriptions

    Treesearch

    Duncan C. Lutes; Donald C. E. Robinson

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. This report documents differences between geographic variants of the FFE. It is a companion document to the FFE "Model Description" and "User's Guide."...

  4. On-time reliability impacts of advanced traveler information services (ATIS). Volume II, Extensions and applications of the simulated yoked study concept

    DOT National Transportation Integrated Search

    2002-03-01

    In a simulated yoke study, estimates of roadway travel times are archived from web-based Advanced Traveler Information Systems (ATIS) and used to recreate hypothetical, retrospective paired driving trials between travelers with and without ATIS. Prev...

  5. Helicopter simulator qualification

    NASA Technical Reports Server (NTRS)

    Hampson, Brian

    1992-01-01

    CAE has extensive experience in building helicopter simulators and has participated in group working sessions for fixed-wing advisory circulars. Against this background, issues that should be addressed in establishing helicopter approval criteria were highlighted. Some of these issues are not immediately obvious and may, indeed, be more important than the criteria a themselves.

  6. A virtual source model for Monte Carlo simulation of helical tomotherapy.

    PubMed

    Yuan, Jiankui; Rong, Yi; Chen, Quan

    2015-01-08

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM-based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media.

  7. A virtual source model for Monte Carlo simulation of helical tomotherapy

    PubMed Central

    Yuan, Jiankui; Rong, Yi

    2015-01-01

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐ PMID:25679157

  8. A NEW MODEL FOR MIXING BY DOUBLE-DIFFUSIVE CONVECTION (SEMI-CONVECTION). III. THERMAL AND COMPOSITIONAL TRANSPORT THROUGH NON-LAYERED ODDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moll, Ryan; Garaud, Pascale; Stellmach, Stephan, E-mail: rmoll@soe.ucsc.edu

    2016-05-20

    Oscillatory double-diffusive convection (ODDC; also known as semi-convection) refers to a type of double-diffusive instability that occurs in regions of planetary and stellar interiors that have a destabilizing thermal stratification and a stabilizing mean molecular weight stratification. In this series of papers, we use an extensive suite of three-dimensional (3D) numerical simulations to quantify the transport of heat and chemical species by ODDC. Rosenblum et al. first showed that ODDC can either spontaneously form layers that significantly enhance the transport of heat and chemical species compared to microscopic transport or remain in a state dominated by large-scale gravity waves, inmore » which there is a more modest enhancement of the turbulent transport rates. Subsequent studies in this series focused on identifying under what conditions layers form and quantifying transport through layered systems. Here we proceed to characterize transport through systems that are unstable to ODDC, but do not undergo spontaneous layer formation. We measure the thermal and compositional fluxes in non-layered ODDC from both two-dimensional (2D) and 3D numerical simulations, and show that 3D simulations are well approximated by similar simulations in a 2D domain. We find that the turbulent mixing rate in this regime is weak and can, to a first-level approximation, be neglected. We conclude by summarizing the findings of papers I through III into a single prescription for transport systems unstable to ODDC.« less

  9. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, Joshua; Hope, Michael; Ley, Hubert

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less

  10. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  11. CCSI and the role of advanced computing in accelerating the commercial deployment of carbon capture systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David; Agarwal, Deborah A.; Sun, Xin

    2011-09-01

    The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.

  12. CCSI and the role of advanced computing in accelerating the commercial deployment of carbon capture systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Agarwal, D.; Sun, X.

    2011-01-01

    The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.

  13. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.

    PubMed

    Rausch, M K; Karniadakis, G E; Humphrey, J D

    2017-02-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.

  14. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach

    PubMed Central

    Rausch, M. K.; Karniadakis, G. E.; Humphrey, J. D.

    2016-01-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues. PMID:27538848

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Miao; Du, Yonghui; Gao, Lili

    A recent experimental study reported the successful synthesis of an orthorhombic FeB{sub 4} with a high hardness of 62(5) GPa [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013)], which has reignited extensive interests on whether transition-metal borides compounds will become superhard materials. However, it is contradicted with some theoretical studies suggesting transition-metal boron compounds are unlikely to become superhard materials. Here, we examined structural and electronic properties of FeB{sub 4} using density functional theory. The electronic calculations show the good metallicity and covalent Fe–B bonding. Meanwhile, we extensively investigated stress-strain relations of FeB{sub 4} under various tensile andmore » shear loading directions. The calculated weakest tensile and shear stresses are 40 GPa and 25 GPa, respectively. Further simulations (e.g., electron localization function and bond length along the weakest loading direction) on FeB{sub 4} show the weak Fe–B bonding is responsible for this low hardness. Moreover, these results are consistent with the value of Vickers hardness (11.7–32.3 GPa) by employing different empirical hardness models and below the superhardness threshold of 40 GPa. Our current results suggest FeB{sub 4} is a hard material and unlikely to become superhard (>40 GPa)« less

  16. Integrative sparse principal component analysis of gene expression data.

    PubMed

    Liu, Mengque; Fan, Xinyan; Fang, Kuangnan; Zhang, Qingzhao; Ma, Shuangge

    2017-12-01

    In the analysis of gene expression data, dimension reduction techniques have been extensively adopted. The most popular one is perhaps the PCA (principal component analysis). To generate more reliable and more interpretable results, the SPCA (sparse PCA) technique has been developed. With the "small sample size, high dimensionality" characteristic of gene expression data, the analysis results generated from a single dataset are often unsatisfactory. Under contexts other than dimension reduction, integrative analysis techniques, which jointly analyze the raw data of multiple independent datasets, have been developed and shown to outperform "classic" meta-analysis and other multidatasets techniques and single-dataset analysis. In this study, we conduct integrative analysis by developing the iSPCA (integrative SPCA) method. iSPCA achieves the selection and estimation of sparse loadings using a group penalty. To take advantage of the similarity across datasets and generate more accurate results, we further impose contrasted penalties. Different penalties are proposed to accommodate different data conditions. Extensive simulations show that iSPCA outperforms the alternatives under a wide spectrum of settings. The analysis of breast cancer and pancreatic cancer data further shows iSPCA's satisfactory performance. © 2017 WILEY PERIODICALS, INC.

  17. Wetting-Dewetting and Dispersion-Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix.

    PubMed

    Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi

    2015-08-26

    Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity withmore » massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.« less

  19. Numerical modelling of closed-cell aluminium foam under dynamic loading

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  20. Monte Carlo modeling of light-tissue interactions in narrow band imaging.

    PubMed

    Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2013-01-01

    Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.

  1. Transonic flow about a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Levy, L. L., Jr.; Deiwert, G. S.

    1975-01-01

    An experimental and theoretical study of transonic flow over a thick airfoil, prompted by a need for adequately documented experiments that could provide rigorous verification of viscous flow simulation computer codes, is reported. Special attention is given to the shock-induced separation phenomenon in the turbulent regime. Measurements presented include surface pressures, streamline and flow separation patterns, and shadowgraphs. For a limited range of free-stream Mach numbers the airfoil flow field is found to be unsteady. Dynamic pressure measurements and high-speed shadowgraph movies were taken to investigate this phenomenon. Comparisons of experimentally determined and numerically simulated steady flows using a new viscous-turbulent code are also included. The comparisons show the importance of including an accurate turbulence model. When the shock-boundary layer interaction is weak the turbulence model employed appears adequate, but when the interaction is strong, and extensive regions of separation are present, the model is inadequate and needs further development.

  2. Wake characteristics of wind turbines in utility-scale wind farms

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  3. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots.

    PubMed

    Kazemi, Masoud; Åqvist, Johan

    2015-06-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies.

  4. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots

    PubMed Central

    Kazemi, Masoud; Åqvist, Johan

    2015-01-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies. PMID:26028237

  5. COLA with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya

    2017-10-01

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N-body simulations of ΛCDM and f(R) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N-body to percent level accuracy for both the total and CDM matter power-spectra up to klesssim 1 h/Mpc.

  6. Effect of mutation at the interface of Trp-repressor dimeric protein: a steered molecular dynamics simulation.

    PubMed

    Miño, German; Baez, Mauricio; Gutierrez, Gonzalo

    2013-09-01

    The strength of key interfacial contacts that stabilize protein-protein interactions have been studied by computer simulation. Experimentally, changes in the interface are evaluated by generating specific mutations at one or more points of the protein structure. Here, such an evaluation is performed by means of steered molecular dynamics and use of a dimeric model of tryptophan repressor and in-silico mutants as a test case. Analysis of four particular cases shows that, in principle, it is possible to distinguish between wild-type and mutant forms by examination of the total energy and force-extension profiles. In particular, detailed atomic level structural analysis indicates that specific mutations at the interface of the dimeric model (positions 19 and 39) alter interactions that appear in the wild-type form of tryptophan repressor, reducing the energy and force required to separate both subunits.

  7. Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model

    USGS Publications Warehouse

    Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.

    1996-01-01

    An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.

  8. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-01

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.

  9. Role of temperature in the formation and growth of gold monoatomic chains: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Sondon, T.; Saúl, A.

    2013-12-01

    The effect of temperature on the formation and growth of monoatomic chains is investigated by extensive molecular dynamics simulations using a semiempirical potential based on the second-moment approximation to the tight-binding Hamiltonian. Gold nanowires, with an aspect ratio of ˜13 and a cross section of ˜1 nm2, are stretched at a rate of 3 m /s in the range of temperatures 5-600 K with 50 initial configurations per temperature. A detailed study on the probability to form monoatomic chains (MACs) is presented. Two domains are apparent in our simulations: one at T <100 K, where MACs develop from crystalline disorder at the constriction, and the other at T >100 K, where MACs form as a consequence of plastic deformation of the nanowire. Our results show that the average length of the formed MACs maximizes at T =150 K, which is supported by simple energy arguments.

  10. McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space

    NASA Astrophysics Data System (ADS)

    Brdar, S.; Seifert, A.

    2018-01-01

    We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.

  11. Low-momentum ghost dressing function and the gluon mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.

    2010-09-01

    We study the low-momentum ghost propagator Dyson-Schwinger equation in the Landau gauge, assuming for the truncation a constant ghost-gluon vertex, as it is extensively done, and a simple model for a massive gluon propagator. Then, regular Dyson-Schwinger equation solutions (the zero-momentum ghost dressing function not diverging) appear to emerge, and we show the ghost propagator to be described by an asymptotic expression reliable up to the order O(q{sup 2}). That expression, depending on the gluon mass and the zero-momentum Taylor-scheme effective charge, is proven to fit pretty well some low-momentum ghost propagator data [I. L. Bogolubsky, E. M. Ilgenfritz, M.more » Muller-Preussker, and A. Sternbeck, Phys. Lett. B 676, 69 (2009); Proc. Sci., LAT2007 (2007) 290] from big-volume lattice simulations where the so-called ''simulated annealing algorithm'' is applied to fix the Landau gauge.« less

  12. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  13. Seismic anisotropy in deforming salt bodies

    NASA Astrophysics Data System (ADS)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  14. Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism

    NASA Astrophysics Data System (ADS)

    Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad

    2018-01-01

    Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.

  15. A New Low Complexity Angle of Arrival Algorithm for 1D and 2D Direction Estimation in MIMO Smart Antenna Systems

    PubMed Central

    Al-Sadoon, Mohammed A. G.; Zuid, Abdulkareim; Jones, Stephen M. R.; Noras, James M.

    2017-01-01

    This paper proposes a new low complexity angle of arrival (AOA) method for signal direction estimation in multi-element smart wireless communication systems. The new method estimates the AOAs of the received signals directly from the received signals with significantly reduced complexity since it does not need to construct the correlation matrix, invert the matrix or apply eigen-decomposition, which are computationally expensive. A mathematical model of the proposed method is illustrated and then verified using extensive computer simulations. Both linear and circular sensors arrays are studied using various numerical examples. The method is systematically compared with other common and recently introduced AOA methods over a wide range of scenarios. The simulated results show that the new method has several advantages in terms of reduced complexity and improved accuracy under the assumptions of correlated signals and limited numbers of snapshots. PMID:29140313

  16. Flexible alpha allocation strategies for confirmatory adaptive enrichment clinical trials with a prespecified subgroup.

    PubMed

    Sugitani, Toshifumi; Posch, Martin; Bretz, Frank; Koenig, Franz

    2018-06-26

    Adaptive enrichment designs have recently received considerable attention as they have the potential to make drug development process for personalized medicine more efficient. Several statistical approaches have been proposed so far in the literature and the operating characteristics of these approaches are extensively investigated using simulation studies. In this paper, we improve on existing adaptive enrichment designs by assigning unequal weights to the significance levels associated with the hypotheses of the overall population and a prespecified subgroup. More specifically, we focus on the standard combination test, a modified combination test, the marginal combination test, and the partial conditional error rate approach and explore the operating characteristics of these approaches by a simulation study. We show that these approaches can lead to power gains, compared to existing approaches, if the weights are chosen carefully. © 2018 John Wiley & Sons, Ltd.

  17. A New Low Complexity Angle of Arrival Algorithm for 1D and 2D Direction Estimation in MIMO Smart Antenna Systems.

    PubMed

    Al-Sadoon, Mohammed A G; Ali, Nazar T; Dama, Yousf; Zuid, Abdulkareim; Jones, Stephen M R; Abd-Alhameed, Raed A; Noras, James M

    2017-11-15

    This paper proposes a new low complexity angle of arrival (AOA) method for signal direction estimation in multi-element smart wireless communication systems. The new method estimates the AOAs of the received signals directly from the received signals with significantly reduced complexity since it does not need to construct the correlation matrix, invert the matrix or apply eigen-decomposition, which are computationally expensive. A mathematical model of the proposed method is illustrated and then verified using extensive computer simulations. Both linear and circular sensors arrays are studied using various numerical examples. The method is systematically compared with other common and recently introduced AOA methods over a wide range of scenarios. The simulated results show that the new method has several advantages in terms of reduced complexity and improved accuracy under the assumptions of correlated signals and limited numbers of snapshots.

  18. Stabilization of a Quadrotor With Uncertain Suspended Load Using Sliding Mode Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xu; Liu, Rui; Zhang, Jiucai

    2016-08-21

    The stability and trajectory control of a quadrotor carrying a suspended load with a fixed known mass has been extensively studied in recent years. However, the load mass is not always known beforehand in practical applications. This mass uncertainty brings uncertain disturbances to the quadrotor system, causing existing controllers to have a worse performance or to be collapsed. To improve the quadrotor's stability in this situation, we investigate the impacts of the uncertain load mass on the quadrotor. By comparing the simulation results of two controllers -- the proportional-derivative (PD) controller and the sliding mode controller (SMC) driven by amore » sliding mode disturbance of observer (SMDO), the quadrotor's performance is verified to be worse as the uncertainty increases. The simulation results also show a controller with stronger robustness against disturbances is better for practical applications.« less

  19. Analysis of price behavior in lazy $-game

    NASA Astrophysics Data System (ADS)

    Kiniwa, Jun; Koide, Takeshi; Sandoh, Hiroaki

    2009-09-01

    A non-cooperative iterated multiagent game, called a minority game, and its variations have been extensively studied in this decade. To increase its market similarity, a -game was presented by observing the current and the next agent’s payoffs. However, since the -game is defined as an offline game, it is difficult to simulate it in practice. So we propose a new online version of the -game, called a lazy -game, and analyze the price behavior of the game. First, we reveal the condition of a bubble phenomenon in the lazy -game. Next, we investigate the price behavior in the lazy -game and show that there are some upper/lower bounds of the price as long as both the buyers group and the sellers group are nonempty. Then, we consider the similarity between the lazy -game and the -game. Finally, we present some simulation results.

  20. Protocol Support for a New Satellite-Based Airspace Communication Network

    NASA Technical Reports Server (NTRS)

    Shang, Yadong; Hadjitheodosiou, Michael; Baras, John

    2004-01-01

    We recommend suitable transport protocols for an aeronautical network supporting Internet and data services via satellite. We study the characteristics of an aeronautical satellite hybrid network and focus on the problems that cause dramatically degraded performance of the Transport Protocol. We discuss various extensions to standard TCP that alleviate some of these performance problems. Through simulation, we identify those TCP implementations that can be expected to perform well. Based on the observation that it is difficult for an end-to-end solution to solve these problems effectively, we propose a new TCP-splitting protocol, termed Aeronautical Transport Control Protocol (AeroTCP). The main idea of this protocol is to use a fixed window for flow control and one duplicated acknowledgement (ACK) for fast recovery. Our simulation results show that AeroTCP can maintain higher utilization for the satellite link than end-to-end TCP, especially in high BER environment.

  1. Spatially confined polymer chains: implications of chromatin fibre flexibility and peripheral anchoring on telomere telomere interaction

    NASA Astrophysics Data System (ADS)

    Gehlen, L. R.; Rosa, A.; Klenin, K.; Langowski, J.; Gasser, S. M.; Bystricky, K.

    2006-04-01

    We simulate the extension of spatially confined chromatin fibres modelled as polymer chains and examine the effect of the flexibility of the fibre and its degree of freedom. The developed formalism was used to analyse experimental data of telomere-telomere distances in living yeast cells in the absence of confining factors as identified by the proteins Sir4 and yKu70. Our analysis indicates that intrinsic properties of the chromatin fibre, in particular its elastic properties and flexibility, can influence the juxtaposition of the telomeric ends of chromosomes. However, measurements in intact yeast cells showed that the telomeres of chromosomes 3 and 6 come even closer together than the parameters of constraint imposed on the simulations would predict. This juxtaposition was specific to telomeres on one contiguous chromosome and overrode a tendency for separation that is imposed by anchoring.

  2. Soft Vibrational Modes Predict Breaking Events during Force-Induced Protein Unfolding.

    PubMed

    Habibi, Mona; Plotkin, Steven S; Rottler, Jörg

    2018-02-06

    We investigate the correlation between soft vibrational modes and unfolding events in simulated force spectroscopy of proteins. Unfolding trajectories are obtained from molecular dynamics simulations of a Gō model of a monomer of a mutant of superoxide dismutase 1 protein containing all heavy atoms in the protein, and a normal mode analysis is performed based on the anisotropic network model. We show that a softness map constructed from the superposition of the amplitudes of localized soft modes correlates with unfolding events at different stages of the unfolding process. Soft residues are up to eight times more likely to undergo disruption of native structure than the average amino acid. The memory of the softness map is retained for extensions of up to several nanometers, but decorrelates more rapidly during force drops. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Study on the effect of sink moving trajectory on wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.

  4. Enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding for four-level holographic data storage systems

    NASA Astrophysics Data System (ADS)

    Kong, Gyuyeol; Choi, Sooyong

    2017-09-01

    An enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding is proposed for four-level holographic data storage systems. While the previous four-ary modulation codes focus on preventing maximum two-dimensional intersymbol interference patterns, the proposed four-ary modulation code aims at maximizing the coding gains for better bit error rate performances. For achieving significant coding gains from the four-ary modulation codes, we design a new 2/3 four-ary modulation code in order to enlarge the free distance on the trellis through extensive simulation. The free distance of the proposed four-ary modulation code is extended from 1.21 to 2.04 compared with that of the conventional four-ary modulation code. The simulation result shows that the proposed four-ary modulation code has more than 1 dB gains compared with the conventional four-ary modulation code.

  5. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  6. A Computer Simulation Study of Vntr Population Genetics: Constrained Recombination Rules Out the Infinite Alleles Model

    PubMed Central

    Harding, R. M.; Boyce, A. J.; Martinson, J. J.; Flint, J.; Clegg, J. B.

    1993-01-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. PMID:8293988

  7. A computer simulation study of VNTR population genetics: constrained recombination rules out the infinite alleles model.

    PubMed

    Harding, R M; Boyce, A J; Martinson, J J; Flint, J; Clegg, J B

    1993-11-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations.

  8. A computer simulation study of VNTR population genetics: Constrained recombination rules out the infinite alleles model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, R.M.; Martinson, J.J.; Flint, J.

    1993-11-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. The authors show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation modelmore » reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. The authors use sampling theory to confirm the intrinsically poor fit to the infinite model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. 25 refs., 20 figs., 4 tabs.« less

  9. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  10. Sub-half-micron contact window design with 3D photolithography simulator

    NASA Astrophysics Data System (ADS)

    Brainerd, Steve K.; Bernard, Douglas A.; Rey, Juan C.; Li, Jiangwei; Granik, Yuri; Boksha, Victor V.

    1997-07-01

    In state of the art IC design and manufacturing certain lithography layers have unique requirements. Latitudes and tolerances that apply to contacts and polysilicon gates are tight for such critical layers. Industry experts are discussing the most cost effective ways to use feature- oriented equipment and materials already developed for these layers. Such requirements introduce new dimensions into the traditionally challenging task for the photolithography engineer when considering various combinations of multiple factors to optimize and control the process. In addition, he/she faces a rapidly increasing cost of experiments, limited time and scarce access to equipment to conduct them. All the reasons presented above support simulation as an ideal method to satisfy these demands. However lithography engineers may be easily dissatisfied with a simulation tool when discovering disagreement between the simulation and experimental data. The problem is that several parameters used in photolithography simulation are very process specific. Calibration, i.e. matching experimental and simulation data using a specific set of procedures allows one to effectively use the simulation tool. We present results of a simulation based approach to optimize photolithography processes for sub-0.5 micron contact windows. Our approach consists of: (1) 3D simulation to explore different lithographic options, (2) calibration to a range of process conditions with extensive use of specifically developed optimization techniques. The choice of a 3D simulator is essential because of 3D nature of the problem of contact window design. We use DEPICT 4.1. This program performs fast aerial image simulation as presented before. For 3D exposure the program uses an extension to three-dimensions of the high numerical aperture model combined with Fast Fourier Transforms for maximum performance and accuracy. We use Kim (U.C. Berkeley) model and the fast marching Level Set method respectively for the calculation of resist development rates and resist surface movement during development process. Calibration efforts were aimed at matching experimental results on contact windows obtained after exposure of a binary mask. Additionally, simulation was applied to conduct quantitative analysis of PSM design capabilities, optical proximity correction, and stepper parameter optimization. Extensive experiments covered exposure (ASML 5500/100D stepper), pre- and post-exposure bake and development (2.38% TMAH, puddle process) of JSR IX725D2G and TOK iP3500 photoresists films on 200 mm test wafers. `Aquatar' was used as top antireflective coating, SEM pictures of developed patterns were analyzed and compared with simulation results for different values of defocus, exposure energies, numerical aperture and partial coherence.

  11. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    PubMed

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  12. Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H. P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.

    2018-01-01

    In many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate-Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.

  13. Cislan-2 extension final document by University of Twente (Netherlands)

    NASA Astrophysics Data System (ADS)

    Niemegeers, Ignas; Baumann, Frank; Beuwer, Wim; Jordense, Marcel; Pras, Aiko; Schutte, Leon; Tracey, Ian

    1992-01-01

    Results of worked performed under the so called Cislan extension contract are presented. The adaptation of the Cislan 2 prototype design to an environment of interconnected Local Area Networks (LAN's) instead of a single 802.5 token ring LAN is considered. In order to extend the network architecture, the Interconnection Function (IF) protocol layer was subdivided into two protocol layers: a new IF layer, and below the Medium Enhancement (ME) protocol layer. Some small enhancements to the distributed bandwidth allocation protocol were developed, which in fact are also applicable to the 'normal' Cislan 2 system. The new services and protocols are described together with some scenarios and requirements for the new internetting Cislan 2 system. How to overcome the degradation of the quality of speech due to packet loss on the LAN subsystem was studied. Experiments were planned in order to measure this speech quality degradation. Simulations were performed of two Cislan subsystems, the bandwidth allocation protocol and the clock synchronization mechanism. Results on both simulations, performed on SUN workstations using QNAP as a simulation tool, are given. Results of the simulations of the clock synchronization mechanism, and results of the simulation of the distributed bandwidth allocation protocol are given.

  14. iBIOMES Lite: Summarizing Biomolecular Simulation Data in Limited Settings

    PubMed Central

    2015-01-01

    As the amount of data generated by biomolecular simulations dramatically increases, new tools need to be developed to help manage this data at the individual investigator or small research group level. In this paper, we introduce iBIOMES Lite, a lightweight tool for biomolecular simulation data indexing and summarization. The main goal of iBIOMES Lite is to provide a simple interface to summarize computational experiments in a setting where the user might have limited privileges and limited access to IT resources. A command-line interface allows the user to summarize, publish, and search local simulation data sets. Published data sets are accessible via static hypertext markup language (HTML) pages that summarize the simulation protocols and also display data analysis graphically. The publication process is customized via extensible markup language (XML) descriptors while the HTML summary template is customized through extensible stylesheet language (XSL). iBIOMES Lite was tested on different platforms and at several national computing centers using various data sets generated through classical and quantum molecular dynamics, quantum chemistry, and QM/MM. The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem data set publication. The code is available at https://github.com/jcvthibault/ibiomes. PMID:24830957

  15. A focused ultrasound treatment system for moving targets (part I): generic system design and in-silico first-stage evaluation.

    PubMed

    Schwenke, Michael; Strehlow, Jan; Demedts, Daniel; Haase, Sabrina; Barrios Romero, Diego; Rothlübbers, Sven; von Dresky, Caroline; Zidowitz, Stephan; Georgii, Joachim; Mihcin, Senay; Bezzi, Mario; Tanner, Christine; Sat, Giora; Levy, Yoav; Jenne, Jürgen; Günther, Matthias; Melzer, Andreas; Preusser, Tobias

    2017-01-01

    Focused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging. A novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives. With a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator. The estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice.

  16. Constitutive modeling of the passive inflation-extension behavior of the swine colon.

    PubMed

    Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-01-01

    In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R 2 =0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  18. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor.

    PubMed

    Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J

    2017-01-25

    Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.

  19. Evidence for Sub-Chandrasekhar Mass Type Ia Supernovae from an Extensive Survey of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Kasen, Daniel

    2018-01-01

    There are two classes of viable progenitors for normal Type Ia supernovae (SNe Ia): systems in which a white dwarf explodes at the Chandrasekhar mass ({M}{ch}), and systems in which a white dwarf explodes below the Chandrasekhar mass (sub-{M}{ch}). It is not clear which of these channels is dominant; observations and light-curve modeling have provided evidence for both. Here we use an extensive grid of 4500 time-dependent, multiwavelength radiation transport simulations to show that the sub-{M}{ch} model can reproduce the entirety of the width–luminosity relation, while the {M}{ch} model can only produce the brighter events (0.8< {{Δ }}{M}15(B)< 1.55), implying that fast-declining SNe Ia come from sub-{M}{ch} explosions. We do not assume a particular theoretical paradigm for the progenitor or explosion mechanism, but instead construct parameterized models that vary the mass, kinetic energy, and compositional structure of the ejecta, thereby realizing a broad range of possible outcomes of white dwarf explosions. We provide fitting functions based on our large grid of detailed simulations that map observable properties of SNe Ia, such as peak brightness and light-curve width, to physical parameters such as {}56{Ni} and total ejected mass. These can be used to estimate the physical properties of observed SNe Ia.

  20. Tensile properties of orthodontic elastomeric ligatures.

    PubMed

    Ahrari, F; Jalaly, T; Zebarjad, M

    2010-01-01

    Tensile properties of elastomeric ligatures become important when efficiency of orthodontic appliances is considered. The aim of this study was to compare tensile strength, extension to tensile strength, toughness and modulus of elasticity of elastomeric ligatures in both the as--received condition and after 28 days of immersion in the simulated oral environment. Furthermore, the changes that occurred in tensile properties of each brand of ligatures after 28 days were evaluated. Experimental-laboratory based. Elastomeric ligatures were obtained from different companies and their tensile properties were measured using Zwick testing machine in both the as-received condition and after 28 days of immersion in the simulated oral environment. The data were analyzed using independent sample t-tests, analysis of variance and Tukey tests. After 28 days, all the ligatures experienced a significant decrease in tensile strength, extension to tensile strength and toughness ( P < 0.05), whereas modulus of elasticity increased in some groups and decreased in others. There were significant differences in tensile properties of different brands of ligatures in both conditions ( P < 0.05), with the exception of modulus of elasticity after 28 days. The decrease in strength properties of elastomeric ligatures shows that they should be replaced at each appointment to reduce the risk of rupture. There are significant differences in tensile properties of different brands of ligatures, which should be considered during selection of these products.

  1. Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy.

    PubMed

    Nopens, I; Benedetti, L; Jeppsson, U; Pons, M-N; Alex, J; Copp, J B; Gernaey, K V; Rosen, C; Steyer, J-P; Vanrolleghem, P A

    2010-01-01

    The COST/IWA Benchmark Simulation Model No 1 (BSM1) has been available for almost a decade. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the research work related to the benchmark simulation models has resulted in more than 300 publications worldwide demonstrates the interest in and need of such tools within the research community. Recent efforts within the IWA Task Group on "Benchmarking of control strategies for WWTPs" have focused on an extension of the benchmark simulation model. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently, includes both pretreatment of wastewater as well as the processes describing sludge treatment. The motivation for the extension is the increasing interest and need to operate and control wastewater treatment systems not only at an individual process level but also on a plant-wide basis. To facilitate the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one week BSM1 evaluation period. In this paper, the finalised plant layout is summarised and, as was done for BSM1, a default control strategy is proposed. A demonstration of how BSM2 can be used to evaluate control strategies is also given.

  2. [Review on HSPF model for simulation of hydrology and water quality processes].

    PubMed

    Li, Zhao-fu; Liu, Hong-Yu; Li, Yan

    2012-07-01

    Hydrological Simulation Program-FORTRAN (HSPF), written in FORTRAN, is one ol the best semi-distributed hydrology and water quality models, which was first developed based on the Stanford Watershed Model. Many studies on HSPF model application were conducted. It can represent the contributions of sediment, nutrients, pesticides, conservatives and fecal coliforms from agricultural areas, continuously simulate water quantity and quality processes, as well as the effects of climate change and land use change on water quantity and quality. HSPF consists of three basic application components: PERLND (Pervious Land Segment) IMPLND (Impervious Land Segment), and RCHRES (free-flowing reach or mixed reservoirs). In general, HSPF has extensive application in the modeling of hydrology or water quality processes and the analysis of climate change and land use change. However, it has limited use in China. The main problems with HSPF include: (1) some algorithms and procedures still need to revise, (2) due to the high standard for input data, the accuracy of the model is limited by spatial and attribute data, (3) the model is only applicable for the simulation of well-mixed rivers, reservoirs and one-dimensional water bodies, it must be integrated with other models to solve more complex problems. At present, studies on HSPF model development are still undergoing, such as revision of model platform, extension of model function, method development for model calibration, and analysis of parameter sensitivity. With the accumulation of basic data and imorovement of data sharing, the HSPF model will be applied more extensively in China.

  3. Multifrequency OFDM SAR in Presence of Deception Jamming

    NASA Astrophysics Data System (ADS)

    Schuerger, Jonathan; Garmatyuk, Dmitriy

    2010-12-01

    Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR) applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF) estimator and digital-RF-memory- (DRFM-) based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM), and frequency-hopped (FH). Presented results include simulated peak side lobe (PSL) and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  4. An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks

    PubMed Central

    Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed

    2016-01-01

    Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586

  5. Association effects in the {methanol + inert solvent} system via Monte Carlo simulations. II. Thermodynamics

    NASA Astrophysics Data System (ADS)

    Gómez-Álvarez, Paula; Romaní, Luis; González-Salgado, Diego

    2013-05-01

    Mixtures containing associated substances show a singular thermodynamic behaviour that has attracted to scientific community during the last century. Particularly, binary systems composed of an associating fluid and an inert solvent, where association occurs only between molecules of the same kind, have been extensively studied. A number of theoretical approaches were used in order to gain insights into the effect of the association on the macroscopic behaviour, especially on the second-order thermodynamic derivatives (or response functions). Curiously, to our knowledge, molecular simulations have not been used to that end despite describing the molecules and their interactions in a more complete and realistic way than theoretical models. With this in mind, a simple methodology developed in the framework of Monte Carlo molecular simulation is used in this work to quantify the association contribution to a wide set of thermodynamic properties for the {methanol + Lennard Jones} specific system under room conditions and throughout the composition range. Special attention was paid to the response functions and their respective excess properties, for which a detailed comparison with selected previous works in the field has been established.

  6. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  7. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    PubMed

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  8. An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Sakata, D.; Incerti, S.; Bordage, M. C.; Lampe, N.; Okada, S.; Emfietzoglou, D.; Kyriakou, I.; Murakami, K.; Sasaki, T.; Tran, H.; Guatelli, S.; Ivantchenko, V. N.

    2016-12-01

    Gold nanoparticle (GNP) boosted radiation therapy can enhance the biological effectiveness of radiation treatments by increasing the quantity of direct and indirect radiation-induced cellular damage. As the physical effects of GNP boosted radiotherapy occur across energy scales that descend down to 10 eV, Monte Carlo simulations require discrete physics models down to these very low energies in order to avoid underestimating the absorbed dose and secondary particle generation. Discrete physics models for electron transportation down to 10 eV have been implemented within the Geant4-DNA low energy extension of Geant4. Such models allow the investigation of GNP effects at the nanoscale. At low energies, the new models have better agreement with experimental data on the backscattering coefficient, and they show similar performance for transmission coefficient data as the Livermore and Penelope models already implemented in Geant4. These new models are applicable in simulations focussed towards estimating the relative biological effectiveness of radiation in GNP boosted radiotherapy applications with photon and electron radiation sources.

  9. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    NASA Astrophysics Data System (ADS)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  10. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  11. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  12. Transport link scanner: simulating geographic transport network expansion through individual investments

    NASA Astrophysics Data System (ADS)

    Jacobs-Crisioni, C.; Koopmans, C. C.

    2016-07-01

    This paper introduces a GIS-based model that simulates the geographic expansion of transport networks by several decision-makers with varying objectives. The model progressively adds extensions to a growing network by choosing the most attractive investments from a limited choice set. Attractiveness is defined as a function of variables in which revenue and broader societal benefits may play a role and can be based on empirically underpinned parameters that may differ according to private or public interests. The choice set is selected from an exhaustive set of links and presumably contains those investment options that best meet private operator's objectives by balancing the revenues of additional fare against construction costs. The investment options consist of geographically plausible routes with potential detours. These routes are generated using a fine-meshed regularly latticed network and shortest path finding methods. Additionally, two indicators of the geographic accuracy of the simulated networks are introduced. A historical case study is presented to demonstrate the model's first results. These results show that the modelled networks reproduce relevant results of the historically built network with reasonable accuracy.

  13. Telescope Array UHECR composition measurement via stereoscopic fluorescence observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration

    2016-03-01

    When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.

  14. Flight Simulator and Training Human Factors Validation

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Leland, Richard

    2009-01-01

    Loss of control has been identified as the leading cause of aircraft accidents in recent years. Efforts have been made to better equip pilots to deal with these types of events, commonly referred to as upsets. A major challenge in these endeavors has been recreating the motion environments found in flight as the majority of upsets take place well beyond the normal operating envelope of large aircraft. The Environmental Tectonics Corporation has developed a simulator motion base, called GYROLAB, that is capable of recreating the sustained accelerations, or G-forces, and motions of flight. A two part research study was accomplished that coupled NASA's Generic Transport Model with a GYROLAB device. The goal of the study was to characterize physiological effects of the upset environment and to demonstrate that a sustained motion based simulator can be an effective means for upset recovery training. Two groups of 25 Air Transport Pilots participated in the study. The results showed reliable signs of pilot arousal at specific stages of similar upsets. Further validation also demonstrated that sustained motion technology was successful in improving pilot performance during recovery following an extensive training program using GYROLAB technology.

  15. CFD Simulation On The Pressure Distribution For An Isolated Single-Story House With Extension: Grid Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yahya, W. N. W.; Zaini, S. S.; Ismail, M. A.; Majid, T. A.; Deraman, S. N. C.; Abdullah, J.

    2018-04-01

    Damage due to wind-related disasters is increasing due to global climate change. Many studies have been conducted to study the wind effect surrounding low-rise building using wind tunnel tests or numerical simulations. The use of numerical simulation is relatively cheap but requires very good command in handling the software, acquiring the correct input parameters and obtaining the optimum grid or mesh. However, before a study can be conducted, a grid sensitivity test must be conducted to get a suitable cell number for the final to ensure an accurate result with lesser computing time. This study demonstrates the numerical procedures for conducting a grid sensitivity analysis using five models with different grid schemes. The pressure coefficients (CP) were observed along the wall and roof profile and compared between the models. The results showed that medium grid scheme can be used and able to produce high accuracy results compared to finer grid scheme as the difference in terms of the CP values was found to be insignificant.

  16. Using McStas for modelling complex optics, using simple building bricks

    NASA Astrophysics Data System (ADS)

    Willendrup, Peter K.; Udby, Linda; Knudsen, Erik; Farhi, Emmanuel; Lefmann, Kim

    2011-04-01

    The McStas neutron ray-tracing simulation package is a versatile tool for producing accurate neutron simulations, extensively used for design and optimization of instruments, virtual experiments, data analysis and user training.In McStas, component organization and simulation flow is intrinsically linear: the neutron interacts with the beamline components in a sequential order, one by one. Historically, a beamline component with several parts had to be implemented with a complete, internal description of all these parts, e.g. a guide component including all four mirror plates and required logic to allow scattering between the mirrors.For quite a while, users have requested the ability to allow “components inside components” or meta-components, allowing to combine functionality of several simple components to achieve more complex behaviour, i.e. four single mirror plates together defining a guide.We will here show that it is now possible to define meta-components in McStas, and present a set of detailed, validated examples including a guide with an embedded, wedged, polarizing mirror system of the Helmholtz-Zentrum Berlin type.

  17. A local quasicontinuum method for 3D multilattice crystalline materials: Application to shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Elliott, R. S.; Tadmor, E. B.

    2014-07-01

    The quasicontinuum (QC) method, in its local (continuum) limit, is applied to materials with a multilattice crystal structure. Cauchy-Born (CB) kinematics, which accounts for the shifts of the crystal motif, is used to relate atomic motions to continuum deformation gradients. To avoid failures of CB kinematics, QC is augmented with a phonon stability analysis that detects lattice period extensions and identifies the minimum required periodic cell size. This approach is referred to as Cascading Cauchy-Born kinematics (CCB). In this paper, the method is described and developed. It is then used, along with an effective interaction potential (EIP) model for shape-memory alloys, to simulate the shape-memory effect and pseudoelasticity in a finite specimen. The results of these simulations show that (i) the CCB methodology is an essential tool that is required in order for QC-type simulations to correctly capture the first-order phase transitions responsible for these material behaviors, and (ii) that the EIP model adopted in this work coupled with the QC/CCB methodology is capable of predicting the characteristic behavior found in shape-memory alloys.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiratsuka, Tatsumasa; Tanaka, Hideki, E-mail: tanaka@cheme.kyoto-u.ac.jp; Miyahara, Minoru T., E-mail: miyahara@cheme.kyoto-u.ac.jp

    Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, P{sub cond}, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at P{sub cond} becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcriticalmore » temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, W{sub c}{sup *} = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier W{sub c}{sup *} controls the capillary condensation pressure P{sub cond} and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.« less

  19. Influence of Climate Variability on Brown Planthopper Population Dynamics and Development Time

    NASA Astrophysics Data System (ADS)

    Romadhon, S.; Koesmaryono, Y.; Hidayati, R.

    2017-03-01

    Brown planthopper or Nilaparvata lugens (BPH) is one of the rice major pest in Indonesia. BPH can cause extensive damage and almost always appear in each planting season, frequent explosions attack (outbreaks) resulting in very high economic losses. Outbreaks of BPH were often occurred in paddy fields in Indramayu regency and several endemic regency in Java island, where rice is cultivated twice to three times a year both in the rainy and dry cropping seasons. The output of simulation shows the BPH population starts increasing from December to February (rainy season) and from June to August (dry season). The result relatively had same pattern with light trap observation data, but overestimate to predict BPH population. Therefore, the output of simulation had adequately close pattern if it is compares to BPH attacked area observation data. The development time taken by different stages of BPH varied at different temperatures. BPH development time at eggs and adults stage from the simulation output is suitable with BPH real lifestage, but at nymphs stage the result is different with the concept of development time.

  20. A rapid solvent accessible surface area estimator for coarse grained molecular simulations.

    PubMed

    Wei, Shuai; Brooks, Charles L; Frank, Aaron T

    2017-06-05

    The rapid and accurate calculation of solvent accessible surface area (SASA) is extremely useful in the energetic analysis of biomolecules. For example, SASA models can be used to estimate the transfer free energy associated with biophysical processes, and when combined with coarse-grained simulations, can be particularly useful for accounting for solvation effects within the framework of implicit solvent models. In such cases, a fast and accurate, residue-wise SASA predictor is highly desirable. Here, we develop a predictive model that estimates SASAs based on Cα-only protein structures. Through an extensive comparison between this method and a comparable method, POPS-R, we demonstrate that our new method, Protein-C α Solvent Accessibilities or PCASA, shows better performance, especially for unfolded conformations of proteins. We anticipate that this model will be quite useful in the efficient inclusion of SASA-based solvent free energy estimations in coarse-grained protein folding simulations. PCASA is made freely available to the academic community at https://github.com/atfrank/PCASA. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

Top