Christopher B. Davidson; Kurt W. Gottschalk; James E. Johnson
1999-01-01
This review presents information related to defoliation by the European gypsy moth (Lymantria dispar L.) and subsequent tree mortality in the eastern United States. The literature describing defoliation-induced tree mortality is extensive, yet questions still remain concerning (1) the association between initial stand composition and subsequent tree...
NASA Astrophysics Data System (ADS)
Breshears, D. D.; Allen, C. D.; McDowell, N. G.; Adams, H. D.; Barnes, M.; Barron-Gafford, G.; Bradford, J. B.; Cobb, N.; Field, J. P.; Froend, R.; Fontaine, J. B.; Garcia, E.; Hardy, G. E. S. J.; Huxman, T. E.; Kala, J.; Lague, M. M.; Martinez-Yrizar, A.; Matusick, G.; Minor, D. M.; Moore, D. J.; Ng, M.; Ruthrof, K. X.; Saleska, S. R.; Stark, S. C.; Swann, A. L. S.; Villegas, J. C.; Williams, A. P.; Zou, C.
2017-12-01
Evidence that tree mortality is increasingly likely occur in extensive die-off events across the terrestrial biosphere continues to mount. The consequences of such extensive mortality events are potentially profound, not only for the locations where die-off events occur, but also for other locations that could be impacted via ecoclimate teleconnections, whereby the land surface changes associated with die-off in one location could alter atmospheric circulation patterns and affect vegetation elsewhere. Here, we (1) recap the background of tree mortality as an emerging environmental issue, (2) highlight recent advances that could help us improve predictions of the vulnerability to tree mortality, including the underlying importance of hydraulic failure, the potential to develop climatic envelopes specific to tree mortality events, and consideration of the role of heat waves; and (3) initial bounding simulations that indicate the potential for tree die-off events in different locations to alter ecoclimate teleconnections. As we move toward globally coordinated carbon accounting and management, the high vulnerability to tree die-off events and the potential for such events to affect vegetation elsewhere will both need to be accounted for.
C.J. Fettig; A.S. Munson; S.R. McKelvey; DeGomez T.E.
2009-01-01
Bark beetles are commonly recognized as important tree mortality agents in western coniferous forests, but relatively few species (<25) are capable of killing apparently-healthy trees. However, during the last decade extensive levels of tree mortality were attributed to bark beetle outbreaks in...
Jose F. Negron; John B. Popp
2017-01-01
1) Bark beetles (Coleoptera: Curculionidae: Scolytinae) can cause extensive tree mortality in forests dominated by their hosts. Among these, the spruce beetle (Dendroctonus rufipennis) is one of the most important beetles in western North America causing Engelmann spruce (Picea engelmannii) tree mortality. 2) Although pheromone traps with attractants are commonly used...
NASA Astrophysics Data System (ADS)
Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.
2015-08-01
Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.
Climate-driven tree mortality: insights from the pinon pine die-off in the United States
Jeffrey A. Hicke; Melanie J. B. Zeppel
2013-01-01
The global climate is changing, and a range of negative effects on plants has already been observed and will likely continue into the future. One of the most apparent consequences of climate change is widespread tree mortality (Fig. 1). Extensive tree die-offs resulting from recent climate change have been documented across a range of forest types on all forested...
Long-term climate and competition explain forest mortality patterns under extreme drought.
Young, Derek J N; Stevens, Jens T; Earles, J Mason; Moore, Jeffrey; Ellis, Adam; Jirka, Amy L; Latimer, Andrew M
2017-01-01
Rising temperatures are amplifying drought-induced stress and mortality in forests globally. It remains uncertain, however, whether tree mortality across drought-stricken landscapes will be concentrated in particular climatic and competitive environments. We investigated the effects of long-term average climate [i.e. 35-year mean annual climatic water deficit (CWD)] and competition (i.e. tree basal area) on tree mortality patterns, using extensive aerial mortality surveys conducted throughout the forests of California during a 4-year statewide extreme drought lasting from 2012 to 2015. During this period, tree mortality increased by an order of magnitude, typically from tens to hundreds of dead trees per km 2 , rising dramatically during the fourth year of drought. Mortality rates increased independently with average CWD and with basal area, and they increased disproportionately in areas that were both dry and dense. These results can assist forest managers and policy-makers in identifying the most drought-vulnerable forests across broad geographic areas. © 2016 John Wiley & Sons Ltd/CNRS.
Jose F. Negron; Jennifer G. Klutsch
2017-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...
An overview of the fire and fuels extension to the forest vegetation simulator
Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston
2000-01-01
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...
George T. Ferrell; Ralph C. Hall
1975-01-01
White fir (Abides concolor [Cord. & Glend.] Lindl.) stands in Western North America periodically suffer extensive tree mortality caused by outbreaks of the fir engraver bark beetle (Scolytus ventralis Lec.). The cambial zone of the boles infested by S. ventralis is also colonized by the roundheaded fir borer...
Brian M. Hoven; David L. Gorchov; Kathleen S. Knight; Valerie E. Peters
2017-01-01
Invasive insects and plants are major threats to the health and viability of North American forests. Emerald ash borer (Agrilus planipennis) (EAB) may cause extensive changes to forest composition due to rapid ash (Fraxinus spp.) mortality. Invasive shrubs like Amur honeysuckle (Lonicera maackii) may...
Large-scale thinning, ponderosa pine, and mountain pine beetle in the Black Hills, USA
Jose F. Negron; Kurt K. Allen; Angie Ambourn; Blaine Cook; Kenneth Marchand
2017-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB), can cause extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality in the Black Hills of South Dakota and Wyoming, USA. Lower tree densities have been associated with reduced MPB-caused tree mortality, but few studies have reported on large-scale thinning and most data come from small plots that...
NASA Astrophysics Data System (ADS)
Berner, Logan T.; Law, Beverly E.; Meddens, Arjan J. H.; Hicke, Jeffrey A.
2017-06-01
High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003-2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We quantified tree mortality from harvest using data from US Forest Service reports. In both cases, we used Monte Carlo analyses to track uncertainty associated with parameter error and temporal variability. Regional tree mortality from harvest, beetles, and fires (MORTH+B+F) together averaged 45.8 ± 16.0 Tg AGC yr-1 (±95% confidence interval), indicating a mortality rate of 1.10 ± 0.38% yr-1. Harvest accounted for the largest percentage of MORTH+B+F (˜50%), followed by beetles (˜32%), and fires (˜18%). Tree mortality from harvest was concentrated in Washington and Oregon, where harvest accounted for ˜80% of MORTH+B+F in each state. Tree mortality from beetles occurred widely at low levels across the region, yet beetles had pronounced impacts in Colorado and Montana, where they accounted for ˜80% of MORTH+B+F. Tree mortality from fires was highest in California, though fires accounted for the largest percentage of MORTH+B+F in Arizona and New Mexico (˜50%). Drought and human activities shaped regional variation in tree mortality, highlighting opportunities and challenges to managing GHG emissions from forests. Rising temperatures and greater risk of drought will likely increase tree mortality from fires and bark beetles during coming decades in this region. Thus, sustained monitoring and mapping of tree mortality is necessary to inform forest and GHG management.
Patterns of mortality in a montane mixed-conifer forest in San Diego County, California.
Freeman, Mary Pyott; Stow, Douglas A; An, Li
2017-10-01
We examine spatial patterns of conifer tree mortality and their changes over time for the montane mixed-conifer forests of San Diego County. These forest areas have recently experienced extensive tree mortality due to multiple factors. A spatial contextual image processing approach was utilized with high spatial resolution digital airborne imagery to map dead trees for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan, and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Mean mortality remained static from 1997 to 2002 (4, 2.2, and 4.2 trees/ha for Palomar, Volcan, and Laguna) and then increased by 2005 to 10.3, 9.7, and 5.2 trees/ha, respectively. The increase in mortality between 2002 and 2005 represents the temporal pattern of a discrete disturbance event, attributable to the 2002-2003 drought. Dead trees are significantly clustered for all dates, based on spatial cluster analysis, indicating that they form distinct groups, as opposed to spatially random single dead trees. Other tests indicate no directional shift or spread of mortality over time, but rather an increase in density. While general temporal and spatial mortality processes are uniform across all study areas, the plot-based species and quantity distribution of mortality, and diameter distributions of dead vs. living trees, vary by study area. The results of this study improve our understanding of stand- to landscape-level forest structure and dynamics, particularly by examining them from the multiple perspectives of field and remotely sensed data. © 2017 by the Ecological Society of America.
Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response
Rhoades, Charles C.; McCutchan, James H.; Cooper, Leigh A.; Clow, David; Detmer, Thomas M.; Briggs, Jennifer S.; Stednick, John D.; Veblen, Thomas T.; Ertz, Rachel M.; Likens, Gene E.; Lewis, William M.
2013-01-01
A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species. PMID:23319612
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2017-01-01
Extreme drought from 2013 to 2015 has been linked to extensive tree dieback in the Sierra-Nevada region of California. Landsat satellite imagery was analysed for the region from Lake Tahoe to the southern Sequoia National Forest with the objective of understanding the patterns of tree mortality in the years of 2013 to 2015 and into the near-normal precipitation year of 2016. The main mapping results for Landsat moisture index differences from year-to-year showed that the highest coverage of tree dieback was located in the Sierra and Sequoia National Forests, at four to five times greater area each year than within any other National Park or National Forest unit. Since 2013, over 50% of the Sierra Nevada forest dieback area was detected in the mid elevation zone of 1000-2000 m. The total area of tree mortality in the lower elevation zone of 500-1000 m did not grow notably from 2015 to 2016. Within the largest California river drainages in the Sierra region, new tree mortality in 2015 was detected mainly below 1200 m elevation, whereas new tree mortality in 2016 was detected mainly at higher elevations, up to about 2200 m. In three out of the four years studied, results showed that about 60% of all new tree mortality areas were located on north-facing hill slopes.
Christopher Fettig; Stephen McKelvey; Daniel Cluck; Smith Sheri; William Otrosina
2010-01-01
Many forests that historically experienced frequent low-intensity wildfires have undergone extensive alterations during the past century. Prescribed fire is now commonly used to restore these fire-adapted forest ecosystems. In this study, we examined the influence of prescribed burn season on levels of tree mortality attributed to prescribed fire effects (direct...
Robert J. Rabaglia; Stephen Fraedrich
2007-01-01
Extensive mortality of red bay (Persea borbonia [L.] Spreng) has been reported in coastal areas around Hilton Head Island, SC, and Savannah, GA, since the fall of 2003. In November, 2004 dead and dying red bay trees were examined on Hilton Head Island. Trees exhibited wilt-like symptoms and a distinct discoloration of the sapwood. Leaves on affected...
Compartmentalization of pathogens in fire-injured trees
Kevin T. Smith
2013-01-01
Wildland fire is an episodic process that greatly influences the composition, structure, and developmental sequence of forests. Most news reports of wildland fire involves blazes fueled by slash, standing dead stems, and snags that reach into tree crowns and burn deeply into the forest floor, causing extensive tree mortality and the eventual replacement of the standing...
Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.
2012-01-01
Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.
Stand level impacts of Ips and Dendroctonus bark beetles in pine forest types of northern Arizona
Joel McMillin; John Anhold; Jose Negron
2008-01-01
(Please note, this is an extended abstract only) Extensive tree mortality occurred in ponderosa pine forests and pinon-juniper woodlands of Arizona from 2001-2004. This mortality has been attributed to a combination of an extensive drought, overstocked stands of pine, and increased bark beetle populations. A complex of Ips and Dendroctonus species worked in concert to...
Donald D. Davis; Matthew Kasson; Mark Schall
2011-01-01
Extensive, unprecedented wilt and mortality of the highly invasive, exotic tree-of-heaven (Ailanthus altissima) occurred recently within mixed hardwood forests in south-central Pennsylvania. Until this study, the cause of the epidemic was unknown.
Connecting overwintering success of eastern larch beetle to health of tamarack. Chapter 16
Robert C. Venette; Abigail J. Walter
2012-01-01
Michigan, Wisconsin, Maine, and Minnesota have experienced extensive mortality of tamarack (eastern larch) (Larix laricina). The Minnesota Department of Natural Resources reported tamarack mortality on 54,000 acres of Minnesota forests between 2001 and 2006 (Minnesota Department of Natural Resources 2006). Although the exact cause of tree mortality...
Climate, canker, and alder mortality in the Southern Rockies
James J. Worrall
2012-01-01
An increase in dieback and mortality of thinleaf alder (Alnus incana ssp. tenuifolia) raised concern in southern Wyoming and Colorado two decades ago. In 1990, there was concern over extensive mortality of thinleaf alder along Big Laramie River near Jelm, WY, as well as in multiple locations in Colorado.2 Trees of all ages were...
Shifts in Geochemical Parameters and Greenhouse Gas Fluxes following Insect-Induced Tree Mortality
NASA Astrophysics Data System (ADS)
Brouillard, B.; Mikkelson, K. M.; Berryman, E.; Sharp, J.; Leonard, L.; Vega, M.
2016-12-01
Extensive insect infestations and resultant expansive tree mortality are occurring globally due in part to warmer temperatures and persistent drought. These forest disturbances are expected to cause shifts in the biogeochemical cycle due to the cessation of below ground root outputs, changes in soil microbial communities, hydrologic perturbations, and altered woody material deposits to the forest floor. To better understand biogeochemical alterations and resolve potentially conflicting findings, we studied a lodgepole pine forest recently impacted by mountain pine beetles to determine the response of subsurface geochemical parameters and gaseous flux to the effects of surrounding tree mortality. While many parameters were found to be significantly different under recently killed trees compared to their healthy counterparts (pH, soil moisture, C/N-species), notable biogeochemically relevant parameters displayed shifts that tracked with the level of surrounding tree mortality. For instance, aromatic carbon (TSUVA) and CO2 respiration were found to have an increasing linear response under grey trees as the surrounding tree mortality within an 8m radius also increased. Rather than a linear increase, ammonium and nitrogen associated bacterial communities displayed a threshold effect, not increasing until a certain level of tree mortality of approximately 40% was surpassed. Gas flux was also correlated to measured parameters in three near surface soil horizons to determine drivers of CO2 and N2O release and their interactions with biogeochemical cycles. Collectively, these results aid in elucidating the extent of forest mortality required to overcome compensatory terrestrial biogeochemical processes. A heightened understanding of these shifts will aid the scientific and resource management community through enhanced predictive understanding of greenhouse gas release or potential water quality impacts following forest disturbance.
NASA Astrophysics Data System (ADS)
Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.
2015-12-01
Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.
Methods for studying emerald ash borer parasitoids in the field
Leah Bauer; Jian Duan; Juli Gould; Kristopher Abell; Deborah Miller; Jason Hansen; Roy. Van Driesche
2011-01-01
The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive phloemfeeding beetle from Asia that attacks ash (Fraxinus spp.) trees. EAB was determined to be the cause of extensive ash tree mortality throughout southeast Michigan and nearby Ontario in 2002. For several years, regulatory agencies...
Stand Dynamics of Coast Redwood/Tanoak Forests Following Tanoak Decline
Kristen M. Waring; Kevin L. O' Hara
2007-01-01
Current threats to North American forests increasingly include exotic tree pathogens that cause extensive mortality. In California, tanoak (Lithocarpus densiflorus) mortality has increased rapidly since 1995, due to Phytophthora ramorum, believed to be an introduced pathogen. Tanoak frequently grows as a major component of redwood...
NASA Astrophysics Data System (ADS)
Freeman, Mary Pyott
ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.
Evaluation of a post-fire tree mortality model for western US conifers
Sharon M. Hood; Charles W McHugh; Kevin C. Ryan; Elizabeth Reinhardt; Sheri L. Smith
2007-01-01
Accurately predicting fire-caused mortality is essential to developing prescribed fire burn plans and post-fire salvage marking guidelines. The mortality model included in the commonly used USA fire behaviour and effects models, the First Order Fire Effects Model (FOFEM), BehavePlus, and the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS), has not...
Brent Oblinger; Zachary Heath; Jeffrey Moore; Lisa Fischer
2013-01-01
Phytophthora ramorum has caused extensive oak (Quercus) and tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh) mortality in portions of the central and north coasts of California. In conjunction with stream and terrestrial surveys, aerial detection surveys have played a...
USDA-ARS?s Scientific Manuscript database
Trees from six corkbark fir (Abies lasiocarpa var. arizonica) and 10 subalpine fir (A. lasiocarpa var. lasiocarpa) seed sources were grown at the University of Idaho Sandpoint Research and Extension Center (SREC) and two commercial nurseries in Idaho and Oregon. Post transplant mortality was highest...
Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.
Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K
2013-08-01
Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.
Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman
2012-01-01
Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...
Jeremy W. Lichstein; Jonathan Dushoff; Kiona Ogle; Anping Chen; Drew W. Purves; John P. Caspersen; Stephen W. Pacala
2010-01-01
Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other...
In Forests Globally, Large Trees Suffer Most during Drought
NASA Astrophysics Data System (ADS)
Bennett, A. C.; McDowell, N. G.; Allen, C. D.; Anderson-Teixeira, K. J.
2014-12-01
Globally, drought events are increasing in both frequency and intensity. Spatial and temporal variation in water availability is expected to alter the ecophysiology and structure of forests, with consequent feedbacks to climate change. Extensive tree mortality induced by heat and aridity has been documented across a range of latitudes, and several global vegetation models have simulated widespread forest die-off in the future. The impact of drought on forest structure and function will depend on the differential responses of trees of different sizes. Understanding the size-dependence of drought-induced mortality is necessary to predict local and global impacts. Here we show that in forests worldwide, drought has a greater impact on the growth and mortality of large trees compared to smaller trees. This trend holds true for forests ranging from semiarid woodlands to tropical rainforests. This finding contrasts with what would be expected if deep root access to water were the primary determinant of tree drought response. Rather, the greater drought response of larger trees could be driven by greater inherent vulnerability of large trees to hydraulic stress or by canopy position becoming more of a liability under drought, as exposed crowns face higher evaporative demand. These findings imply that future droughts will have a disproportionate effect on large trees, resulting in a larger feedback to climate change than would occur if all tree size classes were equally affected by drought.
Woodland recovery following drought-induced tree mortality across an environmental stress gradient.
Redmond, Miranda D; Cobb, Neil S; Clifford, Michael J; Barger, Nichole N
2015-10-01
Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon-juniper woodlands of the southwestern USA, a multiyear drought in 2002-2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper-dominated, more savannah-type ecosystem. Here, we used pre- (1998-2001) and 10-year post- (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper-dominated woodland and highlight the importance of incorporating biotic interactions and soil properties into species distribution modeling approaches. © 2015 John Wiley & Sons Ltd.
What mediates tree mortality during drought in the southern Sierra Nevada?
Paz-Kagan, Tarin; Brodrick, Philip; Vaughn, Nicholas R.; Das, Adrian J.; Stephenson, Nathan L.; Nydick, Koren R.; Asner, Gregory P.
2017-01-01
Severe drought has the potential to cause selective mortality within a forest, thereby inducing shifts in forest species composition. The southern Sierra Nevada foothills and mountains of California have experienced extensive forest dieback due to drought stress and insect outbreak. We used high-fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) from the Carnegie Airborne Observatory (CAO) to estimate the effect of forest dieback on species composition in response to drought stress in Sequoia National Park. Our aims were: (1) to quantify site-specific conditions that mediate tree mortality along an elevation gradient in the southern Sierra Nevada Mountains; (2) to assess where mortality events have a greater probability of occurring; and (3) to estimate which tree species have a greater likelihood of mortality along the elevation gradient. A series of statistical models were generated to classify species composition and identify tree mortality, and the influences of different environmental factors were spatially quantified and analyzed to assess where mortality events have a greater likelihood of occurring. A higher probability of mortality was observed in the lower portion of the elevation gradient, on southwest and west-facing slopes, in areas with shallow soils, on shallower slopes, and at greater distances from water. All of these factors are related to site water balance throughout the landscape. Our results also suggest that mortality is species-specific along the elevation gradient, mainly affecting Pinus ponderosa and Pinus lambertiana at lower elevations. Selective mortality within the forest may drive long-term shifts in community composition along the elevation gradient.
What mediates tree mortality during drought in the southern Sierra Nevada?
Paz-Kagan, Tarin; Brodrick, Philip G; Vaughn, Nicholas R; Das, Adrian J; Stephenson, Nathan L; Nydick, Koren R; Asner, Gregory P
2017-12-01
Severe drought has the potential to cause selective mortality within a forest, thereby inducing shifts in forest species composition. The southern Sierra Nevada foothills and mountains of California have experienced extensive forest dieback due to drought stress and insect outbreak. We used high-fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) from the Carnegie Airborne Observatory (CAO) to estimate the effect of forest dieback on species composition in response to drought stress in Sequoia National Park. Our aims were (1) to quantify site-specific conditions that mediate tree mortality along an elevation gradient in the southern Sierra Nevada Mountains, (2) to assess where mortality events have a greater probability of occurring, and (3) to estimate which tree species have a greater likelihood of mortality along the elevation gradient. A series of statistical models were generated to classify species composition and identify tree mortality, and the influences of different environmental factors were spatially quantified and analyzed to assess where mortality events have a greater likelihood of occurring. A higher probability of mortality was observed in the lower portion of the elevation gradient, on southwest- and west-facing slopes, in areas with shallow soils, on shallower slopes, and at greater distances from water. All of these factors are related to site water balance throughout the landscape. Our results also suggest that mortality is species-specific along the elevation gradient, mainly affecting Pinus ponderosa and Pinus lambertiana at lower elevations. Selective mortality within the forest may drive long-term shifts in community composition along the elevation gradient. © 2017 by the Ecological Society of America.
Chris Fettig; A. S. Munson; M. Reinke; A. Mafra-Neto
2015-01-01
Verbenone (4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one) is an antiaggregant of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), a notable forest insect capable of causing extensive levels of tree mortality in western North America. Several formulations of verbenone are registered...
Interacting disturbances: Wildfire severity affected by stage of forest disease invasion
Margaret Metz; Kerri Frangioso; Ross Meentemeyer; David Rizzo
2010-01-01
Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined pre-fire fuels from host species in a forest monitoring plot network...
Progress on Biological Control of the Emerald Ash Borer in North America
L.S. Bauer; H.P. Liu; J. Gould; R. Reardon
2007-01-01
In 2002, the emerald ash borer (EAB), Agrilus planipennis, a buprestid beetle native to Northeast Asia, was discovered as the cause of extensive ash tree (Fraxinus spp.) mortality in southern Michigan and Ontario.
Chuck Rhoades; Carl Chambers; Kelly Elder; Derek Pierson; Banning Starr
2012-01-01
Mountain pine beetle outbreaks have caused an unprecedented amount of tree mortality in northern Colorado and southern Wyoming forests over the past decade. The extensive overstory mortality and associated salvage logging activities may threaten the sustained delivery of clean water from beetle-affected forests. In this study, we evaluate nutrient retention by riparian...
Paul E. Hennon; David V. D' Amore; Paul G. Schaberg; Dustin T. Wittwer; Colin S. Shanley
2012-01-01
The extensive mortality of yellow-cedar along more than 1000 kilometers of the northern Pacific coast of North America serves as a leading example of climate effects on a forest tree species. In this article, we document our approaches to resolving the causes of tree death, which we explain as a cascade of interacting topographic, forest-structure, and microclimate...
Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000
Zeng, Hongcheng; Chambers, Jeffrey Q.; Negrón-Juárez, Robinson I.; Hurtt, George C.; Baker, David B.; Powell, Mark D.
2009-01-01
Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y−1. Over the period 1980–1990, released CO2 potentially offset the carbon sink in forest trees by 9–18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance. PMID:19416842
Brouillard, Brent M; Dickenson, Eric R V; Mikkelson, Kristin M; Sharp, Jonathan O
2016-12-01
The recent bark beetle epidemic across western North America may impact water quality as a result of elevated organic carbon release and hydrologic shifts associated with extensive tree dieback. Analysis of quarterly municipal monitoring data from 2004 to 2014 with discretization of six water treatment facilities in the Rocky Mountains by extent of beetle impact revealed a significant increasing trend in total organic carbon (TOC) and total trihalomethane (TTHM) production within high (≳50% areal infestation) beetle-impacted watersheds while no or insignificant trends were found in watersheds with lower impact levels. Alarmingly, the TTHM concentration trend in the high impact sites exceeded regulatory maximum contaminant levels during the most recent two years of analysis (2013-14). To evaluate seasonal differences, explore the interplay of water quality and hydrologic processes, and eliminate variability associated with municipal reporting, these treatment facilities were targeted for more detailed surface water sampling and characterization. Surface water samples collected from high impact watersheds exhibited significantly higher TOC, aromatic signatures, and disinfection byproduct (DBP) formation potential than watersheds with lower infestation levels. Spectroscopic analyses of surface water samples indicated that these heightened DBP precursor levels are a function of both elevated TOC loading and increased aromatic character. This association was heightened during precipitation and runoff events in high impact sites, supporting the hypothesis that altered hydrologic flow paths resulting from tree mortality mobilize organic carbon and elevate DBP formation potential for several months after runoff ceases. The historical trends found here likely underestimate the full extent of TTHM shifts due to monitoring biases with the extended seasonal release of DBP precursors increasing the potential for human exposure. Collectively, our analysis suggests that while water quality impacts continue to rise nearly one decade after infestation, significant increases in TOC mobilization and DBP precursors are limited to watersheds that experience extensive tree mortality. Copyright © 2016 Elsevier B.V. All rights reserved.
Randall S. Morin; Scott A. Pugh; Andrew M. Liebhold; Susan J. Crocker
2015-01-01
The nonnative insect, emerald ash borer (Agrilus plannipennis Fairmaire), has caused extensive mortality of ash tree species (Fraxinus spp.) in the eastern United States. As of 2012, the pest had been detected in about 15 percent of the counties in the 37 states that comprise the natural range of ash in forests of the eastern...
Red turpentine beetle: innocuous native becomes invasive tree killer in China.
Sun, Jianghua; Lu, Min; Gillette, Nancy E; Wingfield, Michael J
2013-01-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), is a secondary pest of pines in its native range in North and Central America. Outbreaks and tree mortality attributed to RTB alone are rare in its native range. RTB was introduced into China in the early 1980s and spread rapidly from Shanxi Province to four adjacent provinces; it has infested over 500,000 ha of pine forest and has caused extensive tree mortality since 1999. We provide a historical background on RTB outbreaks, explanations for its invasive success, management options, and economic impacts of RTB in China. Genetic variation in RTB fungal associates, interactions between RTB and its associated fungi, behavioral differences in Chinese RTB, and other factors favoring RTB outbreaks are considered in an effort to explain the invasiveness of RTB in China. The promise of semiochemicals as a management tool is also discussed.
NASA Astrophysics Data System (ADS)
Renninger, H. J.; Hornslein, N.; Siegert, C. M.
2017-12-01
Depending on the type of disturbance, the mortality process of an individual tree may occur over an extended period leading to changes in tree and ecosystem functioning throughout this time period and before ultimate tree death is evident. Therefore, the goals of this research were to quantify physiological changes occurring in loblolly pine (Pinus taeda L.) during an extended mortality event. In July 2015, ten trees were girdled to simulate a Southern pine beetle disturbance and trees were monitored until their eventual mortality which occurred from Aug. to Dec. of 2016. Sapflow rates and litterfall were monitored throughout the mortality process and photosynthetic rates and leaf nitrogen concentrations were measured at the height of the 2016 growing season. Girdled pines had significantly higher sapflow compared with control pines in the first month following girdling, then sapflow did not differ significantly for the remainder of the 2015 growing season. From Dec. 2015 to Dec. 2016, control trees had about 25% higher sapflow compared with girdled pines, but both groups maintained a similar relationship between sapflow and soil moisture. Extensive litterfall occurred throughout the 2016 growing season and litter had 50% higher N concentration than the prior growing season. N concentration of fresh leaves collected in 2016 did not differ in girdled vs. control pines but control pines had 64% higher maximum Rubisco-limited carboxylation rates (Vcmax) and 68% higher electron transport-limited carboxylation rates (Jmax) compared to girdled pines. Control pines also had 66% higher foliage densities and 44% larger growth ring widths than girdled pines at the end of the 2016 growing season. Taken together, these results highlight the physiological changes that occur in pines undergoing mortality before needles completely discolor and drop. Compared with control pines, girdled pines exhibited greater changes in carbon and nitrogen compared with water use suggesting that sapflow per unit leaf area was increased to compensate for the losses in total leaf area. These data highlight the importance of physiological measurements taken throughout a mortality event to more accurately quantify the changes in ecosystem-scale water, nitrogen and carbon balance occurring during disturbance episodes.
Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains
NASA Astrophysics Data System (ADS)
Fellows, A.; Goulden, M.
2010-12-01
An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.
Tanoak resistance: can it be used to sustain populations?
Katherine J. Hayden; Alex Lundquist; Douglas J. Schmidt; Richard A. Sniezko; Susan J. Frankel; Matteo. Garbelotto
2010-01-01
Tanoak (Lithocarpus densiflorus) trees are among Phytophthora ramorumâs most susceptible hosts. Extensive mortality in this species has led researchers to question whether selective breeding for resistance can be used to sustain populations; the answer depends on the extent and heritability of pathogen resistance within the...
Fire and bark beetle interactions
Ken Gibson; Jose F. Negron
2009-01-01
Bark beetle populations are at outbreak conditions in many parts of the western United States and causing extensive tree mortality. Bark beetles interact with other disturbance agents in forest ecosystems, one of the primary being fires. In order to implement appropriate post-fire management of fire-damaged ecosystems, we need a better understanding of...
Evaluation of recovery and monitoring methods for parasitoids released against Emerald Ash Borer
USDA-ARS?s Scientific Manuscript database
The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an invasive insect pest, and the target of an extensive biological control campaign designed to mitigate EAB driven ash tree (Fraxinus spp.) mortality. Since 2007, environmental releases of three species of hymenopteran parasitoids of EA...
Climate variability drives recent tree mortality in Europe.
Neumann, Mathias; Mues, Volker; Moreno, Adam; Hasenauer, Hubert; Seidl, Rupert
2017-11-01
Tree mortality is an important process in forest ecosystems, frequently hypothesized to be highly climate sensitive. Yet, tree death remains one of the least understood processes of forest dynamics. Recently, changes in tree mortality have been observed in forests around the globe, which could profoundly affect ecosystem functioning and services provisioning to society. We describe continental-scale patterns of recent tree mortality from the only consistent pan-European forest monitoring network, identifying recent mortality hotspots in southern and northern Europe. Analyzing 925,462 annual observations of 235,895 trees between 2000 and 2012, we determine the influence of climate variability and tree age on interannual variation in tree mortality using Cox proportional hazard models. Warm summers as well as high seasonal variability in precipitation increased the likelihood of tree death. However, our data also suggest that reduced cold-induced mortality could compensate increased mortality related to peak temperatures in a warming climate. Besides climate variability, age was an important driver of tree mortality, with individual mortality probability decreasing with age over the first century of a trees life. A considerable portion of the observed variation in tree mortality could be explained by satellite-derived net primary productivity, suggesting that widely available remote sensing products can be used as an early warning indicator of widespread tree mortality. Our findings advance the understanding of patterns of large-scale tree mortality by demonstrating the influence of seasonal and diurnal climate variation, and highlight the potential of state-of-the-art remote sensing to anticipate an increased likelihood of tree mortality in space and time. © 2017 John Wiley & Sons Ltd.
Survey for balsam woolly adegid in Washington and Oregon.
I. Ragenovich; B. Willhite; R. Mitchell; D. Overhulser; K. Ripley
2002-01-01
Balsam woolly adelgid (BWA) is an introduced insect that has had a significant impact on Abies tree species in the Pacific Northwest. During the late 1950s and 1960s, it caused extensive mortality of grand fir (A. grandis), subalpine fir (A. lasiocarpa), and silver fir (A. amabilis), particularly in the...
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality
Zhang, Qingyin; Shao, Ming’an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes. PMID:28095437
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.
Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.
Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.
2013-01-01
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096
Spatial aspects of tree mortality strongly differ between young and old-growth forests.
Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F
2015-11-01
Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.
The contribution of competition to tree mortality in old-growth coniferous forests
Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.
2011-01-01
Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.
Margaret R. Metz; Kerri M. Frangioso; Ross K. Meentemeyer; David M. Rizzo
2012-01-01
Sudden oak death (SOD), caused by Phytophthora ramorum, is an emerging forest disease associated with extensive tree mortality in coastal California forests (Rizzo et al. 2005). P. ramorum is a generalist pathogen that infects many hosts, but hosts differ in their ability to transmit the disease...
Randall S. Morin; Kurt W. Gottschalk; Michael E. Ostry; Andrew M. Liebhold
2018-01-01
Butternut trees dying from a canker disease were first reported in southwestern Wisconsin in 1967. Since then, the disease has caused extensive mortality of butternut throughout its North American range. The objectives of this study were to quantify changes in butternut populations and density across its range and identify habitat characteristics of sites where...
USDA-ARS?s Scientific Manuscript database
Emerald ash borer, Agrilus planipennis, is an invasive beetle that has been causing extensive mortality of ash trees since arriving in North America in 2002. 7-epi-Sesquithujene (1) is produced by stressed ash and elicits a strong EAD response on the emerald ash borer antennae. In the course of ma...
Why do trees die? Characterizing the drivers of background tree mortality.
Das, Adrian J; Stephenson, Nathan L; Davis, Kristin P
2016-10-01
The drivers of background tree mortality rates-the typical low rates of tree mortality found in forests in the absence of acute stresses like drought-are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the "ambient" or "random" background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from one another. Finally, beyond the current emphasis on folivory and leaf defenses, studies of broad-scale gradients in the nature and strength of biotic interactions should also include biotic attacks on, and defenses of, tree stems and roots. © 2016 by the Ecological Society of America.
Why do trees die? Characterizing the drivers of background tree mortality
Das, Adrian J.; Stephenson, Nathan L.; Davis, Kristin P.
2016-01-01
The drivers of background tree mortality rates—the typical low rates of tree mortality found in forests in the absence of acute stresses like drought—are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the “ambient” or “random” background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from one another. Finally, beyond the current emphasis on folivory and leaf defenses, studies of broad-scale gradients in the nature and strength of biotic interactions should also include biotic attacks on, and defenses of, tree stems and roots.
Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.
Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui
2014-06-01
Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha(-1) year(-1) larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (T min), annual mean temperature (T mean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.
Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate
Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui
2014-01-01
Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha−1 year−1 larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (Tmin), annual mean temperature (Tmean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate. PMID:25360275
Who Died, Where? Quantification of Drought-Induced Tree Mortality in Texas
NASA Astrophysics Data System (ADS)
Schwantes, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.
2014-12-01
During 2011, Texas experienced a severe drought that killed millions of trees across the state. Drought-induced tree mortality can have significant ecological impacts and is expected to increase with climate change. We identify methods to quantify tree mortality in central Texas by using remotely sensed images before and after the drought at multiple spatial resolutions. Fine-scale tree mortality maps were created by classifying 1-m orthophotos from the National Agriculture Imagery Program. These classifications showed a high correlation with field estimates of percent canopy loss (RMSE = 2%; R2=0.9), and were thus used to calibrate coarser scale 30-m Landsat imagery. Random Forest, a machine learning method, was applied to obtain sub-pixel estimates of tree mortality. Traditional per-pixel classification techniques can map mortality of whole stands of trees (e.g. fire). However, these methods are often inadequate in detecting subtle changes in land cover, such as those associated with drought-induced tree mortality, which is often a widespread but scattered disturbance. Our method is unique, because it is capable of mapping death of individual canopies within a pixel. These 30-m tree mortality maps were then used to identify ecological systems most impacted by the drought and edaphic factors that control spatial distributions of tree mortality across central Texas. Ground observations coupled with our remote sensing analyses revealed that the majority of the mortality was Juniperus ashei. From a physiological standpoint this is surprising, because J. ashei is a drought-resistant tree. However, over the last century, this species has recently encroached into many areas previously dominated by grassland. Also, J. ashei tends to occupy landscape positions with lower available water storage, which could explain its high mortality rate. Predominantly tree mortality occurred in dry landscape positions (e.g. areas dominated by shallow soils, a low compound topographic index, and a high heat index). As increases in extreme drought events are predicted to occur with climate change, it will become more important to establish methods capable of detecting associated drought-induced tree mortality, to recognize vulnerable ecological systems, and to identify edaphic factors that predispose trees to mortality.
Assessment and response to bark beetle outbreaks in the Rocky Mountain area
Safiya Samman; Jesse Logan
2000-01-01
Bark beetles act as "agents of change" within the conifer forests of the Rocky Mountain area. They play a critical role in the development, senescence, and rebirth of Western forests. Bark beetle-caused tree mortality can be extensive, covering thousands of acres. This report is the Forest Service response to a Congressional direction in the FY2000 Interior...
Scott A. Pugh; Andrew M. Liebhold; Randall S. Morin
2011-01-01
The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is a nonnative phloem-feeding beetle that was accidentally introduced near Detroit, Michigan, two to three decades ago. North American ash (Fraxinus spp.) exhibit little or no resistance, and as this insect species expands its range, extensive mortality results. Previous...
US Forest Service bark beetle research in the western United States: Looking toward the future
Jose F. Negron; Barbara J. Bentz; Christopher J. Fettig; Nancy Gillette; E. Matthew Hansen; Jane L. Hayes; Rick G. Kelsey; John E. Lundquist; Ann M. Lynch; Robert A. Progar; Steven J. Seybold
2008-01-01
Bark beetles cause extensive tree mortality in coniferous forests of western North America and play an important role in the disturbance ecology of these ecosystems. Recently, elevated populations of bark beetles have been observed in all conifer forest types across the western United States. This has heightened public awareness of the issue and triggered legislation...
Nathan W. Siegert; Deborah G. McCullough; Andrew M. Liebhold; Frank W. Telewski
2014-01-01
Emerald ash borer Agrilus planipennis was identified in 2002 as the cause of extensive ash (Fraxinus spp.) decline and mortality in Detroit, Michigan, and has since killed millions of ash trees in the US and Canada. When discovered, it was not clear how long it had been present or at what location the invading colony started....
Randall S. Morin; Andrew M. Liebhold; Scott A. Pugh; Susan J. Crocker
2017-01-01
Native to Asia, the emerald ash borer (Agrilus planipennis Fairmaire) has caused extensive mortality of ash tree species (Fraxinus spp.) in the eastern United States. As of 2013, the pest was documented in 18 % of counties within the natural range of ash in the eastern United States. Regional forest inventory data from the U.S...
Emerald ash borer biological control release and recovery guidelines
Juli S. Gould; Leah S. Bauer; Jian Duan
2016-01-01
Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...
Emerald ash borer biological control release and recovery guidelines
Juli S. Gould; Leah S. Bauer; Jian Duan
2015-01-01
Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...
Emerald ash borer biological control release and recovery guidelines
Juli S. Gould; Leah S. Bauer; Jonathan Lelito; Jian Duan
2012-01-01
Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...
Are high elevation pines equally vulnerable to climate change-induced mountain pine beetle attack?
Barbara J. Bentz; Erika L. Eidson
2016-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB), a native insect to western North America, caused extensive tree mortality in pine ecosystems during a recent warm and dry period. More than 24 million acres were affected, including in the relatively low elevation lodgepole (Pinus contorta) and ponderosa (P. ponderosa) pines, and the high-elevation whitebark (P....
Archana Vasanthakumar; Jo Handelsman; Patrick D. Schloss; Leah S. Bauer; Kenneth F. Raffa
2008-01-01
We characterized gut microbial communities in the emerald ash borer, Agrilus planipennis Fairmaire, an invasive phloem-feeding and wood-boring beetle that has caused extensive mortality to urban and forest ash trees. Analyses included both 16S rRNA gene-based and culture-based approaches. We estimated that the emerald ash borer gut harbors 44, 71,...
Bradford, John B.; Bell, David M.
2017-01-01
Increasing aridity as a result of climate change is expected to exacerbate tree mortality. Reducing forest basal area – the cross-sectional area of tree stems within a given ground area – can decrease tree competition, which may reduce drought-induced tree mortality. However, neither the magnitude of expected mortality increases, nor the potential effectiveness of basal area reduction, has been quantified in dryland forests such as those of the drought-prone Southwest US. We used thousands of repeatedly measured forest plots to show that unusually warm and dry conditions are related to high tree mortality rates and that mortality is positively related to basal area. Those relationships suggest that while increasing high temperature extremes forecasted by climate models may lead to elevated tree mortality during the 21st century, future tree mortality might be partly ameliorated by reducing stand basal area. This adaptive forest management strategy may provide a window of opportunity for forest managers and policy makers to guide forest transitions to species and/or genotypes more suited to future climates.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.
Widespread increase of tree mortality rates in the Western United States
van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, Joseph M.; Taylor, A.H.; Veblen, T.T.
2009-01-01
Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.
Chapter 9 - Monitoring survival of fire-injured trees in Oregon and Washington (Project WC-F-08-03)
Robert A. Progar; Lisa Ganio; Lindsay Grayson; Sharon M. Hood
2018-01-01
Wild and prescribed fire injury to trees can produce mortality that is not immediately apparent, and environmental stress subsequent to a fire may also contribute to tree mortality in the years after a fire (Hood and Bentz 2007). In order to predict post-fire tree mortality from fire injury variables before tree mortality is clearly apparent, dozens of statistical...
John B Bradford; David M Bell
2016-01-01
Increasing aridity as a result of climate change is expected to exacerbate tree mortality. Reducing forest basal area â the cross-sectional area of tree stems within a given ground area â can decrease tree competition, which may reduce drought-induced tree mortality. However, neither the magnitude of expected mortality increases, nor the potential effectiveness of...
Large-scale patterns of turnover and Basal area change in Andean forests.
Báez, Selene; Malizia, Agustina; Carilla, Julieta; Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Duque, Álvaro; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Homeier, Jürgen; Linares-Palomino, Reynaldo; Malizia, Lucio R; Cruz, Omar Melo; Osinaga, Oriana; Phillips, Oliver L; Reynel, Carlos; Silman, Miles R; Feeley, Kenneth J
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.
Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests
Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Linares-Palomino, Reynaldo; Malizia, Lucio R.; Cruz, Omar Melo; Osinaga, Oriana; Reynel, Carlos; Silman, Miles R.
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century. PMID:25973977
Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A
2016-12-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. © 2016 by the Ecological Society of America.
Urban tree mortality: a primer on demographic approaches
Lara A. Roman; John J. Battles; Joe R. McBride
2016-01-01
Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...
Vegetation optical depth measured by microwave radiometry as an indicator of tree mortality risk
NASA Astrophysics Data System (ADS)
Rao, K.; Anderegg, W.; Sala, A.; Martínez-Vilalta, J.; Konings, A. G.
2017-12-01
Increased drought-related tree mortality has been observed across several regions in recent years. Vast spatial extent and high temporal variability makes field monitoring of tree mortality cumbersome and expensive. With global coverage and high temporal revisit, satellite remote sensing offers an unprecedented tool to monitor terrestrial ecosystems and identify areas at risk of large drought-driven tree mortality events. To date, studies that use remote sensing data to monitor tree mortality have focused on external climatic thresholds such as temperature and evapotranspiration. However, this approach fails to consider internal water stress in vegetation - which can vary across trees even for similar climatic conditions due to differences in hydraulic behavior, soil type, etc - and may therefore be a poor basis for measuring mortality events. There is a consensus that xylem hydraulic failure often precedes drought-induced mortality, suggesting depleted canopy water content shortly before onset of mortality. Observations of vegetation optical depth (VOD) derived from passive microwave are proportional to canopy water content. In this study, we propose to use variations in VOD as an indicator of potential tree mortality. Since VOD accounts for intrinsic water stress undergone by vegetation, it is expected to be more accurate than external climatic stress indicators. Analysis of tree mortality events in California, USA observed by airborne detection shows a consistent relationship between mortality and the proposed VOD metric. Although this approach is limited by the kilometer-scale resolution of passive microwave radiometry, our results nevertheless demonstrate that microwave-derived estimates of vegetation water content can be used to study drought-driven tree mortality, and may be a valuable tool for mortality predictions if they can be combined with higher-resolution variables.
Tree mortality rates and tree population projections in Baltimore, Maryland, USA
David J. Nowak; Miki Kuroda; Daniel E. Crane
2004-01-01
Based on re-measurements (1999 and 2001) of randomly-distributed permanent plots within the city boundaries of Baltimore, Maryland, trees are estimated to have an annual mortality rate of 6.6% with an overall annual net change in the number of live trees of -4.2%. Tree mortality rates were significantly different based on tree size, condition, species, and Land use....
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less
Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak
2013-01-01
Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...
A Three-Step Approach To Model Tree Mortality in the State of Georgia
Qingmin Meng; Chris J. Cieszewski; Roger C. Lowe; Michal Zasada
2005-01-01
Tree mortality is one of the most complex phenomena of forest growth and yield. Many types of factors affect tree mortality, which is considered difficult to predict. This study presents a new systematic approach to simulate tree mortality based on the integration of statistical models and geographical information systems. This method begins with variable preselection...
Research frontiers for improving our understanding of drought‐induced tree and forest mortality
Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael
2018-01-01
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
A. W Schoettle; J. G. Klutsch; R. A. Sniezko
2012-01-01
Global trade increases the likelihood of introduction of non-native, invasive species which can threaten native species and their associated ecosystems. This has led to significant impacts to forested landscapes, including extensive tree mortality, shifts in ecosystem composition, and vulnerabilities to other stresses. With the increased appreciation of the importance...
Jose F. Negron; Christopher J. Fettig
2014-01-01
It is well documented in the scientific and popular literature that large-scale bark beetle outbreaks are occurring across many coniferous forests in the western United States. One of the major species exhibiting extensive eruptive populations resulting in high levels of tree mortality is the mountain pine beetle, Dendroctonus ponderosae (Hopkins) (Negron et al. 2008...
Stephen Fraedrich
2007-01-01
Extensive mortality of red bay (Persea borbonia [L.] Spreng) has been observed in the coastal plains of South Carolina and Georgia since 2003. Dead and dying trees exhibit wilt-like symptoms, and a fungus (an Ophiostoma sp.) and an exotic ambrosia beetle (Xyleborus glabratus [Eichhoff]) have been implicated in...
Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle
Michael J. Jenkins
2011-01-01
Bark beetle-caused tree mortality in conifer forests affects the quantity and quality of forest fuels and has long been assumed to increase fire hazard and potential fire behavior. In reality, bark beetles and their effects on fuel accumulation and subsequent fire hazard have only recently been described. We have extensively sampled fuels in three conifer forest types...
Christopher J. Fettig; Donald M. Grosman; A. Steven. Munson
2013-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause extensive tree mortality in coniferous forests of the western U.S., and play an important role in the disturbance ecology of these systems. Recently, significant outbreaks of several bark beetle species have occurred from Alaska to New Mexico heightening public awareness of the issue and, in many cases, the...
Charles C. Rhoades; Robert M. Hubbard; Kelly Elder
2017-01-01
Forests of western North America are currently experiencing extensive tree mortality from a variety of bark beetle species, and insect outbreaks are projected to increase under warmer, drier climates. Unlike the abrupt biogeochemical changes typical after wildfire and timber harvesting, the outcomes of insect outbreaks are poorly understood. The mountain pine bark...
Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael
2013-01-01
Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas experiencing wildfire and management activity. -Our results demonstrate that unsupervised clustering of bi-temporal NDVI and RGI differences can be used to detect tree mortality resulting from numerous causes and in several forest cover types.
Das, A.J.; Battles, J.J.; Stephenson, N.L.; van Mantgem, P.J.
2007-01-01
We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl. (sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified) compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with DBH ???20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and 71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that they functioned well at stands not used in model development, and the development of size-specific models demonstrated important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a more comprehensive use of the growth record yields a more robust assessment of mortality risk. ?? 2007 NRC.
C.W. Woodall; P.L. Grambsch; W. Thomas
2005-01-01
Tree mortality has traditionally been assessed in forest inventories through summaries of mortality by location, species, and causal agents. Although these methods have historically constituted the majority of tree mortality summarizations, they have had limited use in assessing mortality trends and dynamics. This study proposed a novel method of applying survival...
Alicia L. Reiner; Nicole M. Vaillant; Scott N. Dailey
2012-01-01
The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree...
Rifai, Sami W; Urquiza Muñoz, José D; Negrón-Juárez, Robinson I; Ramírez Arévalo, Fredy R; Tello-Espinoza, Rodil; Vanderwel, Mark C; Lichstein, Jeremy W; Chambers, Jeffrey Q; Bohlman, Stephanie A
2016-10-01
Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality. © 2016 by the Ecological Society of America.
Koepke, Dan F; Kolb, Thomas E; Adams, Henry D
2010-08-01
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.
Widespread Amazon forest tree mortality from a single cross-basin squall line event
NASA Astrophysics Data System (ADS)
Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro
2010-08-01
Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.
Drivers and mechanisms of tree mortality in moist tropical forests.
McDowell, Nate; Allen, Craig D; Anderson-Teixeira, Kristina; Brando, Paulo; Brienen, Roel; Chambers, Jeff; Christoffersen, Brad; Davies, Stuart; Doughty, Chris; Duque, Alvaro; Espirito-Santo, Fernando; Fisher, Rosie; Fontes, Clarissa G; Galbraith, David; Goodsman, Devin; Grossiord, Charlotte; Hartmann, Henrik; Holm, Jennifer; Johnson, Daniel J; Kassim, Abd Rahman; Keller, Michael; Koven, Charlie; Kueppers, Lara; Kumagai, Tomo'omi; Malhi, Yadvinder; McMahon, Sean M; Mencuccini, Maurizio; Meir, Patrick; Moorcroft, Paul; Muller-Landau, Helene C; Phillips, Oliver L; Powell, Thomas; Sierra, Carlos A; Sperry, John; Warren, Jeff; Xu, Chonggang; Xu, Xiangtao
2018-02-16
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO 2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change. No claim to original US government works New Phytologist © 2018 New Phytologist Trust.
Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio
2010-12-01
Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.
Red Pine Pocket Mortality - Unknown Cause (Pest Alert)
USDA Forest Service
1985-01-01
Continuing mortality of red pine from an unknown cause has been observed in 30 to 40 year old plantations in southern and west central Wisconsin. A single tree or small group of trees die, followed by mortality of adjacent trees. These circular pockets of dead trees expand up to 0.3 acre per year.
McDowell, N.G.; Allen, Craig D.; Marshall, L.
2010-01-01
Drought- and insect-associated tree mortality at low-elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low-elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole-crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa−pc) derived from tree ring carbon isotope ratios (δ13C), corrected for temporal trends in atmospheric CO2 and δ13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa−pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa−pc to climate, and a steep relationship between pa−pc and BAI/BA. The pa−pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low-elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid-latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands.
A synthesis of radial growth patterns preceding tree mortality
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi
2017-01-01
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.
A synthesis of radial growth patterns preceding tree mortality.
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M R; Desoto, Lucía; Aakala, Tuomas; Antos, Joseph A; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Čada, Vojtěch; Camarero, Jesus J; Cherubini, Paolo; Cochard, Hervé; Coyea, Marie R; Čufar, Katarina; Das, Adrian J; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J; Hartmann, Henrik; Hereş, Ana-Maria; Hultine, Kevin R; Janda, Pavel; Kane, Jeffrey M; Kharuk, Vyacheslav I; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Linares Calderon, Juan C; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; López Rodríguez, Rosana; Mäkinen, Harri; Mayr, Stefan; Mészáros, Ilona; Metsaranta, Juha M; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M; Rohner, Brigitte; Sangüesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M; Stan, Amanda B; Sterck, Frank; Stojanović, Dejan B; Suarez, Maria L; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, José M; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R; Wyckoff, Peter H; Zafirov, Nikolay; Martínez-Vilalta, Jordi
2017-04-01
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks. © 2016 John Wiley & Sons Ltd.
Macalady, Alison K; Bugmann, Harald
2014-01-01
The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees' ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15-30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼ 70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles.
Linking definitions, mechanisms, and modeling of drought-induced tree death.
Anderegg, William R L; Berry, Joseph A; Field, Christopher B
2012-12-01
Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nesmith, Jonathan C. B.; Das, Adrian J.; O'Hara, Kevin L.; van Mantgem, Phillip J.
2015-01-01
Tree mortality is a vital component of forest management in the context of prescribed fires; however, few studies have examined the effect of prefire tree health on postfire mortality. This is especially relevant for sugar pine (Pinus lambertiana Douglas), a species experiencing population declines due to a suite of anthropogenic factors. Using data from an old-growth mixed-conifer forest in Sequoia National Park, we evaluated the effects of fire, tree size, prefire radial growth, and crown condition on postfire mortality. Models based only on tree size and measures of fire damage were compared with models that included tree size, fire damage, and prefire tree health (e.g., measures of prefire tree radial growth or crown condition). Immediately following the fire, the inclusion of different metrics of prefire tree health produced variable improvements over the models that included only tree size and measures of fire damage, as models that included measures of crown condition performed better than fire-only models, but models that included measures of prefire radial growth did not perform better. However, 5 years following the fire, sugar pine mortality was best predicted by models that included measures of both fire damage and prefire tree health, specifically, diameter at breast height (DBH, 1.37 m), crown scorch, 30-year mean growth, and the number of sharp declines in growth over a 30-year period. This suggests that factors that influence prefire tree health (e.g., drought, competition, pathogens, etc.) may partially determine postfire mortality, especially when accounting for delayed mortality following fire.
Tree mortality predicted from drought-induced vascular damage
Anderegg, William R.L.; Flint, Alan L.; Huang, Cho-ying; Flint, Lorraine E.; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.
2015-01-01
The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1, 2, 3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4, 5. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.
Relative size and stand age determine Pinus banksiana mortality
Han Y. H. Chen; Songling Fu; Robert A. Monserud; Ian C. Gillies
2008-01-01
Tree mortality is a poorly understood process in the boreal forest. Whereas large disturbances reset succession by killing all or most trees, background tree mortality was hypothesized to be affected by competition, ageing, and stand composition. We tested these hypotheses on jack pine (Pinus banksiana Lamb.) mortality using data from long-term...
Lindsay M. Grayson; Robert A. Progar; Sharon M. Hood
2017-01-01
Fire is a driving force in the North American landscape and predicting post-fire tree mortality is vital to land management. Post-fire tree mortality can have substantial economic and social impacts, and natural resource managers need reliable predictive methods to anticipate potential mortality following fire events. Current fire mortality models are limited to a few...
The balance of planting and mortality in a street tree population
Lara A. Roman; John J. Battles; Joe R. McBride
2013-01-01
Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...
Allen, Craig D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, Michel; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.(T.); Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.-H.; Allard, G.; Running, S.W.; Semerci, A.; Cobb, N.
2010-01-01
Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.
Underestimation of the Tambora effects in North American taiga ecosystems
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Boucher, Etienne; Nicault, Antoine; Gea-Izquierdo, Guillermo; Arseneault, Dominique; Berninger, Frank; Savard, Martine M.; Bégin, Christian; Guiot, Joel
2018-03-01
The Tambora eruption (1815 AD) was one of the major eruptions of the last two millennia and has no equivalents over the last two centuries. Here, we collected an extensive network of early meteorological time series, climate simulation data and numerous, well-replicated proxy records from Eastern Canada to analyze the strength and the persistence of the Tambora impact on the regional climate and forest processes. Our results show that the Tambora impacts on the terrestrial biosphere were stronger than previously thought, and not only affected tree growth and carbon uptake for a longer period than registered in the regional climate, but also determined forest demography and structure. Increased tree mortality, four times higher than the background level, indicates that the Tambora climatic impact propagated to influence the structure of the North American taiga for several decades. We also show that the Tambora signal is more persistent in observed data (temperature, river ice dynamics, forest growth, tree mortality) than in simulated ones (climate and forest-growth simulations), indicating that our understanding of the mechanisms amplifying volcanic perturbations on climates and ecosystems is still limited, notably in the North American taiga.
Anderegg, William R L; Klein, Tamir; Bartlett, Megan; Sack, Lawren; Pellegrini, Adam F A; Choat, Brendan; Jansen, Steven
2016-05-03
Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, although these traits could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species' mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species' mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin-the difference between typical minimum xylem water potential and that causing xylem dysfunction-and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risks. Our results provide broad support for the hypothesis that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation model prediction of tree mortality during climate extremes.
Causes of mortality of red-cockaded woodpecker cavity trees
Richard N. Conner; D. Craig Rudolph; David L. Kulhavy; Ann E. Snow
1991-01-01
Over a 13-year period we examined the mortality of cavity trees (n = 453) used by red-cockaded woodpeckers (Picoides borealis) on national forests in eastern Texas. Bark beetles (53%), wind snap (30%), and fire (7%) were the major causes of cavity tree mortality. Bark beetles were the major cause of mortality in loblolly (Pinus taeda...
Thinning effects on tree mortality and snag recruitment in western Oregon
Erich Kyle Dodson; Klaus J. Puettmann; Adrian Ares
2013-01-01
Tree mortality shapes forest structural development and the resulting dead wood provides habitat for many species. However, the eff ects of thinning on mortality and large snag recruitment have been variable and remain poorly understood. We examined thinning eff ects on tree mortality at eleven Density Management Study (DMS) sites in western Oregon. Th inning reduced...
Brouillard, Brent; Mikkelson, Kristin; Bokman, Chelsea; Berryman, Erin Michele; Sharp, Jonathan
2017-01-01
Recent increases in the magnitude and occurrence of insect-induced tree mortality are disruptingevergreen forests globally. To resolve potentially conflicting ecosystem responses, we investigatedwhether surrounding trees exert compensatory effects on biogeochemical signatures following beetleinfestation. To this end, plots were surveyed within a Colorado Rocky Mountain watershed that expe-rienced beetle infestation almost a decade prior and contained a range of surrounding tree mortality(from 9 to 91% of standing trees). Near-surface soil horizons under plot-centered live (green) and beetle-killed (grey) lodgepole pines were sampled over two consecutive summers with variable moistureconditions. Results revealed that soil respiration was 18e28% lower beneath beetle-infested trees andcorrelated to elevated dissolved organic carbon aromaticity. While certain edaphic parameters includingpH and water content were elevated below grey compared to green trees regardless of the mortalityextent within plots, other biogeochemical responses required a higher severity of surrounding mortalityto overcome compensatory effects of neighboring live trees. For instance, C:N ratios under grey treesdeclined with increased severity of surrounding tree mortality, and the proportion of ammonium dis-played a threshold effect with pronounced increases after surrounding tree mortality exceeded ~40%.Overall, the biogeochemical response to tree death was most prominent in the mineral soil horizonwhere tree mortality had the largest affect on carbon recalcitrance and the enrichment of nitrogenspecies. These results can aid in determining when and where nutrient cycles and biogeochemicalfeedbacks to the atmosphere and hydrosphere will be observed in association with this type of ecological disturbance.
Remotely sensed predictors of conifer tree mortality during severe drought
NASA Astrophysics Data System (ADS)
Brodrick, P. G.; Asner, G. P.
2017-11-01
Widespread, drought-induced forest mortality has been documented on every forested continent over the last two decades, yet early pre-mortality indicators of tree death remain poorly understood. Remotely sensed physiological-based measures offer a means for large-scale analysis to understand and predict drought-induced mortality. Here, we use laser-guided imaging spectroscopy from multiple years of aerial surveys to assess the impact of sustained canopy water loss on tree mortality. We analyze both gross canopy mortality in 2016 and the change in mortality between 2015 and 2016 in millions of sampled conifer forest locations throughout the Sierra Nevada mountains in California. On average, sustained water loss and gross mortality are strongly related, and year-to-year water loss within the drought indicates subsequent mortality. Both relationships are consistent after controlling for location and tree community composition, suggesting that these metrics may serve as indicators of mortality during a drought.
Macalady, Alison K.; Bugmann, Harald
2014-01-01
The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees’ ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15–30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles. PMID:24786646
Climatic correlates of tree mortality in water- and energy-limited forests
Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Climatic correlates of tree mortality in water- and energy-limited forests.
Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests
Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118
Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees.
Gaylord, Monica L; Kolb, Thomas E; McDowell, Nate G
2015-08-01
Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jon C. Regelbrugge
1993-01-01
Abstract. We modeled tree mortality occurring two years following wildfire in Pinus ponderosa forests using data from 1275 trees in 25 stands burned during the 1987 Stanislaus Complex fires. We used logistic regression analysis to develop models relating the probability of wildfire-induced mortality with tree size and fire severity for Pinus ponderosa, Calocedrus...
Tree mortality from drought, insects, and their interactions in a changing climate.
Anderegg, William R L; Hicke, Jeffrey A; Fisher, Rosie A; Allen, Craig D; Aukema, Juliann; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W; Macalady, Alison K; McDowell, Nate; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D; Stephenson, Nathan L; Tague, Christina; Zeppel, Melanie
2015-11-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Greenwood, Sarah; Ruiz-Benito, Paloma; Martínez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D; Fensham, Rod; Laughlin, Daniel C; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J B; Jump, Alistair S
2017-04-01
Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees -1 year -1 ) increased 0.46 (95% CI = 0.2-0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future. © 2017 John Wiley & Sons Ltd/CNRS.
Monitoring tree mortality in mature Douglas-fir forests: size and species matter
Background/Question/MethodsA regional increase in tree mortality rates associated with climate change will influence forest health and ecosystem services, including water quality and quantity. In recent decades, accelerated tree mortality has occurred in some, but not all, fores...
Tree mortality from drought, insects, and their interactions in a changing climate
Anderegg, William R.L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.
Michael J. Clifford; Monique E. Rocca; Robert Delph; Paulette L. Ford; Neil S. Cobb
2008-01-01
The current drought and ensuing bark beetle outbreaks during 2002 to 2004 in the Southwest have greatly increased tree mortality in pinyon-juniper woodlands. We studied causes and consequences of the drought-induced mortality. First, we tested the paradigm that high stand densities in pinyon-juniper woodlands would increase tree mortality. Stand densities did not...
Drought, tree mortality, and wildfire in forests adapted to frequent fire
Scott L Stephens; Brandon M Collins; Christopher J Fettig; Mark A Finney; Chad M Hoffman; Eric E Knapp; Malcolm P North; Hugh Safford; Rebecca B Wayman
2018-01-01
Massive tree mortality has occurred rapidly in frequent-fire-adapted forests of the Sierra Nevada, California. This mortality is a product of acute drought compounded by the long-established removal of a key ecosystem process: frequent, low- to moderate-intensity fire. The recent tree mortality has many implications for the future of these forests and the ecological...
Site Productivity and Tree Mortality on New Frontiers of Gypsy Moth Infestation
David A. Gansner; David A. Gansner
1987-01-01
Recent analysis of forest stand losses to gypsy moth has provided basic information for analyzing the relationship between forest site productivity and tree mortality on new frontiers of infestation. Poor timber-growing sites had the lowest rates of mortality. Oak mortality (number of trees) amounted to 18 percent on poor sites compared with 26 percent on medium and 28...
Sharon Hood; Duncan Lutes
2017-01-01
Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...
Drought-related tree mortality in drought-resistant semi-arid Aleppo pine forest
NASA Astrophysics Data System (ADS)
Preisler, Yakir; Grünzweig, José M.; Rotenberg, Eyal; Rohatyn, Shani; Yakir, Dan
2014-05-01
The frequency and intensity of drought events are expected to increase as part of global climate change. In fact, drought related tree mortality had become a widespread phenomenon in forests around the globe in the past decades. This study was conducted at the Yatir FLUXNET site, located in a 45 years old Pinus halepensis dominated forest that successfully sustained low mean annual precipitation (276mm) and extended seasonal droughts (up to 340 days between rain events). However, five recent non-consecutive drought years led to enhanced tree mortality in 2010 (5-10% of the forest population, which was not observed hitherto). The Tree mortality was characterized by patchiness, showing forest zones with either >80% mortality or no mortality at all. Areas of healthy trees were associated with deeper root distribution and increased stoniness (soil pockets & cracks). To help identify possible causes of the increased mortality and its patterns, four tree stress levels were identified based on visual appearance, and studied in more detail. This included examining from spring 2011 to summer 2013 the local trees density, root distribution, annual growth rings, needle length and chlorophyll content, rates of leaf gas exchange, and branch predawn water potential. Tree phenotypic stress level correlated with the leaf predawn water potential (-1.8 and -3.0 in healthy and stressed trees, respectively), which likely reflected tree-scale water availability. These below ground characteristics were also associated, in turn, with higher rate of assimilation (3.5 and 0.8 μmol CO2 m-2s1 in healthy and stress trees, respectively), longer needles (8.2cm and 3.4 cm in healthy and stressed trees, respectively). Annual ring widths showed differences between stress classes, with stressed trees showing 30% narrower rings on average than unstressed trees. Notably, decline in annual ring widths could be identified in currently dead or severely stressed trees 15-20 years prior to mortality or tree degradation. These results indicate, together with earlier results that showed a virtually close hydrological cycle (ET~P) for this forest, that mortality was dominated by conditions at the level of the single-tree or small group of trees. The dependency on belowground water availability of individual trees emphasizes the difficulties in drawing process-based conclusions from the mean response at the forest stand level and, alternatively, the need to investigate drought stress and survival processes at the patch scale. The capabilities of early identification, and of grading the stress level with simple tools, such as tree-rings and pre-dawn water potential, can facilitate partitioning forest stands into zones more relevant to the study and management of drought related mortality. Ultimately, an integrated approach considering both the stand and patch scales and which utilizes methodologies such as used in this study will be essential to reliably predict ecosystem response to changes in precipitation regimes and climate.
NASA Astrophysics Data System (ADS)
Macalady, Alison Kelly
Forests play an important role in the earth system, regulating climate, maintaining biodiversity, and provisioning human communities with water, food and fuel. Interactions between climate and forest dynamics are not well constrained, and high uncertainty characterizes projections of global warming impacts on forests and associated ecosystem services. Recently observed tree mortality and forest die-off forewarn an acceleration of forest change with rising temperature and increased drought. However, the processes leading to tree death during drought are poorly understood, limiting our ability to anticipate future forest dynamics. The objective of this dissertation was to improve understanding of drought-associated tree mortality through literature synthesis and tree-ring studies on trees that survived and died during droughts in the southwestern USA. Specifically, this dissertation 1) documented global tree mortality patterns and identified emerging trends and research gaps; 2) quantified relationships between growth, climate, competition and mortality of pinon pine during droughts in New Mexico; 3) investigated tree defense anatomy as a potentially key element in pinon avoidance of death; and, 4) characterized the climate sensitivity of pinon resin ducts in order to gain insight into potential trends in tree defenses with climate variability and change. There has been an increase in studies reporting tree mortality linked to drought, heat, and the associated activity of insects and pathogens. Cases span the forested continents and occurred in water, light and temperature-limited forests. We hypothesized that increased tree mortality may be an emerging global phenomenon related to rising temperatures and drought (Appendix A). Recent radial growth was 53% higher on average in pinon that survived versus died during two episodes of drought-associated mortality, and statistical models of mortality risk based on average growth, growth variability, and abrupt growth changes correctly classified the status of ˜70% of trees. Climate responses and competitive interactions partly explained growth differences between dying and surviving trees, with muted response to wet/cool conditions and enhanced sensitivity to competition from congeners linked to growth patterns associated with death. Discrimination and validation of models of mortality risk varied widely across sites and drought events, indicating shifting growth-mortality relationships and differences in mortality processes across space and time (Appendix B). Pre-formed defense anatomy is strongly associated with pinon survivorship over a range of sites and stand conditions. Models of mortality risk that account for both growth and resin duct attributes had ≈10 19 more support than models that contained only growth. The greatest improvement in classification was among trees from the 2000s drought, suggesting an enhanced role for tree defense allocation and/or bark beetle activity during recent warm versus historic cool drought. Accounting for defense characteristics and growth-defense allocation is likely to be important for improving representation of drought-associated mortality (Appendix C). Pinon resin duct chronologies contain climate responses that are coherent and distinct from those of radial growth. Growth responds positively and strongly to previous fall and current winter precipitation, and negatively to late spring and early summer temperature. A relatively equal positive resin duct response to winter precipitation and positive response to mid-to-late summer drought suggests that changes in climate will affect tree defense anatomy in complex ways, with the outcome determined by seasonal changes in precipitation and temperature (Appendix D).
Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow
2008-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...
NASA Astrophysics Data System (ADS)
Elmes, Arthur Francis Marett
Urban environments experience air, water, noise, and heat pollution as a consequence of their composition, structure, and function. These adverse environmental conditions, which have direct and indirect effects on human health and ecological stability, can be mitigated or partially offset by healthy and extensive urban forests. Additionally, urban trees provide a number of cultural, aesthetic, and property value benefits. However, to provide maximum ecosystem service benefits, an urban forest must be carefully planned and maintained, so that average tree lifespan is maximized and ecological vulnerability is minimized. Maximal urban forest resilience is best achieved via taxonomic and age-diversity, such that no one genus or age-cohort dominates. This diversity enhances overall urban forest resilience, which in turn facilitates maximum ecosystem service provision. The Asian Longhorned Beetle (ALB, Anoplophora glabripennis) infestation in Worcester, MA represents a case example of taxonomic monoculture vulnerability, but also an excellent opportunity to reinvest and diversify the urban forest. As a result of the ALB infestation, which was first documented in 2008, approximately 35,000 host trees were removed from residential and public property, substantially reducing urban tree canopy coverage and uncovering impervious surfaces. Chapter two quantifies this Urban Tree Canopy (UTC) loss, and shows that in loss areas Land Surface Temperature (LST) increases range from 1 - 6° C. The research investigates multi-scale effects of this relationship, particularly in the hard-hit Burncoat and Greendale neighborhoods of Worcester, MA. In response to the large quantity of UTC loss suffered due to ALB, the Massachusetts Department of Conservation and Recreation (DCR), the City of Worcester, and the Worcester Tree Initiative (WTI) have together planted over 30,000 trees, primarily via tree giveaway programs to local residents. Chapter three assesses the effectiveness of this initiative in terms of juvenile tree mortality rates - a critical indicator of long-term urban forest success. Results indicate that tree stewardship variables such as renter proportion and number of trees planted per property are strong predictors of tree mortality. Tree species was shown to be strong predictor of mortality, with ornamental trees showing lower mortality rates than shade deciduous or conifers. Finally, Chapter four investigates the potential risk of further ALB infestation in the Worcester area, using a circuit theory dispersal model, which uses an analogy with electrical circuits to predict the dispersal of random-walkers across a heterogeneous landscape. The results indicate that impervious surfaces such as roads, sidewalks, and parking lots, as well as proximity to existing trees are facilitators of ALB movement. Circuit-based dispersal maps highlight the importance of narrow dispersal corridors connecting larger areas of potential dispersal. Dispersal potential was combined with ALB habitat suitability measured with Mahalanobis typicality, yielding a hybrid map of ALB infestation risk. These map products are valuable both as contributions to the understanding of invasive species movement in novel environments, and as tools for land managers attempting to eradicate ALB, such as the USDA Animal and Plant Health Inspection Service. This dissertation investigates three elements of the ALB infestation of Worcester, providing a holistic explanation of the impacts, recovery, and vulnerability of Worcester's urban forest.
Tracey N. Johnson; Steven W. Buskirk; Gregory D. Hayward; Martin G. Raphael
2014-01-01
A recent series of bark beetle outbreaks in the Rocky Mountain region of the U.S. is the largest and most intense ever recorded. Factors contributing to tree mortality from bark beetles are complex, but include aspects of forest stand condition. Because stand conditions respond to forest management, evaluating bark beetle-caused tree mortality and changes in forest...
Remote Detection and Modeling of Abrupt and Gradual Tree Mortality in the Southwestern USA
NASA Astrophysics Data System (ADS)
Muss, J. D.; Xu, C.; McDowell, N. G.
2014-12-01
Current climate models predict a warming and drying trend that has a high probability of increasing the frequency and spatial extent of tree mortality events. Field surveys can be used to identify, date, and attribute a cause of mortality to specific trees, but monetary and time constraints prevent broad-scale surveys, which are necessary to establish regional or global trends in tree mortality. This is significant because widespread forest mortality will likely lead to radical changes in evapotranspiration and surface albedo, which could compound climate change. While understanding the causes and mechanisms of tree mortality events is crucial, it is equally important to be able to detect and monitor mortality and subsequent changes to the ecosystem at broad spatial- and temporal-scales. Over the past five years our ability to remotely detect abrupt forest mortality events has improved greatly, but gradual events—such as those caused by drought or certain types of insects—are still difficult to identify. Moreover, it is virtually impossible to quantify the amount of mortality that has occurred within a mixed pixel. We have developed a system that fuses climate and satellite-derived spectral data to identify both the date and the agent of forest mortality events. This system has been used with Landsat time series data to detect both abrupt and general trends in tree loss that have occurred during the past quarter-century in northern New Mexico. It has also been used with MODIS data to identify pixels with a high likelihood of drought-caused tree mortality in the Southwestern US. These candidate pixels were then fed to ED-FRT, a coupled forest dynamics-radiative transfer model, to generate estimates of drought-induced. We demonstrate a multi-scale approach that can produce results that will be instrumental in advancing our understanding of tree mortality-climate feedbacks, and improve our ability to predict what forests could look like in the future.
Modeling Missing Remeasurement Tree Heights in Forest Inventory Data
Raymond M. Sheffield; Callie J. Schweitzer
2005-01-01
Missing tree heights are often problematic in compiling forest inventory remeasurement data. Heights for cut and mortality trees are usually not available; calculations of removal or mortality volumes must utilize either a modeled height at the time of tree death or the height assigned to the tree at a previous remeasurement. Less often, tree heights are not available...
Observations from old forests underestimate climate change effects on tree mortality.
Luo, Yong; Chen, Han Y H
2013-01-01
Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2015-01-01
By examining variation in disease prevalence, mortality of healthy trees, and mortality of diseased trees, we showed that the role of disease in aspen tree mortality depended on the scale of inference. For variation among individuals in diameter, disease tended to expose intermediate-size trees experiencing moderate risk to greater risk. For spatial variation in summer temperature, disease exposed lower risk populations to greater mortality probabilities, but the magnitude of this exposure depended on summer precipitation. Furthermore, the importance of diameter and slenderness in mediating responses to climate supports the increasing emphasis on trait variation in studies of ecological responses to global change.
NASA Astrophysics Data System (ADS)
Adams, H. D.; Dickman, L. T.; Sevanto, S.; McDowell, N. G.; Pockman, W.; Breshears, D. D.; Huxman, T. E.
2012-12-01
Widespread increases in tree mortality are now a well-documented global phenomenon that has been linked to drought, increased temperatures, and pest/pathogen outbreaks. Since forests play an important regulatory role in planetary carbon, water, and energy budgets, further widespread tree mortality could disrupt biosphere-atmosphere feedbacks with additional effects on climate. Despite these threats, few vegetation models exist that predict drought-induced tree mortality in response to climate due, in part, to uncertainty surrounding the physiological mechanism of mortality in trees. Several mechanisms for drought mortality have been proposed, relating to tree carbohydrate balance, xylem stress, and their interaction with each other and tree pests and pathogens. Carbon starvation could occur if stomatal closure in response to drought inhibits carbon assimilation and carbohydrate resources are depleted below a critical threshold for survival. Hydraulic failure could occur if excessive xylem tension during drought causes complete and irreversible cavitation and subsequent desiccation of the canopy. Here we present results from three recent experiments with trees from the southwest US, two conducted in the glasshouse with transplanted piñon pine, and one in the field with piñon pine and juniper, where non-structural carbohydrates (NSC) and hydraulic function were assessed during drought through mortality to distinguish the relative contribution of these mechanisms to mortality. In all three experiments, piñon leaf and twig NSC declined by ~30-40% from initial values to measurement at mortality and trees experienced some hydraulic failure. In the first glasshouse study the piñon leaf NSC decline of ~30%, was driven by a ~50% decline in sugar concentration despite a 100% increase in starch concentration. Surprisingly, in this experiment NSC did not decline faster for trees that died under elevated (+4.3°C) temperatures, although starch increased earlier in these trees. In the field experiment, juniper leaf and twig NSC did not decline as mortality approached, but was lower than non-drought controls. Hydraulic failure did not occur with mortality for juniper in the field experiment. In an additional treatment in the second glasshouse experiment, well-watered piñon pines that were shaded to prevent photosynthesis experienced a ~70% decline in leaf and twig NSC at mortality, without hydraulic failure. Considering the ~70% NSC reduction in this shaded treatment as a survival threshold, piñon pine in all three drought experiments appear to have died from a combination of carbon starvation and hydraulic failure, while juniper appears to have died from carbon starvation alone. These results demonstrate that proposed tree drought mortality mechanisms are often interrelated, but can act independently. Future models of tree drought mortality should include flexibility, predicting death from mechanisms acting either independently or in combination.
Using inventory data to determine the impact of drought on tree mortality
Greg C. Liknes; Christopher W. Woodall; Charles H. Perry
2012-01-01
Drought has been the subject of numerous recent studies that hint at an acceleration of tree mortality due to climate change. In particular, a recent global survey of tree mortality events implicates drought as the cause of quaking aspen mortality in Minnesota, USA in 2007. In this study, data from the Forest Inventory and Analysis program of the USDA Forest Service...
Larger trees suffer most during drought in forests worldwide
Bennett, Amy C.; McDowell, Nathan G.; Allen, Craig D.; Anderson-Teixeira, Kristina J.
2015-01-01
The frequency of severe droughts is increasing in many regions around the world as a result of climate change. Droughts alter the structure and function of forests. Site- and region-specific studies suggest that large trees, which play keystone roles in forests and can be disproportionately important to ecosystem carbon storage and hydrology, exhibit greater sensitivity to drought than small trees. Here, we synthesize data on tree growth and mortality collected during 40 drought events in forests worldwide to see whether this size-dependent sensitivity to drought holds more widely. We find that droughts consistently had a more detrimental impact on the growth and mortality rates of larger trees. Moreover, drought-related mortality increased with tree size in 65% of the droughts examined, especially when community-wide mortality was high or when bark beetles were present. The more pronounced drought sensitivity of larger trees could be underpinned by greater inherent vulnerability to hydraulic stress, the higher radiation and evaporative demand experienced by exposed crowns, and the tendency for bark beetles to preferentially attack larger trees. We suggest that future droughts will have a more detrimental impact on the growth and mortality of larger trees, potentially exacerbating feedbacks to climate change.
Zhang, Jian; Huang, Shongming; He, Fangliang
2015-01-01
Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958–2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes—more so than external climatic factors—are driving forest dynamics. PMID:25775576
Zhang, Jian; Huang, Shongming; He, Fangliang
2015-03-31
Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958-2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes-more so than external climatic factors-are driving forest dynamics.
Death from drought in tropical forests is triggered by hydraulics not carbon starvation
NASA Astrophysics Data System (ADS)
Rowland, L.; da Costa, A. C. L.; Galbraith, D. R.; Oliveira, R. S.; Binks, O. J.; Oliveira, A. A. R.; Pullen, A. M.; Doughty, C. E.; Metcalfe, D. B.; Vasconcelos, S. S.; Ferreira, L. V.; Malhi, Y.; Grace, J.; Mencuccini, M.; Meir, P.
2015-12-01
Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism (‘carbon starvation’). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world’s longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.
Death from drought in tropical forests is triggered by hydraulics not carbon starvation.
Rowland, L; da Costa, A C L; Galbraith, D R; Oliveira, R S; Binks, O J; Oliveira, A A R; Pullen, A M; Doughty, C E; Metcalfe, D B; Vasconcelos, S S; Ferreira, L V; Malhi, Y; Grace, J; Mencuccini, M; Meir, P
2015-12-03
Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.
NASA Astrophysics Data System (ADS)
Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.
2017-12-01
The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration. This impact was stronger for younger trees (<200 yr) and for those growing closer to the hydroelectric dam (<100 km distance). Considering the planning of construction of several dozen dams in the Amazon there is an urgent need to consider these downstream impacts in all discussions of hydroelectric power plants implementation and operation.
Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.
2014-01-01
Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.
Christmas Tree Pest Manual, Third Edition
Steven Katovich; Deborah McCullough; Michael Ostry; Jill O’Donnell; Isabel Munck; Cliff Sadof
2014-01-01
Continuing mortality of red pine from an unknown cause has been observed in 30 to 40 year old plantations in southern and west central Wisconsin. A single tree or small group of trees die, followed by mortality of adjacent trees. These circular pockets of dead trees expand up to 0.3 acre per year.
Banks, Sam C.; Knight, Emma J.; McBurney, Lachlan; Blair, David; Lindenmayer, David B.
2011-01-01
Background Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. Methodology/Principal Findings We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. Conclusions/Significance Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation. PMID:21826221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvak, Marcy Ellen
2012-10-01
The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality. Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, were extremely vulnerable to this drought. An abrupt die-off of 40 to 95% of piñon pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) across 1.5 million ha triggered rapid and extensive changes in the structure of PJ woodlands with potentially large, yet unknown, consequences for ecosystem services and feedbacks between the carbon cycle and climate system. Given the spatial extent of PJ woodlands (3rd largest biome in the US) and climaticmore » predictions of increased frequency and intensity of drought in the region, it is crucial to understand the consequences of these disturbances on regional carbon and energy dynamics, biogeochemical processes and atmospheric CO2. The overall objective of our research was to quantify what impact widespread mortality of piñon trees has for carbon and water cycling in PJ woodlands. Our specific objectives for this proposal were: 1) Quantify the carbon, water and energy exchange trajectory after mortality in PJ woodlands; 2) Determine the mechanisms controlling the response and recovery of ecosystem production and respiration processes following large-scale piñon mortality; 3) Use the relationships we measure between ecosystem structure and function PJ woodlands recover from mortality to scale the results of our study up to the regional scale.« less
Best predictors for postfire mortality of ponderosa pine trees in the Intermountain West
Carolyn Hull Sieg; Joel D. McMillin; James F. Fowler; Kurt K. Allen; Jose F. Negron; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson
2006-01-01
Numerous wildfires in recent years have highlighted managers' needs for reliable tools to predict postfire mortality of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) trees. General applicability of existing mortality models is uncertain, as researchers have used different sets of variables. We quantified tree attributes, crown and bole fire...
Analysis and out-year forecast of beetle, borer, and drought-induced tree mortality in California
Haiganoush K. Preisler; Nancy E. Grulke; Zachary Heath; Sheri L. Smith
2017-01-01
The level of tree mortality and drought observed over the past decade in North America has been described as âunparalleledâ in our modern history, in particular in the Sierra Nevada, California. Forest managers could use early warning of where and how much tree mortality to expect in the very near future to plan and prioritize hazard tree removal, pest suppression...
William W. Oliver
1979-01-01
Mortality and diameter growth loss were severe on study plots in a thinned plantation of 9-year-old trees. California five-spined engravers killed 15 percent of the trees and a hard freeze killed 20 percent of the survivors. Mortality was higher and subsequent diameter growth was lower in trees with most of their needles freeze-killed than in trees less severely...
Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.; ...
2017-12-05
ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain “normal” ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.
ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain “normal” ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions.« less
Mikkelson, Kristin M; Brouillard, Brent M; Bokman, Chelsea M; Sharp, Jonathan O
2017-12-05
Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique "tree-centric" approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain "normal" ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions. Copyright © 2017 Mikkelson et al.
Mapping and detecting bark beetle-caused tree mortality in the western United States
NASA Astrophysics Data System (ADS)
Meddens, Arjan J. H.
Recently, insect outbreaks across North America have dramatically increased and the forest area affected by bark beetles is similar to that affected by fire. Remote sensing offers the potential to detect insect outbreaks with high accuracy. Chapter one involved detection of insect-caused tree mortality on the tree level for a 90km2 area in northcentral Colorado. Classes of interest included green trees, multiple stages of post-insect attack tree mortality including dead trees with red needles ("red-attack") and dead trees without needles ("gray-attack"), and non-forest. The results illustrated that classification of an image with a spatial resolution similar to the area of a tree crown outperformed that from finer and coarser resolution imagery for mapping tree mortality and non-forest classes. I also demonstrated that multispectral imagery could be used to separate multiple postoutbreak attack stages (i.e., red-attack and gray-attack) from other classes in the image. In Chapter 2, I compared and improved methods for detecting bark beetle-caused tree mortality using medium-resolution satellite data. I found that overall classification accuracy was similar between single-date and multi-date classification methods. I developed regression models to predict percent red attack within a 30-m grid cell and these models explained >75% of the variance using three Landsat spectral explanatory variables. Results of the final product showed that approximately 24% of the forest within the Landsat scene was comprised of tree mortality caused by bark beetles. In Chapter 3, I developed a gridded data set with 1-km2 resolution using aerial survey data and improved estimates of tree mortality across the western US and British Columbia. In the US, I also produced an upper estimate by forcing the mortality area to match that from high-resolution imagery in Idaho, Colorado, and New Mexico. Cumulative mortality area from all bark beetles was 5.46 Mha in British Columbia in 2001-2010 and 0.47-5.37 Mha (lower and upper estimate) in the western conterminous US during 1997-2010. Improved methods for detection and mapping of insect outbreak areas will lead to improved assessments of the effects of these forest disturbances on the economy, carbon cycle (and feedback to climate change), fuel loads, hydrology and forest ecology.
Attribution of Disturbances Causing Tree Mortality for the Continental U.S.
NASA Astrophysics Data System (ADS)
Wang, M.; Xu, C.; Allen, C. D.; McDowell, N. G.
2016-12-01
Broad-scale tree mortality has been frequently reported and documented to increase with warming climate and human activities. However, there is so far no general method to quantify the relative contributions of different disturbances on observed broad-scale tree mortality. In this study, we presented a framework to investigate the contribution of various disturbances causing tree mortality for 2000-2014 in the continental US. Our work is based on the high-resolution forest-loss data developed by Hansen et al. (2013). Firstly, fire-driven mortality was determined using the data from Monitoring Trends in Burn Severity (MTBS) project. Secondly, a landscape-pattern-recognition approach focusing on the differences of boundary complexity caused by natural and anthropogenic disturbances was developed to attribute harvest-driven mortality patches. Then, a drought threshold was determined through conducting an intensive literature survey for attribution of drought-driven mortality. Our results showed that we can correctly attribute 85% harvest-driven mortality as compared to Forest Inventory and Analysis (FIA) data. Based on Evaporative Stress Index (ESI), our literature survey suggests that most mortality events happened at extreme drought (37.7%), then severe (31.4%) and moderate (23.4%) drought. In total, 92.6% of drought-induced mortality events observed during 2000-2014 occurred at drought conditions of moderate or worse with corresponding ESI values ranging from -0.9 -2.49. Therefore, -0.9 will be used as the threshold to attribute drought-driven tree mortality. Overall, these results imply a great potential for using these methods to identify and attribute disturbances driving tree death at broad spatial scales.
Tree regeneration following drought- and insect-induced mortality in piñon-juniper woodlands.
Redmond, Miranda D; Barger, Nichole N
2013-10-01
Widespread piñon (Pinus edulis) mortality occurred across the southwestern USA during 2002-2003 in response to drought and bark beetle infestations. Given the recent mortality and changes in regional climate over the past several decades, there is a keen interest in post-mortality regeneration dynamics in piñon-juniper woodlands. Here, we examined piñon and Utah juniper (Juniperus osteosperma) recruitment at 30 sites across southwestern Colorado, USA that spanned a gradient of adult piñon mortality levels (10-100%) to understand current regeneration dynamics. Piñon and juniper recruitment was greater at sites with more tree and shrub cover. Piñon recruitment was more strongly facilitated than juniper recruitment by trees and shrubs. New (post-mortality) piñon recruitment was negatively affected by recent mortality. However, mortality had no effect on piñon advanced regeneration (juveniles established pre-mortality) and did not shift juvenile piñon dominance. Our results highlight the importance of shrubs and juniper trees for the facilitation of piñon establishment and survival. Regardless of adult piñon mortality levels, areas with low tree and shrub cover may become increasingly juniper dominated as a result of the few suitable microsites for piñon establishment and survival. In areas with high piñon mortality and high tree and shrub cover, our results suggest that piñon is regenerating via advanced regeneration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Tree mortality from drought, insects, and their interactions in a changing climate
William R. L. Anderegg; Jeffrey A. Hicke; Rosie A. Fisher; Craig D. Allen; Juliann Aukema; Barbara Bentz; Sharon Hood; Jeremy W. Lichstein; Alison K. Macalady; Nate McDowell; Yude Pan; Kenneth Raffa; Anna Sala; John D. Shaw; Nathan L. Stephenson; Christina Tague; Melanie Zeppel
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for...
C.R. Breece; T.E. Kolb; B.G. Dickson; J.D. McMillin; K.M. Clancey
2008-01-01
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and...
European gypsy moth (lymantria dispar L.) outbreaks: a review of the literature
Christopher B. Davidson; Kurt W. Gottschalk; James E. Johnson
2001-01-01
The literature on tree mortality following outbreaks of European gypsy moth was reviewed. The trends in defoliation and mortality and the influence of defoliation on mortality of individual trees and forest stands have been summarized via a regional perspective. The literature showed that: certain tree species are defoliated at higher rates than other species, and...
Mark H. Eisenbies; Christopher Davidson; James Johnson; Ralph Amateis; Kurt Gottschalk
2007-01-01
Defoliation by the European gypsy moth (Lymantria dispar L.) and subsequent tree mortality have been well documented in the northeastern United States. In this study we evaluate tree mortality after initial defoliation in mixed pine?hardwood stands in the southeastern United States as the range of European gypsy moth expands.
Newly planted street tree growth and mortality
David J. Nowak; Joe R. McBride; Russell A. Beatty
1990-01-01
Two-year growth and mortality rates were analyzed for 254 black locust, 199 southern magnolia and 27 London plane trees planted along a major boulevard extending from southern Berkeley through western inner-city Oakland, California. After the first two years, 34% of these newly planted trees were either dead or removed. The average annual mortality rate was 19% with no...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCune, B.; Cloonan, C.L.; Armentano, T.V.
1987-03-01
Foliar condition, tree growth, tree mortality, and lichen communities were studied in Mammoth Cave National Park, Kentucky, to document the present forest condition and to provide a basis for detecting future changes. Foliar injury by ozone was common on many plant species in 1985. Species showing the most injury were white ash, green ash, redbud, sycamore, tulip poplar, milkweed, and wild grape. Injury apparently depended on canopy position and vigor. Tree growth was equivocally related to visible symptoms in 1986, probably because of the low ozone levels in that year. Tree mortality rates from 1966-1985 in two natural stands weremore » somewhat lower than mortality rates known for other midwestern woods.« less
Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry
2016-01-01
Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.
Greenwood, Sarah; Ruiz-Benito, Paloma; Martinez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D.; Fensham, Rod; Laughlin, Daniel C.; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J. B.; Jump, Alistair S.
2017-01-01
Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees−1 year−1) increased 0.46 (95% CI = 0.2–0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future.
Quirk, Joe; McDowell, Nate G; Leake, Jonathan R; Hudson, Patrick J; Beerling, David J
2013-03-01
Climate-induced forest retreat has profound ecological and biogeochemical impacts, but the physiological mechanisms underlying past tree mortality are poorly understood, limiting prediction of vegetation shifts with climate variation. Climate, drought, fire, and grazing represent agents of tree mortality during the late Cenozoic, but the interaction between drought and declining atmospheric carbon dioxide ([CO2]a) from high to near-starvation levels ∼34 million years (Ma) ago has been overlooked. Here, this interaction frames our investigation of sapling mortality through the interdependence of hydraulic function, carbon limitation, and defense metabolism. • We recreated a changing Cenozoic [CO2]a regime by growing Sequoia sempervirens trees within climate-controlled growth chambers at 1500, 500, or 200 ppm [CO2]a, capturing the decline toward minimum concentrations from 34 Ma. After 7 months, we imposed drought conditions and measured key physiological components linking carbon utilization, hydraulics, and defense metabolism as hypothesized interdependent mechanisms of tree mortality. • Catastrophic failure of hydraulic conductivity, carbohydrate starvation, and tree death occurred at 200 ppm, but not 500 or 1500 ppm [CO2]a. Furthermore, declining [CO2]a reduced investment in carbon-rich foliar defense compounds that would diminish resistance to biotic attack, likely exacerbating mortality. • Low-[CO2]a-driven tree mortality under drought is consistent with Pleistocene pollen records charting repeated Californian Sequoia forest contraction during glacial periods (180-200 ppm [CO2]a) and may even have contributed to forest retreat as grasslands expanded on multiple continents under low [CO2]a over the past 10 Ma. In this way, geologic intervals of low [CO2]a coupled with drought could impose a demographic bottleneck in tree recruitment, driving vegetation shifts through forest mortality.
NASA Astrophysics Data System (ADS)
Wilson, A.; Jackson, R. B.; Tumber-Davila, S. J.
2017-12-01
An increase in the frequency and severity of droughts has been associated with the changing climate. These events have the potential to alter the composition and biogeography of forests, as well as increase tree mortality related to climate-induced stress. Already, an increase in tree mortality has been observed throughout the US. The recent drought in California led to millions of tree mortalities in the southern Sierra Nevada alone. In order to assess the potential impacts of these events on forest systems, it is imperative to understand what factors contribute to tree mortality. As plants become water-stressed, they may invest carbon more heavily belowground to reach a bigger pool of water, but their ability to adapt may be limited by the characteristics of the soil. In the Southern Sierra Critical Zone Observatory, a high tree mortality zone, we have selected both dead and living trees to examine the factors that contribute to root zone variability and belowground biomass investment by individual plants. A series of 15 cores surrounding the tree were taken to collect root and soil samples. These were then used to compare belowground rooting distributions with soil characteristics (texture, water holding capacity, pH, electric conductivity). Abies concolor is heavily affected by drought-induced mortality, therefore the rooting systems of dead Abies concolor trees were examined to determine the relationship between their rooting systems and environmental conditions. Examining the relationship between soil characteristics and rooting systems of trees may shed light on the plasticity of rooting systems and how trees adapt based on the characteristics of its environment. A better understanding of the factors that contribute to tree mortality can improve our ability to predict how forest systems may be impacted by climate-induced stress. Key words: Root systems, soil characteristics, drought, adaptation, terrestrial carbon, forest ecology
Kane, Jeffrey M.; van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth
2017-01-01
Managers require accurate models to predict post-fire tree mortality to plan prescribed fire treatments and examine their effectiveness. Here we assess the performance of a common post-fire tree mortality model with an independent dataset of 11 tree species from 13 National Park Service units in the western USA. Overall model discrimination was generally strong, but performance varied considerably among species and sites. The model tended to have higher sensitivity (proportion of correctly classified dead trees) and lower specificity (proportion of correctly classified live trees) for many species, indicating an overestimation of mortality. Variation in model accuracy (percentage of live and dead trees correctly classified) among species was not related to sample size or percentage observed mortality. However, we observed a positive relationship between specificity and a species-specific bark thickness multiplier, indicating that overestimation was more common in thin-barked species. Accuracy was also quite low for thinner bark classes (<1 cm) for many species, leading to poorer model performance. Our results indicate that a common post-fire mortality model generally performs well across a range of species and sites; however, some thin-barked species and size classes would benefit from further refinement to improve model specificity.
Vulnerability of Amazon forests to storm-driven tree mortality
NASA Astrophysics Data System (ADS)
Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro
2018-05-01
Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.
Mark J. Ambrose
2018-01-01
Tree mortality is a natural process in all forest ecosystems. High mortality can be an indicator of forest health problems. On aregional scale, high mortality levels may indicate widespread insect or disease impacts. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands. The approach...
Mark J. Ambrose
2012-01-01
Tree mortality is a natural process in all forest ecosystems. However, extremely high mortality also can be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....
Climate Patterns and Trends of Tree-Mortality in the Southwestern United States
NASA Astrophysics Data System (ADS)
Yi, C.; Mu, G.; Hendrey, G. R.; Vicente-Serrano, S.
2016-12-01
Evidence suggests a world-wide increase in tree mortality associated with climate change in regions subjected to prolonged drought. This is particularly evident in the Southwestern USA (SWUSA) where trees are dying at an accelerating and alarming rate where we investigated climate patterns and trends over the past century in combination with abundant tree-ring data, and thresholds of tree-mortality. In this drought-prone region we found a strong correlation between annual tree-ring width and the corresponding annual average temperature and amount of precipitation. A standardized precipitation-evapotranspiration index (SPEI) was a robust predictor of annual tree growth. At a SPEI of -1.6, tree-ring width was found to be zero. We hypothesize that this is a tipping point for tree-ring mortality. This is confirmed in that approximately 225 million trees died in SWUSA in 2002 when SPEI fell below this tipping point. An analysis of future trends in SPEI based on four GHG concentration scenarios of the IPCC predicts that in coming decades, the conifer forest in SWUSA is expected to be lost entirely due to the prolonged drought there, as the SPEI is predicted to pass the tipping point. It can be anticipated that as the area impacted by prolonged drought increases with SPEI falling below -1.6 tree mortality will become a regional or semi-continental phenomenon. Acknowledgement:This research was supported by PSC-CUNY award (PSC-CUNY-ENHC-68849-0046) and the CUNY Collaborative Incentive Research Grant (CUNY-CIRG-80209-08 22).
Lisa M. Ganio; Robert A. Progar
2017-01-01
Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa...
Dendrometric measurements reveal stages leading to tree mortality in a semiarid pine forest
NASA Astrophysics Data System (ADS)
Tatarinov, Fyodor; Preisler, Yakir; Klein, Tamir; Rotenberg, Eyal; Yakir, Dan
2017-04-01
Increasing frequency and intensity of climatic extreme events, such as droughts may lead to increasing vulnerability of forests, especially in semi-arid regions. In the spring of 2016 mortality was observed among trees used for sap flow (SF) and dendrometry measurements in the semi-arid Fluxnet pine forest site of Yatir in Israel (280mm annual mean precipitation). This was accompanied by bark-beetle attack, and with visual drying of needles starting in April 2016. Comparative analysis of dendrometry and sap flux (SF) measurements in 31 trees of which 7 died and 24 survived permitted identification of the stages leading to tree mortality. Distinction between dying and surviving trees was identified in the dendrometric measurements from Nov. 2015, about five months before visual mortality signs: First, clear decline in diameter (DBH) was observed in all dying trees, whereas DBH of living trees remained constant until the first rain in January 2016 followed by growth. Second, the diurnal patterns in DBH showed a gradual shift of the diurnal DBH maximum from noon-time to early morning from the summer of 2015 to the spring of 2016 in surviving trees, whereas in dying trees it remained stable around noontime. Third, the diurnal swelling/shrinkage dynamics, assumed to reflect water use and storage dynamics, showed clear decline in magnitude, down to near zero, in the dying trees while regular daily cycle continued in the surviving trees. In September 2015 Shoot measurements showed midnight minimum of leaf water potential, lower than in living trees (-4.5 vs. -3.6 MPa respectively). Sap flow measurements were not sufficiently sensitive during the non-active season (fall and early winter) and indicated changes only after the first rain in January 2016. At this time, SF showed dramatic increase in SF with typical midday maximum in the surviving trees, whereas in dying trees SF remained low and irregular. The results show that indicators of mortality can be detected at least 5 months before visual signs are observed, and demonstrate the interacting effects of carbon economy (growth) and tree water management (radial water movement and storage) on the development of mortality in Aleppo pine trees.
Does raking basal duff affect tree growth rates or mortality?
Erin Noonan-Wright; Sharon M. Hood; Danny R. Cluck
2010-01-01
Mortality and reduced growth rates due to raking accumulated basal duff were evaluated for old, large-diameter ponderosa and Jeffrey pine trees on the Lassen National Forest, California. No fire treatments were included to isolate the effect of raking from fire. Trees were monitored annually for 5 years after the raking treatment for mortality and then cored to measure...
Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen Fitzgerald
2012-01-01
Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...
Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm
NASA Astrophysics Data System (ADS)
Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.
2010-12-01
Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.
Post-fire Tree Mortality: Heating Increases Vulnerability to Cavitation in Longleaf Pine Branches
NASA Astrophysics Data System (ADS)
Lodge, A.; Kavanagh, K.; Dickinson, M. B.
2016-12-01
Tree mortality following wild and prescribed fires is of interest to both researchers and land managers. While some models exist that can predict mortality following fires, process-based models that incorporate physiological mechanisms of mortality are still being developed and improved. Delayed post-fire tree mortality has recently received increased attention, in part due to an increased use of prescribed fire as a restoration and management tool. One hypothesized mechanism of delayed mortality in trees is disruption of water transport in xylem due to exposure to the heat plume of a fire. This heat plume rapidly increases the vapor pressure deficit in the tree canopy, quickly increasing the tension on the water held in the xylem and leaves, potentially leading to cavitation. Cavitated xylem conduits can no longer transport water, eventually leading to tree death. We conducted a laboratory experiment examining whether heating stems increases their vulnerability to cavitation. We placed longleaf pine (Pinus palustris) branches in a water bath at sub-lethal temperatures (<60°C) and applied pressure in a cavitation chamber to simulate a range of xylem tension levels that may occur during fire. Percent loss of conductivity was measured following cavitation induced by various levels of applied pressure. When we compared the resulting vulnerability curves of heated branches to those of branches pressurized at room temperature, we observed increased vulnerability to cavitation in the heated samples especially at lower pressures. P50, or the pressure at which 50% of conductivity has been lost, decreased by 18% on branches heated to approximately 54°C. This suggests that stems heated during fires may be more vulnerable to cavitation, and provides some support for hydraulic disruption as a mechanism for post-fire tree mortality. Continued advancement in understanding of the mechanisms leading to delayed mortality will improve models predicting tree mortality.
NASA Astrophysics Data System (ADS)
Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.
2014-03-01
Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.
Mortality Risks for Forest Trees Threatened with Gypsy Moth Infestation
Owen W. Herrick; David A. Gansner; David A. Gansner
1987-01-01
Presents guidelines for estimating potential tree mortality associated with gypsy moth defoliation. A tree's crown condition, crown position, and species group can be used to assign probabilities of death. Forest-land managers need such information to develop marking guides and implement silvicultural treatments for forest trees threatened with gypsy moth...
Nesmith, Jonathan C. B.; O'Hara, Kevin L.; van Mantgem, Phillip J.; de Valpine, Perry
2010-01-01
Prescribed fire is an important tool for fuel reduction, the control of competing vegetation, and forest restoration. The accumulated fuels associated with historical fire exclusion can cause undesirably high tree mortality rates following prescribed fires and wildfires. This is especially true for sugar pine (Pinus lambertiana Douglas), which is already negatively affected by the introduced pathogen white pine blister rust (Cronartium ribicola J.C. Fisch. ex Rabenh). We tested the efficacy of raking away fuels around the base of sugar pine to reduce mortality following prescribed fire in Sequoia and Kings Canyon national parks, California, USA. This study was conducted in three prescribed fires and included 457 trees, half of which had the fuels around their bases raked away to mineral soil to 0.5 m away from the stem. Fire effects were assessed and tree mortality was recorded for three years after prescribed fires. Overall, raking had no detectable effect on mortality: raked trees averaged 30% mortality compared to 36% for unraked trees. There was a significant effect, however, between the interaction of raking and average pre-treatment forest floor fuel depth: the predicted probability of survival of a 50 cm dbh tree was 0.94 vs. 0.96 when average pre-treatment fuel depth was 0 cm for a raked and unraked tree, respectively. When average pre-treatment forest floor fuel depth was 30 cm, the predicted probability of survival for a raked 50 cm dbh tree was 0.60 compared to only 0.07 for an unraked tree. Raking did not affect mortality when fire intensity, measured as percent crown volume scorched, was very low (0% scorch) or very high (>80% scorch), but the raking treatment significantly increased the proportion of trees that survived by 9.6% for trees that burned under moderate fire intensity (1% to 80% scorch). Raking significantly reduced the likelihood of bole charring and bark beetle activity three years post fire. Fuel depth and anticipated fire intensity need to be accounted for to maximize the effectiveness of the treatments. Raking is an important management option to reduce tree mortality from prescribed fire, but is most effective under specific fuel and burning conditions.
Moderate forest disturbance as a stringent test for gap and big-leaf models
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B. P.; Fisk, J.; Holm, J. A.; Bailey, V. L.; Gough, C. M.
2014-12-01
Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging U.S. forests. We tested whether three forest ecosystem models—Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models—could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.
Moderate forest disturbance as a stringent test for gap and big-leaf models
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B.; Fisk, J.; Holm, J. A.; Bailey, V.; Gough, C. M.
2014-07-01
Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.
Matthew J. Reilly; Thomas A. Spies
2016-01-01
Tree mortality is an important demographic process and primary driver of forest dynamics, yet there are relatively few plot-based studies that explicitly quantify mortality and compare the relative contribution of endogenous and exogenous disturbances at regional scales. We used repeated observations on 289,390 trees in 3673 1 ha plots on U.S. Forest Service lands in...
Smith, Thomas J.; Robblee, Michael B.; Wanless, Harold R.; Doyle, Thomas W.
1994-01-01
The track of Hurricane Andrew carried it across one of the most extensive mangrove for ests in the New World. Although it is well known that hurricanes affect mangrove forests, surprisingly little quantitative information exists concerning hurricane impact on forest structure, succession, species composition, and dynamics of mangrove-dependent fauna or on rates of eco-system recovery (see Craighead and Gilbert 1962, Roth 1992, Smith 1992, Smith and Duke 1987, Stoddart 1969).After Hurricane Andrew's passage across south Florida, we assessed the environmental damage to the natural resources of the Everglades and Biscayne National Parks. Quantitative data collected during subsequent field trips (October 1992 to July 1993) are also provided. We present measurements of initial tree mortality by species and size class, estimates of delayed (or continuing) tree mortality, and observations of geomorphological changes along the coast and in the forests that could influence the course of forest recovery. We discuss a potential interaction across two differing scales of disturbance within mangrove forest systems: hurricanes and lightning strikes.
Breshears, David D.; Adams, Henry D.; Eamus, Derek; ...
2013-08-02
Drought-induced tree mortality, including large-scale die-off events and increases in background rates of mortality, is a global phenomenon (Allen et al., 2010) that can directly impact numerous earth system properties and ecosystem goods and services (Adams et al., 2010; Breshears et al., 2011; Anderegg et al., 2013). Tree mortality is particularly of concern because of the likelihood that it will increase in frequency and extent with climate change (McDowell et al., 2008, 2011; Adams et al., 2009; McDowell, 2011; Williams et al., 2013). Recent plant science advances related to drought have focused on understanding the physiological mechanisms that not onlymore » affect plant growth and associated carbon metabolism, but also the more challenging issue of predicting plant mortality thresholds (McDowell et al., 2013). Although some advances related to mechanisms of mortality have been made and have increased emphasis on interrelationships between carbon metabolism and plant hydraulics (McDowell et al., 2011), notably few studies have specifically evaluated effects of increasing atmospheric demand for moisture (i.e., vapour pressure deficit; VPD) on rates of tree death. In this opinion article we highlight the importance of considering the key risks of future large-scale tree die-off and other mortality events arising from increased VPD. Here we focus on mortality of trees, but our point about the importance of VPD is also relevant to other vascular plants.« less
Changes in metal mobility associated with bark beetle-induced tree mortality.
Mikkelson, Kristin M; Bearup, Lindsay A; Navarre-Sitchler, Alexis K; McCray, John E; Sharp, Jonathan O
2014-05-01
Recent large-scale beetle infestations have caused extensive mortality to conifer forests resulting in alterations to dissolved organic carbon (DOC) cycling, which in turn can impact metal mobility through complexation. This study analyzed soil-water samples beneath impacted trees in concert with laboratory flow-through soil column experiments to explore possible impacts of the bark beetle infestation on metal release and transport. The columns mimicked field conditions by introducing pine needle leachate and artificial rainwater through duplicate homogenized soil columns and measuring effluent metal (focusing on Al, Cu, and Zn) and DOC concentrations. All three metals were consistently found in higher concentrations in the effluent of columns receiving pine needle leachate. In both the field and laboratory, aluminum mobility was largely correlated with the hydrophobic fraction of the DOC, while copper had the largest correlation with total DOC concentrations. Geochemical speciation modeling supported the presence of DOC-metal complexes in column experiments. Copper soil water concentrations in field samples supported laboratory column results, as they were almost twice as high under grey phase trees than under red phase trees further signifying the importance of needle drop. Pine needle leachate contained high concentrations of Zn (0.1 mg l(-1)), which led to high effluent zinc concentrations and sorption of zinc to the soil matrix representing a future potential source for release. In support, field soil-water samples underneath beetle-impacted trees where the needles had recently fallen contained approximately 50% more zinc as samples from under beetle-impacted trees that still held their needles. The high concentrations of carbon in the pine needle leachate also led to increased sorption in the soil matrix creating the potential for subsequent carbon release. While unclear if manifested in adjacent surface waters, these results demonstrate an increased potential for Zn, Cu, and Al mobility, along with increased deposition of metals and carbon beneath beetle-impacted trees.
D.B.H. and Survival Analysis: A New Methodology for Assessing Forest Inventory Mortality
Christopher W. Woodall; Patricia L. Grambsch; William Thomas
2005-01-01
Tree mortality has typically been assessed in Forest Inventory and Analysis (FIA) studies through summaries of mortality by location, species, and causal agents. Although these methods have historically been used for most of FIA's tree mortality analyses, they are inadequate for robust assessment of mortality trends and dynamics. To offer a new method of analyzing...
Observed effects of an exceptional drought on tree mortality in a tropical dry forest
NASA Astrophysics Data System (ADS)
Medvigy, D.; Vargas, G.; Xu, X.; Smith, C. M.; Becknell, J.; Brodribb, T.; Powers, J. S.
2016-12-01
Climate models predict that the coming century will bring reduced rainfall to Neotropical dry forests. It is unknown how tropical dry forest trees will respond to such rainfall reductions. Will there be increased mortality? If so, what will be the dominant mechanism of mortality? Will certain functional groups or size classes be more susceptible to unusually dry conditions and do functional traits underlie these patterns? With these questions in mind, we analyzed the response of trees from 18 Costa Rican tropical dry forest inventory plots and from additional transects to the exceptional 2015 drought that coincided with a strong ENSO event. We compared stand-level mortality rates observed during pre-drought years (2008-2014) and during the drought year of 2015 in the inventory plots. For both inventory plots and transects, we analyzed whether particular functional groups or size classes experienced exceptional mortality after the drought. We found that mortality rates were two to three times higher during the drought than before the drought. In contrast to observations at moist tropical forests, tree size had little influence on mortality. In terms of functional groups, mortality rates of evergreen oaks growing on nutrient-poor soils particularly increased during drought. Legumes seemed less affected by the drought than non-legumes. However, elevated mortality rates were not clearly correlated with commonly-measured traits like wood density or specific leaf area. Instead, hydraulic traits like P50 or turgor loss point may be better predictors of drought-driven mortality. In addition, trees that died during the drought tended to have smaller relative growth rate prior to the drought than trees that survived the drought.
Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle
NASA Astrophysics Data System (ADS)
Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.
2017-12-01
Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1 soil), with no observed differences in N concentrations. Although data from the remaining of the 2017 growing season are still pending, we have thus far demonstrated how tree mortality from southern pine beetle changes single tree hydrologic and biogeochemical cycles.
Predictors of mortality for juvenile trees in a residential urban-to-rural cohort in Worcester, MA
Arthur Elmes; John Rogan; Lara A. Roman; Christopher A. Williams; Samuel J. Ratick; David J. Nowak; Deborah G. Martin
2018-01-01
This paper explores predictors of juvenile tree mortality in a newly planted cohort in Worcester, MA, following an episode of large-scale tree removal necessitated by an Asian Longhorned Beetle (Anoplophora glabripennis, ALB) eradication program. Trees are increasingly seen as important providers of ecosystem services for urban areas, including:...
Ren, Yachao; Zhang, Jun; Wang, Guiying; Liu, Xiaojie; Li, Li; Wang, Jinmao; Yang, Minsheng
2018-01-01
To explore the stability of insect resistance during the development of transgenic insect-resistant trees, this study investigated how insect resistance changes as transgenic trees age. We selected 19 transgenic insect-resistant triploid Populus tomentosa lines as plant material. The presence of exogenous genes and Cry1Ac protein expression were verified using polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. The toxicity for Clostera anachoreta and Lymantria dispar was evaluated by feeding fresh leaves to first instar larvae after the trees were planted in the field for 2 years and after the sixth year. Results of PCR showed that the exogenous genes had a long-term presence in the poplar genome. ELISA analyses showed significant differences existed on the 6-year-old transgenic lines. The insect-feeding experiment demonstrated significant differences in the mortality rates of C. anachoreta and L. dispar among different transgenic lines. The average corrected mortality rates of C. anachoreta and L. dispar ranged from 5.6-98.7% to 35.4-7.2% respectively. The larval mortality rates differed significantly between the lines at different ages. Up to 52.6% of 1-year-old transgenic lines and 42.1% of 2-year-old transgenic lines caused C. anachoreta larval mortality rates to exceed 80%, whereas only 26.3% of the 6-year-old transgenic lines. The mortality rates of L. dispar exhibited the same trend: 89.5% of 1-year-old transgenic lines and 84.2% of 2-year-old transgenic lines caused L. dispar larval mortality rates to exceed 80%; this number decreased to 63.2% for the 6-year-old plants. The proportion of 6-year-old trees with over 80% larval mortality rates was clearly lower than that of the younger trees. The death distribution of C. anachoreta in different developmental stages also showed the larvae that fed on the leaves of 1-year-old trees were killed mostly during L 1 and L 2 stages, whereas the proportion of larvae that died in L 3 and L 4 stages was significantly increased when fed on leaves of 6-year-old trees. Results of correlation analysis showed there was a significant correlation between the larvae mortality rates of trees at different ages, as well as between Cry1Ac protein contents and larvae mortality rates of 6-year-old trees.
Mark J. Ambrose
2011-01-01
Tree mortality is a natural process in all forest ecosystems, but it can also be an indicator of forest health issues. On a regional scale, high-mortality levels may indicate widespread insect or disease problems. Regionally high mortality may also occur if a large proportion of the forests in an area are made up of older, senescent stands.
Andrew N. Gray; Thomas A. Spies; Robert J. Pabst
2012-01-01
Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Speciesâ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...
Brouillard, Brent M.; Bokman, Chelsea M.; Sharp, Jonathan O.
2017-01-01
ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. PMID:29208740
NASA Astrophysics Data System (ADS)
Murphy, F.; Diefenbach, A. K.; Evans, W.; Hurwitz, S.
2013-12-01
We examined aerial photographs of the area near Mammoth Lakes, CA taken from 1951 to the present, with the goal of determining if visible changes in vegetation might reflect changes in the upflow of gas or heat through the soil zone. Such changes could be related to magmatic intrusion, the development of geothermal resources, groundwater pumping, earthquakes, or to natural changes in the hydrothermal flow system. We examined the area near Horseshoe Lake at the southern base of Mammoth Mountain where diffuse emissions of carbon dioxide created extensive tree-kill in the 1990s. Analysis of photographs acquired in 1951 suggests that tree density in this area was lower than its surroundings at the time. Whether the low-density tree cover identified in the photographs indicates some lasting effects of a previous episode of tree mortality needs further investigation. We also examine possible effects of geothermal energy production at Casa Diablo that began operation in 1985 on vegetation along the western part of the resurgent dome of Long Valley Caldera. Previous studies have correlated tree-kill in this area with increased steam upflow from the hydrothermal system.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166
Keville, Megan P; Reed, Sasha C; Cleveland, Cory C
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Delayed tree mortality in the Atchafalaya Basin of Southern Louisiana following Hurricane Andrew
Keeland, B.D.; Gorham, L.E.
2009-01-01
Hurricanes can damage trees in forested wetlands, and the potential for mortality related to these storms exists due to the effects of tree damage over time. In August 1992, Hurricane Andrew passed through the forested wetlands of southern Louisiana with winds in excess of 225 kph. Although more than 78 of the basal area was destroyed in some areas, most trees greater than 2.5 cm dbh were alive and resprouting prolifically the following year (98.8). Survival of most tree species was similarly high two years after the hurricane, but mortality rates of some species increased dramatically. For example, Populus heterophylla (swamp cottonwood) mortality increased from 7.8 to 59.2 (n 76) and Salix interior (sandbar willow) mortality increased from 4.5 to 57.1 (n 21). Stem sprouts on many up-rooted hardwood trees of other species were still alive in 1998, 6 years after the hurricane. Due to the understory tree species composition, regeneration, and high levels of resprouting, there was little change in species composition or perhaps a slight shift toward more shade and flood tolerant species six years following the hurricane event. Triadica sebifera (Chinese tallow) was found on some of the sites heavily disturbed by Hurricane Andrew, and may proliferate at the expense of native tree species. ?? 2009 The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Brouillard, B.; Mikkelson, K. M.; Dickenson, E.; Sharp, J.
2015-12-01
Recent drought and warmer temperatures associated with climate change have caused increased pest-induced forest mortality with impacts on biogeochemical and hydrologic processes. To better understand the seasonal impacts of bark beetle infestation on water quality, samples were collected regularly over two overlapping snow free seasons at surface water intakes of six water treatment facilities in the Rocky Mountain region of Colorado displaying varying levels of bark beetle infestation (high >40%, moderate 20-40%, and low <20%). Organic carbon concentrations were typically 3 to 6 times higher in waters sourced from high beetle-impacted watersheds compared to moderate and low impact watersheds, revealing elevated specific ultraviolet absorbance, fluorescence, and humic-like intensity indicative of elevated aromatic carbon signatures. Accordingly, an increase in disinfection byproduct (DBP) formation potential of 400 to 600% was quantified when contrasted with watersheds containing less tree mortality. Beetle impact exasperated seasonal increases in carbon loading and DBP formation potential following both runoff and precipitation events indicating windows when enhanced water treatment may be utilized by water providers in highly infested regions. Additionally, elevated carbon concentrations throughout the summer and fall along with peaks following precipitation events provide evidence of shifting hydrologic flow paths in areas experiencing high forest mortality from decreased tree water uptake and interception. Collectively, these results demonstrate the need for continued watershed protection and monitoring with a changing climate as the resultant perturbations can have adverse effects on biogeochemistry and water quality in heavily impacted areas.
A new drought tipping point for conifer mortality
NASA Astrophysics Data System (ADS)
Kolb, Thomas E.
2015-03-01
(Huang et al 2015 Environ. Res. Lett. 10 024011) present a method for predicting mortality of ponderosa pine (Pinus ponderosa) and pinyon pine (Pinus edulis) in the Southwestern US during severe drought based on the relationship between the standardized precipitation-evapotranspiration index (SPEI) and annual tree ring growth. Ring growth was zero when SPEI for September to July was -1.64. The threshold SPEI of -1.64 was successful in distinguishing areas with high tree mortality during recent severe drought from areas with low mortality, and is proposed to be a tipping point of drought severity leading to tree mortality. Below, I discuss this work in more detail.
Jennings, D E; Duan, J J; Shrewsbury, P M
2015-10-01
Emerald ash borer (EAB), Agrilus planipennis, is a serious invasive forest pest in North America responsible for killing tens to hundreds of millions of ash trees since it was accidentally introduced in the 1990 s. Although host-plant resistance and natural enemies are known to be important sources of mortality for EAB in Asia, less is known about the importance of different sources of mortality at recently colonized sites in the invaded range of EAB, and how these relate to host tree crown condition. To further our understanding of EAB population dynamics, we used a large-scale field experiment and life-table analyses to quantify the fates of EAB larvae and the relative importance of different biotic mortality factors at 12 recently colonized sites in Maryland. We found that the fates of larvae were highly dependent on EAB life stage and host tree crown condition. In relatively healthy trees (i.e., with a low EAB infestation) and for early instars, host tree resistance was the most important mortality factor. Conversely, in more unhealthy trees (i.e., with a moderate to high EAB infestation) and for later instars, parasitism and predation were the major sources of mortality. Life-table analyses also indicated how the lack of sufficient levels of host tree resistance and natural enemies contribute to rapid population growth of EAB at recently colonized sites. Our findings provide further evidence of the mechanisms by which EAB has been able to successfully establish and spread in North America.
Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack.
Kane, Jeffrey M; Kolb, Thomas E
2010-11-01
The relative importance of growth and defense to tree mortality during drought and bark beetle attacks is poorly understood. We addressed this issue by comparing growth and defense characteristics between 25 pairs of ponderosa pine (Pinus ponderosa) trees that survived and trees that died from drought-associated bark beetle attacks in forests of northern Arizona, USA. The three major findings of our research were: (1) xylem resin ducts in live trees were >10% larger (diameter), >25% denser (no. of resin ducts mm(-2)), and composed >50% more area per unit ring growth than dead trees; (2) measures of defense, such as resin duct production (no. of resin ducts year(-1)) and the proportion of xylem ring area to resin ducts, not growth, were the best model parameters of ponderosa pine mortality; and (3) most correlations between annual variation in growth and resin duct characteristics were positive suggesting that conditions conducive to growth also increase resin duct production. Our results suggest that trees that survive drought and subsequent bark beetle attacks invest more carbon in resin defense than trees that die, and that carbon allocation to resin ducts is a more important determinant of tree mortality than allocation to radial growth.
Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea
2015-02-01
Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Hember, Robbie A; Kurz, Werner A; Coops, Nicholas C
2017-04-01
Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (P m ) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (W s,z ) and reference evapotranspiration (ET r,z ) at each field plot. The models additionally tested for interactions between the water-balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross-validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water-balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole-plant, leaf-specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr -1 in 1951 to 2.0% yr -1 in 2014 (a net change of 0.9 ± 0.3% yr -1 ). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak-to-moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This 'learn-as-we-go' approach - defined by sampling rare drought events as they continue to intensify - will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change. © 2016 John Wiley & Sons Ltd.
Ponderosa pine mortality resulting from a mountain pine beetle outbreak
William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut
1982-01-01
From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...
Lauren S. Urgenson; Charles B. Halpern; Paul D. Anderson
2013-01-01
Mortality of retained trees can compromise the ecological objectives of variable-retention harvest. We used a large-scale experiment replicated at six locations in western Washington and Oregon to examine the influences of retention level (40% vs. 15% of original basal area) and its spatial pattern (aggregated vs.dispersed) on the rate and form of tree mortality for 11...
van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Brooks, Matthew
2012-01-01
The reintroduction of fire to historically fire-prone forests has been repeatedly shown to reduce understory fuels and promote resistance to high severity fire. However, there is concern that prescribed fire may also have unintended consequences, such as high rates of mortality for large trees and fire-tolerant Pinus species. To test this possibility we evaluated mortality patterns for two common genera in the western US, Pinus and Abies, using observations from a national-scale prescribed fire effects monitoring program. Our results show that mortality rates of trees >50 DBH were similar for Pinus (4.6% yr-1) and Abies (4.0% yr-1) 5 years following prescribed fires across seven sites in the southwestern US. In contrast, mortality rates of trees >50 cm DBH differed between Pinus (5.7% yr-1) and Abies (9.0% yr-1). Models of post-fire mortality probabilities suggested statistically significant differences between the genera (after including differences in bark thickness), but accounting for these differences resulted in only small improvements in model classification. Our results do not suggest unusually high post-fire mortality for large trees or for Pinus relative to the other common co-occurring genus, Abies, following prescribed fire in the southwestern US.
NASA Astrophysics Data System (ADS)
Fang, Ouya; Alfaro, René I.; Zhang, Qi-Bin
2018-04-01
There is a growing research interest on studying forest mortality in relation to ongoing climate warming, but little is known about such events in past history. The study of past forest mortality provides valuable information for determining baselines that establish the normal parameters of functioning in forest ecosystems. Here we report a major episode of previously undocumented forest mortality in the late 18th century on the northern Tibetan Plateau, China. The event was not spatially uniform, in which a more severe mortality happened in dryer sites. We used dendrochronology to compare radial growth trajectories of individual trees from 11 sites in the region, and found that many trees showed positive growth trend, or growth release, during 1796-1800 CE. Growth releases are a proxy indicator of stand thinning caused by tree mortality. The growth release was preceded by an almost two-decade long growth reduction. Long-term drought related to weakened North Atlantic Oscillation and frequent El Niño events are the likely factors causing the tree mortality in a large area of the plateau. Our findings suggest that, besides the effect of drought in the late 18th century, large-scale forest mortality may be an additional factor that further deteriorated the environment and increased the intensity of dust storms.
The Impacts of Climate-Induced Drought on Biogeochemical Cycles
NASA Astrophysics Data System (ADS)
Peng, C.
2014-12-01
Terrestrial ecosystems and, in particular, forests exert strong controls on the global biogeochemical cycles and influence regional hydrology and climatology directly through water and surface energy budgets. Recent studies indicated that forest mortality caused by rising temperature and drought from around the world have unexpectedly increased in the past decade and they collectively illustrate the vulnerability of many forested ecosystems to rapid increases in tree mortality due to warmer temperatures and more severe drought. Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services (such as albedo and carbon sequestration). Quantifying potential impacts of tree mortality on ecosystem processes requires research into mortality effects on carbon, energy, and water budgets at both site and regional levels. Despite recent progress, the uncertainty around mortality responses still limits our ability to predict the likelihood and anticipate the impacts of tree die-off. Studies are needed that explore tree death physiology for a wide variety of functional types, connect patterns of mortality with climate events, and quantify the impacts on carbon, energy, and water flux. In this presentation, I will highlight recent research progress, and identify key research needs and future challenges to predict the consequence and impacts of drought-induced large-scale forest mortality on biogeochemical cycles. I will focus on three main forest ecosystems (tropic rainforest in Amazon, temperate forest in Western USA, and boreal forest in Canada) as detailed case studies.
Role of multidecadal climate variability in a range extension of pinyon pine
Gray, Stephen T.; Betancourt, Julio L.; Jackson, Stephen T.; Eddy, Robert G.
2006-01-01
Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (~40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250–1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous ~8700 years. Pinyon then quickly replaced juniper across DJM during a few wet decades (1330–1339 and 1368–1377). Such alternating decadal-scale droughts and pluvial events play a key role in structuring plant communities at the landscape to regional level. These decadal-length precipitation anomalies tend to be regionally coherent and can synchronize physical and biological processes across large areas. Vegetation forecast models must incorporate these temporal and geographic aspects of climate variability to accurately predict the effects of future climate change.
Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.
2015-01-01
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663
Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F
2015-01-01
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.
NASA Astrophysics Data System (ADS)
Rogers, B. M.; Hogg, E. H.; Solvik, K.; Ju, J.; Masek, J. G.; Michaelian, M.; Berner, L. T.; Goetz, S. J.
2017-12-01
Tree mortality from drought and biotic infestations represents a fundamental transition for forests at the level of an individual tree, forest stand, and even landscape. Tree mortality precipitates a cascade of ecosystem impacts and has been increasing across the continents, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and significantly improve mortality forecasts. Tree-level productivity dynamics are known to precede mortality in predictable ways years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized Difference Vegetation Index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 20 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range in forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although coarse-scale imagery in the heterogeneous aspen parkland was of limited utility. Longer-term NDVI data and annually re-measured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites re-measured at a typical five-year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems.
Biological, social, and urban design factors affecting young street tree mortality in New York City
Jacqueline W.T. Lu; Erika S. Svendsen; Lindsay K. Campbell; Jennifer Greenfeld; Jessie Braden; Kristen King; Nancy Falxa-Raymond
2010-01-01
In dense metropolitan areas, there are many factors including traffic congestion, building development and social organizations that may impact the health of street trees. The focus of this study is to better understand how social, biological and urban design factors affect the mortality rates of newly planted street trees. Prior analyses of street trees planted by the...
Growth and mortality of bigtooth aspen trees stressed by defoliation
Donald D. Davis; Timothy M. Frontz
2003-01-01
A survey conducted by the authors in 1993 in six stands within an area of declining aspen revealed that aspen mortality ranged from 25 to 67 percent per stand. Tree-ring analyses revealed that trees dead at time of sampling in 1993 had been growing slower in four of the six stands during the previous decade than were the surviving trees. However growth declines had...
Impacts of drought on tree mortality and growth in a mixed hardwood forest
Katherine J. Elliott; Wayne T. Swank
1994-01-01
The tree and shrub species on a 16-ha watershed in the Coweeta Basin were sampled in 1984 and again in 1991 to determine the effects of drought on tree species composition and basal area growth. Mortality and radial growth were determined for tree species within three community types that represent a moisture gradient from moist to dry: covhardwoods > mixed-oak...
Susan L. King
2003-01-01
The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...
Susan J. Prichard; Maureen C. Kennedy
2012-01-01
Fuel reduction treatments are increasingly used to mitigate future wildfire severity in dry forests, but few opportunities exist to assess their effectiveness. We evaluated the influence of fuel treatment, tree size and species on tree mortality following a large wildfire event in recent thin-only, thin and prescribed burn (thin-Rx) units. Of the trees that died within...
Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford
2013-01-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....
Cobb, Richard C; Eviner, Valerie T; Rizzo, David M
2013-10-01
Few studies have quantified pathogen impacts to ecosystem processes, despite the fact that pathogens cause or contribute to regional-scale tree mortality. We measured litterfall mass, litterfall chemistry, and soil nitrogen (N) cycling associated with multiple hosts along a gradient of mortality caused by Phytophthora ramorum, the cause of sudden oak death. In redwood forests, the epidemiological and ecological characteristics of the major overstory species determine disease patterns and the magnitude and nature of ecosystem change. Bay laurel (Umbellularia californica) has high litterfall N (0.992%), greater soil extractable NO3 -N, and transmits infection without suffering mortality. Tanoak (Notholithocarpus densiflorus) has moderate litterfall N (0.723%) and transmits infection while suffering extensive mortality that leads to higher extractable soil NO3 -N. Redwood (Sequoia sempervirens) has relatively low litterfall N (0.519%), does not suffer mortality or transmit the pathogen, but dominates forest biomass. The strongest impact of pathogen-caused mortality was the potential shift in species composition, which will alter litterfall chemistry, patterns and dynamics of litterfall mass, and increase soil NO3 -N availability. Patterns of P. ramorum spread and consequent mortality are closely associated with bay laurel abundances, suggesting this species will drive both disease emergence and subsequent ecosystem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Armillaria mellea and mortality of beech affected by beech bark disease
Philip M. Wargo
1983-01-01
The role of Armillaria mellea in the mortality of beech trees affected by beech bark disease was determined by excavating root systems of beech trees infested by beech scale, Cryptococcus fagisuga, or also infected by the bark fungus, Nectria coccinea var. faginata. Only trees infected by
Tree mortality risk of oak due to gypsy moth
K.W. Gottschalk; J.J. Colbert; D.L. Feicht
1998-01-01
We present prediction models for estimating tree mortality resulting from gypsy moth, Lymantria dispar, defoliation in mixed oak, Quercus sp., forests. These models differ from previous work by including defoliation as a factor in the analysis. Defoliation intensity, initial tree crown condition (crown vigour), crown position, and...
Gap expansion in old-growth subarctic forests: the climate-pathogen connection.
Vézeau, Corinne; Payette, Serge
2016-12-01
We tested the hypothesis considering old-growth subarctic woodlands, free of fire, insect and stand-scale blowdown disturbances, to be at equilibrium with the climate. To do so, we explored the status of Hudsonian woodlands based on the natality/mortality ratio. The gap history of the woodland was reconstructed based on mapping and dating of dead gap-spruces (Picea mariana). Among the 25 gaps studied, 763 dead trees and only 14 saplings were recorded. The center of some gaps remained treeless over the last 1000 yr, and gap area doubled over the last 100 yr. The status of the tree population is in a demographic disequilibrium caused by the small replacement of dead spruces in all of the gaps. Episodes of 'mass' mortality occurred during several decades corresponding to years of favorable tree-ring growth. The natural process of gap-filling appears to be ineffective under current conditions. Good tree-ring growth of dying trees suggests abundant precipitation during the mortality episodes, but precipitation appears to be involved indirectly in the mortality process. The main cause of the widespread tree mortality during the last centuries of gap expansion appears to be biotic in origin. The impact of pathogenic fungal disease linked to late-lying snow cover is proposed for the mortality events. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Peter H. Wychoff; James S. Clark
2000-01-01
Ecologists and foresters have long noted a link between tree growth rate and mortality, and recent work suggests that i&erspecific differences in low growth tolerauce is a key force shaping forest structure. Little information is available, however, on the growth-mortality relationship for most species. We present three methods for estimating growth-mortality...
Are Scots pine forest edges particularly prone to drought-induced mortality?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette
2018-02-01
Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.
Forest health and bark beetles
C. J. Fettig
2012-01-01
In recent years, bark beetles have caused significant tree mortality in the Sierra Nevada, rivaling mortality caused by wildfire in some locations. This chapter addresses two important questions: How can managers prepare for and influence levels of bark beetle-caused tree mortality given current forest conditions and future climate uncertainties? and How would the...
Moderate forest disturbance as a stringent test for gap and big-leaf models
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B.; Fisk, J. P.; Holm, J. A.; Bailey, V.; Bohrer, G.; Gough, C. M.
2015-01-01
Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.
Moderate forest disturbance as a stringent test for gap and big-leaf models
Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; ...
2015-01-27
Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experimentmore » in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.« less
Climate-induced mortality of "dark needle conifer" in Siberian taiga
NASA Astrophysics Data System (ADS)
Kharuk, Viacheslav; Im, Sergei; Petrov, Ilya
2017-04-01
Within Siberia fir (Abies sibirica) and Siberian pine (Pinus sibirica) (so called "dark needle conifers", DNC) mortality increased in the southern part of the DNC range. Siberian pine and fir showed decreased radial growth increment within southern Siberia since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands in southern Siberia. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In particular, bark beetle Polygraphus proximus made a strong input on the fir mortality. In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus sylvestris, and Betula pubescence).
Condition of live fire-scarred ponderosa pine trees six years after removing partial cross sections
Emily K. Heyerdahl; Steven J. McKay
2001-01-01
Our objective was to document the effect of fire-history sampling on the mortality of mature ponderosa pine trees in Oregon. We examined 138 trees from which fire-scarred partial cross sections had been removed five to six years earlier, and 386 similarly sized, unsampled neighbor trees, from 78 plots distributed over about 5,000 ha. Mortality was low for both groups....
Martin J. Brown; Jane Kertis; Mark H. Huff
2013-01-01
We monitored coarse woody debris dynamics and natural tree regeneration over a 14-year period after the 1991 Warner Creek Fire, a 3631-ha (8,972-ac) mixed severity fire in the western Cascade Range of Oregon. Rates for tree mortality in the fire, postfire mortality, snag fall, and snag fragmentation all showed distinct patterns by tree diameter and species, with...
2014-01-01
This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05). Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001) (55% of piñon pines died), and over five times as many standing dead pines were observed in 2012 than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences. PMID:24949231
NASA Astrophysics Data System (ADS)
Ripullone, F.; Colangelo, M.; Camarero, J. J.; Gazol, A.; Borghetti, M.; Gentilesca, T.
2016-12-01
Climate warming is expected to amplify drought stress resulting in the occurrence of more widespread dieback episodes and increasing mortality rates. This has pushed the search of reliable and robust early-warning indicators of impending drought-triggered tree death. Recent studies highlight how level of defoliation or age of trees strictly coact with drought in leading to forest decline. In addition, tree size and the tree-to-tree competition for water could also contribute to tree death in drought-prone sites. In this regard, it has been predicted that tall trees with isohydric stomatal regulation are most likely to die due to drought stress. Here, we test this hypothesis by analyzing size, age, competition and growth data in a Mediterranean oak species characterized by anisohydric behaviour, showing recent drought-induced mortality in two Italian forest sites. At both study sites, tree height was associated to the probability of dying. However, this association was opposite to published predictions because living trees were taller than dead trees at both sites. Neither age nor competition intensity played significant roles as drivers of tree mortality. Regarding growth data, trends in basal area increment were significantly smaller in dead than in living trees. Differences were most marked at mid (15 years prior to death) than at short (10 years) or long-term (35 year) scales. This is probably not related to intrinsic growth features of the study species but it can be explained because the most severe drought since 1950 occurred in 2000 at the study area, i.e. 15 years prior to the increase of tree mortality and when growth of living and dead trees started diverging. Lastly, we discuss potential factors which may explain why smaller individuals of anisohydric tree species such as Mediterranean oaks are prone to drought-induced tree death.
D.M. Grosman; C.J. Fettig; C.L. Jorgensen; A.S. Munson
2010-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers looking for more portable and...
Hydraulic Function in Australian Tree Species during Drought-Induced Mortality
NASA Astrophysics Data System (ADS)
Tissue, D.; Maier, C.; Creek, D.; Choat, B.
2016-12-01
Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.
Duan, Honglang; O'Grady, Anthony P; Duursma, Remko A; Choat, Brendan; Huang, Guomin; Smith, Renee A; Jiang, Yanan; Tissue, David T
2015-07-01
Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J
2011-06-01
The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.
Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA
Joseph L. Ganey; Scott C. Vojta
2011-01-01
We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...
Predicting the probability of mortality of gastric cancer patients using decision tree.
Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R
2015-06-01
Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.
P. Maloney; T. Smith; C. Jensen; J. Innes; D. Rizzo; M. North
2008-01-01
Fire and thinning restoration treatments in fire-suppressed forests often damage or stress leave trees, altering pathogen and insect affects. We compared types of insect- and pathogen-mediated mortality on mixed-conifer trees 3years after treatment. The number of bark beetle attacked trees was greater in burn treatments compared with no-burn treatments, and in some...
Artacho, Pamela; Bonomelli, Claudia
2016-05-01
Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Artacho, Pamela; Bonomelli, Claudia
2016-01-01
Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890
Analysis of forest naturalness and tree mortality patterns in Estonia
J.A. Stanturf
2009-01-01
New methods for evaluating structural properties of stands and individual tree mortality within forests are needed to enhance biodiversity assessment in forest inventories. One approach is to assess the degree of naturalness in a forest. We assessed forest naturalness by examining patterns and causes of mortality and deadwood amount and...
Widespread increase of tree mortality rates in the western United States
Phillip J. van Mantgem; Nathan L. Stephenson; John C. Byrne; Lori D. Daniels; Jerry F. Franklin; Peter Z. Fule; Mark E. Harmon; Andrew J. Larson; Jeremy M. Smith; Alan H. Taylor; Thomas T. Veblen
2009-01-01
Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29...
Forest thinning and subsequent bark beetle-caused mortality in Northeastern California
Joel M. Egan; William R. Jacobi; Jose F. Negron; Sheri L. Smith; Daniel R. Cluck
2010-01-01
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001-2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase...
Partial cambial mortality in high-elevation Pinus aristata (Pinaceae)
Andrew J. Schauer; Anna W. Schoettle; Richard L. Boyce
2001-01-01
Partial cambial mortality is a growth form that is characteristic of Pinus aristata trees. To better elucidate their cambial death pattern, tree size and aspect of cambial death data were gathered from three Pinus aristata forests in central Colorado, USA. Stripping frequency tended to be higher for larger diameter classes. Partial cambial mortality exhibits...
NASA Astrophysics Data System (ADS)
O'Connor, Timothy G.
2017-01-01
The hypothesis that African elephants may cause the local extirpation of selected woody species was evaluated in a medium-sized, semi-arid reserve following their reintroduction at low density. Mortality, state-change, and regeneration of 25 tree and 17 shrub species were studied between 1997 and 2010. Annual mortality of shrub species ranged from 0.2 to 8.0%, with six species experiencing 6-8%. Eight shrub species lost more than half their adult population (range 10-94%). Annual tree mortality ranged from 0.2 to 10.5%. The two dominant dryland tree species experienced <1% annual mortality, 18 species lost more than half their tree population, and one was eliminated. Elephants accounted for >63% and stress-related agents >20% of tree deaths. The manner in which elephants induced tree death depended on species. The proportion of individuals of a species killed by pollarding or uprooting ranged from 0 to 74%, and by debarking from 0 to 100%. Complete uprooting was a common cause of death for three shrub species. Regeneration ranged from zero for six tree and one shrub species to a seedling every 7 m2 for Colophospermum mopane and 23 m2 for Dichrostachys cinerea in riparian habitat. Three shrub and eight tree species were identified as vulnerable to local extirpation owing to a combination of high mortality and poor regeneration that is likely to result in a considerably simplified system. Reintroduction of elephants into medium-sized reserves without regulation of their numbers may not be a desirable action.
NASA Astrophysics Data System (ADS)
Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.
2013-12-01
Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions in NEP, although the temporal pattern is different. The reductions in NEP from these major disturbances are similar to the variation in NEP caused by climatic conditions. When less favorable climatic conditions and these disturbances are co-occurring, forests switch from a carbon sink to a carbon source across the western US. This work increases understanding of the role of natural disturbances in the forest carbon budget of the western US.
Kathleen L. Kavanaugh; Matthew B. Dickinson; Anthony S. Bova
2010-01-01
Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding of the physiological consequences of tree heating and injury are needed to develop biophysical process models that can make predictions under changing or novel...
Benjamin Bright; J. A. Hicke; A. T. Hudak
2012-01-01
Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...
Barbara J. Bentz; Celia Boone; Kenneth F. Raffa
2015-01-01
Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.
Climate-Induced Mortality of Siberian Pine and Fir in the Lake Baikal Watershed, Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Petrova, IIya A.; Golyukov, Alexei S.; Ranson, Kenneth J.; Yagunov, Mikhail N.
2016-01-01
Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called "dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).
Climate-Induced Mortality of Siberian Pine and Fir in the Lake Baikal Watershed, Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Golyukov, Alexei S.; Ranson, Kenneth J.; Yagunov, Mikhail N.
2016-01-01
Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called ''dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).
Increased tree carbon storage in response to nitrogen deposition in the US
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Canham, Charles D.; Weathers, Kathleen C.; Goodale, Christine L.
2010-01-01
Human activities have greatly accelerated emissions of both carbon dioxide and biologically reactive nitrogen to the atmosphere. As nitrogen availability often limits forest productivity, it has long been expected that anthropogenic nitrogen deposition could stimulate carbon sequestration in forests. However, spatially extensive evidence for deposition-induced stimulation of forest growth has been lacking, and quantitative estimates from models and plot-level studies are controversial. Here, we use forest inventory data to examine the impact of nitrogen deposition on tree growth, survival and carbon storage across the northeastern and north-central USA during the 1980s and 1990s. We show a range of growth and mortality responses to nitrogen deposition among the region's 24 most common tree species. Nitrogen deposition (which ranged from 3 to 11kgha-1yr-1) enhanced the growth of 11 species and decreased the growth of 3 species. Nitrogen deposition enhanced growth of all tree species with arbuscular mycorrhizal fungi associations. In the absence of disturbances that reduced carbon stocks by more than 50%, above-ground biomass increment increased by 61kg of carbon per kg of nitrogen deposited, amounting to a 40% enhancement over pre-industrial conditions. Extrapolating to the globe, we estimate that nitrogen deposition could increase tree carbon storage by 0.31Pg carbon yr-1.
Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.
2006-01-01
Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel consumption and potentially less injury to trees. This reduction in fire severity may compensate for relatively modest increases in bark beetle attack probabilities on some tree species, ultimately resulting in a forest structure that differs little between early and late season prescribed burning treatments.
Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.
2014-01-01
The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.
Adult mortality in a low-density tree population using high-resolution remote sensing.
Kellner, James R; Hubbell, Stephen P
2017-06-01
We developed a statistical framework to quantify mortality rates in canopy trees observed using time series from high-resolution remote sensing. By timing the acquisition of remote sensing data with synchronous annual flowering in the canopy tree species Handroanthus guayacan, we made 2,596 unique detections of 1,006 individual adult trees within 18,883 observation attempts on Barro Colorado Island, Panama (BCI) during an 11-yr period. There were 1,057 observation attempts that resulted in missing data due to cloud cover or incomplete spatial coverage. Using the fraction of 123 individuals from an independent field sample that were detected by satellite data (109 individuals, 88.6%), we estimate that the adult population for this species on BCI was 1,135 individuals. We used a Bayesian state-space model that explicitly accounted for the probability of tree detection and missing observations to compute an annual adult mortality rate of 0.2%·yr -1 (SE = 0.1, 95% CI = 0.06-0.45). An independent estimate of the adult mortality rate from 260 field-checked trees closely matched the landscape-scale estimate (0.33%·yr -1 , SE = 0.16, 95% CI = 0.12-0.74). Our proof-of-concept study shows that one can remotely estimate adult mortality rates for canopy tree species precisely in the presence of variable detection and missing observations. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morillas, L.; Pangle, R. E.; Maurer, G. E.
Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semi-arid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while non-canopy ET increased. We attributed the elevated non-canopy ET in the girdled site each year to winter increases in sublimation, and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This post-girdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites, and potentially more vulnerable to drought.« less
Adams, Henry D; Germino, Matthew J; Breshears, David D; Barron-Gafford, Greg A; Guardiola-Claramonte, Maite; Zou, Chris B; Huxman, Travis E
2013-03-01
Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Research frontiers in drought-induced tree mortality: Crossing scales and disciplines
Hartmann, Henrik; Adams, Henry D.; Anderegg, William R. L.; ...
2015-01-12
Sudden and widespread forest die-back and die-off (e.g., Huang & Anderegg, 2012) and increased mortality rates (e.g., Peng et al., 2011) in many forest ecosystems across the globe have been linked to drought and elevated temperatures (Allen et al., 2010, Fig. 1). Furthermore, these observations have caused a focus on the physiological mechanisms of drought-induced tree mortality (e.g. McDowell et al., 2008) and many studies, both observational and manipulative, have been carried out to explain tree death during drought from a physiological perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.
2014-01-01
How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averagedmore » 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.« less
Analyzing growth and mortality in a subtropical urban forest ecosystem
Alicia B. Lawrence; Fancisco J. Escobedo; Christina L. Staudhammera; Wayne Zipperer Zipperer
2012-01-01
Information on urban tree growth, mortality and in-growth is currently being used to estimate urban forest structure changes and ecosystem services such as carbon sequestration. This study reports on tree diameter growth and mortality in 65 plots distributed among four land use categories, which were established in 2005/2006 in Gainesville, Florida, USA and were re-...
Synchrony of forest responses to climate from the aspect of tree mortality in South Korea
NASA Astrophysics Data System (ADS)
Kim, M.; Lee, W. K.; Piao, D.; Choi, G. M.; Gang, H. U.
2016-12-01
Mortality is a key process in forest-stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number (MSN) per ha over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba's theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper range of observed stem numbers per ha. The mortality model and validation statistic reveal significant differences between the observed data and the model predictions (R2 = 0.55-0.81), and no obvious dependencies or patterns that indicate systematic trends between the residuals and the independent variable. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not of oak species (Chinese cork oak and Mongolian oak). Based on linear regression from residuals, we found that the mortality of coniferous forests tended to increase when the annual mean temperature increased. Conversely, oak mortality nonsignificantly decreased with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and are expected to contribute to policy decisions to support and forest management practices.
NASA Astrophysics Data System (ADS)
Powell, T.; Kueppers, L. M.; Koven, C.; Johnson, D. J.; Faybishenko, B.; McDowell, N. G.; Chambers, J. Q.
2016-12-01
Land surface models that include demographic and plant hydrodynamic processes are promising tools for characterizing how different drought scenarios may affect carbon cycling of tropical forests. The Ecosystem Demography (ED2) model, now formulated with such features, was used to evaluate how different drought scenarios affect mortality patterns, functional diversity and coexistence of four plant functional types (PFTs) of tropical trees at Barro Colorado Island (BCI), Panama. The four PFTs simulated were early- versus late-successional groups subdivided into drought-tolerant versus -intolerant groups. The hydrodynamic formulation enables the four PFTs to compete mechanistically along two largely orthogonal resource gradients of water and light. The model simulations produced considerable differences in the aboveground biomass response to contrasting drying scenarios that included longer dry seasons, El Nino related droughts, and drier dry seasons. The emergent mortality dynamics reflect the physiological trade-off between water-use and carbon fixation formulated by the hydrodynamic regulation over stomatal conductance. During dry periods, the model predicts increased mortality rates of pioneer trees compared to generalists and drought-intolerant trees compared to -tolerant trees. The model also predicts that surviving cohorts in the smallest size classes of drought-intolerant trees are occasionally primed for release from competition following acute droughts. Observations at BCI showed increased mortality rates for large trees (i.e. >30 cm dbh) during the 1982 El Nino drought, but not subsequent El Nino related droughts. The causes of the elevated mortality rates are explored with the model. Coexistence of four plant functional types in the model is highly sensitive to the parameterization of stem hydraulic conductivity; but, surprisingly not very sensitive to shifts in rainfall patterns. These results demonstrate (a) that plant hydrodynamics are critical for simulating dynamic mortality patterns between drought-tolerant and -intolerant PFTs in order to increase representation of functional diversity in land surface models, and (b) that more demographic, plant hydraulic and deeper soil moisture observations are required to constrain hydrodynamic parameter selection.
A.R. Weiskittel; D. Maguire; R.A. Monserud
2007-01-01
Static models of individual tree crown attributes such as height to crown base and maximum branch diameter profile have been developed for several commercially important species. Dynamic models of individual branch growth and mortality have received less attention, but have generally been developed retrospectively by dissecting felled trees; however, this approach is...
Persistent reduced ecosystem respiration after insect disturbance in high elevation forests
David J. P. Moore; Nicole A. Trahan; Phil Wilkes; Tristan Quaife; Britton B. Stephens; Kelly Elder; Ankur R. Desai; Jose Negron; Russell K. Monson
2013-01-01
Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no...
Persistent reduced ecosystem respiration after insect disturbance in high elevation forests
Moore, David J P; Trahan, Nicole A; Wilkes, Phil; Quaife, Tristan; Stephens, Britton B; Elder, Kelly; Desai, Ankur R; Negron, Jose; Monson, Russell K
2013-01-01
Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon. PMID:23496289
Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica.
Rozendaal, Danae M A; Chazdon, Robin L
2015-03-01
Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists. We monitored six second-growth tropical forests that varied in stand age and two old-growth forests in northeastern Costa Rica. We monitored these over a period of 8 to 16 years. To assess rates of biomass change during secondary succession, we compared standing biomass and biomass dynamics between second-growth forest stages and old-growth forest, and evaluated the effect of stand age on standing biomass and biomass dynamics in second-growth forests. Standing tree biomass increased with stand age during succession, whereas the rate of biomass change decreased. Biomass change was largely driven by tree diameter increment and mortality, with a minor contribution from recruitment. The relative importance of these demographic drivers shifted over succession. Biomass gain due to tree diameter increment decreased with stand age, whereas biomass loss due to mortality increased. In the age range of our second-growth forests, 10-41 years, SG specialists dominated tree biomass in second-growth forests. SG specialists, and to a lesser extent generalists, also dominated stand-level biomass increase due to tree diameter increment, whereas SG specialists largely accounted for decreases in biomass due to mortality. Our results indicate that tree growth is largely driving biomass dynamics early in succession, whereas both growth and mortality are important later in succession. Biomass dynamics are largely accounted for by a few SG specialists and one generalist species, Pentaclethra macroloba. To assess the generality of our results, similar long-term studies should be compared across tropical forest landscapes.
Bond-Lamberty, Ben; Rocha, Adrian V; Calvin, Katherine; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L
2014-01-01
Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate.
Vanderwel, Mark C; Coomes, David A; Purves, Drew W
2013-05-01
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature. © 2013 Blackwell Publishing Ltd.
Vanderwel, Mark C; Coomes, David A; Purves, Drew W
2013-01-01
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature. PMID:23505000
NASA Astrophysics Data System (ADS)
Hember, R. A.; Kurz, W. A.; Coops, N. C.
2017-12-01
Several studies indicate that climate change has increased rates of tree mortality, adversely affecting timber supply and carbon storage in western North American boreal forests. Statistical models of tree mortality can play a complimentary role in detecting and diagnosing forest change. Yet, such models struggle to address real-world complexity, including expectations that hydrological vulnerability arises from both drought stress and excess-water stress, and that these effects vary by species, tree size, and competitive status. Here, we describe models that predict annual probability of tree mortality (Pm) of common boreal tree species based on tree height (H), biomass of larger trees (BLT), soil water content (W), reference evapotranspiration (E), and two-way interactions. We show that interactions among H and hydrological variables are consistently significant. Vulnerability to extreme droughts consistently increases as H approaches maximum observed values of each species, while some species additionally show increasing vulnerability at low H. Some species additionally show increasing vulnerability to low W under high BLT, or increasing drought vulnerability under low BLT. These results suggest that vulnerability of trees to increasingly severe droughts depends on the hydraulic efficiency, competitive status, and microclimate of individual trees. Static simulations of Pm across a 1-km grid (i.e., with time-independent inputs of H, BLT, and species composition) indicate complex spatial patterns in the time trends during 1965-2014 and a mean change in Pm of 42 %. Lastly, we discuss how the size-dependence of hydrological vulnerability, in concert with increasingly severe drought events, may shape future responses of stand-level biomass production to continued warming and increasing carbon dioxide concentration in the region.
Tague, Christina L; McDowell, Nathan G; Allen, Craig D
2013-01-01
Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.
Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.
2013-01-01
Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.
Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.
2013-01-01
Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities. PMID:24282532
Temperature response surfaces for mortality risk of tree species with future drought
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; ...
2017-11-17
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less
Temperature response surfaces for mortality risk of tree species with future drought
NASA Astrophysics Data System (ADS)
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.
2017-11-01
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.
Temperature response surfaces for mortality risk of tree species with future drought
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P . ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less
Temperature response surfaces for mortality risk of tree species with future drought
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less
Effects of disbudding on shoot mortality and stem deformity in black cherry
Charles O. Rexrode
1979-01-01
Insect damage was simulated by the removal of buds from black cherry trees to determine the effects on stem mortality and tree form. Black cherry was very sensitive to disbudding. All degrees of disbudding caused terminal deformities and stem deformity nearly always occurred after the terminal bud was destroyed. Shoot mortality usually occurred after half or more of...
Site establishment practices influence loblolly pine mortality throughout the stand rotation
Felipe G. Sanchez; Robert J. Eaton
2010-01-01
During a rotation, land managers need to estimate yields, update inventories, and evaluate stand dynamics. All of these factors in land management are heavily influenced by tree mortality. Tree mortality can, in turn, be influenced by land management practices from the inception of the stand and throughout the rotation. We describe the impact of organic matter removal...
Tree regeneration in black ash (Fraxinus nigra) stands exhibiting crown dieback in Minnesota
Brian J. Palik; Michael E. Ostry; Robert C. Venette; Ebrahim. Abdela
2012-01-01
Crown dieback and mortality of black ash (Fraxinus nigra) has been noted across the range of the species in North America for several decades. Causes of dieback and mortality are not definitive, but may be related to spring drought or excessive moisture. Where black ash is the dominant tree species in the forest, continued dieback and mortality may...
Delayed mortality of eastern hardwoods after prescribed fire
Daniel A. Yaussy; Thomas A. Waldrop
2010-01-01
The Southern Appalachian Mountain and the Ohio Hills sites of the National Fire and Fire Surrogate Study are located in hardwood dominated forests. Mortality of trees was anticipated the first year after burning but it continued for up to 4 years after burning, which was not expected. Survival analysis showed that the likelihood of mortality was related to prior tree...
Spatially random mortality in old-growth red pine forests of northern Minnesota
Tuomas Aakala; Shawn Fraver; Brian J. Palik; Anthony W. D' Amato
2012-01-01
Characterizing the spatial distribution of tree mortality is critical to understanding forest dynamics, but empirical studies on these patterns under old-growth conditions are rare. This rarity is due in part to low mortality rates in old-growth forests, the study of which necessitates long observation periods, and the confounding influence of tree in-growth during...
Mortality among Seed Trees in Longleaf Pine Shelterwood Stands
William D. Boyer
1970-01-01
Mortality of longieaf pine (Pinus palustris Mill.) seed trees was recorded in 27 regeneration areas ranging from North Carolina to Louisiana. Annual mortality averaged 0.7 percent before, and 1.9 percent after a seed cut reduced stand density to about 30 square feet of basal area per acre. On a per-acre basis, however, annual losses averaged 0....
Fuels Management Reduces Tree Mortality from Wildfires In Southeastern United States
Kenneth W. Outcalt; Dale D. Wade
2004-01-01
The objective was to determine the effectiveness of a regular prescribed burning program for reducing tree mortality in southern pine forests burned by wildfire. This study was conducted on public and industry lands in northeast Florida. On the Osceola National Forest, mean mortality was 3.5% in natural stands and 43% in plantations two growing seasons after a June...
William F. Laudenslayer; George N. Steger; Jonathan Arnold
2008-01-01
Large diameter, old trees are an important component of functioning forests, as they provide habitat for many wildlife species and add value to the scenery along roads and trails that cross our National Forests and Parks. Tree mortality, from prescribed or wild fire, is of great concern to forests managers, especially mortality of those of large diameter. Raking away...
Christopher J. Fettig; Donald M. Grosman; A. Steven. Munson
2013-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers have examined the effectiveness of...
Martin A. Spetich; Zhaofei Fan; Zhen Sui; Michael Crosby; Hong S. He; Stephen R. Shifley; Theodor D. Leininger; W. Keith Moser
2017-01-01
Stresses to trees under a changing climate can lead to changes in forest tree survival, mortality and distribution. For instance, a study examining the effects of human-induced climate change on forest biodiversity by Hansen and others (2001) predicted a 32% reduction in loblollyâshortleaf pine habitat across the eastern United States. However, they also...
Estimating fire-caused mortality and injury in oak-hickory forests.
Robert M. Loomis
1973-01-01
Presents equations and graphs for predicting fire-caused tree mortality and equations for estimating basal wound dimensions for surviving trees. The methods apply to black oak, white oak, and some other species of the oak-hickory forest type.
Forest dynamics and its driving forces of sub-tropical forest in South China.
Ma, Lei; Lian, Juyu; Lin, Guojun; Cao, Honglin; Huang, Zhongliang; Guan, Dongsheng
2016-03-04
Tree mortality and recruitment are key factors influencing forest dynamics, but the driving mechanisms of these processes remain unclear. To better understand these driving mechanisms, we studied forest dynamics over a 5-year period in a 20-ha sub-tropical forest in the Dinghushan Nature Reserve, South China. The goal was to identify determinants of tree mortality/recruitment at the local scale using neighborhood analyses on some locally dominant tree species. Results show that the study plot was more dynamic than some temperate and tropical forests in a comparison to large, long-term forest dynamics plots. Over the 5-year period, mortality rates ranged from 1.67 to 12.33% per year while recruitment rates ranged from 0 to 20.26% per year. Tree size had the most consistent effect on mortality across species. Recruitment into the ≥1-cm size class consistently occurred where local con-specific density was high. This suggests that recruitment may be limited by seed dispersal. Hetero-specific individuals also influenced recruitment significantly for some species. Canopy species had low recruitment into the ≥1-cm size class over the 5-year period. In conclusion, tree mortality and recruitment for sixteen species in this plot was likely limited by seed dispersal and density-dependence.
NASA Astrophysics Data System (ADS)
Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie; Stambaugh, Michael C.; Gu, Lianhong
2018-01-01
Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought-pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and ‘background’ mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought-pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesized (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought-Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought-pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.
Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie; ...
2017-10-20
Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesizedmore » (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie
Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesizedmore » (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less
Geoecosystem-related dynamics of Acacia populations in the Israeli hyper-arid Arava Valley
NASA Astrophysics Data System (ADS)
Stavi, Ilan; Avni, Yoav; Yizhaq, Hezi; Bel, Golan; Ginat, Hanan
2017-04-01
Similar to other Middle-Eastern and North-African drylands, Acacia populations across the hyper-arid Arava Valley of Israel have experienced dramatic phonological changes during the last few decades. These changes have been expressed with high mortality rates and low recruitment rates. Species of the Acacia trees across the region include the A. pachyceras, A. raddiana, and A. tortilis. We studied the recruitment and decay rate of seedlings. Data obtained revealed that during a whole year after germination, overall survival rate of seedlings was 2%. Also, data showed that the main impediment to recruitment and survival of seedlings was insufficient access to soil-water, resulting in their mortality due to drying. Another, secondary impediment was imposed by erosional and depositional processes under heavy floods, resulting in the elimination or burial of seedlings. Modeling of results revealed that the drying of seedlings is defined with a constant mortality rate, which fits an exponential decay function. At the same time, seedling mortality due to fluvial processes is defined with a mortality rate that grows with time, which fits a Gaussian decay function. Also, we investigated the effect of latitude, basin size, and microhabitat on vitality of existing trees. Results showed negative effect of latitude on tree mortality, fitting with the generally greater precipitation rates in the northern- than in the southern- Arava Valley. At the same time, no effect on tree mortality was recorded for basin size, proposing that in such extreme drylands, runoff ratio becomes more non-linear with increasing watershed size because of the greater dominance of ephemeral stream transmission losses, as well as due to the partial storm area coverage. Nor did the location in microhabitat across the valley floor affect tree mortality rate, highlighting the bimodal effect of greater access to flood water, potentially increasing survivability of old trees, but at the same time, imposing risks for young trees. Additionally, we examined the impact of the type of channel's deposits on vitality and survivability of the Acacias. We found that compared to channels with a stony alluvium stratum, the mean tree density in channels incised in the red unit of the Early Pleistocene Zehiha Formation, characterized by hard layers of fine-grained reddish sediments, was 42% greater. Also, mean percentage of alive trees was significantly and 9% greater in these channels than that in the channels composed of stony alluvial stratum. The red unit was found to have a threefold greater available water capacity than that in the stony alluvium. It was concluded that once long-term droughts or climatic change occur in this hyper-arid region, the red unit deposit alleviates water stress for trees, increasing their vitality and survivability.
A possible link between life and death of a xeric tree in desert.
Xu, Gui-Qing; McDowell, Nate G; Li, Yan
2016-05-01
Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Griebel, A.; Maier, C.; Barton, C. V.; Metzen, D.; Renchon, A.; Boer, M. M.; Pendall, E.
2017-12-01
Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water stress and potentially accelerate mortality rates of infected trees during extreme events. This is an emerging problem in Australia, as mistletoe distribution is increasing and clear links between mistletoe infection and mortality have been established. However, direct observations about how mistletoes alter host physiological processes during extreme events are rare, which impedes our understanding of mechanisms underlying increased tree mortality rates. We addressed this gap by continuously monitoring stem and branch sap flow and a range of leaf traits of infected and uninfected trees of two co-occurring eucalypt species during a severe heatwave in south-eastern Australia. We demonstrate that mistletoes' leaf water potentials were maintained 30% lower than hosts' to redirect the trees' transpiration flow path towards mistletoe leaves. Eucalypt leaves reduced water loss through stomatal regulation when atmospheric dryness exceeded 2 kPa, but the magnitude of stomatal regulation in non-infected eucalypts differed by species (between 40-80%). Remarkably, when infected, sap flow rates of stems and branches of both eucalypt species remained unregulated even under extreme atmospheric dryness (>8 kPa). Our observations indicate that excessive water use of mistletoes likely increases xylem cavitation rates in hosts during prolonged droughts and supports that hydraulic failure contributes to increased mortality of infected trees. Hence, in order to accurately model the contribution of biotic disturbances to tree mortality under a changing climate, it will be crucial to increase our process-based understanding of the interaction between biotic and abiotic dynamics, especially to establish thresholds of critical cavitation rates of infected trees.
Randy Hamilton; Kevin Megown; James Ellenwood; Henry Lachowski; Paul Maus
2010-01-01
In recent years, unprecedented tree mortality has occurred throughout the national forests owing to insect infestations and disease outbreaks. The magnitude and extent of mortality, coupled with the lack of routine monitoring in some areas, has made it difficult to assess the damage, associated ecological impact, and fire hazard in a timely and cost-effective manner....
Development of post-fire crown damage mortality thresholds in ponderosa pine
James F. Fowler; Carolyn Hull Sieg; Joel McMillin; Kurt K. Allen; Jose F. Negron; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson
2010-01-01
Previous research has shown that crown scorch volume and crown consumption volume are the major predictors of post-fire mortality in ponderosa pine. In this study, we use piecewise logistic regression models of crown scorch data from 6633 trees in five wildfires from the Intermountain West to locate a mortality threshold at 88% scorch by volume for trees with no crown...
Tree condition and mortality following defoliation by the gypsy moth
Robert W. Campbell; Harry T. Valentine; Harry T. Valentine
1972-01-01
Relationships between expected defoliation and the subsequent condition and mortality rate among the defoliated trees are almost always important factors in deciding if, when, and where to take control action against a defoliator such as the gypsy moth, Porthetria dispar (L. )
Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V
2012-01-01
In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999
van der Ploeg, Tjeerd; Nieboer, Daan; Steyerberg, Ewout W
2016-10-01
Prediction of medical outcomes may potentially benefit from using modern statistical modeling techniques. We aimed to externally validate modeling strategies for prediction of 6-month mortality of patients suffering from traumatic brain injury (TBI) with predictor sets of increasing complexity. We analyzed individual patient data from 15 different studies including 11,026 TBI patients. We consecutively considered a core set of predictors (age, motor score, and pupillary reactivity), an extended set with computed tomography scan characteristics, and a further extension with two laboratory measurements (glucose and hemoglobin). With each of these sets, we predicted 6-month mortality using default settings with five statistical modeling techniques: logistic regression (LR), classification and regression trees, random forests (RFs), support vector machines (SVM) and neural nets. For external validation, a model developed on one of the 15 data sets was applied to each of the 14 remaining sets. This process was repeated 15 times for a total of 630 validations. The area under the receiver operating characteristic curve (AUC) was used to assess the discriminative ability of the models. For the most complex predictor set, the LR models performed best (median validated AUC value, 0.757), followed by RF and support vector machine models (median validated AUC value, 0.735 and 0.732, respectively). With each predictor set, the classification and regression trees models showed poor performance (median validated AUC value, <0.7). The variability in performance across the studies was smallest for the RF- and LR-based models (inter quartile range for validated AUC values from 0.07 to 0.10). In the area of predicting mortality from TBI, nonlinear and nonadditive effects are not pronounced enough to make modern prediction methods beneficial. Copyright © 2016 Elsevier Inc. All rights reserved.
Buttke, Danielle E.; Walker, Alicia; Huang, I-Shuo; Flewelling, Leanne; Lankton, Julia S.; Ballmann, Anne E.; Clapp, Travis; Lindsay, James; Zimba, Paul V.
2018-01-01
On 16 September 2015, a red tide (Karenia brevis) bloom impacted coastal areas of Padre Island National Seashore Park. Two days later and about 0.9 km inland, 30–40 adult green tree frogs (Hyla cinerea) were found dead after displaying tremors, weakness, labored breathing, and other signs of neurologic impairment. A rainstorm, accompanied by high winds, rough surf, and high tides, which could have aerosolized brevetoxin, occurred on the morning of the mortality event. Frog carcasses were healthy but contained significant brevetoxin in tissues. Tissue brevetoxin was also found in two dead or dying spotted ground squirrels (Xerospermophilus spilosoma) and a coyote (Canis latrans). Rainwater collected from the location of the mortality event contained brevetoxin. Mortality of green tree frog and ground squirrel mortality has not been previously attributed to brevetoxin exposure and such mortality suggested that inland toxin transport, possibly through aerosols, rainfall, or insects, may have important implications for coastal species.
Persistent reduced ecosystem respiration after insect disturbance in high elevation forests.
Moore, David J P; Trahan, Nicole A; Wilkes, Phil; Quaife, Tristan; Stephens, Britton B; Elder, Kelly; Desai, Ankur R; Negron, Jose; Monson, Russell K
2013-06-01
Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km(2) valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6-7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8-10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon. © 2013 John Wiley & Sons Ltd/CNRS.
Fortunel, Claire; Paine, C E Timothy; Fine, Paul V A; Mesones, Italo; Goret, Jean-Yves; Burban, Benoit; Cazal, Jocelyn; Baraloto, Christopher
2016-10-01
Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4-year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat-specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia. © 2016 John Wiley & Sons Ltd/CNRS.
Youngblood, A.; Grace, J.B.; Mciver, J.D.
2009-01-01
Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in turn depended on fire intensity, which was greater in units where thinning increased large woody fuels. These results have implications when deciding among management options for restoring ecosystem health in similar ponderosa pine and Douglas-fir forests. ?? 2009 by the Ecological Society of America.
Analysis of ecological thresholds in a temperate forest undergoing dieback
Newton, Adrian C.; Cantarello, Elena; Evans, Paul M.
2017-01-01
Positive feedbacks in drivers of degradation can cause threshold responses in natural ecosystems. Though threshold responses have received much attention in studies of aquatic ecosystems, they have been neglected in terrestrial systems, such as forests, where the long time-scales required for monitoring have impeded research. In this study we explored the role of positive feedbacks in a temperate forest that has been monitored for 50 years and is undergoing dieback, largely as a result of death of the canopy dominant species (Fagus sylvatica, beech). Statistical analyses showed strong non-linear losses in basal area for some plots, while others showed relatively gradual change. Beech seedling density was positively related to canopy openness, but a similar relationship was not observed for saplings, suggesting a feedback whereby mortality in areas with high canopy openness was elevated. We combined this observation with empirical data on size- and growth-mediated mortality of trees to produce an individual-based model of forest dynamics. We used this model to simulate changes in the structure of the forest over 100 years under scenarios with different juvenile and mature mortality probabilities, as well as a positive feedback between seedling and mature tree mortality. This model produced declines in forest basal area when critical juvenile and mature mortality probabilities were exceeded. Feedbacks in juvenile mortality caused a greater reduction in basal area relative to scenarios with no feedback. Non-linear, concave declines of basal area occurred only when mature tree mortality was 3–5 times higher than rates observed in the field. Our results indicate that the longevity of trees may help to buffer forests against environmental change and that the maintenance of old, large trees may aid the resilience of forest stands. In addition, our work suggests that dieback of forests may be avoidable providing pressures on mature and juvenile trees do not pass critical thresholds. PMID:29240842
Trends and Tipping Points of Drought-induced Tree Mortality
NASA Astrophysics Data System (ADS)
Huang, K.; Yi, C.; Wu, D.; Zhou, T.; Zhao, X.; Blanford, W. J.; Wei, S.; Wu, H.; Du, L.
2014-12-01
Drought-induced tree mortality worldwide has been recently reported in a review of the literature by Allen et al. (2010). However, a quantitative relationship between widespread loss of forest from mortality and drought is still a key knowledge gap. Specifically, the field lacks quantitative knowledge of tipping point in trees when coping with water stress, which inhibits the assessments of how climate change affects the forest ecosystem. We investigate the statistical relationships for different (seven) conifer species between Ring Width Index (RWI) and Standardized Precipitation Evapotranspiration Index (SPEI), based on 411 chronologies from the International Tree-Ring Data Bank across 11 states of the western United States. We found robust species-specific relationships between RWI and SPEI for all seven conifer species at dry condition. The regression models show that the RWI decreases with SPEI decreasing (drying) and more than 76% variation of tree growth (RWI) can be explained by the drought index (SPEI). However, when soil water is sufficient (i.e., SPEI>SPEIu), soil water is no longer a restrictive factor for tree growth and, therefore, the RWI shows a weak correlation with SPEI. Based on the statistical models, we derived the tipping point of SPEI (SPEItp) where the RWI equals 0, which means the carbon efflux by tree respiration equals carbon influx by tree photosynthesis. When the severity of drought exceeds this tipping point(i.e. SPEI
Improving estimates of tree mortality probability using potential growth rate
Das, Adrian J.; Stephenson, Nathan L.
2015-01-01
Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.
D. M. Jimenez; B. W. Butler; J. Reardon
2003-01-01
Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...
ABOVE- AND BELOWGROUND CONTROLS ON FOREST TREE GROWTH, MORTALITY AND SPATIAL PATTERN
We investigated the relative importance of above- and belowground competition in controlling growth, mortality and spatial patterns of trees in a nitrogen-limited, old-growth forest in western Oregon. To assess the effects of competition for light, we applied a spatially-explici...
ANTLR Tree Grammar Generator and Extensions
NASA Technical Reports Server (NTRS)
Craymer, Loring
2005-01-01
A computer program implements two extensions of ANTLR (Another Tool for Language Recognition), which is a set of software tools for translating source codes between different computing languages. ANTLR supports predicated- LL(k) lexer and parser grammars, a notation for annotating parser grammars to direct tree construction, and predicated tree grammars. [ LL(k) signifies left-right, leftmost derivation with k tokens of look-ahead, referring to certain characteristics of a grammar.] One of the extensions is a syntax for tree transformations. The other extension is the generation of tree grammars from annotated parser or input tree grammars. These extensions can simplify the process of generating source-to-source language translators and they make possible an approach, called "polyphase parsing," to translation between computing languages. The typical approach to translator development is to identify high-level semantic constructs such as "expressions," "declarations," and "definitions" as fundamental building blocks in the grammar specification used for language recognition. The polyphase approach is to lump ambiguous syntactic constructs during parsing and then disambiguate the alternatives in subsequent tree transformation passes. Polyphase parsing is believed to be useful for generating efficient recognizers for C++ and other languages that, like C++, have significant ambiguities.
Rogers, Brendan M; Solvik, Kylen; Hogg, Edward H; Ju, Junchang; Masek, Jeffrey G; Michaelian, Michael; Berner, Logan T; Goetz, Scott J
2018-06-01
Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems. © 2018 John Wiley & Sons Ltd.
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.
2017-01-01
Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.
NASA Astrophysics Data System (ADS)
Bréda, Nathalie; Badeau, Vincent
2008-09-01
The aim of this paper is to illustrate how some extreme events could affect forest ecosystems. Forest tree response can be analysed using dendroecological methods, as tree-ring widths are strongly controlled by climatic or biotic events. Years with such events induce similar tree responses and are called pointer years. They can result from extreme climatic events like frost, a heat wave, spring water logging, drought or insect damage… Forest tree species showed contrasting responses to climatic hazards, depending on their sensitivity to water shortage or temperature hardening, as illustrated from our dendrochronological database. For foresters, a drought or a pest disease is an extreme event if visible and durable symptoms are induced (leaf discolouration, leaf loss, perennial organs mortality, tree dieback and mortality). These symptoms here are shown, lagging one or several years behind a climatic or biotic event, from forest decline cases in progress since the 2003 drought or attributed to previous severe droughts or defoliations in France. Tree growth or vitality recovery is illustrated, and the functional interpretation of the long lasting memory of trees is discussed. A coupled approach linking dendrochronology and ecophysiology helps in discussing vulnerability of forest stands, and suggests management advices in order to mitigate extreme drought and cope with selective mortality.
Breshears, D.D.; Myers, O.B.; Meyer, Clifton W.; Barnes, F.J.; Zou, C.B.; Allen, Craig D.; McDowell, N.G.; Pockman, W. T.
2009-01-01
Global climate change is projected to produce warmer, longer, and more frequent droughts, referred to here as “global change-type droughts”, which have the potential to trigger widespread tree die-off. However, drought-induced tree mortality cannot be predicted with confidence, because long-term field observations of plant water stress prior to, and culminating in, mortality are rare, precluding the development and testing of mechanisms. Here, we document plant water stress in two widely distributed, co-occurring species, piñon pine (Pinus edulis) and juniper (Juniperus monosperma), over more than a decade, leading up to regional-scale die-off of piñon pine trees in response to global change-related drought. Piñon leaf water potentials remained substantially below their zero carbon assimilation point for at least 10 months prior to dying, in contrast to those of juniper, which rarely dropped below their zero-assimilation point. These data suggest that piñon mortality was driven by protracted water stress, leading to carbon starvation and associated increases in susceptibility to other disturbances (eg bark beetles), a finding that should help to improve predictions of mortality during drought.
Anderegg, William R L; Anderegg, Leander D L
2013-03-01
Global patterns of drought-induced forest die-off indicate that many forests may be sensitive to climate-driven mortality, but the lack of understanding of how trees and saplings die during drought hinders the projections of die-off, demographic bottlenecks and ecosystem trajectories. In this study, we performed a severe controlled drought experiment on saplings of Pinus edulis Engelm. and Juniperus osteosperma (Torr.) Little, two species that both experienced die-off in a recent 'climate change-type' drought. We examined the roles of carbohydrate and hydraulic changes in multiple tissues as the saplings died. We found that saplings of both species exhibited large degrees of loss of hydraulic conductivity prior to death. Neither species exhibited significant changes in carbohydrate concentrations in any tissue during the relatively short and severe imposed drought. Native hydraulic conductivity successfully predicted the degree of canopy mortality in both species, highlighting the importance of drought characteristics and tree attributes in influencing physiological pathways to mortality. The relationships elucidated here, as well as the differences between our results and previous findings in adult trees, can help inform mortality mechanisms in climate-vegetation models, especially for young trees, and to understand species response to severe drought across ontogeny.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.
Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less
NASA Astrophysics Data System (ADS)
Morillas, L.; Pangle, R. E.; Maurer, G. E.; Pockman, W. T.; McDowell, N.; Huang, C.-W.; Krofcheck, D. J.; Fox, A. M.; Sinsabaugh, R. L.; Rahn, T. A.; Litvak, M. E.
2017-12-01
Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by 65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contribution of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This postgirdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.
Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.; ...
2017-11-17
Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less
Predicting tree mortality following gypsy moth defoliation
D.E. Fosbroke; R.R. Hicks; K.W. Gottschalk
1991-01-01
Appropriate application of gypsy moth control strategies requires an accurate prediction of the distribution and intensity of tree mortality prior to defoliation. This prior information is necessary to better target investments in control activities where they are needed. This poster lays the groundwork for developing hazard-rating systems for forests of the...
Pre-epidemic mortality rates for common Phytophthora ramorum host tree species in California
T.M. Barrett
2006-01-01
Understanding the impacts of Phytophthora ramorum on forests will require knowledge of pre-disease distribution, abundance, and rates of change for affected species. This study estimated pre-epidemic mortality rates for nine common host tree species: bigleaf maple (Acer macrophyllum), California bay laurel (Umbellularia...
Richard K. Kobe; Gene E. Likens; Christopher Eagar
2002-01-01
To assess potential forest compositional responses to exchangeable soil calcium (Caexch) and aluminum (Alexch), we characterized light-dependent growth and mortality of tree seedlings under amendments of CaCl2 and AlCl3 at Hubbard Brook Experimental Forest (HBEF), New Hampshire...
Oleoresin characteristics of progeny of loblolly pines that escaped attack by southern pine beetle
B.L. Strom; R.A. Goyer; L.L. Ingram; G.D.L. Boyd; L.H. Lott
2002-01-01
Oleoresin characteristics of first-generation (F1) progeny of loblolly pines (Pinus taeda L.) that escaped mortality from the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), despite heavy mortality of neighbors, were evaluated and compared to trees from a general (i.e., trees...
Mortality of trees in loblolly pine plantations
Boris Zeide; Yujia Zhang
2006-01-01
The annual probability of mortality for planted loblolly pine (Pinus taeda L.) trees was estimated using a set of permanent plots covering the entire native range of the species. The recorded causes of death were infestation by the southern pine beetle (Dendroctonus frontalis Zimmermann) and other insects, lightning, and unknown...
Survival strategies in semi-arid climate for isohydric and anisohydric species
NASA Astrophysics Data System (ADS)
Guerin, M. F.; Gentine, P.; Uriarte, M.
2013-12-01
The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left) and time to carbon starvation (defined as 0-crossover of NSC content - bottom right) to Leaf Area Index (LAI) and root:shoot area.
The effect of advance growth on ponderosa pine seedling mortality at Challenge Experimental Forest
Dale O. Hall
1963-01-01
In seed-tree cuttings at Challenge Experimental Forest, preliminary data show that as advance-growth stocking (20 inches in d.b.h. or less ) increased from 11 t o 49 square feet, seedling mortality increased from 4 to 32 percent (based on stocked mil-acre plots). A comparable increase in the stocking of seed trees over 20 inches in d .b.h. did not increase mortality....
Carvalho-Oliveira, Regiani; Amato-Lourenço, Luís F; Moreira, Tiana C L; Silva, Douglas R Rocha; Vieira, Bruna D; Mauad, Thais; Saiki, Mitiko; Saldiva, Paulo H Nascimento
2017-02-01
The majority of epidemiological studies correlate the cardiorespiratory effects of air pollution exposure by considering the concentrations of pollutants measured from conventional monitoring networks. The conventional air quality monitoring methods are expensive, and their data are insufficient for providing good spatial resolution. We hypothesized that bioassays using plants could effectively determine pollutant gradients, thus helping to assess the risks associated with air pollution exposure. The study regions were determined from different prevalent respiratory death distributions in the Sao Paulo municipality. Samples of tree flower buds were collected from twelve sites in four regional districts. The genotoxic effects caused by air pollution were tested through a pollen abortion bioassay. Elements derived from vehicular traffic that accumulated in tree barks were determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF). Mortality data were collected from the mortality information program of Sao Paulo City. Principal component analysis (PCA) was applied to the concentrations of elements accumulated in tree barks. Pearson correlation and exponential regression were performed considering the elements, pollen abortion rates and mortality data. PCA identified five factors, of which four represented elements related to vehicular traffic. The elements Al, S, Fe, Mn, Cu, and Zn showed a strong correlation with mortality rates (R 2 >0.87) and pollen abortion rates (R 2 >0.82). These results demonstrate that tree barks and pollen abortion rates allow for correlations between vehicular traffic emissions and associated outcomes such as genotoxic effects and mortality data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Causes and implications of the correlation between forest productivity and tree mortality rates
Stephenson, Nathan L.; van Mantgem, Philip J.; Bunn, Andrew G.; Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.; Urban, Dean L.; Franklin, Jerry F.
2011-01-01
For only one of these four mechanisms, competition, can high mortality rates be considered to be a relatively direct consequence of high NPP. The remaining mechanisms force us to adopt a different view of causality, in which tree growth rates and probability of mortality can vary with at least a degree of independence along productivity gradients. In many cases, rather than being a direct cause of high mortality rates, NPP may remain high in spite of high mortality rates. The independent influence of plant enemies and other factors helps explain why forest biomass can show little correlation, or even negative correlation, with forest NPP.
Modeling missing remeasurement tree heights in forest inventory data
Raymond M. Sheffield; Callie J. Schweitzer
2002-01-01
Missing tree heights are often problematic in compiling forest inventory renleasureinent data. Heights for cut and niortality trees are usually not available; calculations of removal or mortality volumes must utilize either a modeled height at the time of tree death or the height assigned to the tree at a previous remeasurement. Less often, tree heights are not...
Are self-thinning constraints needed in a tree-specific mortality model?
Robert A. Monserud; Thomas Ledermann; Hubert Sterba
2005-01-01
Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDImax) or the -3/2 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen...
Risk Assessment for the Southern Pine Beetle
Andrew Birt
2011-01-01
The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...
Survival, mortality, and predators of red tree voles (Arborimus longicaudus)
James K. Swingle; Eric D. Forsman; Robert G. Anthony
2010-01-01
Although estimations of vital rates are important to understand population dynamics of small mammals, there is little information on survival rates and causes of mortality for many species. In 2002-2003, we estimated monthly and annual survival of 50 radiocollared red tree voles (Arborimus longicaudus) during a study of movements and diel activity...
Growth rate predicts mortality of Abies concolor in both burned and unburned stands
van Mantgem, Phillip J.; Stephenson, Nathan L.; Mutch, Linda S.; Johnson, Veronica G.; Esperanza, Annie M.; Parsons, David J.
2003-01-01
Tree mortality is often the result of both long-term and short-term stress. Growth rate, an indicator of long-term stress, is often used to estimate probability of death in unburned stands. In contrast, probability of death in burned stands is modeled as a function of short-term disturbance severity. We sought to narrow this conceptual gap by determining (i) whether growth rate, in addition to crown scorch, is a predictor of mortality in burned stands and (ii) whether a single, simple model could predict tree death in both burned and unburned stands. Observations of 2622 unburned and 688 burned Abies concolor (Gord. & Glend.) Lindl. (white fir) in the Sierra Nevada of California, U.S.A., indicated that growth rate was a significant predictor of mortality in the unburned stands, while both crown scorch and radial growth were significant predictors of mortality in the burned stands. Applying the burned stand model to unburned stands resulted in an overestimation of the unburned stand mortality rate. While failing to create a general model of tree death for A. concolor, our findings underscore the idea that similar processes may affect mortality in disturbed and undisturbed stands.
NASA Astrophysics Data System (ADS)
Sinha, T.; Gangodagamage, C.; Ale, S.; Frazier, A. G.; Giambelluca, T. W.; Kumagai, T.; Nakai, T.; Sato, H.
2017-12-01
Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.
Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F
2017-01-01
Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Zuleta, Daniel; Duque, Alvaro; Cardenas, Dairon; Muller-Landau, Helene C; Davies, Stuart J
2017-10-01
Extreme climatic events affecting the Amazon region are expected to become more frequent under ongoing climate change. In this study, we assessed the responses to the 2010 drought of over 14,000 trees ≥10 cm dbh in a 25 ha lowland forest plot in the Colombian Amazon and how these responses varied among topographically defined habitats, with tree size, and with species wood density. Tree mortality was significantly higher during the 2010-2013 period immediately after the drought than in 2007-2010. The post-drought increase in mortality was stronger for trees located in valleys (+243%) than for those located on slopes (+67%) and ridges (+57%). Tree-based generalized linear mixed models showed a significant negative effect of species wood density on mortality and no effect of tree size. Despite the elevated post-drought mortality, aboveground biomass increased from 2007 to 2013 by 1.62 Mg ha -1 yr -1 (95% CI 0.80-2.43 Mg ha -1 yr -1 ). Biomass change varied among habitats, with no significant increase on the slopes (1.05, 95% CI -0.76 to 2.85 Mg ha -1 yr -1 ), a significant increase in the valleys (1.33, 95% CI 0.37-2.34 Mg ha -1 yr -1 ), and a strong increase on the ridges (2.79, 95% CI 1.20-4.21 Mg ha -1 yr -1 ). These results indicate a high carbon resilience of this forest to the 2010 drought due to habitat-associated and interspecific heterogeneity in responses including directional changes in functional composition driven by enhanced performance of drought-tolerant species that inhabit the drier ridges. © 2017 by the Ecological Society of America.
Gu, Lianhong; Pallardy, Stephen G.; Hosman, K. P.; ...
2015-05-18
Abstract. Using decade-long continuous observations of tree mortality and predawn leaf water potential (ψpd) at the Missouri Ozark AmeriFlux (MOFLUX) site, we studied how the mortality of important tree species varied and how such variations may be predicted. Water stress determined inter-annual variations in tree mortality with a time delay of 1 year or more, which was correlated fairly tightly with a number of quantitative predictors formulated based on ψpd and precipitation regimes. Predictors based on temperature and vapor pressure deficit anomalies worked reasonably well, particularly for moderate droughts. The exceptional drought of the year 2012 drastically increased the mortalitymore » of all species, including drought-tolerant oaks, in the subsequent year. The drought-influenced tree mortality was related to the species position along the spectrum of ψ pd regulation capacity with those in either ends of the spectrum being associated with elevated risk of death. Regardless of species and drought intensity, the ψpd of all species recovered rapidly after sufficiently intense rain events in all droughts. This result, together with a lack of immediate leaf and branch desiccation, suggests an absence of catastrophic hydraulic disconnection in the xylem and that tree death was caused by significant but indirect effects. Species differences in the capacity of regulating ψ pd and its temporal integral were magnified under moderate drought intensities but diminished towards wet and dry extremes. Severe droughts may overwhelm the capacity of even drought-tolerant species to maintain differential levels of water potential as the soil becomes exhausted of available water in the rooting zone, thus rendering them more susceptible to death if predisposed by other factors such as age.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lianhong; Pallardy, Stephen G.; Hosman, K. P.
Abstract. Using decade-long continuous observations of tree mortality and predawn leaf water potential (ψpd) at the Missouri Ozark AmeriFlux (MOFLUX) site, we studied how the mortality of important tree species varied and how such variations may be predicted. Water stress determined inter-annual variations in tree mortality with a time delay of 1 year or more, which was correlated fairly tightly with a number of quantitative predictors formulated based on ψpd and precipitation regimes. Predictors based on temperature and vapor pressure deficit anomalies worked reasonably well, particularly for moderate droughts. The exceptional drought of the year 2012 drastically increased the mortalitymore » of all species, including drought-tolerant oaks, in the subsequent year. The drought-influenced tree mortality was related to the species position along the spectrum of ψ pd regulation capacity with those in either ends of the spectrum being associated with elevated risk of death. Regardless of species and drought intensity, the ψpd of all species recovered rapidly after sufficiently intense rain events in all droughts. This result, together with a lack of immediate leaf and branch desiccation, suggests an absence of catastrophic hydraulic disconnection in the xylem and that tree death was caused by significant but indirect effects. Species differences in the capacity of regulating ψ pd and its temporal integral were magnified under moderate drought intensities but diminished towards wet and dry extremes. Severe droughts may overwhelm the capacity of even drought-tolerant species to maintain differential levels of water potential as the soil becomes exhausted of available water in the rooting zone, thus rendering them more susceptible to death if predisposed by other factors such as age.« less
NASA Astrophysics Data System (ADS)
Millar, C. I.; Westfall, R. D.; Delany, D. L.
2010-12-01
Widespread forest mortality in high-elevation forests has been increasing across western North American mountains in recent years, with climate, insects, and disease the primary causes. Subalpine forests in the eastern Sierra Nevada, by contrast, have experienced far less mortality than other ranges, and mortality events have been patchy and episodic. This situation, and lack of significant effect of non-native white-pine blister rust, enable investigation of fine-scale response of two subalpine Sierran species, whitebark pine (Pinus albicaulis, PiAl) and limber pine (P. flexilis, PiFl), to climate variability. We report similarities and differences between the two major mortality events in these pines in the last 150 years: 1988-1992 for PiFl and 2006-ongoing for PiAl. In both species, the events occurred within monotypic, closed-canopy, relatively young stands (< 200 yrs PiAl, < 300 yrs in PiFl); were localized to central-eastern Sierra Nevada; and occurred at 2740-2840 m along the eastern edge of the escarpment on north/northeast aspects with slopes > 40%. Mortality patches averaged 40-80 ha in both species, with mean stand mortality of trees > 10 cm diameter 91% in PiAl and 60% in PiFl. The ultimate cause of tree death was mountain pine beetle (Dendroctonus ponderosae) in both species, with increasing 20th/21st C minimum temperatures combined with drought the pre-conditioning factors. Overall growth in the past 150 years suggests that PiFl is more drought hardy than PiAl but responds sensitively to the combined effects of drought and increasing warmth. After the 1988-1992 drought, surviving PiFl recovered growth. PiAl trees grew very poorly during that drought, and continued poor growth in the years until 2006 when the mortality event occurred in PiAl. A significant species effect is the apparent difference in levels of within-stand genetic diversity for climate factors. Differential growth between 19th C (cool, wet) and 20th/21st C (warming, drying) of PiFl trees that died versus survivors indicates that considerable within-stand genetic diversity for climate existed in PiFl. For PiFl, the late 20th C mortality event acted as strong natural selection to improve within-stand fitness for warmer and drier conditions. PiFl trees that survived the 1988-1992 drought remained healthy through subsequent droughts, including the drought that is currently causing PiAl mortality. By contrast, the PiAl stands do not appear to have contained adaptive genetic diversity for drought and warmth, and PiAl trees growth behavior over the past 150 years was similar in pattern to the PiFl trees that died. As a result, the mortality event in PiAl is creating forest openings, with unknown future stand conditions, rather than rapid within-species adaptation that occurred in PiFl.
Lutz, James A; Larson, Andrew J; Furniss, Tucker J; Donato, Daniel C; Freund, James A; Swanson, Mark E; Bible, Kenneth J; Chen, Jiquan; Franklin, Jerry F
2014-08-01
Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P < 0.001). Density-dependent competitive interactions strongly shape forest communities even five centuries after stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.
2017-01-01
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.
Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G
2017-09-01
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.
Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less
Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.
Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter
2012-02-01
Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and growth patterns at treeline. Further, our results show that the relative importance of different environmental variables for tree seedlings changes during the juvenile phase as they grow taller.
NASA Astrophysics Data System (ADS)
Cooper, L. A.; Ballantyne, A. P.; Landguth, E.; Holden, Z. A.
2014-12-01
Forest disturbances have important impacts on regional and global carbon-climate feedbacks. Tree mortality resulting from disturbance can cause large areas to transition from carbon (C) sinks to C sources. Although severe acute disturbance, such as fire, has been quantified extensively in the literature, the impacts of disturbance that cause more spatially heterogeneous, gradual, mortality, such as beetle kill, are more difficult to quantify and have not been studied as extensively. Combining a 13 year time series of 250 meter, 16-day, MODIS Enhanced Vegetation Index (EVI) data with field data on insect mortality collected by the U.S. Forest Service Forest Inventory and Analysis (FIA) program, we have produced large-scale maps of dead woody biomass resulting from insect epidemics. Using a change detection algorithm, we were able to determine the timing and severity of changes in EVI due to insect epidemics across the western United States. A model was created to predict biomass based on EVI and a variety of environmental variables. Using the difference between post- and pre-outbreak EVI values, we were able to estimate the loss of biomass during insect outbreaks. These biomass data were then converted to carbon as a percentage of dry biomass using the Jenkins equations. This spatially explicit map of C currently stored in beetle kill wood will allow us to assess the vulnerability of this C to re-entering the atmosphere as CO2 via combustion or decomposition.
Tree mortality in the eastern Mediterranean, causes and implications under climatic change
NASA Astrophysics Data System (ADS)
Sarris, Dimitrios; Iacovou, Valentina; Hoch, Guenter; Vennetier, Michel; Siegwolf, Rolf; Christodoulakis, Dimitrios; Koerner, Christian
2015-04-01
The eastern Mediterranean has experienced repeated incidents of forest mortality related to drought in recent decades. Such events may become more frequent in the future as drought conditions are projected to further intensify due to global warming. We have been investigating the causes behind such forest mortality events in Pinus halepensis, (the most drought tolerant pine in the Mediterranean). We cored tree stems and sampled various tissue types from dry habitats close to sea level and explored growth responses, stable isotope signals and non-structural carbohydrate (NSC) concentrations. Under intense drought that coincided with pine desiccation events in natural populations our result indicate a significant reduction in tree growth, the most significant in more than a century despite the increase in atmospheric CO2 concentrations in recent decades. This has been accompanied by a lengthening in the integration periods of rainfall needed for pine growth, reaching even 5-6 years before and including the year of mortality occurrence. Oxygen stable isotopes indicate that these signals were associated with a shift in tree water utilization from deeper moisture pools related to past rainfall events. Furthermore, where the driest conditions occur, pine carbon reserves were found to increase in stem tissue, indicating that mortality in these pines cannot be explained by carbon starvation. Our findings suggest that for pine populations that are already water limited (i) a further atmospheric CO2 increase will not compensate for the reduction in growth because of a drier climate, (ii) hydraulic failure appears as the most likely cause of pine desiccation, as no shortage occurs in tree carbon reserves, (iii) a further increase in mortality events may cause these systems to become carbon sources.
What determines tree mortality in dry environments? A multi-perspective approach.
Dorman, Michael; Svoray, Tal; Perevolotsky, Avi; Moshe, Yitzhak; Sarris, Dimitrios
2015-06-01
Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.
Robert E. Keane
2006-01-01
The Tree Data (TD) methods are used to sample individual live and dead trees on a fixed-area plot to estimate tree density, size, and age class distributions before and after fire in order to assess tree survival and mortality rates. This method can also be used to sample individual shrubs if they are over 4.5 ft tall. When trees are larger than the user-specified...
Regional vegetation die-off in response to global-change-type drought
Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, Craig D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M. Lisa; Belnap, J.; Anderson, J.J.; Myers, O.B.; Meyer, Clifton W.
2005-01-01
Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.
Regional vegetation die-off in response to global-change-type drought
Breshears, David D.; Cobb, Neil S.; Rich, Paul M.; Price, Kevin P.; Allen, Craig D.; Balice, Randy G.; Romme, William H.; Kastens, Jude H.; Floyd, M. Lisa; Belnap, Jayne; Anderson, Jesse J.; Myers, Orrin B.; Meyer, Clifton W.
2005-01-01
Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions. PMID:16217022
Can forest dieback and tree death be predicted by prior changes in wood anatomy?
NASA Astrophysics Data System (ADS)
Colangelo, Michele; Julio Camarero, Jesus; De Micco, Veronica; Borghetti, Marco; Gentilesca, Tiziana; Sanchez-Salguero, Raul; Ripullone, Francesco
2017-04-01
Climate warming is expected to amplify drought stress resulting in more intense and widespread dieback episodes and increasing mortality rates. Studies on quantitative wood anatomy and dendrochronology have demonstrated their potential to supply useful information on the causes of tree decline, although this approach is basically observational and retrospective. Moreover, the long-term reconstruction of wood anatomical features, strictly linked to the evolution of xylem anatomy plasticity through time, allow investigating hydraulic adjustments of trees. In this study, we analyzed wood-anatomical variables in two Italian oak forests where recent episodes of dieback and mortality have been reported. We analyzed in coexisting now-dead and living trees the following wood-anatomical variables: annual tree-ring area, earlywood (EW) and latewood (LW) areas, absolute and relative (%) areas occupied by vessels in the EW and LW, EW and LW vessel areas, EW and LW vessel density and vessel diameter classification. We also calculated the hydraulic diameter (Dh) for all vessels measured within each ring by weighting individual conduit diameters to correspond to the average Hagen-Poiseuille lumen theoretical hydraulic conductivity for a vessel size. Wood-anatomical analyses showed that declining and dead trees were more sensitive to drought stress compared to non declining trees, indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. We discuss the results and implications focusing on those proved more sensitive to the phenomena of decline and mortality.
Carbon dynamics in central US Rockies lodgepole pine type after mountain pine beetle outbreaks
E. Matthew Hansen; Michael C. Amacher; Helga Van Miegroet; James N. Long; Michael G. Ryan
2015-01-01
Mountain pine beetle-caused tree mortality has substantially changed live tree biomass in lodgepole pine ecosystems in western North America since 2000. We studied how beetle-caused mortality altered ecosystem carbon (C) stocks and productivity using a central US Rockies age sequence of ecosystem recovery after infestation, augmented with growth-and-yield...
Tree injury and mortality in fires: developing process-based models
Bret W. Butler; Matthew B. Dickinson
2010-01-01
Wildland fire managers are often required to predict tree injury and mortality when planning a prescribed burn or when considering wildfire management options; and, currently, statistical models based on post-fire observations are the only tools available for this purpose. Implicit in the derivation of statistical models is the assumption that they are strictly...
Climatic stress increases forest fire severity across the western United States
Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint
2013-01-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...
E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner
2006-01-01
Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...
Are self-thinning contraints needed in a tree-specific mortality model.
Robert A. Monserud; Thomas Ledermann; Hubert Sterba
2005-01-01
Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDI,) or the -312 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen specifically because it does not...
Delayed conifer tree mortality following fire in California
Sharon M. Hood; Sheri L. Smith; Daniel R. Cluck
2007-01-01
Fire injury was characterized and survival monitored for 5,246 trees from five wildfires in California that occurred between 1999 and 2002. Logistic regression models for predicting the probability of mortality were developed for incense-cedar, Jeffrey pine, ponderosa pine, red fir and white fir. Two-year post-fire preliminary models were developed for incense-cedar,...
Postfire mortality of ponderosa pine and Douglas-fir: a review of methods to predict tree death
James F. Fowler; Carolyn Hull Sieg
2004-01-01
This review focused on the primary literature that described, modeled, or predicted the probability of postfire mortality in ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii). The methods and measurements that were used to predict postfire tree death tended to fall into two general categories: those focusing...
Population Dynamics of Southern Pine Beetle in Forest Landscapes
Andrew Birt
2011-01-01
Southern pine beetle (SPB) is an important pest of Southeastern United States pine forests. Periodic regional outbreaks are characterized by localized areas of tree mortality (infestations) surrounded by areas with little or no damage. Ultimately, this spatiotemporal pattern of tree mortality is driven by the dynamics of SPB populationsâmore specifically, by rates of...
Post-fire tree stress and growth following smoldering duff fires
Morgan Varner; Francis E. Putz; Robert J. Mitchell; J. Kevin Hiers; Joseph J. O’Brien; Doria R. Gordon
2009-01-01
Understanding the proximate causes of post-fire conifer mortality due to smoldering duff fires is essential to the restoration and management of coniferous forests throughout North America. To better understand duff fire-caused mortality, we investigated tree stress and radial growth following experimental fires in a long-unburned forest on deep sands in northern...
Seven chemicals fail to protect Ponderosa pine from Armillaria root disease in central Washington.
Gregory M. Filip; Lewis F. Roth
1987-01-01
Chemicals were applied once to the root collars of small-diameter ponderosa pine (Pinus ponderosa Dougl. ex Laws.) to prevent mortality caused by Armillaria obscura (Pers.) Herink Roll-Harisen (A. meilea sensu lato). After 10 years, none of the 15 treatments appeared to reduce mortality in treated trees vs. untreated trees....
S.J. Hollenhorst; S.M. Brock; W.A. Freimund; M.J. Twery
1991-01-01
Using the Scenic Beauty Estimator (SBE) approach, near-view color photographs were taken of 25 forested sites exhibiting gypsy moth induced tree mortality from 6% - 97%. A quadratic function of tree mortality by preference rating best described the variability in ratings ( R2 = .60). The effect of flowering mountain laurel flowers was also...
Climate-induced tree mortality: Earth system consequences
Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.
2010-01-01
One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).
Satellite image analysis for surveillance, vegetation and climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, D Michael
2011-01-18
Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millionsmore » of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and machine learning theory to monitor tree mortality at the level of individual trees.« less
Spatial elements of mortality risk in old-growth forests
Das, Adrian; Battles, John; van Mantgem, Phillip J.; Stephenson, Nathan L.
2008-01-01
For many species of long-lived organisms, such as trees, survival appears to be the most critical vital rate affecting population persistence. However, methods commonly used to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost certainly do not account for important spatial processes. Our goal in this study was to detect and, if present, to quantify the relevance of such processes. For this purpose, we examined purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of California, USA. The analysis was performed using data from nine fully mapped long-term monitoring plots.In three cases, the results unequivocally supported the inclusion of spatial information in models used to predict mortality. For Abies concolor, our results suggested that growth rate may not always adequately capture increased mortality risk due to competition. We also found evidence of a facilitative effect for this species, with mortality risk decreasing with proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of being crushed were strongly improved by the inclusion of a simple index of spatial proximity.Not only did spatial indices improve models, those improvements were relevant for mortality prediction. For P. lambertiana, spatial factors were important for estimation of mortality risk regardless of growth rate. For A. concolor, although most of the population fell within spatial conditions in which mortality risk was well described by growth, trees that died occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A. concolor become increasingly dense, such spatial factors are likely to become increasingly important. In general, models that fail to account for spatial pattern are at risk of failure as conditions change.
Quantification and identification of lightning damage in tropical forests.
Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo
2017-07-01
Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.
Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman
2015-01-01
Urban tree survival is essential to sustain the ecosystem services of urban forests and monitoring is needed to accurately assess benefits. While some urban forestry studies have reported street tree survival, little is known about the factors influencing residential yard tree survival, especially over the long-term. We assessed residential shade tree survival in...
Bladon, Kevin D; Silins, Uldis; Landhäusser, Simon M; Messier, Christian; Lieffers, Victor J
2007-07-01
Variable retention harvesting (VRH) has been proposed as a silvicultural practice to maintain biodiversity and ecosystem integrity. No previous study has examined tree carbon isotope discrimination to provide insights into water stress that could lead to dieback and mortality of trees following VRH. We measured and compared the carbon isotope ratios (delta(13)C) in stem wood of trembling aspen (Populus tremuloides Michx.) before and after VRH. Eight trees were sampled from isolated residual, edge and control (interior of unharvested stand) positions from each of seven plots in three regions (Calling Lake and Drayton Valley, Alberta and Lac Duparquet, Québec). After VRH, the general trend in mean delta(13)C was residual > edge > control trees. Although this trend is indicative of water stress in residual trees, it also suggests that edge trees received some sheltering effect, reducing their stress compared with that of residuals. A strong inverse relationship was found between the delta(13)C values and the mean annual precipitation in each region. The trend in mean delta(13)C signature was Calling Lake > Drayton Valley > Lac Duparquet trees. These results suggest that residual or edge trees in drier regions are more likely to suffer water stress following VRH. We also observed a trend of greater delta(13)C in stout trees compared with slender trees, both before and after VRH. The evidence of greater water stress in stout trees likely occurred because of a positive relationship between stem diameter and crown volume per basal area. Our results provide evidence that water stress could be the driving mechanism leading to dieback and mortality of residual trees shortly after VRH. Additionally, the results from edge trees indicate that leaving hardwood residuals in larger patches or more sheltered landscape positions could reduce the water stress to which these trees are subjected, thereby reducing dieback and mortality.
Plant competition and the implications for tropical forest carbon dynamics
NASA Astrophysics Data System (ADS)
Schnitzer, Stefan
2016-04-01
Tropical forests store more than one third of all terrestrial carbon and account for over one third of terrestrial net primary productivity, and thus they are a critical component of the global carbon cycle. Nearly all of the aboveground carbon in tropical forests is held in tree biomass, and long-term carbon fluxes are balanced largely by tree growth and tree death. Therefore, the vast majority of research on tropical forest carbon dynamics has focused on the growth and mortality of canopy trees. By contrast, lianas (woody vines) contribute little biomass relative to trees. However, competition between lianas (woody vines) and trees may result in forest-wide carbon loss if lianas fail to accumulate the carbon that they displace in trees. We tested this hypotheses using a series of large-scale liana-removal studies in the Republic of Panama. We found that lianas limited tree growth and increased tree mortality, thus significantly reducing carbon accumulation in trees. Lianas themselves, however, did not compensate for the carbon that they displaced in trees. Lianas lower the capacity of tropical forests to uptake and store carbon, and the recently observed increases in liana abundance in neotropical forests will likely result in further reductions of carbon uptake.
Contagious seed dispersal beneath heterospecific fruiting trees and its consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwit, Charles; Levey, Douglas, J.; Greenberg, Cathyrn, H.
2004-05-03
Kwit, Charles, D.J. Levey and Cathryn H. Greenberg. 2004. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. Oikos. 107:303-308 A n hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case bymore » generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) I lex opaca trees than under non-fruiting (male) I lex trees in temperate hardwood forest settings in South Carolina, U SA . To determine if density of Cornus and/or I lex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and I lex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and I lex background seed densities. H igher densities of I lex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.« less
Yuste, Jorge Curiel; Barba, Josep; Fernandez-Gonzalez, Antonio José; Fernandez-Lopez, Manuel; Mattana, Stefania; Martinez-Vilalta, Jordi; Nolis, Pau; Lloret, Francisco
2012-01-01
The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid-state Nuclear Magnetic Resonance (CP-MAS 13C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils. PMID:23301169
Stewardship matters: Case studies in establishment success of urban trees
Lara A. Roman; Lindsey A. Walker; Catherine M. Martineau; David J. Muffly; Susan A. MacQueen; Winnie Harris
2015-01-01
Urban tree planting initiatives aim to provide ecosystem services that materialize decades after planting, therefore understanding tree survival and growth is essential to evaluating planting program performance. Tree mortality is relatively high during the establishment phase, the first few years after planting. Qualitative assessments of programs with particularly...
Allen, Craig D.; Breshears, David D.; McDowell, Nathan G.
2015-01-01
Patterns, mechanisms, projections, and consequences of tree mortality and associated broad-scale forest die-off due to drought accompanied by warmer temperatures—“hotter drought”, an emerging characteristic of the Anthropocene—are the focus of rapidly expanding literature. Despite recent observational, experimental, and modeling studies suggesting increased vulnerability of trees to hotter drought and associated pests and pathogens, substantial debate remains among research, management and policy-making communities regarding future tree mortality risks. We summarize key mortality-relevant findings, differentiating between those implying lesser versus greater levels of vulnerability. Evidence suggesting lesser vulnerability includes forest benefits of elevated [CO2] and increased water-use efficiency; observed and modeled increases in forest growth and canopy greening; widespread increases in woody-plant biomass, density, and extent; compensatory physiological, morphological, and genetic mechanisms; dampening ecological feedbacks; and potential mitigation by forest management. In contrast, recent studies document more rapid mortality under hotter drought due to negative tree physiological responses and accelerated biotic attacks. Additional evidence suggesting greater vulnerability includes rising background mortality rates; projected increases in drought frequency, intensity, and duration; limitations of vegetation models such as inadequately represented mortality processes; warming feedbacks from die-off; and wildfire synergies. Grouping these findings we identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively. We also present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter drought, consistent with fundamental physiology; (5) shorter droughts occur more frequently than longer droughts and can become lethal under warming, increasing the frequency of lethal drought nonlinearly; and (6) mortality happens rapidly relative to growth intervals needed for forest recovery. These high-confidence drivers, in concert with research supporting greater vulnerability perspectives, support an overall viewpoint of greater forest vulnerability globally. We surmise that mortality vulnerability is being discounted in part due to difficulties in predicting threshold responses to extreme climate events. Given the profound ecological and societal implications of underestimating global vulnerability to hotter drought, we highlight urgent challenges for research, management, and policy-making communities.
Forest responses to increasing aridity and warmth in the southwestern United States.
Williams, A Park; Allen, Craig D; Millar, Constance I; Swetnam, Thomas W; Michaelsen, Joel; Still, Christopher J; Leavitt, Steven W
2010-12-14
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈ 2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈ 7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈ 18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.
Forest responses to increasing aridity and warmth in the southwestern United States
Williams, A.P.; Allen, Craig D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.
2010-01-01
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.
Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data
Liang, Lu; Chen, Yanlei; Hawbaker, Todd J.; Zhu, Zhi-Liang; Gong, Peng
2014-01-01
Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae) outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.
F.W. Davis; M.I. Borchert,; R.K. Meentemeyer; A. Flint; D.M. Rizzo
2010-01-01
Mixed-evergreen forests of central coastal California are being severely impacted by the recently introduced plant pathogen, Phytophthora ramorum. We collected forest plot data using a multi-scale sampling design to characterize pre-infestation forest composition and ongoing tree mortality along environmental and time-since-fire gradients. Vegetation pattern was...
Distribution and extent of tree mortality in North Central hardwood forests
J. Michael Vasievich; Sharon L. Hobrla; Mark H. Hansen
1997-01-01
Forest inventory data shows that biophysical agents and human causes account for annual losses of more than a half-billion ft³ of timber in North Central hardwood forests. This paper reports on an analysis of forest inventory data to determine the extent and distribution of tree mortality in four forest types - Aspen-Birch, Elm-Ash-Cottonwood, Maple-Beech-...
The densest loblolly pine stand and its silvicultural implications
Boris Zeide; John Stephens
2010-01-01
Estimation of stand density index has been based on the assumption that the only cause of mortality in fully stocked stands is diameter growth. For example, when average diameter increases by 1 percent, a fixed proportion (1.6 percent) of trees must die, regardless of age, average tree size, and other factors. This balance between growth and mortality entails the...
James A. Moore; David A Hamilton; Yu Xiao; John Byrne
2004-01-01
Individual tree mortality models for western white pine (Pinus monticola Dougl. ex D. Don), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.), western redcedar (Thuja plicata Donn ex. D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western larch (Larix occidentalis Nutt.) were developed using data...
Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis
Sharon M. Hood
2010-01-01
This report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United States that are adapted to survive frequent fire are included. Treatment options that...
J.E. Lundquist; A.E. Camp; M.L. Tyrell; S.J. Seybold; P. Cannon; D.J. Lodge
2011-01-01
Trees do not just die; there is always a primary cause, and often contributing factors. Trees need adequate quantities of water, heat, light, nutrients, carbon dioxide, oxygen, and other abiotic resources to sustain life, growth, and reproduction. When these factors are deficient or excessive, they cause mortality. According to the concept of baseline mortality (...
Barbara S. Burns; Henry, Jr. Trial
2000-01-01
Following an outbreak of spring hemlock looper in 1991, ten hemlocks in each of fifteen study plots were monitored annually through 1999. Although some mortality occurred within two years after defoliation, and additional mortality occurred in plots which were subsequently disturbed by logging, most defoliated trees recovered. Twenty-four percent of the trees with 90%...
Alexandra M. Kosiba; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen
2013-01-01
Red spruce (Picea rubens Sarg.) decline has been quantitatively attributed to foliar winter injury caused by freezing damage. The results of this injury include foliar mortality, crown deterioration, and negative carbon (C) balances that can lead to tree health declines and eventual mortality. In 2003, a severe region-wide event damaged over 90% of...
Development of a sampling system for Armillaria rhizomorphs in mixed oak stands: a progress report
Mark J. Twery; Philip M. Wargo
1991-01-01
The assessment of the problems caused by gypsy moth is dependent on a number of characteristics of a forest stand. One of the main impacts of defoliation is the mortality of standing trees. Mortality is seldom caused directly by defoliation, but is usually associated with a secondary agent which attacks the tree in its weakened condition.
C.S. Kinkead; M.C. Stambaugh; J.M. Kabrick
2017-01-01
Oak-dominated (Quercus Spp.) woodlands are commonly thinned and burned in the Ozark Highlands to prevent canopy closure and regenerate desired species, despite a lack of information regarding tree mortality, scarring, and growth in residual stands. Our study compared stand- and tree-level responses after two prescribed burns across four treatments...
J. C. Vandygriff; E. Hansen; Barbara Bentz; K. K. Allen; G. D. Amman; L. A. Rasmussen
2015-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility...
Martinson, S J; Fernádez Ajó, A A; Martínez, A S; Krivak-Tetley, F E; Villacide, J M; Ayres, M P; Corley, J C
2018-04-18
Accidental and intentional global movement of species has increased the frequency of novel plant-insect interactions. In Patagonia, the European woodwasp, Sirex noctilio, has invaded commercial plantations of North American pines. We compared the patterns of resin defenses and S. noctilio-caused mortality at two mixed-species forests near San Carlos de Bariloche, Argentina. We observed lower levels of resin flow and higher levels of mortality in Pinus contorta compared with Pinus ponderosa. In general, S. noctilio attacked trees with lower resin compared with neighboring trees. Resin production in P. ponderosa was not related to growth rates, but for P. contorta, slower growing trees produced less resin than faster growing conspecifics. For all infested trees, attack density and number of drills (ovipositor probes) per attack did not vary with resin production. Most attacks resulted in one or two drills. Attack rates and drills/attack were basically uniform across the bole of the tree except for a decrease in both drills/attack and attack density in the upper portion of the crown, and an increase in the attack density for the bottom 10% of the tree. Planted pines in Patagonia grow faster than their counterparts in North America, and produce less resin, consistent with the growth-differentiation balance hypothesis. Limited resin defenses may help to explain the high susceptibility of P. contorta to woodwasps in Patagonia.
Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary; ...
2016-03-17
Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary
Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Ranson, Kenneth J.; Im, Sergey T.; Oskorbin, Pavel A.; Dvinskaya, Maria L.; Ovchinnikov, Dmitriy V.
2013-01-01
The goal of the study was to provide an analysis of climate impact before, during, and after the Little Ice Age (LIA) on the larch (Larix gmelinii) tree line at the northern extreme of Siberian forests. Recent decadal climate change impacts on the tree line, regeneration abundance, and age structure were analyzed. The location of the study area was within the forest-tundra ecotone (elevation range 170-450 m) in the Anabar Plateau, northern Siberia. Field studies were conducted along elevational transects. Tree natality/mortality and radial increment were determined based on dendrochronology analyses. Tree morphology, number of living and subfossil trees, regeneration abundance, and age structure were studied. Locations of pre-LIA, LIA, and post-LIA tree lines and refugia boundaries were established. Long-term climate variables and drought index were included in the analysis. It was found that tree mortality from the 16th century through the beginning of the 19th century caused a downward tree line recession. Sparse larch stands experienced deforestation, transforming into tundra with isolated relict trees. The maximum tree mortality and radial growth decrease were observed to have occurred at the beginning of 18th century. Now larch, at its northern boundary in Siberia, is migrating into tundra areas. Upward tree migration was induced by warming in the middle of the 19th century. Refugia played an important role in repopulation of the forest-tundra ecotone by providing a seed source and shelter for recruitment of larch regeneration. Currently this ecotone is being repopulated mainly by tree cohorts that were established after the 1930s. The last two decades of warming did not result in an acceleration of regeneration recruitment because of increased drought conditions. The regeneration line reached (but did not exceed) the pre-LIA tree line location, although contemporary tree heights and stand densities are comparatively lower than in the pre-LIA period. The mean rate of tree line upward migration has been about 0.35 m/yr (with a range of 0.21-0.58), which translates to a tree line response to temperature of about 55 m/deg C.
Kane, Jeffrey M.; Varner, J. Morgan; Metz, Margaret R.; van Mantgem, Phillip J.
2017-01-01
Increasing evidence that pervasive warming trends are altering disturbance regimes and their interactions with fire has generated substantial interest and debate over the implications of these changes. Previous work has primarily focused on conditions that promote non-additive interactions of linked and compounded disturbances, but the spectrum of potential interaction patterns has not been fully considered. Here we develop and define terminology, expand on the existing conceptual framework and review the patterns and mechanisms of disturbance interactions with a focus on interactions between fire and other forest disturbances and a specific emphasis on resulting tree mortality. The types of interactions reflect the positive, negative, or neutral responses to the incidence, intensity, and effects of the interaction. These types of interactions are not always mutually exclusive, but can be distinct. The collective effect of the interactions will determine the longer-term ecosystem response that can result in a resistant, resilient, or compounded interaction. Our review indicates that the interactions of drought, bark beetles, or pathogens with fire often result in neutral or maintained interactions that do not negatively or positively influence the incidence or intensity following fire. The effect of these disturbance interactions on tree mortality ranged from antagonistic (reduced mortality compared to individual disturbances) to synergistic (greater mortality compared to individual disturbances) within and among disturbance interaction types but often resulted in additive effects (mortality is consistent with the summation of the two disturbances). Synergistic effects on tree mortality have been observed when the severity of the initial disturbance is moderate to high and time between disturbances is relatively short. When the sequence of disturbance interaction is reversed (e.g., fire precedes other disturbances) the conditions can generally promote impeded interactions (lower incidence of interaction), reduced interactions (lower intensity of interaction), and antagonistic interactions (lower tree mortality). While recent research on fire-disturbance interactions has increased over the last decade and provided important insights, more research that identifies the specific thresholds of incidence, intensity, and effects of interaction by region and forest type are needed to better assist management solutions that promote desired outcomes in rapidly changing ecosystems.
NASA Astrophysics Data System (ADS)
Trowbridge, A.; Adams, H. D.; Cook, A. A.; Hofland, M.; Weaver, D.; McDowell, N. G.
2016-12-01
The relative contribution of forest pests to climate and drought-induced tree mortality is complex and largely absent from current process-based models. Recent efforts have focused on developing frameworks to integrate insects into models of tree mortality, citing the need for a better mechanistic understanding of the links between stress-induced tree physiology and insect behavior and population dynamics. Secondary plant metabolites (SPMs) play a critical role in plant resistance and their synthesis and mobilization are coupled to carbon assimilation, hydraulic conductivity, and herbivory itself. Insect host choice also depends in part on behavioral responses to host SPMs. Monoterpenes are the dominant SPMs in conifers, and while high concentrations of monoterpenes are toxic to bark beetles, lower concentrations serve as precursors for a number of aggregation pheromones. Thus, the impact of monoterpenes on bark beetle behavior is complex and is impacted by environmental effects on primary metabolism including heat and drought stress. Here, we quantify the dynamics of piñon pine monoterpene chemistry as a function of predicted and prolonged drought stress implemented at the SUrvival MOrtality (SUMO) experimental site at the Los Alamos National Laboratory, NM, USA. In both woody and needle tissues, total monoterpene concentrations in ambient trees were not significantly different from those observed in trees exposed to heat stress, but drought trees showed higher total concentration while heat+drought trees were observed to have the highest levels (2 fold increase over ambient). These treatment effects were sustained over a two-year period despite seasonal variation in tree water status; however, total concentration in the xylem and phloem were closely coupled to tree water potential and treatment effects took longer to manifest relative to the needles. Individual compounds responded differently to the treatments, suggesting cyclase-level enzyme regulation, while α-pinene - an important bark beetle aggregate pheromone precursor - dominated total monoterpene concentration dynamics. These results have important implications for piñon-bark beetle interactions during drought and provide a missing link between drought-induced physiology and insect behavior.
Stacy A. Drury; Jason M. Herynk
2011-01-01
The National Tree-List Layer (NTLL) project used LANDFIRE map products to produce the first national tree-list map layer that represents tree populations at stand and regional levels. The NTLL was produced in a short time frame to address the needs of Fire and Aviation Management for a map layer that could be used as input for simulating fire-caused tree mortality...
Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep
2011-01-01
Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987–2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change–driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage. PMID:21220333
Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep
2011-01-25
Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987-2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change-driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.
Fettig, Christopher J; Munson, A Steven; Grosman, Donald M; Bush, Parshall B
2014-05-01
Protection of conifers from bark beetle colonization typically involves applications of liquid formulations of contact insecticides to the tree bole. An evaluation was made of the efficacy of bole injections of emamectin benzoate alone and combined with the fungicide propiconazole for protecting individual lodgepole pine, Pinus contorta Dougl. ex Loud., from mortality attributed to colonization by mountain pine beetle, Dendroctonus ponderosae Hopkins, and progression of associated blue stain fungi. Injections of emamectin benzoate applied in mid-June did not provide adequate levels of tree protection; however, injections of emamectin benzoate + propiconazole applied at the same time were effective for two field seasons. Injections of emamectin benzoate and emamectin benzoate + propiconazole in mid-September provided tree protection the following field season, but unfortunately efficacy could not be determined during a second field season owing to insufficient levels of tree mortality observed in the untreated control, indicative of low D. ponderosae populations. Previous evaluations of emamectin benzoate for protecting P. contorta from mortality attributed to D. ponderosae have failed to demonstrate efficacy, which was later attributed to inadequate distribution of emamectin benzoate following injections applied several weeks before D. ponderosae colonization. The present data indicate that injections of emamectin benzoate applied in late summer or early fall will provide adequate levels of tree protection the following summer, and that, when emamectin benzoate is combined with propiconazole, tree protection is afforded the year that injections are implemented. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei
2013-04-01
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.
Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.
2009-01-01
Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070
Black Gum Mortality (Pest Alert)
USDA Forest Service
A large number of black gum trees (Nyssa Sylvatica) have been found dying in North Carolina, Tennessee, Virginia, and Georgia. The observed trees have been in the mountains of these States. The trees are often associated with dogwood trees infected with Disculd sp., which causes dogwood anthracnose. The symptoms on black gums include leaf spots, leaf blotches, leaves...
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.
2015-12-01
Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.
Apparent climatically induced increase of tree mortality rates in a temperate forest
van Mantgem, P.J.; Stephenson, N.L.
2007-01-01
We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21 338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation. ?? 2007 Blackwell Publishing Ltd/CNRS.
S.T. Michaletz; E.A. Johnson; M.T. Tyree
2012-01-01
It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem:...
Walter G. Thies; Douglas J. Westlind
2012-01-01
Fires, whether intentionally or accidentally set, commonly occur in western interior forests of the US. Following fire, managers need the ability to predict mortality of individual trees based on easily observed characteristics. Previously, a two-factor model using crown scorch and bole scorch proportions was developed with data from 3415 trees for predicting the...
Sharon E. Reed; James T. English; Rose-Marie Muzika; John M. Kabrick; Simeon. Wright
2017-01-01
A new syndrome was named rapid white oak mortality in 2011 to describe the rapid death of white oak trees (Quercus alba L.) within one growing season. A survey with 24 questions about stand and site characteristics, site history, and symptoms was distributed to forestry professionals to gather information about the new syndrome. Sixty-three reports...
E. Matthew Hansen; Jose F. Negron; A. Steven Munson; John A. Anhold
2010-01-01
Tree susceptibility to bark beetle-caused mortality has been linked to stand characteristics such as basal area (BA) and average tree size, factors that can be manipulated through partial cutting. There is no experimental evidence, however, demonstrating the efficacy of partial cutting in spruce type. Such experiments are very difficult to complete because of the...
Eric J. Gustafson
2014-01-01
Regression models developed in the upper Midwest (United States) to predict drought-induced tree mortality from measures of drought (Palmer Drought Severity Index) were tested in the northeastern United States and found inadequate. The most likely cause of this result is that long drought events were rare in the Northeast during the period when inventory data were...
Piñon mortality from 2001 to 2005: Causes and management strategies
Tom Eager
2008-01-01
(Please note, this is an abstract only) Pinon mortality in the pinon-juniper and pinon-sage types of the Southwest peaked in 2003 following several years of winter drought. The majority of the droughtweakened trees died from pinon ips bark beetle attacks, but twig beetles also played a role. Forest Service aerial surveyors estimate more than 50 million pinon trees died...
Economic rationale for planting less trees in the face of seedling mortality
Thomas J. Dean; S. Joseph Chang
2002-01-01
Simple economic analyses are used to demonstrate that planting extra trees to compensate for initial seedling mortality can actually reduce the profit expected from a pine plantation. At a 6-percent interest rate, the cost of planting 15 or 25 percent additional seedlings compounded to the end of a 30-year rotation exceeds the revenue lost to these rates of seedling...
Stanley Zarnoch; Mark A. Vukovich; John C. Kilgo; John I. Blake
2013-01-01
A 14-year study of snag characteristics was established in 41- to 44-year-old loblolly pine (Pinus taeda L.) stands in southeastern USA. During the initial 5.5 years, no stand manipulation or unusually high-mortality events occurred. Afterwards, three treatments were applied consisting of trees thinned and removed, trees felled and not removed, and artificial creation...
Effects of partial cutting on diseases, mortality, and regeneration of Rocky Mountain aspen stands
James W. Walters; Thomas E. Hinds; David W. Johnson; Jerome Beatty
1982-01-01
Logging wounds on residual aspen, in partially cut stands, predisposed wounded trees to attack by insects and diseases. Five to 7 years after cutting, aspen mortality amounted to 20%; 41% of the live trees were infected with canker diseases; and 30% were infested with wood borers. Adequate sprouting occurred even though only 60-80% of the basal area was removed.
Condition of live fire-scarred ponderosa pine eleven years after removing partial cross-sections
Emily K. Heyerdahl; Steven J. McKay
2008-01-01
Our objective is to report mortality rates for ponderosa pine trees in Oregon ten to eleven years after removing a fire-scarred partial cross-section from them, and five years after an initial survey of post-sampling mortality. We surveyed 138 live trees from which we removed fire-scarred partial crosssections in 1994/95 and 387 similarly sized, unsampled neighbor...
Anantha M. Prasad
2015-01-01
I test for macroscale intraspecific variation of abundance, mortality, and regeneration of four eastern US tree species (Tsuga canadensis, Betula lenta, Liriodendron tulipifera, and Quercus prinus) by splitting them into three climatic zones based on plant hardiness zones (PHZs). The primary goals of the analysis are to assess the...
NASA Astrophysics Data System (ADS)
March, R. G.; Moore, G. W.; Edgar, C. B.; Lawing, A. M.; Washington-Allen, R. A.
2015-12-01
In recorded history, the 2011 Texas Drought was comparable in severity only to a drought that occurred 300 years ago. By mid-September, 88% of the state experienced 'exceptional' conditions, with the rest experiencing 'extreme' or 'severe' drought. By recent estimates, the 2011 Texas Drought killed 6.2% of all the state's trees, at a rate nearly 9 times greater than average. The vast spatial scale and relatively uniform intensity of this drought has provided an opportunity to examine the comparative interactions among forest types, terrain, and edaphic factors across major climate gradients which in 2011 were subjected to extreme drought conditions that ultimately caused massive tree mortality. We used maximum entropy modeling (Maxent) to rank environmental landscape factors with the potential to drive drought-related tree mortality and test the assumption that the relative importance of these factors are scale-dependent. Occurrence data of dead trees were collected during the summer of 2012 from 599 field plots distributed across Texas with 30% used for model evaluation. Bioclimatic variables, ecoregions, soils characteristics, and topographic variables were modeled with drought-killed tree occurrence. Their relative contribution to the model was seen as their relative importance in driving mortality. To test determinants at a more local scale, we examined Landsat 7 scenes in East and West Texas with moderate-resolution data for the same variables above with the exception of climate. All models were significantly better than random in binomial tests of omission and receiver operating characteristic analyses. The modeled spatial distribution of probability of occurrence showed high probability of mortality in the east-central oak woodlands and the mixed pine-hardwood forest region in northeast Texas. Both regional and local models were dominated by biotic factors (ecoregion and forest type, respectively). Forest density and precipitation of driest month also contributed highly to the regional model. The local models gave more importance to available water storage at root zone and hillshade. Understanding how environmental factors drive drought-related mortality can help predict vulnerable landscapes and aid in preparing for future drought events.
Mortality rates associated with crown health for eastern forest tree species
Randall S. Morin; KaDonna C. Randolph; Jim Steinman
2015-01-01
The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during inventories of the US Forest Service Forest Inventory and Analysis (FIA) program since 1999. In this study, remeasured data from 55,013 trees on 2616 FIA plots in the eastern USA were used to assess the probability of survival among various tree...
Timofeeva, Galina; Treydte, Kerstin; Bugmann, Harald; Rigling, Andreas; Schaub, Marcus; Siegwolf, Rolf; Saurer, Matthias
2017-08-01
Drought frequency is increasing in many parts of the world and may enhance tree decline and mortality. The underlying physiological mechanisms are poorly understood, however, particularly regarding chronic effects of long-term drought and the response to increasing temperature and vapor pressure deficit (VPD). We combined analyses of radial growth and stable carbon isotope ratios (δ13C) in tree rings in a mature Scots pine (Pinus sylvestris L.) forest over the 20th century to elucidate causes of tree mortality in one of the driest parts of the European Alps (Pfynwald, Switzerland). We further compared trees that have recently died with living trees in a 10-year irrigation experiment, where annual precipitation was doubled. We found a sustained growth increase and immediate depletion of δ13C values for irrigated trees, indicating higher stomatal conductance and thus indeed demonstrating that water is a key limiting factor for growth. Growth of the now-dead trees started declining in the mid-1980s, when both mean temperature and VPD increased strongly. But growth of these trees was reduced to some extent already several decades earlier, while intrinsic water-use efficiency derived from δ13C values was higher. This indicates a more conservative water-use strategy compared with surviving trees, possibly at the cost of low carbon uptake and long-term reduction of the needle mass. We observed reduced climatic sensitivity of raw tree-ring δ13C for the now-dead in contrast to surviving trees, indicating impaired stomatal regulation, although this difference between the tree groups was smaller after detrending the data. Higher autocorrelation and a lower inter-annual δ13C variability of the now-dead trees further indicates a strong dependence on (low) carbon reserves. We conclude that the recent increase in atmospheric moisture demand in combination with insufficient soil water supply was the main trigger for mortality of those trees that were weakened by long-term reduced carbon uptake. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch
Cahoon, D.R.; Hensel, P.; Rybczyk, J.; McKee, K.L.; Proffitt, C.E.; Perez, B.C.
2003-01-01
We measured sediment elevation and accretion dynamics in mangrove forests on the islands of Guanaja and Roatan, Honduras, impacted by Hurricane Mitch in 1998 to determine if collapse of underlying peat was occurring as a result of mass tree mortality. Little is known about the balance between production and decomposition of soil organic matter in the maintenance of sediment elevation of mangrove forests with biogenic soils. Sediment elevation change measured with the rod surface elevation table from 18 months to 33 months after the storm differed significantly among low, medium and high wind impact sites. Mangrove forests suffering minimal to partial mortality gained elevation at a rate (5 mm yeara??1) greater than vertical accretion (2 mm yeara??1) measured from artificial soil marker horizons, suggesting that root production contributed to sediment elevation. Basin forests that suffered mass tree mortality experienced peat collapse of about 11 mm yeara??1 as a result of decomposition of dead root material and sediment compaction. Low soil shear strength and lack of root growth accompanied elevation decreases. Model simulations using the Relative Elevation Model indicate that peat collapse in the high impact basin mangrove forest would be 37 mm yeara??1 for the 2 years immediately after the storm, as root material decomposed. In the absence of renewed root growth, the model predicts that peat collapse will continue for at least 8 more years at a rate (7 mm yeara??1) similar to that measured (11 mm yeara??1). Mass tree mortality caused rapid elevation loss. Few trees survived and recovery of the high impact forest will thus depend primarily on seedling recruitment. Because seedling establishment is controlled in large part by sediment elevation in relation to tide height, continued peat collapse could further impair recovery rates.
2016-01-01
The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees. PMID:28028480
Itô, Hiroki
2016-01-01
The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica , Quercus glauca , and Cleyera japonica , also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera . In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Barnard, H. R.; Biederman, J. A.; Borkhuu, B.; Edburg, S. L.; Ewers, B. E.; Gochis, D. J.; Gutmann, E. D.; Harpold, A. A.; Hicke, J. A.; Pendall, E.; Reed, D. E.; Somor, A. J.; Troch, P. A.
2011-12-01
Widespread tree mortality caused by insect infestations and drought has impacted millions of hectares across western North America in recent years. Although previous work on post-disturbance responses (e.g. experimental manipulations, fire, and logging) provides insight into how water and biogeochemical cycles may respond to insect infestations and drought, we find that the unique nature of these drivers of tree mortality complicates extrapolation to larger scales. Building from previous work on forest disturbance, we present a conceptual model of how temporal changes in forest structure impact the individual components of energy balance, hydrologic partitioning, and biogeochemical cycling and the interactions among them. We evaluate and refine this model using integrated observations and process modeling on multiple scales including plot, stand, flux tower footprint, hillslope, and catchment to identify scaling relationships and emergent patterns in hydrological and biogeochemical responses. Our initial results suggest that changes in forest structure at point or plot scales largely have predictable effects on energy, water, and biogeochemical cycles that are well captured by land surface, hydrological, and biogeochemical models. However, observations from flux towers and nested catchments suggest that both the hydrological and biogeochemical effects observed at tree and plot scales may be attenuated or exacerbated at larger scales. Compensatory processes are associated with attenuation (e.g. as transpiration decreases, evaporation and sublimation increase), whereas both attenuation and exacerbation may result from nonlinear scaling behavior across transitions in topography and ecosystem structure that affect the redistribution of energy, water, and solutes. Consequently, the effects of widespread tree mortality on ecosystem services of water supply and carbon sequestration will likely depend on how spatial patterns in mortality severity across the landscape affect large-scale hydrological partitioning.
Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler
2011-01-01
The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...
Rick G. Kelsey; D. Gallego; F.J. Sánchez-Garcia; J.A. Pajares
2014-01-01
Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition...
Carbon dynamics in trees: feast or famine?
Anna Sala; David R. Woodruff; Fredrick C. Meinzer
2012-01-01
Research on the degree to which carbon (C) availability limits growth in trees, as well as recent trends in climate change and concurrent increases in drought related tree mortality, have led to a renewed focus on the physiological mechanisms associated with tree growth responses to current and future climate. This has led to some dispute over the role of stored...
Colangelo, Michele; Camarero, Jesús J; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco
2017-01-01
Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees.
On the relationship between boreal forest browning and tree mortality: insights from Alaska
NASA Astrophysics Data System (ADS)
Rogers, B. M.; Goetz, S. J.
2015-12-01
Long-term satellite measurements of vegetation productivity in high-latitude environments have revealed profound and widespread responses to climate warming. Although warmer and longer summers are causing the Arctic to "green", many regions of boreal forest are showing the opposite response, particularly since the mid 1990s. This "browning" phenomenon was generally unexpected at the time of discovery, is not captured by global models, and may have profound consequences for the boreal biome. A number of studies have linked satellite-based browning trends to tree productivity through tree rings. However, our understanding of the environmental controls and ecosystem consequences of browning remains remarkably limited. Here we examine to what extent browning patterns are related to a fundamental demographic process: tree mortality. We focus on a long-term inventory database in Alaska to characterize mortality events and trends from 1994 to 2014. These patterns were related to vegetation productivity indices from MODIS and the AVHRR-based GIMMS3g data set. We explore three central hypotheses: (1) mortality events are likely to be preceded by 5-10 year browning trends ("press stress"), (2) mortality events are likely to be preceded by distinct pulses of low productivity ("pulse stress"), and (3) long-term trends in mortality are related to long-term browning. Within our study region, which encompasses eastern Alaskan from the Pacific coastal mountains up through the interior, we find strong evidence for the first two hypotheses. The third is weakly supported, which may be a consequence of the episodic nature of mortality in the region. However, preliminary analyses in the southern Canadian boreal reveal a markedly stronger relationship between long-term mortality and browning. Taken together, our study suggests a robust correlation between satellite-based metrics of productivity and forest demography; one that has consequences for forest composition, carbon stocks, and early signs of a biome shift in boreal forests.
David M. Bell; John B. Bradford; William K. Lauenroth
2015-01-01
Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a speciesâ range. Disease may accelerate tree speciesâ declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry...
Andrew C. Telander; Robert A. Slesak; Anthony W. D' Amato; Brian J. Palik; Kenneth N. Brooks; Christian F. Lenhart
2015-01-01
Black ash (Fraxinus nigra) mortality caused by the invasive emerald ash borer (EAB) is of concern to land managers in the upper Great Lakes region, given the large areas of ash-dominated forest and potential alteration of wetland hydrology following loss of this foundation tree species. The importance of changes in evapotranspiration (ET) following...
Chad Hoffman; Russell Parsons; Penny Morgan; Ruddy Mell
2010-01-01
The purpose of this study is to investigate how varying amounts of MPB-induced tree mortality affects the amount of crown fuels consumed and the fire intensity across a range of lodgepole pine stands of different tree density and spatial arrangements during the early stages of a bark beetle outbreak. Unlike past studies which have relied on semi-empirical or empirical...
Integrated Pest Management of Poplar Species
T. H. Filer; J. D. Solomon; D. T. Cooper; M. Hubbes
1979-01-01
Proper site selection, good site preparation, correct planting practices, and 1st-year cultivation directly and indirectly affect survival rate of trees. Losses from canker fungi are minimized by cultural practices that increase tree vigor--poor tree vigor means more cankers per acre and greater mortality.
Plaut, Jennifer A; Wadsworth, W Duncan; Pangle, Robert; Yepez, Enrico A; McDowell, Nate G; Pockman, William T
2013-10-01
Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Management of tracheo-bronchial foreign bodies in children.
Sisenda, T M; Khwa-Otsyula, B O; Wambani, J O
2002-11-01
To review alternative surgical and anaesthetic options in the management of foreign bodies lodged in the tracheobronchial tree in children aged below 10 years. A five year retrospective secondary data analysis. Three hospitals based in Eldoret Municipality, Kenya. Outcome variables included morbidity and mortality. Of the thirty two children studied, 74.1% had bronchoscopy and 25.9% thoracotomy. The overall mortality rate was 3.3%. Foreign bodies in the tracheo-bronchial tree are a major cause of morbidity and mortality in children aged below 10 years. In settings where appropriate equipment is inadequate, timely thoracotomy may be life saving.
Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao
2016-12-01
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.
West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year were similar, and were progressively smaller the last four years of the study period. Our results suggest that, in contrast to previous reports, ponderosa and lodgepole pine were equally susceptible to MPB infestation in the CO Front Range during our study period. This suggests that forest managers may anticipate similar impacts in both hosts during similar environmental conditions when epidemic-level MPB populations are active in mixed-pine stands.
Austin, Peter C; Lee, Douglas S
2011-01-01
Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181
NASA Astrophysics Data System (ADS)
Frost, E. E.; Levia, D. F.
2011-12-01
Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.
Oak mortality risk factors and mortality estimation
Stephen R. Shifley; Zhaofei Fan; John M. Kabrick; Randy G. Jensen
2006-01-01
Managers are often concerned about oak mortality in maturing mixed-oak forests, but they often lack explicit information about mortality risk for oaks that differ in species, size, crown class, competitive status, and growth rate. In eastern North America, tree species in the red oak group (Quercus Section Lobatae) are typically...
Csank, Adam Z; Miller, Amy E; Sherriff, Rosemary L; Berg, Edward E; Welker, Jeffrey M
2016-10-01
Increasing temperatures have resulted in reduced growth and increased tree mortality across large areas of western North American forests. We use tree-ring isotope chronologies (δ 13 C and δ 18 O) from live and dead trees from four locations in south-central Alaska, USA, to test whether white spruce trees killed by recent spruce beetle (Dendroctonus rufipennis Kirby) outbreaks showed evidence of drought stress prior to death. Trees that were killed were more sensitive to spring/summer temperature and/or precipitation than trees that survived. At two of our sites, we found greater correlations between the δ 13 C and δ 18 O chronologies and spring/summer temperatures in dead trees than in live trees, suggesting that trees that are more sensitive to temperature-induced drought stress are more likely to be killed. At one site, the difference between δ 13 C in live and dead trees was related to winter/spring precipitation, with dead trees showing stronger correlations between δ 13 C and precipitation, again suggesting increased water stress in dead trees. At all sites where δ 18 O was measured, δ 18 O chronologies showed the greatest difference in climate response between live and dead groups, with δ 18 O in live trees correlating more strongly with late winter precipitation than dead trees. Our results indicate that sites where trees are already sensitive to warm or dry early growing-season conditions experienced the most beetle-kill, which has important implications for forecasting future mortality events in Alaska. © 2016 by the Ecological Society of America.
Lines, Gregory C.
1999-01-01
The health of native riparian vegetation and its relation to hydrologic conditions were studied along the Mojave River mainly during the growing seasons of 1997 and 1998. The study concentrated on cottonwood?willow woodlands (predominantly Populus fremontii and Salix gooddingii) and mesquite bosques (predominantly Prosopis glandulosa). Tree-growth characteristics were measured at 16 cottonwood?willow woodland sites and at 3 mesquite bosque sites. Density of live and dead trees, tree diameter and height, canopy density, live-crown volume, leaf-water potential, leaf-area index, mortality, and reproduction were measured or noted at each site. The sites included healthy and reproducing woodlands and bosques, stressed woodlands and bosques with no reproduction, and woodlands and bosques with high mortality. Tree roots were studied at seven sites to determine the vertical distribution of the root system and their relation to the water table at healthy, stressed, and high-mortality cottonwood?willow woodlands. In the six trenches that were dug for this study in May 1997, no cottonwood roots were observed that reached the water table. The root systems of healthy trees typically ended 1 to 2 feet above the water table. At sites with high mortality, the main root mass was commonly 7 to 8 feet above the water table. Water-table depth was monitored at each of the study sites. In addition, volumetric soil moisture and soil-water potential were monitored at varying depths at three cottonwood?willow woodland study sites and at two mesquite bosque sites. Ground, soil, river, lake, and plant (xylem sap) water were analyzed for concentrations of stable hydrogen and oxygen isotopes to determine the source of water used by the trees. On the basis of the root-distribution, soil- and leaf-water potential, and isotope data, it was concluded that cottonwood, willow, and mesquite trees mainly rely on ground water for their perennial sustained supply of water. The trees mainly utilize ground water that has moved upward from the water table into the capillary fringe and into unsaturated soil nearer to land surface. Most precipitation (average is 4 to 6 inches per year) is lost by evaporation and by transpiration of shallow-rooted xeric plants, and very little reaches the root zone of trees along the Mojave River. Water-table depth had no strong correlation to many individual tree-growth characteristics, such as density, diameter, height, and live-crown volume. However, leaf-area index (corrected for stem area) of both healthy and stressed cottonwood?willow woodlands had a highly significant statistical relation to water-table depth, and a curvilinear regression model was defined. As in cottonwood?willow woodlands, leaf-area index of mesquite bosques also decreased with increased water-table depth. However, because of the small number of sites, no significant statistical relation could be defined for mesquite bosques. Because it can be accurately measured repeatedly at the same locations, leaf-area index (corrected for stem area) is recommended as the primary growth characteristic that should be monitored. Future vegetation changes along the Mojave River can be quantified using the sites established for this study. Mortality was as high as 39 percent in healthy cottonwood?willow woodlands, but mortality of 50 to 100 percent was common where water-table depth was greater than about 7 feet or in areas where permanent water-table declines greater than about 5 feet had occurred. At a healthy mesquite bosque where the water-table depth ranged from about 8 to 11 feet, mortality was about 20 percent. Where the water table had been lowered an additional 10 to 25 feet by pumping, mortality of the mesquite was extremely high (80 to 99 percent). On the basis of observations of plant reproduction, it was concluded that established cottonwood?willow woodlands probably will reproduce, mainly by root sprouting of mature trees, if the water-t
Johnson, Daniel M; Domec, Jean-Christophe; Carter Berry, Z; Schwantes, Amanda M; McCulloh, Katherine A; Woodruff, David R; Wayne Polley, H; Wortemann, Remí; Swenson, Jennifer J; Scott Mackay, D; McDowell, Nate G; Jackson, Robert B
2018-03-01
From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground. © 2018 John Wiley & Sons Ltd.
77 FR 42694 - Helena National Forest, Montana, Telegraph Vegetation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... slashing generally small diameter trees followed by prescribed burning within the Jericho Mountain... dead and dying trees, promoting desirable regeneration, reducing fuels and the risk of wildfire, and... for Action Wide-scale tree mortality has occurred throughout the project area due to the mountain pine...
Kathleen S. Knight; John P. Brown; Robert P. Long
2013-01-01
Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...
Crop-tree release thinning in 65-year-old commercial cherry-maple stands (5-year results)
H. Clay Smith; Gary W. Miller; Neil I. Lamson
1994-01-01
Crop-tree release was applied to a 65-year-old cherry-maple stand in north central West Virginia. Criteria were developed for selecting crop trees for high quality sawtimber and veneer products. Five-year stand growth, mortality, and ingrowth using basal areas, volume, relative density, and number of trees were discussed for the treatments.
A computerized tree growth projection system for forest resource evaluation in the lake states
Allen L. Lundgren; Burton L. Essex
1978-01-01
A computerized tree growth projection system has been developed for the Lake States Region as part of a larger Forest Resources Evaluation Program (FREP). Incorporating data from more than 1500 permanent growth plots throughout the Lake States, this system projects tree growth, mortality, regeneration, and removals in stands with any mixture of tree species and sizes,...
Brad Oberle; Kiona Ogle; Amy E. Zanne; Christopher W. Woodall
2018-01-01
When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests...
Revegetating surface-mined lands with herbaceous and woody species together
Willis G. Vogel
1980-01-01
Herbaceous cover is required for erosion control on surface-mined lands even where forests are to be established. Where planted with trees, herbaceous species usually cause an increase in tree seedling mortality and retard tree growth, especially in the first few years after planting. Trees seem to be affected most by competition for moisture because their survival is...
Siberian Pine Decline and Mortality in Southern Siberian Mountains
NASA Technical Reports Server (NTRS)
Kharuk, V. I.; Im, S. T.; Oskorbin, P. A.; Petrov, I. A.; Ranson, K. J.
2013-01-01
The causes and resulting spatial patterns of Siberian pine mortality in eastern Kuznetzky Alatau Mountains, Siberia were analyzed based on satellite (Landsat, MODIS) and dendrochronology data. Climate variables studied included temperature, precipitation and Standardized Precipitation-Evapotranspiration Index (SPEI) drought index. Landsat data analysis showed that stand mortality was first detected in the year 2006 at an elevation of 650 m, and extended up to 900 m by the year 2012. Mortality was accompanied by a decrease in MODIS derived vegetation index (EVI).. The area of dead stands and the upper mortality line were correlated with increased drought. The uphill margin of mortality was limited by elevational precipitation gradients. Dead stands (i.e., >75% tree mortality) were located mainly on southern slopes. With respect to slope, mortality was observed within a 7 deg - 20 deg range with greatest mortality occurring on convex terrain. Tree radial incrementmeasurements correlate and were synchronous with SPEI (r sq = 0.37, r(sub s) = 80). Increasing synchrony between tree ring growth and SPEI indicates that drought has reduced the ecological niche of Siberian pine. The results also showed the primary role of drought stress on Siberian pine mortality. A secondary role may be played by bark beetles and root fungi attacks. The observed Siberian pine mortality is part of a broader phenomenon of "dark needle conifers" (DNC, i.e., Siberian pine, fir and spruce) decline and mortality in European Russia, Siberia, and the Russian Far East. All locations of DNC decline coincided with areas of observed drought increase. The results obtained are one of the first observations of drought-induced decline and mortality of DNC at the southern border of boreal forests. Meanwhile if model projections of increased aridity are correct DNC, within the southern part of its range may be replaced by drought-resistant Pinus silvestris and Larix sibirica.
Torii, Masato; Matsuda, Yosuke; Seo, Sang Tae; Kim, Kyung Hee; Ito, Shin-Ichiro; Moon, Myung Jin; Kim, Seong Hwan; Yamada, Toshihiro
2014-06-01
In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven.
Spatial analysis of Northern Goshawk Territories in the Black Hills, South Dakota
Klaver, Robert W.; Backlund, Douglas; Bartelt, Paul E.; Erickson, Michael G.; Knowles, Craig J.; Knowles, Pamela R.; Wimberly, Michael
2012-01-01
The Northern Goshawk (Accipiter gentilis) is the largest of the three North American species ofAccipiter and is more closely associated with older forests than are the other species. Its reliance on older forests has resulted in concerns about its status, extensive research into its habitat relationships, and litigation. Our objective was to model the spatial patterns of goshawk territories in the Black Hills, South Dakota, to make inferences about the underlying processes. We used a modification of Ripley's K function that accounts for inhomogeneous intensity to determine whether territoriality or habitat determined the spacing of goshawks in the Black Hills, finding that habitat conditions rather than territoriality were the determining factor. A spatial model incorporating basal area of trees in a stand of forest, canopy cover, age of trees >23 cm in diameter, number of trees per hectare, and geographic coordinates provided good fit to the spatial patterns of territories. There was no indication of repulsion at close distances that would imply spacing was determined by territoriality. These findings contrast with those for the Kaibab Plateau, Arizona, where territoriality is an important limiting factor. Forest stands where the goshawk nested historically are now younger and have trees of smaller diameter, probably having been modified by logging, fire, and insects. These results have important implications for the goshawk's ecology in the Black Hills with respect to mortality, competition, forest fragmentation, and nest-territory protection.
Botryosphaeriaceae associated with the die-back of ornamental trees in the Western Balkans.
Zlatković, Milica; Keča, Nenad; Wingfield, Michael J; Jami, Fahimeh; Slippers, Bernard
2016-04-01
Extensive die-back and mortality of various ornamental trees and shrubs has been observed in parts of the Western Balkans region during the past decade. The disease symptoms have been typical of those caused by pathogens residing in the Botryosphaeriaceae. The aims of this study were to isolate and characterize Botryosphaeriaceae species associated with diseased ornamental trees in Serbia, Montenegro, Bosnia and Herzegovina. Isolates were initially characterized based on the DNA sequence data for the internal transcribed spacer rDNA and six major clades were identified. Representative isolates from each clade were further characterized using DNA sequence data for the translation elongation factor 1-alpha, β-tubulin-2 and large subunit rRNA gene regions, as well as the morphology of the asexual morphs. Ten species of the Botryosphaeriaceae were identified of which eight, i.e., Dothiorella sarmentorum, Neofusicoccum parvum, Botryosphaeria dothidea, Phaeobotryon cupressi, Sphaeropsis visci, Diplodia seriata, D. sapinea and D. mutila were known taxa. The remaining two species could be identified only as Dothiorella spp. Dichomera syn-asexual morphs of D. sapinea, Dothiorella sp. 2 and B. dothidea, as well as unique morphological characters for a number of the known species are described. Based on host plants and geographic distribution, the majority of Botryosphaeriaceae species found represent new records. The results of this study contribute to our knowledge of the distribution, host associations and impacts of these fungi on trees in urban environments.
Saffell, Brandy J; Meinzer, Frederick C; Woodruff, David R; Shaw, David C; Voelker, Steven L; Lachenbruch, Barbara; Falk, Kristen
2014-03-01
Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized under natural conditions of low water stress and restricted carbon supply in relation to potential demands for growth. We analyzed the concentrations of starch, sucrose, glucose and fructose in foliage, twig wood and trunk sapwood of 15 co-occurring Douglas-fir trees expressing a gradient of Swiss needle cast symptom severity quantified as previous-year functional foliage mass. Growth (mean basal area increment, BAI) decreased by ∼80% and trunk NSC concentration decreased by 60% with decreasing functional foliage mass. The ratio of relative changes in NSC concentration and BAI, an index of the relative priority of storage versus growth, more than doubled with increasing disease severity. In contrast, twig and foliage NSC concentrations remained nearly constant with decreasing functional foliage mass. These results suggest that under disease-induced reductions in carbon supply, Douglas-fir trees retain NSCs (either actively or due to sequestration) at the expense of trunk radial growth. The crown retains the highest concentrations of NSC, presumably to maintain foliage growth and shoot extension in the spring, partially compensating for rapid foliage loss in the summer and fall.
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney
2015-01-01
Mapping the number, size, and species of trees in forests across the western United States has utility for a number of research endeavors, ranging from estimation of terrestrial carbon resources to tree mortality following wildfires. For landscape fire and forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, or âtree listâ, is a...
Deborah G McCullough; Therese M. Poland; Phillip A. Lewis
2015-01-01
BACKGROUND: Economic and ecological impacts of ash (Fraxinus spp.) mortality resulting from emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion are severe in forested, residential and urban areas. Management options include girdling ash trees to attract ovipositing adult beetles and then destroying infested trees...
Effects of prescribed burning on leaves and flowering Quercus garryana
David H. Peter; James K. Agee; Douglas G. Sprugel
2011-01-01
Many woodland understories are managed with prescribed fire. While prescribed burns intended to manipulate understory vegetation and fuels usually do not cause excessive tree mortality, sublethal canopy damage may occur and can affect tree vigor and reproductive output. We monitored Quercus garryana trees in western Washington, USA with multiple...
NASA Astrophysics Data System (ADS)
Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale
2017-09-01
Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.
Large-scale wind disturbances promote tree diversity in a Central Amazon forest.
Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian
2014-01-01
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest
Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Negrón-Juárez, Robinson I.; Reu, Björn; Wirth, Christian
2014-01-01
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha−1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m2 ha−1). Highly impacted areas had tree density and basal area as low as 120 trees ha−1 and 14.9 m2 ha−1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level. PMID:25099118
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest
Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; ...
2014-08-06
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less
Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age
NASA Astrophysics Data System (ADS)
Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.
2013-12-01
The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.
Colangelo, Michele; Camarero, Jesús J.; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco
2017-01-01
Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees. PMID:28270816
Cox, Tony; Popken, Douglas; Ricci, Paolo F
2013-01-01
Exposures to fine particulate matter (PM2.5) in air (C) have been suspected of contributing causally to increased acute (e.g., same-day or next-day) human mortality rates (R). We tested this causal hypothesis in 100 United States cities using the publicly available NMMAPS database. Although a significant, approximately linear, statistical C-R association exists in simple statistical models, closer analysis suggests that it is not causal. Surprisingly, conditioning on other variables that have been extensively considered in previous analyses (usually using splines or other smoothers to approximate their effects), such as month of the year and mean daily temperature, suggests that they create strong, nonlinear confounding that explains the statistical association between PM2.5 and mortality rates in this data set. As this finding disagrees with conventional wisdom, we apply several different techniques to examine it. Conditional independence tests for potential causation, non-parametric classification tree analysis, Bayesian Model Averaging (BMA), and Granger-Sims causality testing, show no evidence that PM2.5 concentrations have any causal impact on increasing mortality rates. This apparent absence of a causal C-R relation, despite their statistical association, has potentially important implications for managing and communicating the uncertain health risks associated with, but not necessarily caused by, PM2.5 exposures. PMID:23983662
Regional Estimates of Drought-Induced Tree Canopy Loss across Texas
NASA Astrophysics Data System (ADS)
Schwantes, A.; Swenson, J. J.; González-Roglich, M.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.
2015-12-01
The severe drought of 2011 killed millions of trees across the state of Texas. Drought-induced tree-mortality can have significant impacts to carbon cycling, regional biophysics, and community composition. We quantified canopy cover loss across the state using remotely sensed imagery from before and after the drought at multiple scales. First, we classified ~200 orthophotos (1-m spatial resolution) from the National Agriculture Imagery Program, using a supervised maximum likelihood classification. Area of canopy cover loss in these classifications was highly correlated (R2 = 0.8) with ground estimates of canopy cover loss, measured in 74 plots across 15 different sites in Texas. These 1-m orthophoto classifications were then used to calibrate and validate coarser scale (30-m) Landsat imagery to create wall-to-wall tree canopy cover loss maps across the state of Texas. We quantified percent dead and live canopy within each pixel of Landsat to create continuous maps of dead and live tree cover, using two approaches: (1) a zero-inflated beta distribution model and (2) a random forest algorithm. Widespread canopy loss occurred across all the major natural systems of Texas, with the Edwards Plateau region most affected. In this region, on average, 10% of the forested area was lost due to the 2011 drought. We also identified climatic thresholds that controlled the spatial distribution of tree canopy loss across the state. However, surprisingly, there were many local hot spots of canopy loss, suggesting that not only climatic factors could explain the spatial patterns of canopy loss, but rather other factors related to soil, landscape, management, and stand density also likely played a role. As increases in extreme droughts are predicted to occur with climate change, it will become important to define methods that can detect associated drought-induced tree mortality across large regions. These maps could then be used (1) to quantify impacts to carbon cycling and regional biophysics, (2) to better understand the spatiotemporal dynamics of tree mortality, and (3) to calibrate and/or validate mortality algorithms in regional models.
Mistletoe, friend and foe: synthesizing ecosystem implications of mistletoe infection
NASA Astrophysics Data System (ADS)
Griebel, Anne; Watson, David; Pendall, Elise
2017-11-01
Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is contributing to increasing rates of tree mortality globally. Mistletoe is a widespread group of parasitic plants that establishes long-lasting relationships with a diverse range of host tree species. With climate change, ecophysiological stress is increasing, potentially making trees more susceptible to mistletoe infection, which in turn leads to higher forest mortality rates. The perception of mistletoe presence in individual trees and forest stands is divided within the scientific community, leading to an ongoing debate regarding its impacts. Forest managers concerned about stand health and carbon sequestration may view mistletoe as a foe that leads to reduced productivity. In contrast, ecologists may see mistletoe as a friend, in light of the wildlife habitat, biodiversity and nutrient cycling it promotes. However, individual studies typically focus on isolated effects of mistletoe presence within their respective research area and lack a balanced, interdisciplinary perspective of mistletoe disturbance. With this conceptual paper we aim to bring together the positive and negative impacts of mistletoe presence on tree physiology, soil nutrient cycling as well as stand health and stand dynamics. We focus on the role of mistletoe-induced tree mortality in ecosystem succession and biodiversity. In addition, we present potential modifications of mistletoe presence on the energy budget and on forest vulnerability to climate change, which could feed back into stand dynamics and disturbance patterns. Lastly, we will identify the most pressing remaining knowledge gaps and highlight priorities for future research on this widespread agent of biotic disturbance.
NASA Astrophysics Data System (ADS)
Sparks, A. M.; Kolden, C.; Smith, A. M.
2016-12-01
Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.
Harwood, James F; Farooq, Muhammad; Turnwall, Brent T; Richardson, Alec G
2015-07-01
The principal vectors of chikungunya and dengue viruses typically oviposit in water-filled artificial and natural containers, including tree holes. Despite the risk these and similar tree hole-inhabiting mosquitoes present to global public health, surprisingly few studies have been conducted to determine an efficient method of applying larvicides specifically to tree holes. The Stihl SR 450, a backpack sprayer commonly utilized during military and civilian vector control operations, may be suitable for controlling larval tree-hole mosquitoes, as it is capable of delivering broadcast applications of granular and liquid dispersible formulations of Bacillus thuringiensis var. israelensis (Bti) to a large area relatively quickly. We compared the application effectiveness of two granular (AllPro Sustain MGB and VectoBac GR) and two liquid (Aquabac XT and VectoBac WDG) formulations of Bti in containers placed on bare ground, placed beneath vegetative cover, and hung 1.5 or 3 m above the ground to simulate tree holes. Aedes aegypti (L.) larval mortality and Bti droplet and granule density data (when appropriate) were recorded for each formulation. Overall, granular formulations of Bti resulted in higher mortality rates in the simulated tree-hole habitats, whereas applications of granular and liquid formulations resulted in similar levels of larval mortality in containers placed on the ground in the open and beneath vegetation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Not all droughts are created equal: translating meteorological drought into woody plant mortality.
Anderegg, Leander D L; Anderegg, William R L; Berry, Joseph A
2013-07-01
Widespread drought-induced mortality of woody plants has recently occurred worldwide, is likely to be exacerbated by future climate change and holds large ecological consequences. Yet despite decades of research on plant-water relations, the pathways through which drought causes plant mortality are poorly understood. Recent work on the physiology of tree mortality has begun to reveal how physiological dysfunction induced by water stress leads to plant death; however, we are still far from being able to predict tree mortality using easily observed or modeled meteorological variables. In this review, we contend that, in order to fully understand when and where plants will exceed mortality thresholds when drought occurs, we must understand the entire path by which precipitation deficit is translated into physiological dysfunction and lasting physiological damage. In temperate ecosystems with seasonal climate patterns, precipitation characteristics such as seasonality, timing, form (snow versus rain) and intensity interact with edaphic characteristics to determine when and how much water is actually available to plants as soil moisture. Plant and community characteristics then mediate how quickly water is used and seasonally varying plant physiology determines whether the resulting soil moisture deficit is physiologically damaging. Recent research suggests that drought seasonality and timing matter for how an ecosystem experiences drought. But, mortality studies that bridge the gaps between climatology, hydrology, plant ecology and plant physiology are rare. Drawing upon a broad hydrological and ecological perspective, we highlight key and underappreciated processes that may mediate drought-induced tree mortality and propose steps to better include these components in current research.
Zhang, Zhao-Chen; Hao, Zhan-Qing; Ye, Ji; Lin, Fei; Yuan, Zuo-Qiang; Xing, Ding-Liang; Shi, Shuai; Wang, Xu-gao
2013-02-01
Taking the 5 hm2 sampling plot in the natural secondary poplar-birch forest in Changbai Mountains as test object, and based on the two census data in 2005 and 2010, an analysis was made on the main tree species composition and quantity, size class distribution of dead individuals, and regeneration characteristics of the main tree species in different habitat types of the plot in 2005-2010. In the five years, the species number of the individuals with DBH> or = 1 cm increased from 46 to 47, among which, 3 species were newly appeared, and 2 species were disappeared. The number of the individuals changed from 16509 to 15027, among which, 2150 individuals died, accounting for 13% of the whole individuals in 2005, and 668 individuals were newly increased. The basal area of the trees increased from 28.79 m2.m-2 to 30.55 m2.m-2, with that of 41 species increased while that of 6 species decreased. The decrease of the basal area of Betula platyphylla and Populus davidiana accounted for 72.3% of the total decrease. Small individuals had higher mortality, as compared with large ones, and the mortality of the individuals with DBH<5 cm occupied 65% of the total. B. platyphylla and P. davidiana contributed most in the dead individuals with large DBH. No difference was observed in the tree mortality among different habitat types, but the mortality of the individuals with different size classes showed greater variation.
Clifford, Michael J; Royer, Patrick D; Cobb, Neil S; Breshears, David D; Ford, Paulette L
2013-10-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed. Here, we explore precipitation relationships with a die-off event of pinyon pine (Pinus edulis Engelm.) in southwestern North America during the 2002-2003 global-change-type drought. Pinyon die-off and its relationship with precipitation was quantified spatially along a precipitation gradient in north-central New Mexico with standard field plot measurements of die-off combined with canopy cover derived from normalized burn ratio (NBR) from Landsat imagery. Pinyon die-off patterns revealed threshold responses to precipitation (cumulative 2002-2003) and vapor pressure deficit (VPD), with little to no mortality (< 10%) above 600 mm and below warm season VPD of c. 1.7 kPa. [Correction added after online publication 17 June 2013; in the preceding sentence, the word 'below' has been inserted.] Our results refine how precipitation patterns within a region influence pinyon die-off, revealing a precipitation and VPD threshold for tree mortality and its uncertainty band where other factors probably come into play - a response type that influences stand demography and landscape heterogeneity and is of general interest, yet has not been documented. © 2013 No claim to US Government works. New Phytologist © 2013 New Phytologist Trust.
Mutch, L.S.; Parsons, D.J.
1998-01-01
Pre-and post-burn tree mortality rates, size structure, basal area, and ingrowth were determined for four 1.0 ha mixed conifer forest stands in the Log Creek and Tharp's Creek watersheds of Sequoia National Park. Mean annual mortality between 1986 and 1990 was 0.8% for both watersheds. In the fall of 1990, the Tharp's Creek watershed was treated with a prescribed burn. Between 1991 and 1995, mean annual mortality was 1.4% in the unburned Log Creek watershed and 17.2% in the burned Tharp's Creek watershed. A drought from 1987 to 1992 likely contributed to the mortality increase in the Log Creek watershed. The high mortality in the Tharp's Creek watershed was primarily related to crown scorch from the 1990 fire and was modeled with logistic regression for white fir (Abies concolor [Gord. and Glend.]) and sugar pine (Pinus lambertiana [Dougl.]). From 1989 to 1994, basal area declined an average of 5% per year in the burned Tharp's Creek watershed, compared to average annual increases of less than 1% per year in the unburned Log Creek watershed and in the Tharp's watershed prior to burning. Post-burn size structure was dramatically changed in the Tharp's Creek stands: 75% of trees ???50 cm and 25% of trees >50 cm were killed by the fire.
van den Brandt, Piet A; Schouten, Leo J
2015-06-01
Nut intake has been associated with lower mortality, but few studies have investigated causes of death other than cardiovascular disease, and dose-response relationships remain unclear. We investigated the relationship of nut (tree nut, peanut) and peanut butter intake with overall and cause-specific mortality. In the Netherlands Cohort Study, 120,852 men and women aged 55-69 years provided information on dietary and lifestyle habits in 1986. Mortality follow-up until 1996 consisted of linkage to Statistics Netherlands. Multivariate case-cohort analyses were based on 8823 deaths and 3202 subcohort members with complete data on nuts and potential confounders. We also conducted meta-analyses of our results with those published from other cohort studies. Total nut intake was related to lower overall and cause-specific mortality (cancer, diabetes, cardiovascular, respiratory, neurodegenerative diseases, other causes) in men and women. When comparing those consuming 0.1-<5, 5-<10 and 10+ g nuts/day with non-consumers, multivariable hazard ratios for total mortality were 0.88, 0.74 and 0.77 [95% confidence interval (CI), 0.66-0.89], respectively (Ptrend = 0.003). Cause-specific hazard ratios comparing 10+ vs 0 g/day varied from 0.56 for neurodegenerative to 0.83 for cardiovascular disease mortality. Restricted cubic splines showed nonlinear dose-response relationships with mortality. Peanuts and tree nuts were inversely related to mortality, whereas peanut butter was not. In meta-analyses, summary hazard ratios for highest vs lowest nut consumption were 0.85 for cancer, and 0.71 for respiratory mortality. Nut intake was related to lower overall and cause-specific mortality, with evidence for nonlinear dose-response relationships. Peanut butter was not related to mortality. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Biophysical constraints on leaf expansion in a tall conifer.
Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian
2008-01-01
The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...
Coexistence of Trees and Grass: Importance of climate and fire within the tropics
NASA Astrophysics Data System (ADS)
Shuman, J. K.; Fisher, R.; Koven, C.; Knox, R. G.; Andre, B.; Kluzek, E. B.
2017-12-01
Tropical forests are characterized by transition zones where dominance shifts between trees and grasses with some areas exhibiting bistability of the two. The cause of this transition and bistability has been linked to the interacting effects of climate, vegetation structure and fire behavior. Utilizing the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model, and the CESM ESM, we explore the coexistence of trees and grass across the tropics with an active fire regime. FATES has been updated to use a fire module based on Spitfire. FATES-Spitfire tracks fire ignition, spread and impact based on fuel state and combustion. Fire occurs within the model with variable intensity that kills trees according to the combined effects of cambial damage and crown scorch due to flame height and fire intensity. As a size-structured model, FATES allows for variable mortality based on the size of tree cohorts, where larger trees experience lower morality compared to small trees. Results for simulation scenarios where vegetation is represented by all trees, all grass, or a combination of competing trees and grass are compared to assess changes in biomass, fire regime and tree-grass coexistence. Within the forest-grass transition area there is a critical time during which grass fuels fire spread and prevents the establishment of trees. If trees are able to escape mortality a tree-grass bistable area is successful. The ability to simulate the bistability and transition of trees and grass throughout the tropics is critical to representing vegetation dynamics in response to changing climate and CO2.
Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.
Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A
2016-01-01
There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.
Barton D. Clinton; J. Alan Yeakley; David E. Apsley
2003-01-01
Abstract: We inventoried two 1-ha plots on opposing watersheds (WS2âWS-S, WS18âWS-N) three times (1983, 1989, 1998) over a 16-year period to contrast how differing precipitation (P) regimes affect tree mortality. From 1983 to 1989, annual precipitation averaged 16.5% less than the 64-year mean; from 1989 to 1998, it averaged 12.2% above the mean. In...
R. D. Elias-Roman; R. A. Guzman-Plazola; N. B. Klopfenstein; D. Alvarado-Rosales; G. Calderon-Zavala; J. A. Mora-Aguilera; M.-S. Kim; R. Garcia-Espinosa
2013-01-01
Incidence of peach [Prunus persica (L.) Batsch] tree mortality attributed to Armillaria root disease was assessed from 2009 to 2011 in 15 orchards in the State of Mexico, Mexico. Incidence increased gradually every year of assessment, reaching average values of 9.7, 15.3 and 20.3% tree mortality and 23.2, 24.7 and 28.3% disease-impacted area of the orchards during 2009...
Slope Stability Analysis of Mountain Pine Beetle Impacted Areas
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2015-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Plant Functional Type Shifts in Big Sagebrush Ecosystems: Impacts on Dryland Ecosystem Water Balance
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2014-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.
2013-12-01
The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic water vapor flux mechanisms and an explicit understory canopy layer. Our results show that ecosystems are resilient to the bark beetle epidemic and the resulting ecosystem process change is much less dramatic than might be expected based on the visual impact.
76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... allow reestablishment of controlled periodic fire; and capturing the value of removed trees in an... mixed-severity fire regime that is dominated by lodgepole pine. Tree mortality from a mountain pine... other tree species native to the area including aspen, whitebark pine, and ponderosa pine do not occur...
A description of STEMS-- the stand and tree evaluation and modeling system.
David M. Belcher; Margaret R. Holdaway; Gary J. Brand
1982-01-01
This paper describes STEMS (Stand and Tree Evaluation and Modeling System), the current computerized Lake State tree growth projection system. It presents the program structure, discusses the growth and mortality components, the management subsystem, and the regeneration subsystem. Some preliminary results of model testing are presented and an application is...
Density-dependent vulnerability of forest ecosystems to drought
Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann
2017-01-01
Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...
Tree physiology and bark beetles
Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood
2015-01-01
Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...
Key algorithms used in GR02: A computer simulation model for predicting tree and stand growth
Garrett A. Hughes; Paul E. Sendak; Paul E. Sendak
1985-01-01
GR02 is an individual tree, distance-independent simulation model for predicting tree and stand growth over time. It performs five major functions during each run: (1) updates diameter at breast height, (2) updates total height, (3) estimates mortality, (4) determines regeneration, and (5) updates crown class.
J. Parke; B. Collins; G. Buckles; E. Hansen; B. Lachenbruch
2009-01-01
In an experiment with mature naturally infected tanoak trees, Phytophthora ramorum was observed in sapwood and appeared to interfere with stem water transport (Parke and others 2007). We postulated that colonization of the xylem could contribute to rapid spread within the tree and lead to development of crown mortality symptomatic of...