Sample records for extensor postural thrust

  1. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals.

    PubMed

    Larson, Dennis J; Brown, Stephen H M

    2018-02-01

    The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4  days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running.

    PubMed

    Teng, Hsiang-Ling; Powers, Christopher M

    2016-07-01

    Diminished hip-muscle performance has been proposed to contribute to various knee injuries. To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Descriptive laboratory study. Musculoskeletal biomechanical laboratory. A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = -0.39, P = .01). All the correlations remained after adjusting for sex. Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee.

  3. Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running

    PubMed Central

    Teng, Hsiang-Ling; Powers, Christopher M.

    2016-01-01

    Context:  Diminished hip-muscle performance has been proposed to contribute to various knee injuries. Objective:  To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Design:  Descriptive laboratory study. Setting:  Musculoskeletal biomechanical laboratory. Patients or Other Participants:  A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Main Outcome Measure(s):  Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Results:  Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = −0.39, P = .01). All the correlations remained after adjusting for sex. Conclusions:  Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee. PMID:27513169

  4. Electromyographic activity of the trunk extensor muscles: effect of varying hip position and lumbar posture during Roman chair exercise.

    PubMed

    Mayer, John M; Verna, Joe L; Manini, Todd M; Mooney, Vert; Graves, James E

    2002-11-01

    To evaluate the effect of hip position and lumbar posture on the surface electromyographic activity of the trunk extensors during Roman chair exercise. Descriptive, repeated measures. University-based musculoskeletal research laboratory. Twelve healthy volunteers (7 men, 5 women; age range, 18-35y) without a history of low back pain were recruited from a university setting. Not applicable. Surface electromyographic activity was recorded from the lumbar extensor, gluteal, and hamstring musculature during dynamic Roman chair exercise. For each muscle group, electromyographic activity (mV/rep) was compared among exercises with internal hip rotation and external hip rotation and among exercises by using a typical lumbar posture (nonbiphasic) and a posture that accentuated lumbar lordosis (biphasic). For the lumbar extensors, electromyographic activity during exercise was 18% greater with internal hip rotation than external hip rotation (P< or =.05) and was 25% greater with a biphasic posture than with a nonbiphasic posture (P< or =.05). For the gluteals and hamstrings, there was no difference in electromyographic activity between internal and external hip rotation or between biphasic and nonbiphasic postures (P >.05). The level of recruitment of the lumbar extensors can be modified during Roman chair exercise by altering hip position and lumbar posture. Clinicians can use these data to develop progressive exercise protocols for the lumbar extensors with a variety of resistance levels without the need for complex equipment. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  5. Identification of human-generated forces on wheelchairs during total-body extensor thrusts.

    PubMed

    Hong, Seong-Wook; Patrangenaru, Vlad; Singhose, William; Sprigle, Stephen

    2006-10-01

    Involuntary extensor thrust experienced by wheelchair users with neurological disorders may cause injuries via impact with the wheelchair, lead to the occupant sliding out of the seat, and also damage the wheelchair. The concept of a dynamic seat, which allows movement of a seat with respect to the wheelchair frame, has been suggested as a potential solution to provide greater freedom and safety. Knowledge of the human-generated motion and forces during unconstrained extensor thrust events is of great importance in developing more comfortable and effective dynamic seats. The objective of this study was to develop a method to identify human-generated motions and forces during extensor thrust events. This information can be used to design the triggering system for a dynamic seat. An experimental system was developed to automatically track the motions of the wheelchair user using a video camera and also measure the forces at the footrest. An inverse dynamic approach was employed along with a three-link human body model and the experimental data to predict the human-generated forces. Two kinds of experiments were performed: the first experiment validated the proposed model and the second experiment showed the effects of the extensor thrust speed, the footrest angle, and the seatback angle. The proposed method was tested using a sensitivity analysis, from which a performance index was deduced to help indicate the robust region of the force identification. A system to determine human-generated motions and forces during unconstrained extensor thrusts was developed. Through experiments and simulations, the effectiveness and reliability of the developed system was established.

  6. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods

    PubMed Central

    Fujiwara, Shin-ichi; Hutchinson, John R.

    2012-01-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa. PMID:22357261

  7. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    PubMed

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  8. Effects of a salsa dance training on balance and strength performance in older adults.

    PubMed

    Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W

    2012-01-01

    Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.

  9. Age-Related Differences in Maximal and Rapid Torque Characteristics of the Hip Extensors and Dynamic Postural Balance in Healthy, Young and Old Females.

    PubMed

    Palmer, Ty B; Thiele, Ryan M; Thompson, Brennan J

    2017-02-01

    Palmer, TB, Thiele, RM, and Thompson, BJ. Age-related differences in maximal and rapid torque characteristics of the hip extensors and dynamic postural balance in healthy, young and old females. J Strength Cond Res 31(2): 480-488, 2017-The purpose of this study was to examine age-related differences in maximal and rapid torque characteristics of the hip extensor muscles and dynamic postural balance in healthy, young and older females. Eleven younger (age, 26 ± 8 years) and 11 older (age, 67 ± 8 years) females performed 2 isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Absolute and relative peak torque (PT) and rate of torque development (RTD) at early (0-50 ms) and late (0-200 ms) phases of muscle contraction were examined during each MVC. Dynamic postural balance was assessed using a commercially designed balance testing device, which provides a measurement of dynamic stability based on the overall stability index (OSI). Results indicated that absolute PT and early (RTD50) and late (RTD200) RTD variables were lower (p = 0.009-0.050), and postural OSI was higher (p = 0.011) in the old compared with the younger females; however, no differences were observed for relative PT or RTD variables (p = 0.113-0.895). A significant relationship was also observed in the older (r = -0.601; p = 0.050) but not the younger (r = -0.132; p = 0.698) females between RTD50 and OSI. The lower absolute PT and RTD and higher OSI values for the old females may contribute to the increased functional limitations often observed in older adults. The significant relationship observed in the older females between OSI and RTD50 perhaps suggests that these age-related declines in explosive strength may be an important characteristic relevant to dynamic balance scores, especially in older populations.

  10. Role of different sensory inputs for maintenance of body posture in sitting rat and rabbit.

    PubMed

    Deliagina, T; Beloozerova, I N; Popova, L B; Sirota, M G; Swadlow, H A; Grant, G; Orlovsky, G N

    2000-10-01

    In this paper, we describe the postural activity in sitting rats and rabbits. An animal was positioned on the platform that could be tilted in the frontal plane for up to +/-20-30 degrees, and postural corrections were video recorded. We found that in both rat and rabbit, the postural reactions led to stabilization of the dorsal-side-up trunk orientation. The result of this was that the trunk tilt constituted only approximately 50% (rat) and 25% (rabbit) of the platform tilt. In addition, in the rabbit the head orientation was also stabilized. Trunk stabilization persisted in the animals subjected to the bilateral labyrinthectomy and blindfolding, suggesting that the somatosensory input is primarily responsible for trunk stabilization. Trunk stabilization was due to extension of the limbs on the side moving down, and flexion of the opposite limbs. EMG recordings showed that the limb extension was caused by the active contraction of extensor muscles. We argue that signals from the Golgi tendon organs of the extensor muscles may considerably contribute to elicitation of postural corrective responses to the lateral tilt.

  11. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    PubMed

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  12. The influences of sex and posture on joint energetics during drop landings.

    PubMed

    Norcross, M F; Shultz, S J; Weinhold, P S; Lewek, M D; Padua, D A; Blackburn, J T

    2015-04-01

    Previous observations suggest that females utilize a more erect initial landing posture than males with sex differences in landing posture possibly related to sex-specific energy absorption (EA) strategies. However, sex-specific EA strategies have only been observed when accompanied by sex differences in initial landing posture. This study (a) investigated the potential existence of sex-specific EA strategies; and (b) determined the influences of sex and initial landing posture on the biomechanical determinants of EA. The landing biomechanics of 80 subjects were recorded during drop landings in Preferred, Flexed, and Erect conditions. No sex differences in joint EA were identified after controlling for initial landing posture. Males and females exhibited greater ankle EA during Erect vs Flexed landings with this increase driven by 12% greater ankle velocity, but no change in ankle extensor moment. No differences in hip and knee EA were observed between conditions. However, to achieve similar knee EA, subjects used 7% greater mean knee extensor moment but 9% less knee angular velocity during Flexed landings. The results suggest that sex-specific EA strategies do not exist, and that the magnitude of knee joint EA can be maintained by modulating the relative contributions of joint moment and angular velocity to EA. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Topsy-turvy locomotion: biomechanical specializations of the elbow in suspended quadrupeds reflect inverted gravitational constraints

    PubMed Central

    Fujiwara, Shin-ichi; Endo, Hideki; Hutchinson, John R

    2011-01-01

    Some tetrapods hang upside down from tree branches when moving horizontally. The ability to walk in quadrupedal suspension has been acquired independently in at least 14 mammalian lineages. During the stance (supportive) phase of quadrupedal suspension, the elbow joint flexor muscles (not the extensors as in upright vertebrates moving overground) are expected to contract to maintain the flexed limb posture. Therefore muscular control in inverted, suspended quadrupeds may require changes of muscle control, and even morphologies, to conditions opposite to those in upright animals. However, the relationships between musculoskeletal morphologies and elbow joint postures during the stance phase in suspended quadrupeds have not been investigated. Our analysis comparing postures and skeletal morphologies in Choloepus (Pilosa), Pteropus (Chiroptera), Nycticebus (Primates) and Cynocephalus (Dermoptera) revealed that the elbow joints of these animals were kept at flexed angles of 70–100 ° during the stance phase of quadrupedal suspension. At these joint angles the moment arms of the elbow joint flexors were roughly maximized, optimizing that component of antigravity support. Our additional measurements from various mammalian species show that suspended quadrupeds have relatively small extensor/flexor ratios in both muscle masses and maximum moment arms. Thus, in contrast to the pattern in normal terrestrial quadrupeds, suspended quadrupeds emphasize flexor over extensor muscles for body support. This condition has evolved independently multiple times, attendant with a loss or reduction of the ability to move in normal upright postures. PMID:21477151

  14. ITKids part II: variation of postures and muscle activity in children using different information and communication technologies.

    PubMed

    Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare

    2011-01-01

    There are concerns that insufficient variation in postural and muscle activity associated with use of modern information and communication technology (ICT) presents a risk for musculoskeletal ill-health among school children. However, scientific knowledge on physical exposure variation in this group is limited. The purpose of this study was to quantify postures and muscle activity of school children using different types of ICT. Postures of the head, upper back and upper arm, and muscle activity of the right and left upper trapezius and right forearm extensors were measured over 10-12 hours in nine school children using different types of ICT at school and away-from-school. Variation in postures and muscle activity was quantified using two indices, EVA{sd} and APDF₉₀-₁₀. Paper-based (Old) ICT tasks produced postures that were less neutral but more variable than electronics-based (New ICT) and Non-ICT tasks. Non-ICT tasks involved mean postures similar to New ICT tasks, but with greater variation. Variation of muscle activity was similar between ICT types in the right and left upper trapezius muscles. Non-ICT tasks produced more muscle activity variation in the right forearm extensor group compared to New and Old ICT tasks. Different ICT tasks produce different degrees of variation in posture and muscle activity. Combining tasks that use different ICT may increase overall exposure variation. More research is needed to determine what degree of postural and muscle activity variation is associated with reduced risk of musculoskeletal ill-health.

  15. Activity of thoracic and lumbar epaxial extensors during postural responses in the cat

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Fung, J.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the role of trunk extensor muscles in the thoracic and lumbar regions during postural adjustments in the freely standing cat. The epaxial extensor muscles participate in the rapid postural responses evoked by horizontal translation of the support surface. The muscles segregate into two regional groups separated by a short transition zone, according to the spatial pattern of the electromyographic (EMG) responses. The upper thoracic muscles (T5-9) respond best to posteriorly directed translations, whereas the lumbar muscles (T13 to L7) respond best to anterior translations. The transition group muscles (T10-12) respond to almost all translations. Muscles group according to vertebral level rather than muscle species. The upper thoracic muscles change little in their response with changes in stance distance (fore-hindpaw separation) and may act to stabilize the intervertebral angles of the thoracic curvature. Activity in the lumbar muscles increases along with upward rotation of the pelvis (iliac crest) as stance distance decreases. Lumbar muscles appear to stabilize the pelvis with respect to the lumbar vertebrae (L7-sacral joint). The transition zone muscles display a change in spatial tuning with stance distance, responding to many directions of translation at short distances and focusing to respond best to contralateral translations at the long stance distance.

  16. Smaller external notebook mice have different effects on posture and muscle activity.

    PubMed

    Oude Hengel, Karen M; Houwink, Annemieke; Odell, Dan; van Dieën, Jaap H; Dennerlein, Jack T

    2008-07-01

    Extensive computer mouse use is an identified risk factor for computer work-related musculoskeletal disorders; however, notebook computer mouse designs of varying sizes have not been formally evaluated but may affect biomechanical risk factors. Thirty adults performed a set of mouse tasks with five notebook mice, ranging in length from 75 to 105 mm and in width from 35 to 65 mm, and a reference desktop mouse. An electro-magnetic motion analysis system measured index finger (metacarpophalangeal joint), wrist and forearm postures, and surface electromyography measured muscle activity of three extensor muscles in the forearm and the first dorsal interosseus. The smallest notebook mice were found to promote less neutral postures (up to 3.2 degrees higher metacarpophalangeal joint adduction; 6.5 degrees higher metacarpophalangeal joint flexion, 2.3 degrees higher wrist extension) and higher muscle activity (up to 4.1% of maximum voluntary contraction higher wrist extensor muscle activity). Participants with smaller hands had overall more non-neutral postures than participants with larger hands (up to 5.6 degrees higher wrist extension and 5.9 degrees higher pronation); while participants with larger hands were more influenced by the smallest notebook mice (up to 3.6 degrees higher wrist extension and 5.5% of maximum voluntary contraction higher wrist extensor values). Self-reported ratings showed that while participants preferred smaller mice for portability; larger mice scored higher on comfort and usability. The smallest notebook mice increased the intensity of biomechanical exposures. Longer term mouse use could enhance these differences, having a potential impact on the prevention of work-related musculoskeletal disorders.

  17. Self-inflicted splenic injury in snowboarders: postural analysis of forward falls of 10 consecutive patients.

    PubMed

    Tomita, Hiroyuki; Takagi, Yukihiro; Saji, Shigetoyo; Kimura, Atushi; Imai, Hisashi; Sumi, Yasuhiko

    2006-05-01

    Splenic injuries are often caused when snowboarders thrust their abdomens with their own left elbows after falling and hitting the ground. We report 10 snowboarders who suffered a splenic injury by accidentally thrusting their own elbow against their abdomen upon falling to the ground. Clinical presentation, postural analysis, and treatment are described. In an attempt to break the force while falling, snowboarders assumed 1 of 2 defensive postures that subsequently induced splenic injury: falling with an outstretched hand or falling with folded arms placed closely to the chest, that is, the fetal tuck posture. Snowboarders who fell in the outstretched hand posture developed more severe symptoms than those who fell in the fetal tuck posture. Herein, we discuss the mechanisms of such snowboarding-related splenic injury in detail and provide a review of the literature.

  18. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents

    ERIC Educational Resources Information Center

    Granacher, Urs; Gollhofer, Albert; Kriemler, Susi

    2010-01-01

    Deficits in strength of the lower extremities and postural control have been associated with a high risk of sustaining sport-related injuries. Such injuries often occur during physical education (PE) classes and mostly affect the lower extremities. Thus, the objectives of this study were to investigate the effects of balance training on postural…

  19. Mobile input device type, texting style and screen size influence upper extremity and trapezius muscle activity, and cervical posture while texting.

    PubMed

    Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E

    2015-09-01

    This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Effect of 7-days dry immersion in combination with mechanical stimulation of foot support zones upon resistance to fatigue of knee extensors and flexors

    NASA Astrophysics Data System (ADS)

    Netreba, A. I.; Khusnutdiniva, D. R.; Vinogradova, O. L.; Kozlovskaya, I. B.

    2005-08-01

    The aim of investigation was to reveal the effect of supportlessness in combination with artificial stimulation of foot support zones on fatigue resistance of knee extensors and flexors in static and rhythmic tests. 10 volunteers were exposed to 7 days dry immersion (DI). 4 of them were subjected to mechanical stimulation of foot support zones. 7-day DI did not evoke any changes in fatigue resistance during rhythmic contractions of knee extensors and flexors in both groups. Static test revealed significant decrease of fatigue resistance of both knee flexors and extensors. In the group with stimulation of support zones unfavorable effects of immersion were minimized for knee extensors but not for flexors. Thus support withdrawal is associated with a decrease of fatigue resistance for both knee flexors and extensors only under conditions of static tension. Artificial stimulation of support zones of the foot selectively affects the posture muscles.

  1. Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women

    PubMed Central

    Lee, Dong-Kyu; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the relationship between Y-balance test (YBT) distance and the lower-limb strength of adult women. [Subjects] Forty women aged 45 to 80 years volunteered for this study. [Methods] The participants were tested for maximal muscle strength of the lower limbs (hip extensors, hip flexors, hip abductors, knee extensors, knee flexors, and ankle dorsiflexors) and YBT distances in the anterior, posteromedial, and posterolateral directions. Pearson’s correlation coefficient was used to quantify the linear relationships between YBT distances and lower-limb strength. [Results] Hip extensor and knee flexor strength were positively correlated with YBT anterior distance. Hip extensor, hip abductor, and knee flexor strength were positively correlated with the YBT posteromedial distance. Hip extensor and knee flexor strength were positively correlated with YBT posterolateral distance. [Conclusion] There was a weak correlation between lower-limb strength (hip extensors, hip abductors, and knee flexors) and dynamic postural control as measured by the YBT. PMID:24926122

  2. Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the "shoulder lock" in albatrosses.

    PubMed

    Meyers, Ron A; Stakebake, Eric F

    2005-01-01

    As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.

  3. Exposure-response relationships for work-related neck and shoulder musculoskeletal disorders--Analyses of pooled uniform data sets.

    PubMed

    Nordander, Catarina; Hansson, Gert-Åke; Ohlsson, Kerstina; Arvidsson, Inger; Balogh, Istvan; Strömberg, Ulf; Rittner, Ralf; Skerfving, Staffan

    2016-07-01

    There is a lack of quantitative data regarding exposure-response relationships between occupational risk factors and musculoskeletal disorders in the neck and shoulders. We explored such relationships in pooled data from a series of our cross-sectional studies. We recorded the prevalence of complaints/discomfort (Nordic Questionnaire) and diagnoses (physical examination) in 33 groups (24 female and 9 male) within which the workers had similar work tasks (3141 workers, of which 817 were males). In representative sub-groups, we recorded postures and velocities of the head (N = 299) and right upper arm (inclinometry; N = 306), right wrist postures and velocities (electrogoniometry; N = 499), and muscular activity (electromyography) in the right trapezius muscle (N = 431) and forearm extensors (N = 206). We also assessed the psychosocial work environment (Job Content Questionnaire). Uni- and multivariate linear meta-regression analysis revealed several statistically significant group-wise associations. Neck disorders were associated with head inclination, upper arm elevation, muscle activity of the trapezius and forearm extensors and wrist posture and angular velocity. Right-side shoulder disorders were associated with head and upper arm velocity, activity in the trapezius and forearm extensor muscles and wrist posture and angular velocity. The psychosocial work environment (low job control, job strain and isostrain) was also associated with disorders. Women exhibited a higher prevalence of neck and shoulder complaints and tension neck syndrome than men, when adjusting for postures, velocities, muscular activity or psychosocial exposure. In conclusion, the analyses established quantitative exposure-response relationships between neck and shoulder disorders and objective measures of the physical workload on the arm. Such information can be used for risk assessment in different occupations/work tasks, to establish quantitative exposure limits, and for the evaluation of preventive measures. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb.

    PubMed

    Arora, Shruti; Budden, Shawn; Byrne, Jeannette M; Behm, David G

    2015-10-01

    Fatigue in one limb can decrease force production in the homologous muscle as well as other muscles of the non-fatigued limb affecting balance. The objective of the study was to examine the effect of unilateral knee extensor fatigue on the non-fatigued limb's standing balance, muscle force and activation. Sixteen healthy male subjects performed pre-fatigue balance trials, warm-up exercises, maximum voluntary isometric contractions, a knee extensors fatigue protocol, and post-fatigue balance trials. The fatigue protocol consisted of sets of 15 consecutive isometric contractions of 16 s each with 4 s recovery between repetitions, which were performed at 30% peak force for the dominant knee extensor muscles. Additional sets of contractions continued until a 50% decrease in MVIC knee extensor force was observed. Pre- and post-fatigue balance assessment consisted of transition from double to single leg standing and also single leg standing trials, which were performed bilaterally and in randomized order. The peak force and F100 were significantly decreased by 44.8% (ES = 2.54) and 39.9% (ES = 0.59), respectively, for the fatigued limb post-fatigue. There were no significant changes in the non-fatigued limb's muscle force, activation, muscle onset timing or postural stability parameters. While the lack of change in non-fatigued limb force production is in agreement with some of the previous literature in this area, the lack of effect on postural measures directly contradicts earlier work. It is hypothesized that discrepancies in the duration and the intensity of the fatigue protocol may have accounted for this discrepancy.

  5. Anatomy and histochemistry of spread-wing posture in birds. I. Wing drying posture in the double-crested cormorant, Phalacrocorax auritus.

    PubMed

    Meyers, Ron A

    1997-07-01

    Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67-76, 1997. © 1997 Wiley-Liss, Inc. Copyright © 1997 Wiley-Liss, Inc.

  6. Job enlargement and mechanical exposure variability in cyclic assembly work.

    PubMed

    Möller, Therése; Mathiassen, Svend Erik; Franzon, Helena; Kihlberg, Steve

    2004-01-15

    Cyclic assembly work is known to imply a high risk for musculoskeletal disorders. To have operators rotate between work tasks is believed to be one way of decreasing this risk, since it is expected to increase variation in mechanical and psychological exposures (physical and mental loads). This assumption was investigated by assessing mechanical exposure variability in three assembly tasks in an electronics assembly plant, each on a separate workstation, as well as in a 'job enlargement' scenario combining all three stations. Five experienced operators worked for 1 h on each station. Data on upper trapezius and forearm extensor muscle activity were obtained by means of electromyography (EMG), and working postures of the head and upper arms were assessed by inclinometry. The cycle-to-cycle variance of parameters representing the three exposure dimensions: level, frequency and duration was estimated using ANOVA algorithms for each workstation separately as well as for a balanced combination of all three. For a particular station, the variability of trapezius EMG activity levels relative to the mean was higher than for extensor EMG: between-cycles coefficients of variation (CV) about 0.15 and 0.10, respectively. A similar relationship between CV applied to the parameter describing frequency of EMG activity. Except for head inclination levels, the between-cycles CV was larger for posture parameters than for EMG. The between-cycles variance increased up to six fold in the job enlargement scenario, as compared to working at only one station. The difference in mean exposure between workstations was larger for trapezius EMG parameters than for forearm extensor EMG and postures, and hence the effect of job enlargement on exposure variability was more pronounced for the trapezius. For some stations, job enlargement even implied less cycle-to-cycle variability in forearm extensor EMG parameters than working at that station only. Whether the changes in exposure variability associated with job enlargement were sufficient to imply a decreased risk for musculoskeletal disorders is not known.

  7. Effects of Pilates on muscle strength, postural balance and quality of life of older adults: a randomized, controlled, clinical trial

    PubMed Central

    Campos de Oliveira, Laís; Gonçalves de Oliveira, Raphael; Pires-Oliveira, Deise Aparecida de Almeida

    2015-01-01

    [Purpose] The aim of the present study was to determine the effects of Pilates on lower leg strength, postural balance and the health-related quality of life (HRQoL) of older adults. [Subjects and Methods] Thirty-two older adults were randomly allocated either to the experimental group (EG, n = 16; mean age, 63.62 ± 1.02 years), which performed two sessions of Pilates per week for 12 weeks, or to the control group (CG, n = 16; mean age, 64.21 ± 0.80), which performed two sessions of static stretching per week for 12 weeks. The following evaluations were performed before and after the interventions: isokinetic torque of knee extensors and flexors at 300°/s, the Timed Up and Go (TUG) test, the Berg Balance Scale, and the Health Survey assessment (SF-36). [Results] In the intra-group analysis, the EG demonstrated significant improvement in all variables. In the inter-group analysis, the EG demonstrated significant improvement in most variables. [Conclusion] Pilates exercises led to significant improvement in isokinetic torque of the knee extensors and flexors, postural balance and aspects of the health-related quality of life of older adults. PMID:25931749

  8. Comparison of isometric cervical flexor and isometric cervical extensor system exercises on patients with neuromuscular imbalance and cervical crossed syndrome associated forward head posture.

    PubMed

    Lee, Jaejin; Kim, Dohyeon; Yu, Kyunghoon; Cho, Youngki; You, Joshua H

    2018-01-01

    Isometric cervical flexor system exercise (ICF) and isometric cervical extensor system exercise (ICE) are cervical stabilization techniques that have been used to restore cervical crossed syndrome (CCS)-associated forward head posture. However, the therapeutic effects and underlying motor control mechanisms remain elusive. The purpose of present study was investigating the concurrent therapeutic effects of ICF and ICE on muscle size, muscle imbalance ratio, and muscle recruitment sequence using ultrasound imaging and electromyography. A total of 18 participants (7 females; age=24±4.0 years) with CCS associated with forward head posture underwent ICF and ICE. Paired t-test analysis was used for statistical analysis. Paired t-test analysis showed that sternocleidomastoid thickness was greater during ICF than ICE. Similarly, cross-sectional area and horizontal thickness of the longus colli were greater during ICE than ICF. The upper trapezius/lower trapezius muscle imbalance ratio and the pectoralis major/lower trapezius muscle imbalance ratio were significantly decreased during the application of ICE compared to ICF. These results provide compelling, mechanistic evidence as to how ICE is more beneficial for the restoration of neuromuscular imbalance than ICF in individuals with CCS.

  9. Cervical Musculoskeletal Impairments and Temporomandibular Disorders

    PubMed Central

    Magee, David

    2012-01-01

    ABSTRACT Objectives The study of cervical muscles and their significance in the development and perpetuation of Temporomandibular Disorders has not been elucidated. Thus this project was designed to investigate the association between cervical musculoskeletal impairments and Temporomandibular Disorders. Material and Methods A sample of 154 subjects participated in this study. All subjects underwent a series of physical tests and electromyographic assessment (i.e. head and neck posture, maximal cervical muscle strength, cervical flexor and extensor muscles endurance, and cervical flexor muscle performance) to determine cervical musculoskeletal impairments. Results A strong relationship between neck disability and jaw disability was found (r = 0.82). Craniocervical posture was statistically different between patients with myogenous Temporomandibular Disorders (TMD) and healthy subjects. However, the difference was too small (3.3º) to be considered clinically relevant. Maximal cervical flexor muscle strength was not statistically or clinically different between patients with TMD and healthy subjects. No statistically significant differences were found in electromyographic activity of the sternocleidomastoid or the anterior scalene muscles in patients with TMD when compared to healthy subjects while executing the craniocervical flexion test (P = 0.07). However, clinically important effect sizes (0.42 - 0.82) were found. Subjects with TMD presented with reduced cervical flexor as well as extensor muscle endurance while performing the flexor and extensor muscle endurance tests when compared to healthy individuals. Conclusions Subjects with Temporomandibular Disorders presented with impairments of the cervical flexors and extensors muscles. These results could help guide clinicians in the assessment and prescription of more effective interventions for individuals with Temporomandibular Disorders. PMID:24422022

  10. Role of support afferentation in control of the tonic muscle activity

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, I. B.; Sayenko, I. V.; Sayenko, D. G.; Miller, T. F.; Khusnutdinova, D. R.; Melnik, K. A.

    2007-02-01

    The paper summarizes the results of experimental studies advocating for the leading role of support afferentation in control of the functional organization of the tonic muscle system. It is shown that transition to supportless conditions is followed by a significant decline of transverse stiffness and maximal voluntary force of postural (extensor) muscles limiting their participation in locomotion and increasing involvement of phasic muscles. Mechanical stimulation of the support zones of the soles under the supportless conditions eliminates all the above-mentioned effects, including changes in transverse stiffness and maximal voluntary forces of postural muscles, and consequent loss of influence of postural muscles in the locomotor activity. It is suggested that support afferentation, facilitating (support is present) or suppressing (support is absent) the tonic motor units (MUs) activities, defines the coordination patterns of postural synergies, and ensures the optimal strategy of corrective postural responses.

  11. Spatial Orientation in Flight

    DTIC Science & Technology

    1986-12-01

    on posture, exerted through tonic activation of so-called " antigravity " muscles such as hip and knee extensors. These vestibular reflexes, of course... antigravity houses, which are built in such a way that the visually apparent vertical is quite different from the true 112 %IN.. Figure 43. Conditioned

  12. Pilates improves lower limbs strength and postural control during quite standing in a child with hemiparetic cerebral palsy: A case report study.

    PubMed

    Dos Santos, Adriana Neves; Serikawa, Simoni Sayuri; Rocha, Nelci Adriana Cicuto Ferreira

    2016-08-01

    To verify the effect of Pilates exercises in a child with cerebral palsy (CP) with mild functional impairment. We evaluated average peak torque of ankle and knee extensors/flexors using a Biodex System, using concentric active-assisted test. We also evaluated amplitude of anterior-posterior and of medial-lateral displacement of the CoP and area of oscillation during quite standing with a BERTEC platform. We applied Pilates exercises for eight weeks. Peak torque/body weight of ankle and knee extensors/flexors of both affected and unaffected limbs increased after Pilates. Also, all kinetic variables decreased after Pilates' intervention. After one-month follow-up, isokinetic variable values were higher while kinetic variable values were lower than baseline values. Pilates may be an important rehabilitation technique for children with CP that present mild deficits in motor structures and high functional level, especially when the aims are to improve muscle strength and postural control during quite standing.

  13. Muscle coordination in cycling: effect of surface incline and posture.

    PubMed

    Li, L; Caldwell, G E

    1998-09-01

    The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.

  14. Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction.

    PubMed

    Brunetti, O; Filippi, G M; Lorenzini, M; Liti, A; Panichi, R; Roscini, M; Pettorossi, V E; Cerulli, G

    2006-11-01

    Surgical reconstruction of the anterior cruciate ligament (ACL) may reduce, but it does not always eliminate, knee and body instability because of a persisting proprioceptive deficit. In order to enhance body stability, a new protocol of treatment has been proposed consisting of mechanical vibration (100 Hz frequency and < 20 microm amplitude) of the quadriceps muscle in the leg that has undergone ACL reconstruction. In our trials, stimulation was performed when the quadriceps muscle was kept isometrically contracted. Treatment was started one month after surgery. Vibration was applied for short periods over three consecutive days. Nine months after treatment, postural stability was re-evaluated with the subjects standing on one leg with open and with closed eyes. The postural stability of the subjects having undergone vibration treatment, standing on the operated leg was significantly improved one day after treatment when evaluated as mean of speed and elliptic area of the center of pressure. The improvement persisted and increased during the following weeks. Peak torques of the operated leg extensor muscles also increased and reached values close to that of the leg, which had not been operated. Conversely, the balance of the untreated subjects standing on the operated leg did not improve and the restoration of the extensor muscle peak torque was poor. It is concluded that short lasting proprioceptive activation by vibration may lead to a faster and more complete equilibrium recovery probably by permanently changing the network controlling knee posture.

  15. Low back pain characterized by muscle resistance and occupational factors associated with nursing1

    PubMed Central

    Petersen, Rafael de Souza; Marziale, Maria Helena Palucci

    2014-01-01

    Objective to identify the occupational factors associated with low back pain using a surveillance tool and to characterize the low back pain by the resistance of the extensor muscles of the vertebral column among nursing professionals at an Intensive Care Unit. Methods Cross-sectional study. The workers answered a questionnaire about occupational factors and participated in a resistance test of the extensor muscles of the vertebral column. Associations were established through Student's T-test or Mann-Whitney's U-test and correlations using Pearson's test. Results Out of 48 participants, 32 (67%) suffered from low pain. For the resistance test, the subjects suffering from low back pain endured less time in comparison with asymptomatic subjects, but without significant differences (p=0.147). The duration of the pain episode showed a significant negative correlation (p=0.016) with the results of the resistance test though. The main factors identified as causes of low back pain were biomechanical and postural elements, conditions of the muscle structure and physical and organizational conditions. Conclusions the main occupational factors associated with the low back pain were the posture and the characteristics of the physical and organizational conditions. In addition, the extensor muscles of the column showed a trend towards lesser resistance for workers in pain. This evidence is important when considering prevention and treatment strategies. PMID:25029048

  16. Longitudinal, lateral and transverse axes of forearm muscles influence the crosstalk in the mechanomyographic signals during isometric wrist postures.

    PubMed

    Islam, Md Anamul; Sundaraj, Kenneth; Ahmad, R Badlishah; Sundaraj, Sebastian; Ahamed, Nizam Uddin; Ali, Md Asraf

    2014-01-01

    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity. The aim of the present study was two-fold: i) to quantify the level of crosstalk in the mechanomyographic (MMG) signals from the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the extensor digitorum (ED), extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU) muscles during isometric wrist flexion (WF) and extension (WE), radial (RD) and ulnar (UD) deviations; and ii) to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures. Twenty, healthy right-handed men (mean ± SD: age = 26.7±3.83 y; height = 174.47±6.3 cm; mass = 72.79±14.36 kg) participated in this study. During each wrist posture, the MMG signals propagated through the axes of the muscles were detected using three separate tri-axial accelerometers. The x-axis, y-axis, and z-axis of the sensor were placed in the Lo, La, and Tr directions with respect to muscle fibers. The peak cross-correlations were used to quantify the proportion of crosstalk between the different muscle groups. The average level of crosstalk in the MMG signals generated by the muscle groups ranged from: 34.28-69.69% for the Lo axis, 27.32-52.55% for the La axis and 11.38-25.55% for the Tr axis for all participants and their wrist postures. The Tr axes between the muscle groups showed significantly smaller crosstalk values for all wrist postures [F (2, 38) = 14-63, p<0.05, η2 = 0.416-0.769]. The results may be applied in the field of human movement research, especially for the examination of muscle mechanics during various types of the wrist postures.

  17. Measuring postural control during mini-squat posture in men with early knee osteoarthritis.

    PubMed

    Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M

    2017-04-01

    Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP velocity of displacement and physical function (ρ=0.47, p=0.01) and stiffness (ρ=-0.45, p=0.02). The findings of the present study emphasize the importance of rehabilitation from the early degrees of knee OA to prevent postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee should be further investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing.

    PubMed

    Decker, Michael J; Torry, Michael R; Wyland, Douglas J; Sterett, William I; Richard Steadman, J

    2003-08-01

    To determine whether gender differences exist in lower extremity joint motions and energy absorption landing strategies between age and skill matched recreational athletes. Mixed factor, repeated measures design. Compared to males, females execute high demand activities in a more erect posture potentially predisposing the anterior cruciate ligament to greater loads and injury. The preferred energy absorption strategy may provide insight for this performance difference. Inverse dynamic solutions estimated lower extremity joint kinematics, kinetics and energetic profiles for twelve males and nine females performing a 60 cm drop landing. Females demonstrated a more erect landing posture and utilized greater hip and ankle joint range of motions and maximum joint angular velocities compared to males. Females also exhibited greater energy absorption and peak powers from the knee extensors and ankle plantar-flexors compared to the males. Examinations of the energy absorption contributions revealed that the knee was the primary shock absorber for both genders, whereas the ankle plantar-flexors muscles was the second largest contributor to energy absorption for the females and the hip extensors muscles for the males. Females may choose to land in a more erect posture to maximize the energy absorption from the joints most proximal to ground contact. Females may be at a greater risk to anterior cruciate ligament injury during landing due to their energy absorption strategy.

  19. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults

    PubMed Central

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000

  20. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    PubMed

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  1. The influence of athletic status on maximal and rapid isometric torque characteristics and postural balance performance in Division I female soccer athletes and non-athlete controls.

    PubMed

    Palmer, Ty B; Hawkey, Matt J; Thiele, Ryan M; Conchola, Eric C; Adams, Bailey M; Akehi, Kazuma; Smith, Doug B; Thompson, Brennan J

    2015-07-01

    The purpose of this study was to examine the effectiveness of maximal and rapid isometric torque characteristics of the hip extensor muscles and postural balance performance to discriminate between female collegiate soccer athletes and non-athlete controls. Ten athletes (mean ± SE: age = 19·20 ± 0·36 year; mass = 62·23 ± 3·12 kg; height = 162·43 ± 1·70 cm) and 10 non-athletes (age = 20·30 ± 0·40 year; mass = 69·64 ± 3·20 kg; height = 163·22 ± 2·10 cm) performed two isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Peak torque (PT) and absolute and relative rate of torque development (RTD) at early (0-50 ms) and late (100-200 ms) phases of muscle contraction were examined during each MVC. Postural balance was assessed using a commercially designed balance testing device, which provides a measurement of static stability based on sway index (SI). Results indicated that absolute and relative RTD at 0-50 ms (RTD50 and RTD50norm) were greater (P = 0·007 and 0·026), and postural SI was lower (P = 0·022) in the athletes compared with the non-athletes. However, no differences (P = 0·375-0·709) were observed for PT nor absolute and relative RTD at 100-200 ms (RTD100-200 and RTD100-200norm). Significant relationships were also observed between RTD50 and RTD50norm and SI (r = -0·559 and -0·521; P = 0·010 and 0·019). These findings suggest that early rapid torque characteristics of the hip extensor muscles and postural balance performance may be sensitive and effective measures for discriminating between college-aged athletes and non-athletes. Coaches and practitioners may use these findings as performance evaluation tools to help in identifying athletes with both superior early rapid torque and balance performance abilities, which may possibly be an indicator of overall athletic potential. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. The effect of six weeks endurance training on dynamic muscular control of the knee following fatiguing exercise.

    PubMed

    Hassanlouei, H; Falla, D; Arendt-Nielsen, L; Kersting, U G

    2014-10-01

    The aim of the study was to examine whether six weeks of endurance training minimizes the effects of fatigue on postural control during dynamic postural perturbations. Eighteen healthy volunteers were assigned to either a 6-week progressive endurance training program on a cycle ergometer or a control group. At week 0 and 7, dynamic exercise was performed on an ergometer until exhaustion and immediately after, the anterior-posterior centre of pressure (COP) sway was analyzed during full body perturbations. Maximal voluntary contractions (MVC) of the knee flexors and extensors, muscle fiber conduction velocity (MFCV) of the vastus lateralis and medialis during sustained isometric knee extension contractions, and power output were measured. Following the training protocol, maximum knee extensor and flexor force and power output increased significantly for the training group with no changes observed for the control group. Moreover, the reduction of MFCV due to fatigue changed for the training group only (from 8.6% to 3.4%). At baseline, the fatiguing exercise induced an increase in the centre of pressure sway during the perturbations in both groups (>10%). The fatiguing protocol also impaired postural control in the control group when measured at week 7. However, for the training group, sway was not altered after the fatiguing exercise when assessed at week 7. In summary, six weeks of endurance training delayed the onset of muscle fatigue and improved the ability to control balance in response to postural perturbations in the presence of muscle fatigue. Results implicate that endurance training should be included in any injury prevention program. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A biomechanical and physiological study of office seat and tablet device interaction.

    PubMed

    Weston, Eric; Le, Peter; Marras, William S

    2017-07-01

    Twenty subjects performed typing tasks on a desktop computer and touch-screen tablet in two chairs for an hour each, and the effects of chair, device, and their interactions on each dependent measure were recorded. Biomechanical measures of muscle force, spinal load, and posture were examined, while discomfort was measured via heart rate variability (HRV) and subjective reports. HRV was sensitive enough to differentiate between chair and device interactions. Biomechanically, a lack of seat back mobility forced individuals to maintain an upright seating posture with increased extensor muscle forces and increased spinal compression. Effects were exacerbated by forward flexion upon interaction with a tablet device or by slouching. Office chairs should be designed with both the human and workplace task in mind and allow for reclined postures to off-load the spine. The degree of recline should be limited, however, to prevent decreased lumbar lordosis resulting from posterior hip rotation in highly reclined postures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Influences of the extensor portion of the gluteus maximus muscle on pelvic tilt before and after the performance of a fatigue protocol.

    PubMed

    Alvim, Felipe C; Peixoto, Jennifer G; Vicente, Eduardo J D; Chagas, Paula S C; Fonseca, Diogo S

    2010-01-01

    There is a lack of data in the literature for determining the influences of the extensor portion of the gluteus maximus muscle on pelvic tilting and, thus, on lumbar stability. To assess the influences of the extensor portion of the gluteus maximus muscle on pelvic tilt. Ten healthy young subjects were recruited, with a body mass index (BMI) below 24.9 kg/m(2) and leg length discrepancy below 1 cm. The BMI, pelvic perimeter and lower-limb lengths were assessed and, subsequently, the degrees of hemi-pelvic tilt and asymmetry between them were analyzed using lateral view photographs of the subjects in a standing position, using SAPO (Software for Postural Assessment). Next, fatigue was induced in the extensor portion of the gluteus maximus muscle on the dominant side, and after that the hemi-pelvic tilt and the asymmetry between the hemi-pelvises were reassessed. The Pearson r and Student t tests were conducted at the significance level of alpha=0.05. There were no significant correlations between the confounding variables and asymmetry of the hemi-pelvic angles. There were significant changes in the hemi-pelvic angle of the dominant side (t=3.760; p=0.004). Fatigue in the extensor portion of the gluteus maximus muscle can generate increases in the tilt angle of the ipsilateral pelvis.

  5. Dandy-Walker syndrome presenting as opisthotonus: proposed pathophysiology.

    PubMed

    Ondo, W G; Delong, G R

    1996-02-01

    A patient with radiographically confirmed Dandy-Walker syndrome who presented with opisthotonus, a rarely reported clinical manifestation, is reported. From four separate pharmacologic trials (baclofen, diazepam, levodopa/carbidopa, and trihexyphenidyl), combination baclofen and diazepam therapy was determined to be most efficacious. Opisthotonus and extensor posturing remain only rudimentarily understood. We review the subject and propose a specific mechanism relating our patient's anatomic and physiologic conditions.

  6. Balance and Muscle Strength in Elderly Women Who Dance Samba

    PubMed Central

    Serra, Marcos Maurício; Alonso, Angelica Castilho; Peterson, Mark; Mochizuki, Luis; Greve, Júlia Maria D'Andréa; Garcez-Leme, Luiz Eugênio

    2016-01-01

    Considering the growth of the aging population, and the increasing risk for falls and related morbidity, it is vital to seek efficient, comprehensive, and culturally relevant prevention programs for elderly people to reduce risks for falls. The aim of the present study was to evaluate the postural balance and muscle strength among women participating in the "Wing of Baianas" in the carnival parades. One hundred and ten women, with an average age of 67.4±5.9 years, were divided into two groups: Baianas group—elderly participants of the carnival parades in the “Wing of Baianas”, and a Control group of women who do not dance samba. Assessments included a physical activity questionnaire, isokinetic muscle strength testing for the knee extensors and flexors, and a postural balance assessment completed on a force platform. There were no differences between groups, for postural balance outcomes, during the eyes open condition; however, with eyes closed, there was a significant effect between groups (Baianas vs Control) in all variables. The Baianas group showed less medio-lateral displacement (p < 0.04); and anteroposterior displacement (p < 0.007); larger amplitudes of medio-lateral displacement (p < 0.001); and anteroposterior displacement (p < 0.001); increased mean velocity (p < 0.01); and elliptical area (p < 0.01) There were no differences in the isokinetic peak torque corrected by body weight, total work and flexor/extensor ratio. Participation in the Wing of Baianas is associated with better balance with closed eyes, but there were no differences between dancers and non-dancers for muscle strength. PMID:27906984

  7. Balance and Muscle Strength in Elderly Women Who Dance Samba.

    PubMed

    Serra, Marcos Maurício; Alonso, Angelica Castilho; Peterson, Mark; Mochizuki, Luis; Greve, Júlia Maria D'Andréa; Garcez-Leme, Luiz Eugênio

    2016-01-01

    Considering the growth of the aging population, and the increasing risk for falls and related morbidity, it is vital to seek efficient, comprehensive, and culturally relevant prevention programs for elderly people to reduce risks for falls. The aim of the present study was to evaluate the postural balance and muscle strength among women participating in the "Wing of Baianas" in the carnival parades. One hundred and ten women, with an average age of 67.4±5.9 years, were divided into two groups: Baianas group-elderly participants of the carnival parades in the "Wing of Baianas", and a Control group of women who do not dance samba. Assessments included a physical activity questionnaire, isokinetic muscle strength testing for the knee extensors and flexors, and a postural balance assessment completed on a force platform. There were no differences between groups, for postural balance outcomes, during the eyes open condition; however, with eyes closed, there was a significant effect between groups (Baianas vs Control) in all variables. The Baianas group showed less medio-lateral displacement (p < 0.04); and anteroposterior displacement (p < 0.007); larger amplitudes of medio-lateral displacement (p < 0.001); and anteroposterior displacement (p < 0.001); increased mean velocity (p < 0.01); and elliptical area (p < 0.01) There were no differences in the isokinetic peak torque corrected by body weight, total work and flexor/extensor ratio. Participation in the Wing of Baianas is associated with better balance with closed eyes, but there were no differences between dancers and non-dancers for muscle strength.

  8. Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.

    PubMed

    Ridgel, Angela L; Ritzmann, Roy E

    2005-06-01

    Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.

  9. The effect of inertial loading on wrist postural tremor in essential tremor.

    PubMed

    Héroux, M E; Pari, G; Norman, K E

    2009-05-01

    Determine the effect of inertial loading on the strength of motor unit entrainment and the synergistic/competitive interaction between central and mechanical reflex tremor components in subjects with essential tremor (ET). Twenty-three subjects with ET and 22 controls held their hand in an outstretched position while supporting sub-maximal loads (no-load, 5%, 15% and 25% 1-repetition maximum). Hand postural tremor and wrist extensor neuromuscular activity were recorded. Inertial loading resulted in a reduction in postural tremor in all ET subjects. The largest reduction in tremor amplitude occurred between 5% and 15% loads, which was associated with spectral separation of the mechanical reflex and central tremor components in a large number of ET subjects. Despite an increase in overall neuromuscular activity with inertial loading, EMG tremor spectral power did not increase with loading. The effect of inertial loading on postural tremor amplitude appears to be mediated in large part by its effect on the interaction between mechanical reflex and central tremor components. Also, ET is associated with a constant absolute level of motor unit entrainment. The amplitude of postural tremor is dependent on both central and peripheral factors, with proportionally greater motor unit entrainment occurring at low contraction intensities.

  10. Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors

    PubMed Central

    Meriggi, Jenna; Parikh, Nidhi; Saad, Kenneth

    2016-01-01

    Postural corrections of the upper limb are required in tasks ranging from handling an umbrella in the changing wind to securing a wriggling baby. One complication in this process is the mechanical interaction between the different segments of the arm where torque applied at one joint induces motion at multiple joints. Previous studies have shown the long-latency reflexes of shoulder muscles (50–100 ms after a limb perturbation) account for these mechanical interactions by integrating information about motion of both the shoulder and elbow. It is less clear whether long-latency reflexes of elbow muscles exhibit a similar capability and what is the relation between the responses of shoulder and elbow muscles. The present study utilized joint-based loads tailored to the subjects' arm dynamics to induce well-controlled displacements of their shoulder and elbow. Our results demonstrate that the long-latency reflexes of shoulder and elbow muscles integrate motion from both joints: the shoulder and elbow flexors respond to extension at both joints, whereas the shoulder and elbow extensors respond to flexion at both joints. This general pattern accounts for the inherent flexion-extension coupling of the two joints arising from the arm's intersegmental dynamics and is consistent with spindle-based reciprocal excitation of shoulder and elbow flexors, reciprocal excitation of shoulder and elbow extensors, and across-joint inhibition between the flexors and extensors. PMID:26864766

  11. A randomized intervention trial to reduce mechanical exposures in the Colombian flower industry.

    PubMed

    Barrero, L H; Ceballos, C; Ellegast, R; Pulido, J A; Monroy, M; Berrio, S; Quintana, L A

    2014-01-01

    Evidence on effectiveness of ergonomic interventions to reduce mechanical demands of the upper extremity is scarce in agriculture. To conduct an ergonomic intervention to reduce mechanical exposures on workers during manual flower cutting, while emphasizing postural education and reduction of force requirements. Seventy seven workers (20 to 55 years old; 80% women) from six companies that cultivate roses participated in this study. Participants from three companies were randomly assigned to control and intervention groups. A postural education program and a maintenance program was designed and implemented in the intervention group aiming to achieve more neutral postures of the wrist and forearm and to reduce force requirements during rose cutting. Changes in self-reported effort and upper extremity postures, kinematics and muscular activity between baseline and follow-up assessments were evaluated. Most of the observed changes in the evaluated mechanical exposures were moderate for both groups. The intervention group showed differential improvements compared to the control group for 95th percentile forearm pronation (intervention group went from 50.6 to 35.6°; control group went from 18.4 to 34.7°); and to some degree for the maximum wrist radial deviation (the intervention group went from 17° to 7.6°; control group went from 10.1° to 7.8°). Also, the mean elbow flexion for the control group was reduced from 62.3 to 48.4°, whereas it increased from 52.2 to 57.3° in the intervention group. No differential changes between the intervention and control groups were observed for the kinematic variables, except for an unexpected reduction in the 95th percentile velocity of wrist flexion-extension in the control group, which was not observed in the intervention group. Lastly, although observed changes in muscular activity were not statistically significant, improvements were observed for the intervention group for the flexor and extensor carpi radialis and the flexor carpi ulnaris; although the opposite was true for the extensor carpi ulnaris. Important although sometimes mixed results were achieved with this field intervention, focusing on postural and force requirement demands. The positive results are encouraging considering the presence of typical limitations observed in field intervention studies.

  12. Muscle mechanical advantage of human walking and running: implications for energy cost.

    PubMed

    Biewener, Andrew A; Farley, Claire T; Roberts, Thomas J; Temaner, Marco

    2004-12-01

    Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.

  13. Impairments of postural stability, core endurance, fall index and functional mobility skills in patients with patello femoral pain syndrome.

    PubMed

    Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz

    2016-06-30

    Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.

  14. Effective therapy of transected quadriceps muscle in rat: Gastric pentadecapeptide BPC 157.

    PubMed

    Staresinic, Mario; Petrovic, Igor; Novinscak, Tomislav; Jukic, Ivana; Pevec, Damira; Suknaic, Slaven; Kokic, Neven; Batelja, Lovorka; Brcic, Luka; Boban-Blagaic, Alenka; Zoric, Zdenka; Ivanovic, Domagoj; Ajduk, Marko; Sebecic, Bozidar; Patrlj, Leonardo; Sosa, Tomislav; Buljat, Gojko; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag

    2006-05-01

    We report complete transection of major muscle and the systemic peptide treatment that induces healing of quadriceps muscle promptly and then maintains the healing with functional restoration. Initially, stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419, PL-10, PLD-116, PL 14736 Pliva, Croatia; in trials for inflammatory bowel disease; wound treatment; no toxicity reported; effective alone without carrier) also superiorly accelerates the healing of transected Achilles tendon. Regularly, quadriceps muscle completely transected transversely 1.0 cm proximal to patella presents a definitive defect that cannot be compensated in rat. BPC 157 (10 microg, 10 ng, 10 pg/kg) is given intraperitoneally, once daily; the first application 30 min posttransection, the final 24 h before sacrifice. It consistently improves muscle healing throughout the whole 72-day period. Improved are: (i) biomechanic (load of failure increased); (ii) function (walking recovery and extensor postural thrust/motor function index returned toward normal healthy values); (iii) microscopy/immunochemistry [i.e., mostly muscle fibers connect muscle segments; absent gap; significant desmin positivity for ongoing regeneration of muscle; larger myofibril diameters on both sides, distal and proximal (normal healthy rat-values reached)]; (iv) macroscopic presentation (stumps connected; subsequently, atrophy markedly attenuated; finally, presentation close to normal noninjured muscle, no postsurgery leg contracture). Thus, posttransection healing-consistently improved-may suggest this peptide therapeutic application in muscle disorders. Copyright 2006 Orthopaedic Research Society.

  15. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed

    Evans, P D; Siegler, M V

    1982-03-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion.

  16. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed Central

    Evans, P D; Siegler, M V

    1982-01-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion. PMID:6808122

  17. A comparison of muscle activity in using touchscreen smartphone among young people with and without chronic neck-shoulder pain.

    PubMed

    Xie, Yanfei; Szeto, Grace P Y; Dai, Jie; Madeleine, Pascal

    2016-01-01

    This study aimed to examine differences in muscle activity between young people with and without neck-shoulder pain (n = 20 in each group), when they performed texting on a smartphone. Texting was compared between using both hands ('bilateral texting') and with only one hand ('unilateral texting'). Texting tasks were also compared with computer typing. Surface electromyography from three proximal postural muscles and four distal hand/thumb muscles on the right side was recorded. Compared with healthy controls, young people with neck-shoulder pain showed altered motor control consisting of higher muscle activity in the cervical erector spinae and upper trapezius when performing texting and typing tasks. Generally, unilateral texting was associated with higher muscle loading compared with bilateral texting especially in the forearm muscles. Compared with computer typing, smartphone texting was associated with higher activity in neck extensor and thumb muscles but lower activity in upper and lower trapezius as well as wrist extensors. This study demonstrated that symptomatic individuals had increased muscle activity in the neck–shoulder region when texting on a smartphone. Contemporary ergonomic guidelines should include advice on how to interact with handheld electronic devices to achieve a relaxed posture and reduced muscle load in order to reduce the risk of musculoskeletal disorders.

  18. Spinal mobility and trunk muscle strength in elite hockey players.

    PubMed

    Lindgren, S; Twomey, L

    1988-01-01

    Elite hockey players of both sexes from the Australian Institute of Sport were assessed for lumbar spine mobility, trunk flexion and back extensor muscle strength, hamstring flexibility and postural characteristics over a two year period. All the athletes were more mobile in rotation than the 'normal' West Australian population, and demonstrated flexible hamstrings and powerful back extensor muscles; trunk flexion was less strong initially, but improved after intervention in the form of a specific exercise programme, over the measurement period. A questionnaire disclosed that low back pain is a common complaint of hockey players, but rarely required intensive physical and medical treatment. The term 'hockey player's back' has been coined in recognition of the long flat thoracolumbar spine frequently noted in these subjects. Copyright © 1988 Australian Physiotherapy Association. Published by . All rights reserved.

  19. Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California gull, Larus californicus: a paradox of fast fibers and posture.

    PubMed

    Meyers, R A; Mathias, E

    1997-09-01

    Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.

  20. Case history: improved maxillary growth and development following digit sucking elimination and orofacial myofunctional therapy.

    PubMed

    Green, Shari

    2013-11-01

    Orofacial myologists are frequently called upon to address retained oral habit concerns. During this process, current I.A.O.M. recommended treatment includes addressing tongue, lip, and jaw rest posture concerns. Following digit sucking remediation, we may also be called upon to address these rest posture issues, and tongue thrust more aggressively together. In this process, facial growth and development and jaw structure may coincidentally improve as a result of 'nature taking its course' by addressing both swallow AND rest posture. In a select subset of clients, dramatic improvements may occur if the timing is right. This article discusses one such case that appears to have yielded a significant improvement in oral postures influencing improved facial and oral growth and development.

  1. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    NASA Technical Reports Server (NTRS)

    Loughna, P.; Goldspink, G.; Goldspink, D. F.

    1986-01-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle.

  2. Experimental muscle pain challenges the postural stability during quiet stance and unexpected posture perturbation.

    PubMed

    Hirata, Rogério Pessoto; Ervilha, Ulysses Fernandes; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas

    2011-08-01

    Musculoskeletal pain impairs postural control and stability. Nine subjects stood as quietly as possible on a moveable force platform before, during, and after experimental pain in the right leg muscles. A moveable force platform was used to measure the center of pressure and provided unexpected perturbations. Lower limb muscle activity, joint angles, and foot pressure distributions were measured. Hypertonic saline was used to induce pain in the vastus lateralis, vastus medialis, or biceps femoris muscle of the right leg. Compared to baseline and control sessions, pain in the knee extensor muscles during quiet standing evoked: 1) larger sway area, greater medial-lateral center of pressure displacement and higher speed (P < .05); 2) increased sway displacement in the anterior-posterior direction (P < .05); and 3) increased electromyography (EMG) activity for left tibialis anterior and left erector spinae muscles (P < .05). Pain provoked longer time to return to an equilibrium posture after forward EMG activity for, and pain in vastus medialis muscle decreased the time for the maximum hip flexion during this perturbation (P < .05). These results show that muscle pain impairs postural stability during quiet standing and after unexpected perturbation, which suggest that people suffering from leg muscle pain are more vulnerable to falls. This article presents the acute responses to leg muscle pain on the postural control. This measure could potentially help clinicians who seek to assess how pain responses may contribute to patient's postural control and stability during quiet standing and after recovering from unexpected perturbations. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Analysis of postural control and muscular performance in young and elderly women in different age groups.

    PubMed

    Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C

    2015-01-01

    muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.

  4. Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model.

    PubMed

    Amado, S; Simões, M J; Armada da Silva, P A S; Luís, A L; Shirosaki, Y; Lopes, M A; Santos, J D; Fregnan, F; Gambarotta, G; Raimondo, S; Fornaro, M; Veloso, A P; Varejão, A S P; Maurício, A C; Geuna, S

    2008-11-01

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to develop and test hybrid chitosan membranes to use in peripheral nerve reconstruction, either alone or enriched with N1E-115 neural cells. Hybrid chitosan membranes were tested in vitro, to assess their ability in supporting N1E-115 cell survival and differentiation, and in vivo to assess biocompatibility as well as to evaluate their effects on nerve fiber regeneration and functional recovery after a standardized rat sciatic nerve crush injury. Functional recovery was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and ankle kinematics. Nerve fiber regeneration was assessed by quantitative stereological analysis and electron microscopy. All chitosan membranes showed good biocompatibility and proved to be a suitable substrate for plating the N1E-115 cellular system. By contrast, in vivo nerve regeneration assessment after crush injury showed that the freeze-dried chitosan type III, without N1E-115 cell addition, was the only type of membrane that significantly improved posttraumatic axonal regrowth and functional recovery. It can be thus suggested that local enwrapping with this type of chitosan membrane may represent an effective approach for the improvement of the clinical outcome in patients receiving peripheral nerve surgery.

  5. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  6. Influence of trunk posture on lower extremity energetics during running.

    PubMed

    Teng, Hsiang-Ling; Powers, Christopher M

    2015-03-01

    This study aimed to examine the influence of sagittal plane trunk posture on lower extremity energetics during running. Forty asymptomatic recreational runners (20 males and 20 females) ran overground at a speed of 3.4 m·s(-1). Sagittal plane trunk kinematics and lower extremity kinematics and energetics during the stance phase of running were computed. Subjects were dichotomized into high flexion (HF) and low flexion (LF) groups on the basis of the mean trunk flexion angle. The mean (±SD) trunk flexion angles of the HF and LF groups were 10.8° ± 2.2° and 3.6° ± 2.8°, respectively. When compared with the LF group, the HF group demonstrated significantly higher hip extensor energy generation (0.12 ± 0.06 vs 0.05 ± 0.04 J·kg(-1), P < 0.001) and lower knee extensor energy absorption (0.60 ± 0.14 vs 0.74 ± 0.09 J·kg(-1), P = 0.001) and generation (0.30 ± 0.05 vs 0.34 ± 0.06 J·kg(-1), P = 0.02). There was no significant group difference for the ankle plantarflexor energy absorption or generation (P > 0.05). Sagittal plane trunk flexion has a significant influence on hip and knee energetics during running. Increasing forward trunk lean during running may be used as a strategy to reduce knee loading without increasing the biomechanical demand at the ankle plantarflexors.

  7. The effect of trunk flexion on lower-limb kinetics of able-bodied gait.

    PubMed

    Kluger, David; Major, Matthew J; Fatone, Stefania; Gard, Steven A

    2014-02-01

    Able-bodied individuals spontaneously adopt crouch gait when walking with induced anterior trunk flexion, but the effect of this adaptation on lower-limb kinetics is unknown. Sustained forward trunk displacement during walking can greatly alter body center-of-mass location and necessitate a motor control response to maintain upright balance. Understanding this response may provide insight into the biomechanical demands on the lower-limb joints of spinal pathology that alter trunk alignment (e.g., flatback). The purpose of this study was to determine the effect of sustained trunk flexion on lower-limb kinetics in able-bodied gait, facilitating understanding of the effects of spinal pathologies. Subjects walked with three postures: 0° (normal upright), 25±7°, and 50±7° trunk flexion. With increased trunk flexion, decreased peak ankle plantar flexor moments were observed with increased energy absorption during stance. Sustained knee flexion during mid- and terminal stance decreased knee flexor moments, but energy absorption/generation remained unchanged across postures. Increased trunk flexion placed significant demand on the hip extensors, thus increasing peak hip extensor moments and energy generation. The direct relationship between trunk flexion and energy absorption/generation at the ankle and hip, respectively, suggest increased muscular demand during gait. These findings on able-bodied subjects might shed light on muscular demands associated with individuals having pathology-induced positive sagittal spine balance. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Comparison of standing postural control and gait parameters in people with and without chronic low back pain: a cross-sectional case-control study.

    PubMed

    MacRae, Catharine Siân; Critchley, Duncan; Lewis, Jeremy S; Shortland, Adam

    2018-01-01

    Differences in postural control and gait have been identified between people with and without chronic low back pain (CLBP); however, many previous studies present data from small samples, or have used methodologies with questionable reliability. This study, employing robust methodology, hypothesised that there would be a difference in postural control, and spatiotemporal parameters of gait in people with CLBP compared with asymptomatic individuals. This cross-sectional case-control study age-matched and gender-matched 16 CLBP and 16 asymptomatic participants. Participants were assessed barefoot (1) standing, over three 40 s trials, under four posture challenging conditions (2) during gait. Primary outcome was postural stability (assessed by root mean squared error of centre of pressure (CoP) displacement (CoP RMSEAP ) and mean CoP velocity (CoP VELAP ), both in the anteroposterior direction); gait outcomes were hip range of movement and peak moments, walking speed, cadence and stride length, assessed using force plates and a motion analysis system. There were no differences between groups in CoP RMSEAP (P=0.26), or CoP VELAP (P=0.60) for any standing condition. During gait, no differences were observed between groups for spatiotemporal parameters, maximum, minimum and total ranges of hip movement, or peak hip flexor or extensor moments in the sagittal plane. In contrast to previous research, this study suggests that people with mild to moderate CLBP present with similar standing postural control, and parameters of gait to asymptomatic individuals. Treatments directed at influencing postural stability (eg, standing on a wobble board) or specific parameters of gait may be an unnecessary addition to a treatment programme.

  9. Analysis of postural control and muscular performance in young and elderly women in different age groups

    PubMed Central

    Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.

    2015-01-01

    BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132

  10. A Yoga Strengthening Program Designed to Minimize the Knee Adduction Moment for Women with Knee Osteoarthritis: A Proof-Of-Principle Cohort Study

    PubMed Central

    2015-01-01

    People with knee osteoarthritis may benefit from exercise prescriptions that minimize knee loads in the frontal plane. The primary objective of this study was to determine whether a novel 12-week strengthening program designed to minimize exposure to the knee adduction moment (KAM) could improve symptoms and knee strength in women with symptomatic knee osteoarthritis. A secondary objective was to determine whether the program could improve mobility and fitness, and decrease peak KAM during gait. The tertiary objective was to evaluate the biomechanical characteristics of this yoga program. In particular, we compared the peak KAM during gait with that during yoga postures at baseline. We also compared lower limb normalized mean electromyography (EMG) amplitudes during yoga postures between baseline and follow-up. Primary measures included self-reported pain and physical function (Knee injury and Osteoarthritis Outcome Score) and knee strength (extensor and flexor torques). Secondary measures included mobility (six-minute walk, 30-second chair stand, stair climbing), fitness (submaximal cycle ergometer test), and clinical gait analysis using motion capture synchronized with electromyography and force measurement. Also, KAM and normalized mean EMG amplitudes were collected during yoga postures. Forty-five women over age 50 with symptomatic knee osteoarthritis, consistent with the American College of Rheumatology criteria, enrolled in our 12-week (3 sessions per week) program. Data from 38 were analyzed (six drop-outs; one lost to co-intervention). Participants experienced reduced pain (mean improvement 10.1–20.1 normalized to 100; p<0.001), increased knee extensor strength (mean improvement 0.01 Nm/kg; p = 0.004), and increased flexor strength (mean improvement 0.01 Nm/kg; p = 0.001) at follow-up compared to baseline. Participants improved mobility on the six-minute walk (mean improvement 37.7 m; p<0.001) and 30-second chair stand (mean improvement 1.3; p = 0.006) at follow-up compared to baseline. Fitness and peak KAM during gait were unchanged between baseline and follow-up. Average KAM during the yoga postures were lower than that of normal gait. Normalized mean EMG amplitudes during yoga postures were up to 31.0% of maximum but did not change between baseline and follow-up. In this cohort study, the yoga-based strengthening postures that elicit low KAMs improved knee symptoms and strength in women with knee OA following a 12 week program (3 sessions per week). The program also improved mobility, but did not improve fitness or reduce peak KAM during gait. The KAM during the yoga postures were lower than that of normal gait. Overall, the proposed program may be useful in improving pain, strength, and mobility in women with knee osteoarthritis. Clinical efficacy needs to be assessed using a randomized controlled trial design. Trial Registration ClinicalTrials.gov NCT02146105 PMID:26367862

  11. Cervicothoracic junction thrust manipulation in the multimodal management of a patient with temporomandibular disorder.

    PubMed

    Jayaseelan, Dhinu J; Tow, Nancy S

    2016-05-01

    Temporomandibular disorder (TMD) is a common condition that can be difficult to manage in physical therapy. A number of interventions, such as manual therapy, therapeutic exercise, and patient education have typically been used in some combination. However, the evidence regarding thrust manipulation of not only the local but also adjacent segments is sparse. Specifically, the use of cervicothoracic (CT) junction thrust manipulation has not previously been described in the management of individuals with TMD. In this case report, CT junction thrust manipulation, in addition to locally directed manual therapy, exercise, and postural education, was associated with immediate improvements in neck and jaw symptoms and function in a complex patient with TMD. The patient was seen for seven visits over the course of 2 months and demonstrated clinically significant changes in the neck disability index (NDI), the numeric rating of pain scale (NPRS), and the global rating of change (GROC) scale. The purpose of this report is to describe the successful physical therapy management of a patient with TMD utilizing manual therapy, including CT junction thrust manipulation, education, and exercise.

  12. Cervicothoracic junction thrust manipulation in the multimodal management of a patient with temporomandibular disorder

    PubMed Central

    Jayaseelan, Dhinu J.; Tow, Nancy S.

    2016-01-01

    Temporomandibular disorder (TMD) is a common condition that can be difficult to manage in physical therapy. A number of interventions, such as manual therapy, therapeutic exercise, and patient education have typically been used in some combination. However, the evidence regarding thrust manipulation of not only the local but also adjacent segments is sparse. Specifically, the use of cervicothoracic (CT) junction thrust manipulation has not previously been described in the management of individuals with TMD. In this case report, CT junction thrust manipulation, in addition to locally directed manual therapy, exercise, and postural education, was associated with immediate improvements in neck and jaw symptoms and function in a complex patient with TMD. The patient was seen for seven visits over the course of 2 months and demonstrated clinically significant changes in the neck disability index (NDI), the numeric rating of pain scale (NPRS), and the global rating of change (GROC) scale. The purpose of this report is to describe the successful physical therapy management of a patient with TMD utilizing manual therapy, including CT junction thrust manipulation, education, and exercise. PMID:27559278

  13. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    PubMed Central

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  14. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    PubMed

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  15. Biomechanical Measures During Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury After Anterior Cruciate Ligament Reconstruction and Return to Sport

    PubMed Central

    Paterno, Mark V.; Schmitt, Laura C.; Ford, Kevin R.; Rauh, Mitchell J.; Myer, Gregory D.; Huang, Bin; Hewett, Timothy E.

    2016-01-01

    Background Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non–anterior cruciate ligament–injured athletes. Hypotheses Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Study Design Cohort study (prognosis); Level of evidence, 2. Methods Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Results Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Conclusion Altered neuromuscular control of the hip and knee during a dynamic landing task and postural stability deficits after ACLR are predictors of a second anterior cruciate ligament injury after an athlete is released to return to sport. PMID:20702858

  16. Effects of back posture education on elementary schoolchildren's back function.

    PubMed

    Geldhof, Elisabeth; Cardon, Greet; De Bourdeaudhuij, Ilse; Danneels, Lieven; Coorevits, Pascal; Vanderstraeten, Guy; De Clercq, Dirk

    2007-06-01

    The possible effects of back education on children's back function were never evaluated. Therefore, main aim of the present study was to evaluate the effects of back education in elementary schoolchildren on back function parameters. Since the reliability of back function measurement in children is poorly defined, another objective was to test the selected instruments for reliability in 8-11-year olds. The multi-factorial intervention lasting two school-years consisted of a back education program and the stimulation of postural dynamism in the class. Trunk muscle endurance, leg muscle capacity and spinal curvature were evaluated in a pre-post design including 41 children who received the back education program (mean age at post-test: 11.2 +/- 0.9 years) and 28 controls (mean age at post-test: 11.4 +/- 0.6 years). Besides, test-retest reliability with a 1-week interval was investigated in a separate sample. Therefore, 47 children (mean age: 10.1 +/- 0.5 years) were tested for reliability of trunk muscle endurance and 40 children (mean age: 10.2 +/- 0.7 years) for the assessment of spinal curvatures. Reliability of endurance testing was very good to good for the trunk flexors (ICC = 0.82) and trunk extensors (ICC = 0.63). The assessment of the thoracic (ICC = 0.69) and the lumbar curvature (ICC = 0.52) in seating position showed good to acceptable reliability. Low ICCs were found for the assessment of the thoracic (ICC = 0.39) and the lumbar curvature (ICC = 0.37) in stance. The effects of 2 year back education showed an increase in trunk flexor endurance in the intervention group compared to a decrease in the controls and a trend towards significance for a higher increase in trunk extensor endurance in the intervention group. For leg muscle capacity and spinal curvature no intervention effects were found. The small samples recommend cautious interpretation of intervention effects. However, the present study's findings favor the implementation of back education with focus on postural dynamism in the class as an integral part of the elementary school curriculum in the scope of optimizing spinal loading through the school environment.

  17. Dynamic Imbalance Analysis and Stability Control of Galloping Gait for a Passive Quadruped Robot.

    PubMed

    Wang, Chunlei; Zhang, Ting; Wei, Xiaohui; Long, Yongjun; Wang, Shigang

    2015-01-01

    Some imbalance and balance postures of a passive quadruped robot with a simplified mathematical model are studied. Through analyzing the influence of the touchdown angle of the rear leg on the posture of the trunk during the flight phase, the stability criterion is concluded: the closer are the two moments which are the zero time of the pitching angle and the peak time of the center of mass, the better is the stability of the trunk posture during the flight phase. Additionally, the validity of the stability criterion is verified for the cat, greyhound, lion, racehorse, basset hound, and giraffe. Furthermore, the stability criterion is also applicable when the center of the mass of body is shifted. Based on the stability criterion, the necessary and sufficient condition of the galloping stability for the quadruped robot is proposed to attain a controlled thrust. The control strategy is designed by an optimization dichotomy algorithm for seeking the zero point of the balance condition. Through the control results, it is demonstrated that the imbalance posture of the trunk could be stabilized by adjusting the stiffness of four legs.

  18. Evaluating biomechanics of user-selected sitting and standing computer workstation.

    PubMed

    Lin, Michael Y; Barbir, Ana; Dennerlein, Jack T

    2017-11-01

    A standing computer workstation has now become a popular modern work place intervention to reduce sedentary behavior at work. However, user's interaction related to a standing computer workstation and its differences with a sitting workstation need to be understood to assist in developing recommendations for use and set up. The study compared the differences in upper extremity posture and muscle activity between user-selected sitting and standing workstation setups. Twenty participants (10 females, 10 males) volunteered for the study. 3-D posture, surface electromyography, and user-reported discomfort were measured while completing simulated tasks with each participant's self-selected workstation setups. Sitting computer workstation associated with more non-neutral shoulder postures and greater shoulder muscle activity, while standing computer workstation induced greater wrist adduction angle and greater extensor carpi radialis muscle activity. Sitting computer workstation also associated with greater shoulder abduction postural variation (90th-10th percentile) while standing computer workstation associated with greater variation for should rotation and wrist extension. Users reported similar overall discomfort levels within the first 10 min of work but had more than twice as much discomfort while standing than sitting after 45 min; with most discomfort reported in the low back for standing and shoulder for sitting. These different measures provide understanding in users' different interactions with sitting and standing and by alternating between the two configurations in short bouts may be a way of changing the loading pattern on the upper extremity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tenotomy of m.soleus antagonists prevents the changes in fiber type characteristics and sarcomeric cytoskeletal proteins in unloaded rats

    NASA Astrophysics Data System (ADS)

    Moukhina, Alexandra; Ardabievskaya, Anna; Vikhlyantsev, Ivan; Podlubnaya, Zoya; Nemirovskaya, Tatiana; Shenkman, Boris

    2005-08-01

    It is known that activity of postural extensors (m. soleus) decreases and activity of flexors (m. tibialis anterior) increases under unloading conditions. We have tested the hypothesis supposing that increased flexor activities during unloading exert suppressive influence on postural extensor activities and thus lead to dramatic changes in fiber size, MHC expression, sarcomeric proteins content in m.soleus. We have inactivated hindlimb flexor muscles (m.soleus antagonists) by bilateral tenotomy. 20 male Wistar rats were divided on 3 groups: cage control (C), hindlimb suspension for 14 days (HS), tenotomy of hindlimb flexor muscles with 14 days hindlimb suspension afterwards (HST). Several soleus muscle fiber characteristics decreased significantly in HS group (p<0.05) as compared with C group: cross sectional area (CSA) of type I muscle fibers, titin/MyHC ratio and nebulin/MyHC ratio. MyHC isoform pattern shifted slow-to-fast significantly. NFATc1 content increased in nuclear protein extract of m. soleus in HS group. None of these parameters was significantly different in HST group from those of C group. It has been concluded that the tenotomy of flexors under hindlimb suspension prevents atrophy of type I muscle fibers, decrease the degradation of titin and nebulin and prevent slow-to-fast shift of fiber MyHC isoform pattern, possibly through prevention of increase NFATc1 content in muscle fiber nuclear protein extract. Therefore, suppressive influence of increased flexor activity could be one of mechanisms that lead to the changes in m. soleus under unloading conditions. The work was supported by RFBR grants: 02-04-50025, 03- 04-48487 and the special program of RAS "Integration mechanisms of functional control in the living system".

  20. Reactivity, stability, and strength performance capacity in motor sports.

    PubMed

    Baur, H; Müller, S; Hirschmüller, A; Huber, G; Mayer, F

    2006-11-01

    Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. To compare reaction time, stability performance capacity, and strength performance capacity of élite racing drivers with those of age-matched, physically active controls. Eight élite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at +30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. The reaction time of the racing drivers was significantly faster than the controls (p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p>0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved.

  1. Outcomes of total hip arthroplasty: a study of patients one year postsurgery.

    PubMed

    Trudelle-Jackson, Elaine; Emerson, Roger; Smith, Sue

    2002-06-01

    Ex post facto research using prospective analysis of differences between the involved hip and uninvolved hip. To assess outcomes of total hip arthroplasty (THA) by comparing range of motion (ROM), muscle strength, and postural stability in the surgical hip to those of the uninvolved hip 1 year postsurgery. An additional objective was to assess degree of relationship among ROM, strength, and postural stability impairments to a measure of self-assessed function. Most patients who have THA receive physical therapy that consists mainly of self-care instructions and an exercise protocol that emphasizes mobility during the acute phase of recovery. But, outcomes of THA 1 year postsurgery indicate that current physical therapy programs used during the acute phase of recovery do not effectively restore physical and functional performance. Subjects consisted of 11 women and 4 men (mean age +/- standard deviation = 62 +/- 8 years) with unilateral THA performed 1 year prior to data collection. Assessment variables consisted of self-assessment of function and measures of postural stability, muscle strength, and hip ROM. The 12-Item Hip Questionnaire was used for self-assessment of function. Three separate repeated measures MANOVA were used to compare the involved side to the uninvolved side in measures of postural stability, strength, and ROM. The Spearman's rho was used to assess degree of association between the subjects' score of self-assessed function and impairments in strength and postural stability. Measures of postural stability were significantly lower (P < or = 0.01) on the side of the replaced hip. Differences in strength values between the involved and uninvolved sides were not statistically significant. Correlations between scores of self-assessed function and hip abductor and knee extensor strength were statistically significant (r = 0.56, P < or = 0.03). Self-assessed function was not significantly correlated to postural stability impairments. The brief postsurgical rehabilitation program received by patients with THA may not be sufficient. A second phase of rehabilitation implemented 4 months or more after surgery that emphasizes weight bearing and postural stability may be advisable.

  2. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair.

    PubMed

    Amado, Sandra; Rodrigues, Jorge M; Luís, Ana L; Armada-da-Silva, Paulo A S; Vieira, Márcia; Gartner, Andrea; Simões, Maria J; Veloso, António P; Fornaro, Michele; Raimondo, Stefania; Varejão, Artur S P; Geuna, Stefano; Maurício, Ana C

    2010-02-11

    Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat.

  3. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair

    PubMed Central

    2010-01-01

    Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat. PMID:20149260

  4. Control of trunk motion following sudden stop perturbations during cart pushing.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2011-01-04

    External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Changes in trunk posture and muscle responses in standing during pregnancy and postpartum

    PubMed Central

    Biviá-Roig, Gemma; Lisón, Juan Francisco

    2018-01-01

    The aim of this study was to analyze the position of the lumbopelvic region and the muscle activation of erector spinae and biceps femoris muscles in a group of pregnant women in the third trimester. The hypothesis was that pregnancy-related biomechanical and morphological changes modify the position of the lumbopelvic region and the activation of extensor muscles. The position of the lumbar spine and pelvis in the sagittal plane, and the EMG activity of the erector spinae and biceps femoris muscles, were recorded during standing in 34 nulliparous and 34 pregnant women in the third trimester, and also two months after birth in the group of pregnant women. No significant differences in the position of the lumbar spine or pelvis between the group of pregnant women and nulliparous or postpartum were observed. A significant increase was observed in the EMG activity of the erector spinae (4.6% vs 2.4% and 2.1% in the nulliparous group and postpartum respectively) and the biceps femoris (3.4% vs 1.2% and 1.4%) in pregnant women compared to the other two groups (p <0.01). We conclude that pregnant women in the third trimester show no alterations in lumbopelvic position compared to nulliparous and postpartum women. However, there is an increase of the EMG activity of the trunk extensors. These results indicate that the extensor muscles of the trunk show, in static positions, adaptive responses to the increase of anterior loads during pregnancy. PMID:29584774

  6. BIOMECHANICAL DIFFERENCES IN BRAZILIAN JIU-JITSU ATHLETES: THE ROLE OF COMBAT STYLE.

    PubMed

    Lima, Pedro Olavo de Paula; Lima, Alane Almeida; Coelho, Anita Camila Sampaio; Lima, Yuri Lopes; Almeida, Gabriel Peixoto Leão; Bezerra, Márcio Almeida; de Oliveira, Rodrigo Ribeiro

    2017-02-01

    Brazilian Jiu-Jitsu (BJJ) athletes can be divided into two combat styles: pass fighters (PFs) and guard fighters (GFs). Flexibility of the posterior chain muscles is highly necessary in these athletes, especially in GFs. On the other hand, isometric strength of the trunk extensors is required in PFs. Handgrip strength is important in holding the kimono of the opponent, and symmetrical lower-limb strength is important for the prevention of injuries due to the overload caused by training. The aim of this study was to compare the biomechanical profiles of BJJ athletes with different combat styles using the following outcome measures: flexibility, trunk extensor isometric endurance, postural balance, handgrip isometric endurance and lower-limb muscle strength. A cross-sectional study was conducted using 19 GFs and 19 PFs. The sit-and-reach test was used to evaluate the flexibility of the posterior chain muscles. The Biodex Balance System® was used to evaluate balance. A handgrip dynamometer and a dorsal dynamometer were used to evaluate handgrip and trunk extensor endurance, respectively. Quadriceps and hamstring strength were evaluated with an isokinetic dynamometer at 60 °/s. No differences were observed between groups in terms of flexibility, balance, handgrip isometric endurance or quadriceps and hamstring strength; however, PFs (81.33) showed more isometric trunk extension endurance than GFs (68.85) ( p = 0.02). Both groups had low values for hamstring/quadriceps ratio. No significant biomechanical differences were observed between PFs and GFs. 2b.

  7. Surface electromyography studies in standing position confirm that ankle strategy remains disturbed even following successful treatment of patients with a history of sciatica

    PubMed Central

    Huber, Juliusz; Lisiński, Przemysław; Ciesielska, Jagoda; Kulczyk, Aleksandra; Lipiec, Joanna; Bandosz, Agata

    2016-01-01

    [Purpose] It is hypothesized that ankle strategy can be changed in patients with a history of sciatica. The aim of this study was to detect residual disturbances following successful treatment. [Subjects and Methods] In patients with a history of sciatica (N=11) and pseudo-sciatica (N=9), differences in muscle activity were recorded with bilateral surface polyelectromyography and stability measurements (center of foot pressure sway and center of spectrum) in normal standing and tandem positions. Results were compared with recordings in healthy people (N=9) to identify abnormalities in electromyographic and postural studies. [Results] Increased amplitude of electromyographic recordings from the gastrocnemius and extensor digiti muscles on the affected side was detected more in patients with a history of sciatica than pseudo-sciatica syndromes in tandem position. Fewer amplitude fluctuations were observed in both positions preferably in patients following sciatica. Changes in center of foot pressure sway and center of spectrum during balance platform studies were detected in normal standing position in this group of patients. No similar abnormalities in electromyographic and postural studies were detected in healthy people. [Conclusion] Sciatica and pseudo-sciatica evoke persistent disturbances in activity of muscles responsible for ankle strategy. Electromyography differentiates the two groups of patients better than postural studies. PMID:27065544

  8. Thumb postures and physical loads during mobile phone use - a comparison of young adults with and without musculoskeletal symptoms.

    PubMed

    Gustafsson, Ewa; Johnson, Peter W; Hagberg, Mats

    2010-02-01

    The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.

  9. Recruitment of discrete regions of the psoas major and quadratus lumborum muscles is changed in specific sitting postures in individuals with recurrent low back pain.

    PubMed

    Park, Rachel J; Tsao, Henry; Claus, Andrew; Cresswell, Andrew G; Hodges, Paul W

    2013-11-01

    Cross-sectional controlled laboratory study. To investigate potential changes in the function of discrete regions of the psoas major (PM) and quadratus lumborum (QL) with changes in spinal curvatures and hip positions in sitting, in people with recurrent low back pain (LBP). Although the PM and QL contribute to control of spinal curvature in sitting, whether activity of these muscles is changed in individuals with LBP is unknown. Ten volunteers with recurrent LBP (pain free at the time of testing) and 9 pain-free individuals in a comparison group participated. Participants with LBP were grouped into those with high and low erector spinae (ES) electromyographic (EMG) signal amplitude, recorded when sitting with a lumbar lordosis. Data were recorded as participants assumed 3 sitting postures. Fine-wire electrodes were inserted with ultrasound guidance into fascicles of the PM arising from the transverse process and vertebral body, and the anterior and posterior layers of the QL. When data from those with recurrent LBP were analyzed as 1 group, PM and QL EMG signal amplitudes did not differ between groups in any of the sitting postures. However, when subgrouped, those with low ES EMG had greater EMG signal amplitude of the PM vertebral body and QL posterior layer in flat posture and greater EMG signal amplitude of the QL posterior layer in short lordotic posture, compared to those in the pain-free group. For the group with high ES EMG, the PM transverse process and PM vertebral body EMG was less than that of the other LBP group in short lordotic posture. The findings suggest a redistribution of activity between muscles that have a potential extensor moment in individuals with LBP. The modification of EMG of discrete fascicles of the PM and QL was related to changes in ES EMG signal amplitude recorded in sitting.

  10. Dynamic Imbalance Analysis and Stability Control of Galloping Gait for a Passive Quadruped Robot

    PubMed Central

    Wang, Chunlei; Zhang, Ting; Wei, Xiaohui; Long, Yongjun; Wang, Shigang

    2015-01-01

    Some imbalance and balance postures of a passive quadruped robot with a simplified mathematical model are studied. Through analyzing the influence of the touchdown angle of the rear leg on the posture of the trunk during the flight phase, the stability criterion is concluded: the closer are the two moments which are the zero time of the pitching angle and the peak time of the center of mass, the better is the stability of the trunk posture during the flight phase. Additionally, the validity of the stability criterion is verified for the cat, greyhound, lion, racehorse, basset hound, and giraffe. Furthermore, the stability criterion is also applicable when the center of the mass of body is shifted. Based on the stability criterion, the necessary and sufficient condition of the galloping stability for the quadruped robot is proposed to attain a controlled thrust. The control strategy is designed by an optimization dichotomy algorithm for seeking the zero point of the balance condition. Through the control results, it is demonstrated that the imbalance posture of the trunk could be stabilized by adjusting the stiffness of four legs. PMID:27110095

  11. Analysis of isokinetic muscle function and postural control in individuals with intermittent claudication

    PubMed Central

    Lanzarin, Morgan; Parizoto, Patricia; Santos, Gilmar M.

    2016-01-01

    BACKGROUND: Intermittent claudication (IC) is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6) and 16 healthy controls (mean age: 67 years, SD=5), which were allocated into two groups: intermittent claudication group (ICG) and control group (CG). Postural control was assessed using the displacement and velocity of the center of pressure (COP) during the sensory organization test (SOT) and the motor control test (MCT). Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027) and speed (p =0.033) of the COP in the anteroposterior direction (COPap) during the MCT, as well as longer latency (p =0.004). There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects. PMID:26786077

  12. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis

    PubMed Central

    Allen, Vivian; Elsey, Ruth M; Jones, Nicola; Wright, Jordon; Hutchinson, John R

    2010-01-01

    Crocodylians exhibit a fascinating diversity of terrestrial gaits and limb motions that remain poorly described and are of great importance to understanding their natural history and evolution. Their musculoskeletal anatomy is pivotal to this diversity and yet only qualitative studies of muscle-tendon unit anatomy exist. The relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of American alligators (Alligator mississippiensis Daudin 1801) were recorded for an ontogenetic series of wild specimens (n = 15, body masses from 0.5 to 60 kg). The data were analysed by reduced major axis regression to determine scaling relationships with body mass. Physiological cross-sectional areas and therefore muscle force-generating capacity were found to be greater in the extensor (anti-gravity) muscles of the pelvic limb than in the pectoral limb, reflecting how crocodylians differ from mammals in having greater loading of the hindlimbs than the forelimbs. Muscle masses and architecture were generally found to scale isometrically with body mass, suggesting an ontogenetic decrease in terrestrial athleticism. This concurs with the findings of previous studies showing ontogenetic decreases in limb bone length and the general scaling principle of a decline of strength : weight ratios with increasing size in animals. Exceptions to isometric scaling found included positive allometry in fascicle length for extensor musculature of both limbs, suggesting an ontogenetic increase in working range interpreted as increasing postural variability – in particular the major hip extensors – the interpretation of which is complicated by previous described ontogenetic increase of moment arms for these muscles. PMID:20148991

  13. Effects of step length and step frequency on lower-limb muscle function in human gait.

    PubMed

    Lim, Yoong Ping; Lin, Yi-Chung; Pandy, Marcus G

    2017-05-24

    The aim of this study was to quantify the effects of step length and step frequency on lower-limb muscle function in walking. Three-dimensional gait data were used in conjunction with musculoskeletal modeling techniques to evaluate muscle function over a range of walking speeds using prescribed combinations of step length and step frequency. The body was modeled as a 10-segment, 21-degree-of-freedom skeleton actuated by 54 muscle-tendon units. Lower-limb muscle forces were calculated using inverse dynamics and static optimization. We found that five muscles - GMAX, GMED, VAS, GAS, and SOL - dominated vertical support and forward progression independent of changes made to either step length or step frequency, and that, overall, changes in step length had a greater influence on lower-limb joint motion, net joint moments and muscle function than step frequency. Peak forces developed by the uniarticular hip and knee extensors, as well as the normalized fiber lengths at which these muscles developed their peak forces, correlated more closely with changes in step length than step frequency. Increasing step length resulted in larger contributions from the hip and knee extensors and smaller contributions from gravitational forces (limb posture) to vertical support. These results provide insight into why older people with weak hip and knee extensors walk more slowly by reducing step length rather than step frequency and also help to identify the key muscle groups that ought to be targeted in exercise programs designed to improve gait biomechanics in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. BIOMECHANICAL DIFFERENCES IN BRAZILIAN JIU-JITSU ATHLETES: THE ROLE OF COMBAT STYLE

    PubMed Central

    Lima, Alane Almeida; Coelho, Anita Camila Sampaio; Lima, Yuri Lopes; Almeida, Gabriel Peixoto Leão; Bezerra, Márcio Almeida; de Oliveira, Rodrigo Ribeiro

    2017-01-01

    Background Brazilian Jiu-Jitsu (BJJ) athletes can be divided into two combat styles: pass fighters (PFs) and guard fighters (GFs). Flexibility of the posterior chain muscles is highly necessary in these athletes, especially in GFs. On the other hand, isometric strength of the trunk extensors is required in PFs. Handgrip strength is important in holding the kimono of the opponent, and symmetrical lower-limb strength is important for the prevention of injuries due to the overload caused by training. Purpose The aim of this study was to compare the biomechanical profiles of BJJ athletes with different combat styles using the following outcome measures: flexibility, trunk extensor isometric endurance, postural balance, handgrip isometric endurance and lower-limb muscle strength. Methods A cross-sectional study was conducted using 19 GFs and 19 PFs. The sit-and-reach test was used to evaluate the flexibility of the posterior chain muscles. The Biodex Balance System® was used to evaluate balance. A handgrip dynamometer and a dorsal dynamometer were used to evaluate handgrip and trunk extensor endurance, respectively. Quadriceps and hamstring strength were evaluated with an isokinetic dynamometer at 60 °/s. Results No differences were observed between groups in terms of flexibility, balance, handgrip isometric endurance or quadriceps and hamstring strength; however, PFs (81.33) showed more isometric trunk extension endurance than GFs (68.85) (p = 0.02). Both groups had low values for hamstring/quadriceps ratio. Conclusion No significant biomechanical differences were observed between PFs and GFs. Level of Evidence 2b PMID:28217417

  15. Design and validation of a desk-free and posture-independent input device.

    PubMed

    Lee, Yung-Hui; Su, Mu-Chuan

    2008-05-01

    This study investigates variations in performance, postures and strains on the hand-arm-shoulder musculature during the operation of a wireless mouse, trackpad and a new input device. The device is held between the flexed index and middle fingers with the palm facing sideways. The buttons and wheels are activated by flexion and/or rolling of the thumb. Eleven males and nine females participated in the study. All subjects performed an aiming task to test the pointing and dragging functions. The results of this study reveal that the new pointing device allowed users to adopt more ergonomic postures and has the advantage of reduced muscular loadings of the upper extremities. Mean (SD) muscular activities (%RVC) using the wireless mouse, the trackpad and the new input device were as follows: trapezius: 3.0 (1.7), 4.4 (2.9) and 1.4 (1.0), and extensor carpi ulnaris: 7.3 (4.4), 14.5 (8.4) and 5.6 (3.1), respectively. The device was used in a variety of hand positions, alternatively. The size of the working area was far greater when the new input device was used than when the two conventional analogues were used. Although reasonable performance was not achieved, the results support recommendations concerning the redesign of the device. The ergonomic efforts in the design of the input device are of heuristic value, providing a basis for future development.

  16. Phase-dependent organization of postural adjustments associated with arm movements while walking.

    PubMed

    Nashner, L M; Forssberg, H

    1986-06-01

    This study examines the interactions between anteroposterior postural responses and the control of walking in human subjects. In the experimental paradigm, subjects walked upon a treadmill, gripping a rigid handle with one hand. Postural responses at different phases of stepping were elicited by rapid arm pulls or pushes against the handle. During arm movements, EMG's recorded the activity of representative arm, ankle, and thigh segment muscles. Strain gauges in the handle measured the force of the arm movement. A Selspot II system measured kinematics of the stepping movements. The duration of support and swing phases were marked by heel and toe switches in the soles of the subjects' shoes. In the first experiment, subjects were instructed to pull on the handle at their own pace. In these trials all subjects preferred to initiate pulls near heel strikes. Next, when instructed to pull as rapidly as possible in response to tone stimuli, reaction times were similar for all phases of the step cycle. Leg muscle responses associated with arm pulls and pushes, referred to as "postural activations," were directionally specific and preceded arm muscle activity. The temporal order and spatial distribution of postural activations in the muscles of the support leg were similar when arm pull movements occurred while the subject was standing in place and after heel strike while walking. Activations began in the ankle and radiated proximally to the thigh and then the arm. Activations of swing leg muscles were also directionally specific and involved flexion and forward or backward thrust of the limb. When arm movements were initiated during transitions from support by one leg to the other, patterns of postural activations were altered. Alterations usually occurred 10-20 ms before hell strikes and involved changes in the timing and sometimes the spatial structure of postural activations. Postural activation patterns are similar during in-place standing and during the support phase of locomotion. Walking and posture control appear to be separately organized but interrelated activities. Our results also suggest that the stepping generators, not peripheral feedback time locked to heel strikes, modulate postural activation patterns.

  17. The coupled effects of crouch gait and patella alta on tibiofemoral and patellofemoral cartilage loading in children.

    PubMed

    Brandon, Scott C E; Thelen, Darryl G; Smith, Colin R; Novacheck, Tom F; Schwartz, Michael H; Lenhart, Rachel L

    2018-02-01

    Elevated tibiofemoral and patellofemoral loading in children who exhibit crouch gait may contribute to skeletal deformities, pain, and cessation of walking ability. Surgical procedures used to treat crouch frequently correct knee extensor insufficiency by advancing the patella. However, there is little quantitative understanding of how the magnitudes of crouch and patellofemoral correction affect cartilage loading in gait. We used a computational musculoskeletal model to simulate the gait of twenty typically developing children and fifteen cerebral palsy patients who exhibited mild, moderate, and severe crouch. For each walking posture, we assessed the influence of patella alta and baja on tibiofemoral and patellofemoral cartilage contact. Tibiofemoral and patellofemoral contact pressures during the stance phase of normal gait averaged 2.2 and 1.0 MPa. Crouch gait increased pressure in both the tibofemoral (2.6-4.3 MPa) and patellofemoral (1.8-3.3 MPa) joints, while also shifting tibiofemoral contact to the posterior tibial plateau. For extended-knee postures, normal patellar positions (Insall-Salvatti ratio 0.8-1.2) concentrated contact on the middle third of the patellar cartilage. However, in flexed knee postures, both normal and baja patellar positions shifted pressure toward the superior edge of the patella. Moving the patella into alta restored pressure to the middle region of the patellar cartilage as crouch increased. This work illustrates the potential to dramatically reduce tibiofemoral and patellofemoral cartilage loading by surgically correcting crouch gait, and highlights the interaction between patella position and knee posture in modulating the location of patellar contact during functional activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Local vibration inhibits H-reflex but does not compromise manual dexterity and does not increase tremor.

    PubMed

    Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea

    2017-10-01

    The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Gender differences in workers with identical repetitive industrial tasks: exposure and musculoskeletal disorders.

    PubMed

    Nordander, Catarina; Ohlsson, Kerstina; Balogh, Istvan; Hansson, Gert-Ake; Axmon, Anna; Persson, Roger; Skerfving, Staffan

    2008-08-01

    For unknown reasons, females run a higher risk than males of work-related musculoskeletal disorders. The aim of this study was to evaluate whether male and female workers, with identical repetitive work tasks, differ concerning risk of disorders, physical or psychosocial exposures. Employees in two industries were studied; one rubber manufacturing and one mechanical assembly plant. These industries were selected since in both, large groups of males and females worked side by side performing identical repetitive work tasks. Physical exposure was measured by technical equipment. Postures and movements were registered by inclinometry for the head and upper arms, and by electrogoniometry for the wrists. Muscular activity (muscular rest and %max) was registered by surface electromyography for m. trapezius and the forearm extensors (18 males and 19 females). Psychosocial work environment was evaluated by the demand-control-support model (85 males and 138 females). Musculoskeletal disorders were assessed (105 males and 172 females), by interview (last 7-days complaints), and by physical examination (diagnoses). Concerning physical exposure, females showed higher muscular activity related to maximal voluntary contractions [(%MVE); m. trapezius: females 18 (SD 9.2), males 12 (SD 4.3); forearm extensors: females 39 (SD 11), males 27 (SD 10), right side, 90th percentile]. Working postures and movements were similar between genders. Also, concerning psychosocial work environment, no significant gender differences were found. Females had higher prevalences of disorders [complaints: age-adjusted prevalence odds ratio (POR) 2.3 (95% CI 1.3-3.8) for neck/shoulders, 2.4 (1.4-4.0) for elbows/hands; diagnoses: neck/shoulder 1.9 (1.1-3.6), elbows/hands 4.1 (1.2-9.3)]. In 225 workers, PORs were adjusted for household work, personal recovery and exercise, which only slightly affected the risk estimates. In identical work tasks, females showed substantially higher muscular activity in relation to capacity, and higher prevalence of musculoskeletal disorders of the neck and upper extremity, than did males.

  20. Effects of Spaceflight and Hindlimb Suspension on the Posture and Gait of Rats

    NASA Technical Reports Server (NTRS)

    Fox, R. A.; Corcoran, M.; Daunton, N. G.; Morey-Holton, E.

    1994-01-01

    Instability of posture and gait in astronauts following spaceflight (SF) is thought to result from muscle atrophy and from changes in sensory-motor integration in the CNS (central nervous system) that occur during adaptation to microgravity (micro-G). Individuals are thought to have developed, during SF, adaptive changes for the processing of proprioceptive, vestibular and visual sensory inputs with reduced weighting of gravity-based signals and increased weighting of visual and tactile cues. This sensory-motor rearrangement in the CNS apparently occurs to optimize neuromuscular system function for effective movement and postural control in micro-G. However, these adaptive changes are inappropriate for the 1 g environment and lead to disruptions in posture and gait on return to Earth. Few reports are available on the effects of SF on the motor behavior of animals. Rats studied following 18.5 - 19.5 days of SF in the COSMOS program were described as being ..'inert, apathetic, slow'.. and generally unstable. The hindlimbs of these rats were ..'thrust out from the body with fingers pulled apart and the shin unnaturally pronated'. On the 6th postflight day motor behavior was described as similar to that observed in preflight observations. Improved understanding of the mechanisms leading to these changes can be obtained in animal models through detailed analysis of neural and molecular mechanisms related to gait. To begin this process the posture and gait of rats were examined following exposure to either SF or hindlimb suspension (HLS), and during recovery from these conditions.

  1. Factors predicting dynamic balance and quality of life in home-dwelling elderly women.

    PubMed

    Karinkanta, S; Heinonen, A; Sievanen, H; Uusi-Rasi, K; Kannus, P

    2005-01-01

    Proper balance seems to be a critical factor in terms of fall prevention among the elderly. The purpose of this cross-sectional study was to examine factors that are associated with dynamic balance and health-related quality of life in home-dwelling elderly women. One hundred and fifty-three healthy postmenopausal women (mean age: 72 years, height: 159 cm, weight: 72 kg) were examined. General health and physical activity were assessed by a questionnaire. Quality of life was measured using a health-related quality of life questionnaire (Rand 36-Item Health Survey 1.0). Dynamic balance (agility) was tested by a figure-of-eight running test. Static balance (postural sway) was tested on an unstable platform. Maximal isometric strength of the leg extensors was measured with a leg press dynamometer. Dynamic muscle strength of lower limbs was tested by measuring ground reaction forces with a force platform during common daily activities (sit-to-stand and step-on-a-stair tests). Concerning physical activity, 33% of the subjects reported brisk exercise (walking, Nordic walking, cross-country skiing, swimming and aquatic exercises) at least twice a week, and 22% some kind of brisk activity once a week in addition to lighter physical exercise. The remaining 45% did not exercise regularly and were classified as sedentary. The correlations of step-on-a-stair and sit-to-stand ground reaction forces, and leg extensor strength to dynamic balance were from -0.32 to -0.43 (the better the strength, the better the balance). In the regression analysis with backward elimination, step-on-a-stair and sit-to-stand ground reaction forces, and leg extensor strength, age, brisk physical activity, number of diseases and dynamic postural stability explained 42% of the variance in the dynamic balance. Similarly, dynamic balance (figure-of-eight running time), number of diseases and walking more than 3 km per day explained 14% of the variance in the quality of life score. Of these, figure-of-eight running time was the strongest predictor of the quality of life score, explaining 9% of its variance. This study emphasizes the concept that in home-dwelling elderly women good muscle strength in lower limbs is crucial for proper body balance and that dynamic balance is an independent predictor of a standardized quality of life estimate. The results provide important and useful information when planning meaningful contents for studies related to fall prevention and quality of life and interventions in elderly women. Copyright (c) 2005 S. Karger AG, Basel.

  2. [Upright posture of man and morphologic evolution of the musculi extensores digitorum pedis with reference to evolutionary myology. III].

    PubMed

    Kaneff, A

    1986-01-01

    The following anatomical objects were studied with regard to myology during evolution: M. extensor hallucis longus (MEHL), M. extensor digitorum longus (MEDL) with M. peroneus tertius (MP III), M. peroneus brevis (MPB) with M. peroneus digiti V (MPD V), M. extensor hallucis brevis (MEHB), M. extensor digitorum brevis (MEDB), and the Retinaculum musculorum extensorum imum (RMEI). The study was carried out by the preparation of 3 different groups of material. The 1st group consists of lower extremities of humans. The number of the extremities differs for the particular objects between 151 and 358 (see page 381). The 2nd group of material consists of 122 Membra pelvina from Marsupialia, Insectivora, and Primates. Table 1 shows as well the mammalian species as the number of the studied extremities. The extremities of the 1st and 2nd group were preserved in an manner suitable for a macroscopic preparation. The 3rd group of material consists of 71 lower extremities from embryos and fetus. The lower legs and feet were stained either according to the method described by Morel and Bassal with eosin added or according to Weigert. From this material, complete series of cross sections were prepared. Table 2 shows the age of the embryos (VCL [mm]) as well as the number of the studied extremities. It is important that up to the age of 46 mm VCL the difference in the age of the embryos usually amounts from 0.5 to 1.0 mm. This small difference in the age of the embryos and fetus allows a very good follow up of the changes in construction during the organogenesis. The comparison of the 3 different groups shows the following changes for the above mentioned muscles: The M. extensor hallucis longus (MEHL) is a muscle which is not split. The same result applies for its tendon which inserts at the distal phalanx of the hallux. This primitive form of the muscle amounts actually to 51.12% in human beings. In 48.88% of the cases, additional tendons and muscles are formed by the MEHL. Most of these supplements are positioned on the medial side of the main tendon, only a few lie to the lateral side. For the supplement tendons, the medial one as well as the lateral one occasionally possess a muscle belly. The muscle of the medial tendon is split off from the proximal margin of the MEHL. The muscle of the lateral tendon is split off from the distal margin of the MEHL.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight.

    PubMed

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir; Olsen, Henrik Baare; Nørnberg, Bo Riebeling; Boyle, Eleanor; Søgaard, Karen; Sjøgaard, Gisela

    2016-04-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB) and performing search and rescue (SAR). SAR was performed with Night Vision Goggles (NVG), while AB was performed with (AB+NVG) and without NVG (AB-NVG). EMG was recorded for: trapezius (TRA), upper neck extensors (UNE), and sternocleido-mastoid (SCM). Maximal voluntary contractions (MVC) were performed for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from pre- (0.7±1.3) to post-sortie (1.6±1.9) for pilots (p=0.028). If sustained, UNE activity of ∼10% MVE is high, and implies a risk for neck disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Motor development from 4 to 8 months corrected age in infants born at or less than 29 weeks' gestation.

    PubMed

    Pin, Tamis W; Darrer, Tanya; Eldridge, Bev; Galea, Mary P

    2009-09-01

    Clinically, preterm infants show motor delay and atypical postures compared with their peers born at term. A longitudinal cohort study was designed to describe the motor development of very preterm infants from 4 to 18 months corrected age (CA). The study was also designed to investigate how the atypical postures observed in early infancy in the preterm infants might be related to their later motor development. Here we report the findings in early motor skills from 4 to 8 months CA. Early motor skills were assessed in 62 preterm infants (32 males, 30 females, mean gestation 26.94wks, SD 1.11) and 53 term infants (32 males, 21 females, mean gestation 39.55wks, SD 1.17) using the Alberta Infant Motor Scale (AIMS). The preterm infants demonstrated different motor behaviours from their term peers, with an uneven progression of motor skills in different positions from 4 to 8 months CA. At 8 months CA, 90%of the term infants were able to sit without arm support, but only 56%of the preterm infants could maintain sitting very briefly without arm support. This uneven progression may have been due to an imbalance between the active flexor and extensor strength and hence inadequate postural control in these positions. The AIMS has also been shown to be a valid assessment tool to demonstrate unique characteristics in movement quality in the preterm population.

  5. A randomized intervention trial to reduce mechanical exposures in the Colombian flower industry.

    PubMed

    Barrero, L H; Ceballos, C; Ellegast, R; Pulido, J A; Monroy, M; Berrio, S; Quintana, L A

    2012-01-01

    Evidence on the effectiveness of ergonomic interventions to reduce mechanical demands and upper-extremity MSDs is scarce in agriculture. We conducted an intervention to reduce mechanical exposures during manual flower cutting through job rotation, education and reduction of force requirements. One-hundred and twenty workers (20 to 60 years old; 89% women) from six companies that cultivate roses participated in this study. Three companies were randomly assigned to control and intervention groups. We studied changes between baseline and follow-up in self-reported effort and upper-extremity postures, kinematics and muscular activity. Most of the observed changes were moderate for both groups. The intervention group showed differential improvements compared to the control group for the maximum wrist radial deviation and forearm pronation, and acceleration of the forearm supination-pronation and elbow flexion-extension; and the muscular activity of the flexor and extensor carpi radialis and the flexor carpi ulnaris. However, we also observed that the maximum ulnar deviation, velocity of the wrist flexion-extension and muscular activity of the extensor carpi ulnaris improved more in the control group. These mixed results may be related to limited time for intervention adjustment, and uncontrolled task changes in the control group. Future research should address these issues and test other solutions.

  6. Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in?

    PubMed

    Bennett, M B

    2000-01-01

    Mammalian terrestrial locomotion has many unifying principles. However, the Macropodoidea are a particularly interesting group that exhibit a number of significant deviations from the principles that seem to apply to other mammals. While the properties of materials that comprise the musculoskeletal system of mammals are similar, evidence suggests that tendon properties in macropodoid marsupials may be size or function dependent, in contrast to the situation in placental mammals. Postural differences related to hopping versus running have a dramatic effect on the scaling of the pelvic limb musculoskeletal system. Ratios of muscle fibre to tendon cross-sectional areas for ankle extensors and digital flexors scale with positive allometry in all mammals, but exponents are significantly higher in macropods. Tendon safety factors decline with increasing body mass in mammals, with eutherians at risk of ankle extensor tendon rupture at a body mass of about 150 kg, whereas kangaroos encounter similar problems at a body mass of approximately 35 kg. Tendon strength appears to limit locomotor performance in these animals. Elastic strain energy storage in tendons is mass dependent in all mammals, but exponents are significantly larger in macropodid. Tibial stresses may scale with positive allometry in kangaroos, which result in lower bone safety factors in macropods compared to eutherian mammals.

  7. An open-source model and solution method to predict co-contraction in the finger.

    PubMed

    MacIntosh, Alexander R; Keir, Peter J

    2017-10-01

    A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.

  8. Effects of postural changes of the upper limb on reflex transmission in the lower limb. Cervicolumbar reflex interactions in man.

    PubMed

    Delwaide, P J; Figiel, C; Richelle, C

    1977-06-01

    The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.

  9. Neosaxitoxin in Rat Sciatic Block: Improved Therapeutic Index Using Combinations with Bupivacaine, with and without Epinephrine.

    PubMed

    Templin, Jay S; Wylie, Matthew C; Kim, Joseph D; Kurgansky, Katherine E; Gorski, Grzegorz; Kheir, John; Zurakowski, David; Corfas, Gabriel; Berde, Charles

    2015-10-01

    Neosaxitoxin (NeoSTX) is a site-1 sodium channel blocker undergoing clinical trials as a prolonged-duration local anesthetic. Rat sciatic block and intravenous infusion models were used to assess efficacy and local and systemic toxicities for NeoSTX in saline (NeoSTX-Saline), bupivacaine (Bup), and their combination (NeoSTX-Bup). Exploratory studies evaluated the effects of addition of epinephrine to NeoSTX-Bup (NeoSTX-Bup-Epi). Rats received percutaneous sciatic blocks with escalating doses of NeoSTX-Saline or NeoSTX-Bup. Sensory-nocifensive block was assessed using modified hotplate and Von Frey filaments. Motor-proprioceptive function was assessed by extensor postural thrust. Nerves were examined histologically after 7 days and scored on the Estebe-Myers scale. Median lethal dose was estimated for NeoSTX-Saline and in combinations. Accidental intravenous overdose was simulated in isoflurane-anesthetized, spontaneously breathing rats receiving NeoSTX-Saline (n = 6), Bup (n = 7), or NeoSTX-Bup (n = 13), with respiratory, hemodynamic, and electrocardiographic endpoints. Additional groups received blocks with NeoSTX-Bup-Epi (n = 80). Investigators were blinded for behavioral and histologic studies. NeoSTX-Bup produced more prolonged sensory and motor block compared with NeoSTX-Saline or Bup. NeoSTX-Bup-Epi further prolonged median time to near-complete recovery for 3 μg/kg NeoSTX-Bup (hotplate: 48 vs. 6 h, P < 0.001). With sciatic injections, addition of Bup did not worsen the systemic toxicity (median lethal dose) compared with NeoSTX-Saline. Intravenous NeoSTX-Saline infusion had significantly longer times to apnea, first arrhythmia, and asystole compared with Bup (P < 0.001 for each). Histologic injury scores overall were low for all groups, with median scores of 0 (interquartile range, 0 to 0) on a 5-point scale. NeoSTX-Bup and NeoSTX-Bup-Epi hold promise for prolonged-duration local anesthesia.

  10. Evaluation of biodegradable electric conductive tube-guides and mesenchymal stem cells

    PubMed Central

    Ribeiro, Jorge; Pereira, Tiago; Caseiro, Ana Rita; Armada-da-Silva, Paulo; Pires, Isabel; Prada, Justina; Amorim, Irina; Amado, Sandra; França, Miguel; Gonçalves, Carolina; Lopes, Maria Ascensão; Santos, José Domingos; Silva, Dina Morais; Geuna, Stefano; Luís, Ana Lúcia; Maurício, Ana Colette

    2015-01-01

    AIM: To study the therapeutic effect of three tube-guides with electrical conductivity associated to mesenchymal stem cells (MSCs) on neuro-muscular regeneration after neurotmesis. METHODS: Rats with 10-mm gap nerve injury were tested using polyvinyl alcohol (PVA), PVA-carbon nanotubes (CNTs) and MSCs, and PVA-polypyrrole (PPy). The regenerated nerves and tibialis anterior muscles were processed for stereological studies after 20 wk. The functional recovery was assessed serially for gait biomechanical analysis, by extensor postural thrust, sciatic functional index and static sciatic functional index (SSI), and by withdrawal reflex latency (WRL). In vitro studies included cytocompatibility, flow cytometry, reverse transcriptase polymerase chain reaction and karyotype analysis of the MSCs. Histopathology of lung, liver, kidneys, and regional lymph nodes ensured the biomaterials biocompatibility. RESULTS: SSI remained negative throughout and independently from treatment. Differences between treted groups in the severity of changes in WRL existed, showing a faster regeneration for PVA-CNTs-MSCs (P < 0.05). At toe-off, less acute ankle joint angles were seen for PVA-CNTs-MSCs group (P = 0.051) suggesting improved ankle muscles function during the push off phase of the gait cycle. In PVA-PPy and PVA-CNTs groups, there was a 25% and 42% increase of average fiber area and a 13% and 21% increase of the “minimal Feret’s diameter” respectively. Stereological analysis disclosed a significantly (P < 0.05) increased myelin thickness (M), ratio myelin thickness/axon diameter (M/d) and ratio axon diameter/fiber diameter (d/D; g-ratio) in PVA-CNT-MSCs group (P < 0.05). CONCLUSION: Results revealed that treatment with MSCs and PVA-CNTs tube-guides induced better nerve fiber regeneration. Functional and kinematics analysis revealed positive synergistic effects brought by MSCs and PVA-CNTs. The PVA-CNTs and PVA-PPy are promising scaffolds with electric conductive properties, bio- and cytocompatible that might prevent the secondary neurogenic muscular atrophy by improving the reestablishment of the neuro-muscular junction. PMID:26240682

  11. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    NASA Astrophysics Data System (ADS)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  12. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-09-14

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance.

  13. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  14. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].

    PubMed

    Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P

    2013-03-01

    We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.

  15. Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    PubMed Central

    Rankin, Jeffery W.; Rubenson, Jonas; Rosenbluth, Kate H.; Siston, Robert A.; Delp, Scott L.

    2015-01-01

    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa. PMID:26082859

  16. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.

  17. Comparison of different strongman events: trunk muscle activation and lumbar spine motion, load, and stiffness.

    PubMed

    McGill, Stuart M; McDermott, Art; Fenwick, Chad Mj

    2009-07-01

    Strongman events are attracting more interest as training exercises because of their unique demands. Further, strongman competitors sustain specific injuries, particularly to the back. Muscle electromyographic data from various torso and hip muscles, together with kinematic measures, were input to an anatomically detailed model of the torso to estimate back load, low-back stiffness, and hip torque. Events included the farmer's walk, super yoke, Atlas stone lift, suitcase carry, keg walk, tire flip, and log lift. The results document the unique demands of these whole-body events and, in particular, the demands on the back and torso. For example, the very large moments required at the hip for abduction when performing a yoke walk exceed the strength capability of the hip. Here, muscles such as quadratus lumborum made up for the strength deficit by generating frontal plane torque to support the torso/pelvis. In this way, the stiffened torso acts as a source of strength to allow joints with insufficient strength to be buttressed, resulting in successful performance. Timing of muscle activation patterns in events such as the Atlas stone lift demonstrated the need to integrate the hip extensors before the back extensors. Even so, because of the awkward shape of the stone, the protective neutral spine posture was impossible to achieve, resulting in substantial loading on the back that is placed in a weakened posture. Unexpectedly, the super yoke carry resulted in the highest loads on the spine. This was attributed to the weight of the yoke coupled with the massive torso muscle cocontraction, which produced torso stiffness to ensure spine stability together with buttressing the abduction strength insufficiency of the hips. Strongman events clearly challenge the strength of the body linkage, together with the stabilizing system, in a different way than traditional approaches. The carrying events challenged different abilities than the lifting events, suggesting that loaded carrying would enhance traditional lifting-based strength programs. This analysis also documented the technique components of successful, joint-sparing, strongman event strategies.

  18. Outcomes of Silicone Arthroplasty Stratified by Fingers for the Rheumatoid Metacarpophalangeal Joints

    PubMed Central

    Chung, Kevin C.; Kotsis, Sandra V.; Shaw Wilgis, E. F.; Fox, David A.; Regan, Marian; Kim, H. Myra; Burke, Frank D.

    2015-01-01

    Purpose Previous studies have demonstrated that outcomes for the ulnar digits appear to be worse than the radial digits after silicone metacarpophalangeal joint arthroplasty (SMPA) for the rheumatoid hand. This study examines various components of hand deformities in an effort to understand SMPA outcomes in terms of metacarpophalangeal joint range of motion and alignment. We hypothesize that the ulnar fingers will have less improvement marked by greater ulnar drift, extension lag, and less metacarpophalangeal joint (MCPJ) arc of motion than the radial fingers. Methods 68 surgical patients were recruited from 3 sites in this multi-center international prospective cohort study. All patients had a diagnosis of rheumatoid arthritis, were between the ages of 18–80, and were eligible to undergo SMPA based on measured hand deformities (extensor lag and ulnar drift). Ulnar drift, extension lag, and arc of motion for the MCPJ of each finger were measured at baseline (pre-surgical) and 1-year after SMPA. Results All fingers showed an improvement in ulnar drift from baseline to 1-year after surgery. The smallest improvement was in the index finger (12°) and the largest improvement was in the little finger (30°). Similarly, the largest improvement in extension lag was seen in the little finger (47°) and the smallest improvement was seen in the index finger (21°). In terms of MCPJ arc of motion, all fingers moved to a more extended posture and gained an improved arc of motion, but the biggest improvement was observed in the 2 ulnar fingers and less so in the 2 radial fingers. Conclusions Our hypothesis that the ulnar fingers will have worse outcomes than the radial fingers is not proven by this study. Although past experiences have indicated that it is more difficult to maintain posture for the ring and little fingers after SMPA due to the deforming forces, sufficient correction of the deformities in the ulnar fingers is possible, if attention to adequate bone resection and realigning of the extensor mechanism are carefully performed during the procedure. PMID:19896008

  19. Effects of pushing height on trunk posture and trunk muscle activity when a cart suddenly starts or stops moving.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2012-01-01

    Unexpected sudden (un)loading of the trunk may induce inadequate responses of trunk muscles and uncontrolled trunk motion. These unexpected perturbations may occur in pushing tasks, when the cart suddenly starts moving (unloading) or is blocked by an obstacle (loading). In pushing, handle height affects the user's working posture, which may influence trunk muscle activity and trunk movement in response to the perturbation. Eleven healthy male subjects pushed a 200 kg cart with handles at shoulder and hip height in a start condition (sudden release of brakes) and a stop condition (bumping into an obstacle). Before the perturbation, the baseline of the trunk inclination, internal moment and trunk extensor muscle activity were significantly higher when pushing at hip height than at shoulder height. After the perturbation, the changes in trunk inclination and internal moment were significantly larger when pushing at shoulder height than at hip height in both conditions. The opposite directions of changes in trunk inclination and internal moment suggest that the unexpected perturbations caused uncontrolled trunk motion. Pushing at shoulder height may impose a high risk of low-back injury due to the low trunk stiffness and large involuntary trunk motion occurring after carts suddenly move or stop.

  20. Effects of mouse slant and desktop position on muscular and postural stresses, subject preference and performance in women aged 18-40 years.

    PubMed

    Gaudez, Clarisse; Cail, François

    2016-11-01

    This study compared muscular and postural stresses, performance and subject preference in women aged 18-40 years using a standard mouse, a vertical mouse and a slanted mouse in three different computer workstation positions. Four tasks were analysed: pointing, pointing-clicking, pointing-clicking-dragging and grasping-pointing the mouse after typing. Flexor digitorum superficialis (FDS) and extensor carpi radialis (ECR) activities were greater using the standard mouse compared to the vertical or slanted mouse. In all cases, the wrist position remained in the comfort zone recommended by standard ISO 11228-3. The vertical mouse was less comfortable and more difficult to use than the other two mice. FDS and ECR activities, shoulder abduction and wrist extension were greater when the mouse was placed next to the keyboard. Performance and subject preference were better with the unrestricted mouse positioning on the desktop. Grasping the mouse after typing was the task that caused the greatest stress. Practitioner Summary: In women, the slanted mouse and the unrestricted mouse positioning on the desktop provide a good blend of stresses, performance and preference. Unrestricted mouse positioning requires no keyboard, which is rare in practice. Placing the mouse in front of the keyboard, rather than next to it, reduced the physical load.

  1. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.

    PubMed

    Blackburn, Laura M; Ott, Swidbert R; Matheson, Tom; Burrows, Malcolm; Rogers, Stephen M

    2010-08-01

    Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Key characteristics of low back pain and disability in college-aged adults: a pilot study.

    PubMed

    Handrakis, John P; Friel, Karen; Hoeffner, Frank; Akinkunle, Ola; Genova, Vito; Isakov, Edward; Mathew, Jerrill; Vitulli, Frank

    2012-07-01

    To identify which factors commonly associated with low back pain (LBP) and disability differ between college-aged persons with LBP and with no or minimal LBP. Clinical measurement, observational study. Subjects were assessed for LBP with the visual analog scale (VAS) and for disability from LBP using the Oswestry Disability Index (ODI). Subjects were measured for variables commonly associated with LBP and were grouped by both VAS (minimum [min]/no pain, pain) and ODI (no disability, disability) scores. College campus at a university. A convenience sample (N=84) of English-speaking students (34 men, 50 women) between 18 and 30 years of age. Not applicable. Sports activity (sports activity score of the Baecke Physical Activity Questionnaire), depression, hamstring and hip flexor range of motion, low back extensor endurance, abdominal strength and endurance. A significant main effect of group was found for both pain (P=.019) and disability groups (P=.006). The min/no pain and pain groups differed in back endurance (114.2±38.8s vs 94.5±44.5s, respectively; P=.04). The no disability and disability groups differed in back endurance (116.3±35.9s vs 97.1±45.7s, respectively; P=.03) and the sports activity score of the Baecke Physical Activity Questionnaire (2.98±.95 vs 2.48±.85, respectively; P=.01). Subjects with hyperkyphotic postures compared with the normative thoracic group had higher depression scores (49 vs 38.5, respectively; P=.03) and less hamstring flexibility (30.5 vs 49.9, respectively; P<.001). Back extensor endurance was consistently different between both the pain and disability groups. Addressing limited low back extensor endurance and low levels of physical activity in young adults may have clinical relevance for the prevention and treatment of LBP and disability. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial.

    PubMed

    Zhang, Li; Weng, Changshui; Liu, Miao; Wang, Qiuhua; Liu, Liming; He, Yao

    2014-01-01

    To study the effects of whole-body vibration exercises on the mobility function, balance and general health status, and its feasibility as an intervention in frail elderly patients. Pilot randomized controlled trial. Forty-four frail older persons (85.27 ± 3.63 years) meeting the Fried Frailty Criteria. All eligible subjects were randomly assigned to the experimental group, who received a whole-body vibration exercise alone (vibration amplitude: 1-3 mm; frequency: 6-26 Hz; 4-5 bouts × 60 seconds; 3-5 times weekly), or a control group, who received usual care and exercises for eight weeks. The Timed Up and Go Test, 30-second chair stand test, lower extremities muscle strength, balance function, balance confidence and General Health Status were assessed at the beginning of the study, after four weeks and eight weeks of the intervention. Whole-body vibration exercise reduced the time of the Timed Up and Go Test (40.47 ± 15.94 s to 21.34 ± 4.42 s), improved the bilateral knees extensor strength (6.96 ± 1.70 kg to 11.26 ± 2.08 kg), the posture stability (surface area ellipse: 404.58 ± 177.05 to 255.95 ± 107.28) and General Health Status (Short-form Health Survey score: 24.51 ± 10.69 and 49.63 ± 9.85 to 45.03 ± 11.15 and 65.23 ± 9.39, respectively). The repeated-measures ANOVA showed that there were significant differences in the Timed Up and Go Test, 30-second chair stand test, bilateral knees extensor strength, activities-specific balance confidence score and general health status between the two groups (P < 0.05). No side-effects were observed during the training. Whole-body vibration exercise is a safe and effective method that can improve the mobility, knee extensor strength, balance and the general health status in the frail elderly.

  5. Trunk's natural inclination influences stance limb kinetics, but not body kinematics, during gait initiation in able men.

    PubMed

    Leteneur, Sébastien; Simoneau, Emilie; Gillet, Christophe; Dessery, Yoann; Barbier, Franck

    2013-01-01

    The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk's natural inclination--forward (FW) or backward (BW) with respect to the vertical--on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001) for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001) before the swing limb's heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01) during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001), 1.4 (P<0.001) and 1.7 (P<0.01) times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.

  6. Abnormal turning behaviour, GABAergic inhibition and the degeneration of astrocytes in ovine Tribulus terrestris motor neuron disease.

    PubMed

    Bourke, C A

    2006-01-01

    To observe the clinical signs of sheep affected by Tribulus terrestris motor neuron disease, to ascertain their response to striatal dopamine reducing drugs, and to examine their brains and spinal cords for microscopic changes. Twenty-eight sheep displaying well developed clinical signs of the disorder were observed. Twenty-two of these and 22 normal sheep were then randomly allocated to three groups and treated with diazepam, chlorpromazine, or xylazine. The time that it took an animal to return to a standing position following drug administration was recorded. The brain and complete spinal cord were removed from each of the other six affected sheep and fixed in formalin. Brains were sectioned throughout at 5 mm intervals and spinal cords at 10 mm intervals. All tissues were paraffin embedded and examined by light microscopy. A few samples were examined by electron microscopy. Clinical signs included postural asymmetry with a right:left body-side dominance within the group of 50:50, unequal flaccid paresis in the pelvic limbs, extensor muscle atrophy and adduction of the weaker pelvic limb, and concurrent abduction of the stronger. Forward motion followed either a fixed left or right hand curved trajectory, the sheep no longer being able to choose which. Twelve animals intermittently displayed rotational behaviour that involved loss of postural balance without locomotor activation. The administration of diazepam, chlorpromazine, or xylazine caused limb paresis and sedation, with affected sheep being slower than normal sheep by factors of 8, 3 and 2 respectively, to return to a standing position. There were scattered areas of mild Wallerian degeneration throughout the spinal cord, and in both the brain and the cord there were small numbers of degenerate astrocytes containing novel cytoplasmic pigment granules. Affected sheep had a dysfunction in the control of directional change and this provides a new insight into the normal mechanism for 'turning' in quadrupeds. Directional change requires a functional asymmetry or lateralisation within the upper motor neuron to accommodate a difference in the rate of forward progression of each body side and, simultaneously, a lateral shift of the centre of gravity. The sensitivity of affected sheep to diazepam is consistent with a pre-existing elevation in GABAergic neuronal inhibition, probably as a result of a reduction in glutamatergic neuronal excitation. The cytoplasmic pigment found in degenerate astrocytes was novel and its presence in the brain nuclei known to contribute to turning behaviour could have aetiological significance. The motor output of the basal ganglia in Tribulus neurotoxicity appeared to be excessively inhibitory to the pelvic limb extensor muscles and was asymmetric, causing fixation of the turning posture but not locomotor activation. An intoxication of specific purine sensitive, glutamate releasing astrocytes, located in nuclei controlling turning, was suspected.

  7. Scaling of Primate Forearm Muscle Architecture as It Relates to Locomotion and Posture.

    PubMed

    Leischner, Carissa L; Crouch, Michael; Allen, Kari L; Marchi, Damiano; Pastor, Francisco; Hartstone-Rose, Adam

    2018-03-01

    It has been previously proposed that distal humerus morphology may reflect the locomotor pattern and substrate preferred by different primates. However, relationships between these behaviors and the morphological capabilities of muscles originating on these osteological structures have not been fully explored. Here, we present data about forearm muscle architecture in a sample of 44 primate species (N = 55 specimens): 9 strepsirrhines, 15 platyrrhines, and 20 catarrhines. The sample includes all major locomotor and substrate use groups. We isolated each antebrachial muscle and categorized them into functional groups: wrist and digital extensors and flexors, antebrachial mm. that do not cross the wrist, and functional combinations thereof. Muscle mass, physiological cross-sectional area (PCSA), reduced PCSA (RPCSA), and fiber length (FL) are examined in the context of higher taxonomic group, as well as locomotor/postural and substrate preferences. Results show that muscle masses, PCSA, and RPCSA scale with positive allometry while FL scales with isometry indicating that larger primates have relatively stronger, but neither faster nor more flexible, forearms across the sample. When accounting for variation in body size, we found no statistically significant difference in architecture among higher taxonomic groups or locomotor/postural groups. However, we found that arboreal primates have significantly greater FL than terrestrial ones, suggesting that these species are adapted for greater speed and/or flexibility in the trees. These data may affect our interpretation of the mechanisms for variation in humeral morphology and provide information for refining biomechanical models of joint stress and movement in extant and fossil primates. Anat Rec, 301:484-495, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Postural adjustments associated with voluntary contraction of leg muscles in standing man.

    PubMed

    Nardone, A; Schieppati, M

    1988-01-01

    The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early features in the soleus or tibialis anterior EMG were absent, and the corresponding changes in the foot-floor reaction forces were lacking. The anticipatory phenomena observed are considered postural adjustments because they appear only in the free-standing situation, and induce a body sway in the appropriate direction to counteract the destabilizing thrust due to the voluntary contraction of soleus or tibialis anterior. The central organization and descending control of posture and movements are briefly discussed in the light of the short latency of the anticipatory phenomena and of their close association with the focal movement.

  9. Big data, little security: Addressing security issues in your platform

    NASA Astrophysics Data System (ADS)

    Macklin, Thomas; Mathews, Joseph

    2017-05-01

    This paper describes some patterns for information security problems that consistently emerge among traditional enterprise networks and applications, both with respect to cyber threats and data sensitivity. We draw upon cases from qualitative studies and interviews of system developers, network operators, and certifiers of military applications. Specifically, the problems discussed involve sensitivity of data aggregates, training efficacy, and security decision support in the human machine interface. While proven techniques can address many enterprise security challenges, we provide additional recommendations on how to further improve overall security posture, and suggest additional research thrusts to address areas where known gaps remain.

  10. Sexual Dimorphisms of Appendicular Musculoskeletal Morphology Related to Social Display in Cuban Anolis Lizards.

    PubMed

    Anzai, Wataru; Cádiz, Antonio; Endo, Hideki

    2015-10-01

    In Anolis lizards, sexual dimorphism has been reported in morphological and ecological traits. Males show larger body size and longer limbs related to territorial combat and courtship display with the dewlap. Although functional-anatomical traits are closely related to locomotor behaviors, differences between sexes in musculoskeletal traits on limbs remain unclear. We explored the relationships among sexual dimorphisms in musculoskeletal morphology, habitat, and locomotor traits in Anolis lizards. Specifically, we examined appendicular musculoskeletal morphology in three species of Cuban Anolis by measuring muscle mass and lengths of moment arms. Through comparisons of crossing locomotion, we found that the runner species possessed larger extensors in hindlimbs, which are advantageous for running, whereas the masses of the humeral and femoral retractors were larger in climber species, allowing these lizards to hold up their bodies and occupy tree substrates. Comparisons between the sexes showed different trends among the three species. Males of A. porcatus, which inhabit narrow branches or leaves, had stronger elbow extensors that maintain the display posture. In contrast, males of A. sagrei, which occupy broad surfaces, did not show sexual differences that affected social display. Moreover, A. bartschi indicated sexual differences despite the absence of dewlapping behavior. Our findings suggest that both sexes show fundamentally similar relationships between muscular morphology and locomotor habits to adapt arboreal or terrestrial substrates, and yet sexual dimorphism in forelimb muscles may additionally affected by male specific display with the dewlap.

  11. Isokinetic and Electromyographic Properties of Muscular Endurance in Short and Long-Term Type 2 Diabetes

    PubMed Central

    Hatef, Boshra; Ghanjal, Ali; Meftahi, Gholam Hossein; Askary-Ashtiani, Ahmadreza

    2016-01-01

    Background: Patients with type 2 diabetes mellitus (T2DM) are subject to progressive reduction of muscle mass and strength. The aim of this study was to assess muscle forces and electromyography (EMG) indices in short and long-term diabetes during an isokinetic exercise. Methods: The peak torque, work, mean power frequency (MPF) and root mean square (RMS) of knee flexors and extensors during 40 isokinetic knee extension-flexion repetitions with a velocity of 150 degree/s were recorded. 18 patients with less than 10 years with T2DM and 12 patients with equal and more than 10 years of disease were compared with 20 gender, body mass index, physical activity and peripheral circulation matched healthy controls. Results: The fatigue index and slope of line across the peak torque values of the knee flexor indicate that patients with long-term T2DM were significantly more resistant to fatigue in comparison with the two other groups (p<0.009). Whereas the MPF decrease during isokinetic protocol interact with grouping in the medial hamstring (p<0.042), but it was independent to groups in other muscles (p<0.0001). The increase of RMS after fatigue protocol interacted with sex for the medial hamstring and vastus lateralis (p<0.039) and interacted with group for the extensor muscles (p<0.045). Discussion & Conclusion: It seems that long-term T2DM cause some neuromuscular adaptations to maintain knee flexor muscle performance during functional activity especially postural control. PMID:27045412

  12. Near infrared spectroscopy of human muscles

    NASA Astrophysics Data System (ADS)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  13. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis).

    PubMed

    Blob, R W; Biewener, A A

    2001-03-01

    In vivo measurements of strain in the femur and tibia of Iguana iguana (Linnaeus) and Alligator mississippiensis (Daudin) have indicated three ways in which limb bone loading in these species differs from patterns observed in most birds and mammals: (i) the limb bones of I. iguana and A. mississippiensis experience substantial torsion, (ii) the limb bones of I. iguana and A. mississippiensis have higher safety factors than those of birds or mammals, and (iii) load magnitudes in the limb bones of A. mississippiensis do not decrease uniformly with the use of a more upright posture. To verify these patterns, and to evaluate the ground and muscle forces that produce them, we collected three-dimensional kinematic and ground reaction force data from subadult I. iguana and A. mississippiensis using a force platform and high-speed video. The results of these force/kinematic studies generally confirm the loading regimes inferred from in vivo strain measurements. The ground reaction force applies a torsional moment to the femur and tibia in both species; for the femur, this moment augments the moment applied by the caudofemoralis muscle, suggesting large torsional stresses. In most cases, safety factors in bending calculated from force/video data are lower than those determined from strain data, but are as high or higher than the safety factors of bird and mammal limb bones in bending. Finally, correlations between limb posture and calculated stress magnitudes in the femur of I. iguana confirm patterns observed during direct bone strain recordings from A. mississippiensis: in more upright steps, tensile stresses on the anterior cortex decrease, but peak compressive stresses on the dorsal cortex increase. Equilibrium analyses indicate that bone stress increases as posture becomes more upright in saurians because the ankle and knee extensor muscles exert greater forces during upright locomotion. If this pattern of increased bone stress with the use of a more upright posture is typical of taxa using non-parasagittal kinematics, then similar increases in load magnitudes were probably experienced by lineages that underwent evolutionary shifts to a non-sprawling posture. High limb bone safety factors and small body size in these lineages could have helped to accommodate such increases in limb bone stress.

  14. An ergonomics study of thumb movements on smartphone touch screen.

    PubMed

    Xiong, Jinghong; Muraki, Satoshi

    2014-01-01

    This study investigated the relationships between thumb muscle activity and thumb operating tasks on a smartphone touch screen with one-hand posture. Six muscles in the right thumb and forearm were targeted in this study, namely adductor pollicis, flexor pollicis brevis, abductor pollicis brevis (APB), abductor pollicis longus, first dorsal interosseous (FDI) and extensor digitorum. The performance measures showed that the thumb developed fatigue rapidly when tapping on smaller buttons (diameter: 9 mm compared with 3 mm), and moved more slowly in flexion-extension than in adduction-abduction orientation. Meanwhile, the electromyography and perceived exertion values of FDI significantly increased in small button and flexion-extension tasks, while those of APB were greater in the adduction-abduction task. This study reveals that muscle effort among thumb muscles on a touch screen smartphone varies according to the task, and suggests that the use of small touch buttons should be minimised for better thumb performance.

  15. Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries.

    PubMed

    Gärtner, A; Pereira, T; Armada-da-Silva, Pas; Amado, S; Veloso, Ap; Amorim, I; Ribeiro, J; Santos, Jd; Bárcia, Rn; Cruz, P; Cruz, H; Luís, Al; Santos, Jm; Geuna, S; Maurício, Ac

    2014-01-01

    Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX(®)), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal(®), was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX(®) alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX(®) induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx(®) alone or UCX(®) administered with Floseal(®). Overall, the UCX(®) application presented positive effects in functional and morphologic recovery, in both the acute and chronic phases of the regeneration process. Kinematics analysis has revealed positive synergistic effects brought by Floseal(®) as vehicle for MSCs.

  16. Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries

    PubMed Central

    Gärtner, A; Pereira, T; Armada-da-Silva, PAS; Amado, S; Veloso, AP; Amorim, I; Ribeiro, J; Santos, JD; Bárcia, RN; Cruz, P; Cruz, H; Luís, AL; Santos, JM; Geuna, S; Maurício, AC

    2014-01-01

    Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx® alone or UCX® administered with Floseal®. Overall, the UCX® application presented positive effects in functional and morphologic recovery, in both the acute and chronic phases of the regeneration process. Kinematics analysis has revealed positive synergistic effects brought by Floseal® as vehicle for MSCs. PMID:25075157

  17. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults.

    PubMed

    Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert

    2013-01-01

    Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.

  18. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.

    PubMed

    Nudds, Robert L; Dyke, Gareth J

    2009-04-01

    Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.

  19. Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest

    NASA Technical Reports Server (NTRS)

    English, K. L.; Ploutz-Snyder, R. J.; Cromwell, R. L.; Ploutz-Snyder, L. L.

    2010-01-01

    Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed rest

  20. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis: a cross-sectional study.

    PubMed

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina

    2017-07-01

    To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p < 0.05, paired t-test) weaker compared with the non-symptomatic extremity for five hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p < 0.05) comparable to that found in patients, but had no asymmetry in leg extensor power. Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.

  1. Effects of a Worksite Supervised Adapted Physical Activity Program on Trunk Muscle Endurance, Flexibility, and Pain Sensitivity Among Vineyard Workers.

    PubMed

    Balaguier, Romain; Madeleine, Pascal; Rose-Dulcina, Kévin; Vuillerme, Nicolas

    2017-01-01

    In viticulture, the prevalence of low back pain is particularly high among vineyard workers exposed to sustained and awkward postures. One promising setting for low back pain prevention resides in the implementation of workplace physical activity. This nonrandomized pilot study aims at evaluating the effects of a worksite supervised adapted physical activity program among 17 vineyard workers volunteered to enter either an intervention group (n = 10) or a control group (n = 7).The intervention group followed a physical activity program for 8 weeks involving (1) 15 minutes of warm-up every working day and (2) two weekly 1-hour adapted physical activity sessions targeting trunk muscle endurance and flexibility. The control group was advised to continue normal physical activity. Evaluations were carried out at weeks 0, 4, 8, and 12. Physical capacity was assessed using flexibility tests for the trunk, along with trunk muscle flexor and extensor endurance tests. Finally, pain sensitivity was evaluated by assessing pressure pain thresholds over 14 anatomical locations in the low back region. For the intervention group, the endurance of the trunk extensor and flexor significantly increased from baseline to week 8 as well as the pressure pain thresholds. No change was observed for the control group over the same period. These encouraging results in combination with the high adherence rate set interesting foundations for the promotion of worksite supervised adapted physical activity and, most likely, offer a new promising approach to prevent low back pain among vineyard workers.

  2. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

    PubMed

    Kulmala, Juha-Pekka; Korhonen, Marko T; Ruggiero, Luca; Kuitunen, Sami; Suominen, Harri; Heinonen, Ari; Mikkola, Aki; Avela, Janne

    2016-11-01

    The knee and ankle extensors as human primary antigravity muscle groups are of utmost importance in a wide range of locomotor activities. Yet, we know surprisingly little about how these muscle groups work, and specifically, how close to their maximal capacities they function across different modes and intensity of locomotion. Therefore, to advance our understanding of locomotor constraints, we determined and compared relative operating efforts of the knee and ankle extensors during walking, running, and sprinting. Using an inverse dynamics biomechanical analysis, the muscle forces of the knee and ankle extensors during walking (1.6 m·s), running (4.1 m·s), and sprinting (9.3 m·s) were quantified and then related to maximum forces of the same muscle groups obtained from a reference hopping test that permitted natural elastic limb behavior. During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors (35% ± 6% vs 19% ± 5%, P < 0.001). Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors (84% ± 12% vs 63% ± 17%, P < 0.05). At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors (96% ± 11% vs 72% ± 19%, P < 0.01). Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function.

  3. Transfer of extensor carpi radialis brevis as an extensor to extensor motor transfer (EEMT) in ulnar nerve palsy.

    PubMed

    Jamali, Allah Rakha; Bhatti, Anisuddin; Mehboob, Ghulam

    2006-07-01

    To evaluate functional outcome and correction of deformity with extensor carpiradialis brevis motor transfer to replace the intrinsic muscles as an extensor to extensor motor transfer (EEMT). This was a prospective observational study with one group pretest posttest design conducted from 1996 to 2004. Convenience sampling technique was used and the sample size was twenty one. The independent variable was transfer of extensor carpiradialis brevis to replace the intrinsic muscles. The dependent variable was functional outcome and the correction of deformity. The extraneous variables were age, sex interval between injury and transfer as well as local factors related to wound and grafts used. The average follow up was 22.5 months. The mean preoperative unassisted extensor lag was 56.79 +/- 10.39 which improved to 9.6% +/- 5.4 (correction of 83%) at six months after surgery. With open hand assessment 76.19% reported good to excellent results, while 79.89% achieved good to excellent results with closed hand assessment. The mechanism of closing was good to excellent in 89.42% cases, however only 71.42% patients considered their hands good to excellent. Significant problems were seen with use of tendoachilles as a graft. Extensor carpiradialis brevis transfer to replace the intrinsic muscles as an extensor to extensor motor transfer can achieve good functional outcome as well as correction of deformity despite shortcomings in physical rehabilitation.

  4. Long-Term Effects from Bacterial Meningitis in Childhood and Adolescence on Postural Control

    PubMed Central

    Petersen, Hannes; Patel, Mitesh; Ingason, Einar F.; Einarsson, Einar J.; Haraldsson, Ásgeir; Fransson, Per-Anders

    2014-01-01

    Bacterial meningitis in childhood is associated with cognitive deficiencies, sensorimotor impairments and motor dysfunction later in life. However, the long-term effects on postural control is largely unknown, e.g., whether meningitis subjects as adults fully can utilize visual information and adaptation to enhance stability. Thirty-six subjects (20 women, mean age 19.3 years) treated in childhood or adolescence for bacterial meningitis, and 25 controls (13 women, mean age 25.1 years) performed posturography with eyes open and closed under unperturbed and perturbed standing. The meningitis subjects were screened for subjective vertigo symptoms using a questionnaire, clinically tested with headshake and head thrust test, as well as their hearing was evaluated. Meningitis subjects were significantly more unstable than controls during unperturbed (p≤0.014) and perturbed standing, though while perturbed only with eyes open in anteroposterior direction (p = 0.034) whereas in lateral direction both with eyes open and closed (p<0.001). Meningitis subjects had poorer adaption ability to balance perturbations especially with eyes open, and they frequently reported symptoms of unsteadiness (88% of the subjects) and dizziness (81%), which was found significantly correlated to objectively decreased stability. Out of the 36 subjects only 3 had unilateral hearing impairment. Hence, survivors of childhood bacterial meningitis may suffer long-term disorders affecting postural control, and would greatly benefit if these common late effects became generally known so treatments can be developed and applied. PMID:25405756

  5. Evaluation of the effect of a laparoscopic robotized needle holder on ergonomics and skills.

    PubMed

    Bensignor, Thierry; Morel, Guillaume; Reversat, David; Fuks, David; Gayet, Brice

    2016-02-01

    Laparoscopy generates technical and ergonomics difficulties due to limited degrees of freedom (DOF) of forceps. To reduce this limitation, a new 5-mm robotized needle holder with two intracorporeal DOF, Jaimy(®), has been developed. The aim of this study was to evaluate its effects on ergonomics and skills. Fourteen surgeons including eight senior and six residents were crossover randomized and stratified based on experience. Three suturing tasks were performed with both Jaimy(®) and a classic needle holder (NH): task 1: Peg-Board; task 2: hexagonal suture; task 3: frontal suture. Postural ergonomics of the dominant arm were evaluated with an ergonomics score (RULA score) thanks to motion capture, and muscular ergonomics with electromyography of six muscular groups (flexor and extensor carpis, biceps, triceps, deltoid, trapeze). Performance outcomes are a quantitative and qualitative score, and skills outcomes are the measurement of the number of movements and the path length travelled by the instrument. The RULA score showed a statistically improved posture with Jaimy(®) (p < 0.001). The cumulative muscular workload (CMW) of four muscles was not different. However, the CMW was in favor of the NH for the flexor carpi ulnaris (p < 0.001) and the triceps (p = 0.027). The number of movements was not different (p = 0.39) although the path length was shorter with Jaimy(®) (p = 0.012). The score for task 1 was in favor of the NH (p = 0.006) with a higher quantity score. Task 2 score was not different (p = 0.086): The quality part of the score was in favor of Jaimy(®) (p = 0.009) and the quantity part was higher with the NH (p = 0.04). The score for task 3 was higher with Jaimy(®) (p = 0.001). This study suggests that the use of a robotized needle holder improves both posture and the quality of laparoscopic sutures.

  6. Effect of torso flexion on the lumbar torso extensor muscle sagittal plane moment arms.

    PubMed

    Jorgensen, Michael J; Marras, William S; Gupta, Purnendu; Waters, Thomas R

    2003-01-01

    Accurate anatomical inputs for biomechanical models are necessary for valid estimates of internal loading. The magnitude of the moment arm of the lumbar erector muscle group is known to vary as a function of such variables as gender. Anatomical evidence indicates that the moment arms decrease during torso flexion. However, moment arm estimates in biomechanical models that account for individual variability have been derived from imaging studies from supine postures. Quantify the sagittal plane moment arms of the lumbar erector muscle group as a function of torso flexion, and identify individual characteristics that are associated with the magnitude of the moment arms as a function of torso flexion. Utilization of a 0.3 Tesla Open magnetic resonance image (MRI) to image and quantify the moment arm of the right erector muscle group as a function of gender and torso flexion. Axial MRI images through and parallel to each of the lumbar intervertebral discs at four torso flexion angles were obtained from 12 male and 12 female subjects in a lateral recumbent posture. Multivariate analysis of variance was used to investigate the differences in the moment arms at different torso flexion angles, whereas hierarchical linear regression was used to investigate associations with individual anthropometric characteristics and spinal posture. The largest decrease in the lumbar erector muscle group moment arm from neutral to 45-degree flexion occurred at the L5-S1 level (9.7% and 8.9% for men and women, respectively). Measures of spinal curvature (L1-S1 lordosis), body mass and trunk characteristics (depth or circumference) were associated with the varying moment arm at most lumbar levels. The sagittal plane moment arms of the lumbar erector muscle mass decrease as the torso flexes forward. The change in moment arms as a function of torso flexion may have an impact on prediction of spinal loading in biomechanical models.

  7. Quantitative Evaluation of Muscle Function, Gait, and Postural Control in People Experiencing Critical Illness After Discharge From the Intensive Care Unit.

    PubMed

    Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita

    2018-01-01

    The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association

  8. Knee strength, power and stair performance of the elderly 5 years after unicompartmental knee arthroplasty.

    PubMed

    Li, Yumeng; Kakar, Rumit S; Fu, Yang-Chieh; Mahoney, Ormonde M; Kinsey, Tracy L; Simpson, Kathy J

    2018-04-13

    Unicompartmental knee arthroplasty (UKA) has been shown to demonstrate some satisfactory short-term outcomes. However, to our knowledge, there have been no reports on midterm or long-term knee extensor strength and leg extensor power post-UKA. Therefore, the purposes of this study were: (1) to assess the isokinetic knee extensor strength, leg extensor power and stair performance of elderly participants at 5 years UKA post-operation; (2) to compare the differences in knee extensor strength and leg extensor power between the UKA and contralateral healthy limbs. Nineteen elderly participants (75 ± 5 years) who had a medial or a lateral compartment UKA at 5 years post-operation were recruited. The isokinetic knee extensor strength and leg extensor power were measured. The stair performance was tested on a 4-step stair, and ascent and descent velocities were calculated. The pain level was assessed. The UKA limbs' knee extensor strength and leg extensor power were 1.01 ± 0.39 Nm/kg and 0.98 ± 0.27 W/kg, respectively. The stair ascent and descent velocities were 0.37 ± 0.07 and 0.38 ± 0.11 m/s, respectively. In addition, the UKA limbs exhibited comparable knee strength and leg power relative to the contralateral limbs. In general, the knee extensor strength and leg extensor power exhibited by the UKA limbs at 5 years post-operation may be typical in comparison with the normative data. We suggest that UKA is a satisfactory treatment in regard to the recovery of knee strength, leg power and ability to climb up and down stairs.

  9. Biomechanical Analysis of Locust Jumping in a Physically Realistic Virtual Environment

    NASA Astrophysics Data System (ADS)

    Cofer, David; Cymbalyuk, Gennady; Heitler, William; Edwards, Donald

    2008-03-01

    The biomechanical and neural components that underlie locust jumping have been extensively studied. Previous research suggested that jump energy is stored primarily in the extensor apodeme, and in a band of cuticle called the semi-lunar process (SLP). As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump. To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping. The results show that without the SLP the jump distance was reduced by almost half. Further, the simulations were also able to show that loss of the SLP had a significant impact on the final phase of the jump. We are currently working on postural control mechanisms for targeted jumping in locust.

  10. Medication-induced acute dystonic reaction: the challenge of diagnosing movement disorders in the intensive care unit.

    PubMed

    Digby, Geneviève; Jalini, Shirin; Taylor, Sean

    2015-09-21

    A 62-year-old man presented with left middle cerebral artery stroke. 1 h postadministration of tissue plasminogen activator, he received a total of 4 mg of haloperidol for combativeness. He developed partial complex status epilepticus, requiring benzodiazepines, phenytoin, propofol and intubation. 5 h later, he developed recurrent stereotyped tonic movements involving arching of the back, extension of the arms and contraction of opposing muscle groups. Repeat CT scan of the head showed evolving insular infarct. Differential diagnoses for these movements included tonic/clonic seizures, extensor (decerebrate) posturing from haemorrhagic conversion, neuroleptic malignant syndrome, or dystonic reaction. Given the lack of response to antiseizure medications, the recent administration of haloperidol, and the prompt resolution of movements following diphenhydramine administration, an acute dystonic reaction was considered. This atypical case of a critically ill patient with stroke highlights the fact that these patients may have multiple abnormal movements requiring careful analysis to guide diagnosis-specific management. 2015 BMJ Publishing Group Ltd.

  11. Low back cutaneous vibration and its effect on trunk postural control.

    PubMed

    Cornwall, Adam R; Gregory, Diane E

    2017-08-01

    The current study investigated the effects of a low back pain (LBP) vibration modality on trunk motor control. Trunk repositioning error and responses to a sudden loading trunk perturbation were evaluated pre- and post-vibration (15min vibration exposure while sitting on a standard chair) as well as when concurrent cutaneous low back vibration was applied. Only minor effects were observed post-vibration when compared to pre-vibration. However, when vibration was applied at the same time as the sudden trunk perturbations, lumbar erector spinae and external oblique muscles were significantly more delayed in activating following the perturbation. In addition, the resting muscle activation prior to the trunk perturbation was higher in both the back extensor and abdominal muscles when concurrent vibration was applied. These findings suggest that cutaneous low back vibration significantly alters motor control responses and this should be considered before implementing cutaneous vibration as a low back pain management strategy. Copyright © 2017. Published by Elsevier B.V.

  12. Effect of elbow and forearm position on contact pressure between the extensor origin and the lateral side of the capitellum.

    PubMed

    Tanaka, Yoshitaka; Aoki, Mitsuhiro; Izumi, Tomoki; Wada, Takuro; Fujimiya, Mineko; Yamashita, Toshihiko

    2011-01-01

    Bone-to-tendon contact in the origin of the common extensor tendons is considered to be one of the causes of lateral epicondylitis. Some factors, including elbow and forearm position, varus stress to the elbow, or contraction of the wrist extensor tendons, are considered to affect this bone-to-tendon contact. However, no studies have evaluated the effect of the elbow and forearm position on bone-tendon interface. The purpose of this study is to evaluate the effect of the position of the elbow and forearm on the contact pressure of the tendinous origin of the common wrist and finger extensors. We used 8 fresh cadaveric upper extremities. Contact pressure between the origin of the common extensor tendons and the lateral side of the capitellum was measured with a pressure sensor and was compared among various conditions, including elbow flexion angle (0°, 30°, 60°, and 90°), forearm rotation position (neutral and 81.5° pronation position), and varus stress load of the elbow (none, gravity on the forearm, and gravity on the forearm +1.96 Nm). Contact pressure was also measured during tension force of the extensor carpi radialis longus, extensor carpi radialis brevis, and extensor digitorum communis by 0, 9.8, and 19.6 N. Contact pressure was significantly increased with the elbow extension position, forearm pronation position, and varus stress to the elbow under tension of the extensor carpi radialis longus or extensor carpi radialis brevis. This study provides data about the amount of contact pressure between bone and tendon at the origin of the common extensor tendons in the elbow. This information may lead to a better understanding of, and better treatment for, lateral epicondylitis. Copyright © 2011. Published by Elsevier Inc.

  13. Side-alternating vibration training for balance and ankle muscle strength in untrained women.

    PubMed

    Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.

  14. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    PubMed

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  15. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice

    PubMed Central

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight. PMID:28076365

  16. Customizing Extensor Reconstruction in Vascularized Toe Joint Transfers to Finger Proximal Interphalangeal Joints: A Strategic Approach for Correcting Extensor Lag.

    PubMed

    Loh, Charles Yuen Yung; Hsu, Chung-Chen; Lin, Cheng-Hung; Chen, Shih-Heng; Lien, Shwu-Huei; Lin, Chih-Hung; Wei, Fu-Chan; Lin, Yu-Te

    2017-04-01

    Vascularized toe proximal interphalangeal joint transfer allows the restoration of damaged joints. However, extensor lag and poor arc of motion have been reported. The authors present their outcomes of treatment according to a novel reconstructive algorithm that addresses extensor lag and allows for consistent results postoperatively. Vascularized toe joint transfers were performed in a consecutive series of 26 digits in 25 patients. The average age was 30.5 years, with 14 right and 12 left hands. Reconstructed digits included eight index, 10 middle, and eight ring fingers. Simultaneous extensor reconstructions were performed and eight were centralization of lateral bands, five were direct extensor digitorum longus-to-extensor digitorum communis repairs, and 13 were central slip reconstructions. The average length of follow-up was 16.7 months. The average extension lag was 17.9 degrees. The arc of motion was 57.7 degrees (81.7 percent functional use of pretransfer toe proximal interphalangeal joint arc of motion). There was no significant difference in the reconstructed proximal interphalangeal joint arc of motion for the handedness (p = 0.23), recipient digits (p = 0.37), or surgical experience in vascularized toe joint transfer (p = 0.25). The outcomes of different techniques of extensor mechanism reconstruction were similar in terms of extensor lag, arc of motion, and reconstructed finger arc of motion compared with the pretransfer toe proximal interphalangeal joint arc of motion. With this treatment algorithm, consistent outcomes can be produced with minimal extensor lag and maximum use of potential toe proximal interphalangeal joint arc of motion. Therapeutic, IV.

  17. The influence of fat infiltration of back extensor muscles on osteoporotic vertebral fractures.

    PubMed

    So, Kwang-Young; Kim, Dae-Hee; Choi, Dong-Hyuk; Kim, Choong-Young; Kim, Jeong-Seok; Choi, Yong-Soo

    2013-12-01

    Retrospective study. To investigate the influence of fat infiltration at low back extensor muscles on osteoporotic vertebral fracture. In persons with stronger back muscles, the risk of osteoporotic vertebral fractures will likely be lower than in those persons with weaker back muscles. However, the degree of influence of fat infiltration of the back extensor muscle on osteoporotic vertebral fracture remains controversial. Two hundred and thirty-seven patients who had undergone lumbar spine magnetic resonance imaging and bone mineral density (BMD) were enrolled in this study. The amount of low back extensor muscle was determined using the pseudocoloring technique on an axial view of the L3 level. The patients were divided into two groups: osteoporotic vertebral fracture group (group A) and non-fracture group (group B). The amount of low back extensor muscle is compared with BMD, degenerative change of disc, osteophyte grade of facet joint and promontory angle to reveal the association between these factors. A negative correlation is found between age and the amount of low back extensor muscle (p=0.001). The amount of low back extensor muscle in group A and group B was 60.3%±14.5% and 64.2%±9.3% respectively, thus showing a significantly smaller amount of low back extensor muscle in the osteoporotic vertebral fracture group (p=0.015). Fat infiltration of low back extensor muscle was increased in osteoporotic vertebral fracture patients. Therefore, fat infiltration of low back extensor muscle in an elderly person may be a risk factor of osteoporotic vertebral fracture.

  18. Physical and functional measures related to low back pain in individuals with lower-limb amputation: an exploratory pilot study.

    PubMed

    Friel, Karen; Domholdt, Elizabeth; Smith, Douglas G

    2005-01-01

    For this study, we compared the physical impairments and functional deficits of individuals with lower-limb amputation (LLA) for those with and without low back pain (LBP). Nineteen participants with LLA were placed into two groups based on visual analog scores of LBP. We assessed functional limitations, iliopsoas length, hamstring length, abdominal strength, back extensor strength, and back extensor endurance. Data analysis included correlations and t-tests. We found significant correlations between pain score and functional limitations, iliopsoas length, and back extensor endurance. We also detected significant differences in functional limitations, iliopsoas length, back extensor strength, and back extensor endurance between those with and without LBP. We saw significant differences in back extensor strength and back extensor endurance between those with transtibial and transfemoral amputations. Differences exist in physical measures of individuals with LLA with and without LBP. Clinicians should consider these impairments in individuals with amputation who experience LBP. Because of the participants' characteristics, these findings may be applicable to veterans with LLA.

  19. The Trainability of Adolescent Soccer Players to Brief Periodized Complex Training.

    PubMed

    Chatzinikolaou, Athanasios; Michaloglou, Konstantinos; Avloniti, Alexandra; Leontsini, Diamanda; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Arsenis, Sotirios; Athanailidis, Ioannis; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Williams, Craig A; Fatouros, Ioannis G

    2018-05-01

    To investigate the effect of a complex, short-term strength/power training protocol on performance and body composition of elite early adolescent soccer players. Twenty-two players (14-15 y) were randomly assigned to (1) an experimental group (N = 12; participated in a 5-wk training protocol with traditional multijoint power resistance exercises, Olympic-style lifts, plyometric drills, and speed work; 4 times per week) or (2) a control group (N = 10). Strength and power performance (jumping, speed, change of direction, repeated sprint ability, endurance, isokinetic strength of knee flexors and extensors, maximal strength in various lifts, and speed-endurance) were evaluated pretraining and posttraining. Cessation of training for 5 weeks in the control group induced a marked performance deterioration (∼5%-20%). Training not only prevented strength performance deterioration but also increased it (∼2%-30%). Endurance and repeated sprint ability declined to a smaller extent in experimental group compared with control group (15% vs 7.5%). Isometric strength and body composition remained unaltered in both groups. Results demonstrate that (1) young players exhibit a high level of trainability of their strength/power performance (but not endurance) in response to a short-term complex training protocol during early adolescence, (2) Olympic-style lifts are characterized by increased safety in this age group and appear to be highly effective, (3) lifts incorporating a hip thrust result in increased strength of both knee extensors and flexors, (4) cessation of training for only 5 weeks results in marked deterioration of strength/power and endurance performance, and (5) improvement of strength/power performance may be related to neural-based adaptation as body composition remained unaffected.

  20. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects.

    PubMed

    Luís, Ana L; Rodrigues, Jorge M; Geuna, Stefano; Amado, Sandra; Shirosaki, Yuki; Lee, Jennifer M; Fregnan, Federica; Lopes, Maria A; Veloso, Antonio P; Ferreira, Antonio J; Santos, Jose D; Armada-Da-silva, Paulo A S; Varejão, Artur S P; Maurício, Ana Colette

    2008-06-01

    Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.

  1. Extensor Tendon Injuries and Repairs in the Hand

    PubMed Central

    Kontor, J. A.

    1982-01-01

    Due to their superficial course, the extensor tendons are frequently lacerated over the dorsum of the hand and fingers. Excellent functional results are obtained in repairs of simple tendon lacerations. ‘Open’ mallet lacerations over the distal IP joint or involving the central extensor slip over the proximal IP joint require more precise suturing methods. More proximal extensor tendon divisions near the wrist involve dissection of the retracted finger extensors or long thumb extensor in the distal forearm and more formal tendon repairs, including a possible tendon transfer to the thumb. ‘Closed injuries’, with varying degrees of extensor tendon disruption, occur at three main sites. The mallet injury at the DIP joint and the boutonnière deformity over the PIP joint are sometimes recognized late, but respond to conservative splinting for a minimum of four weeks with guarded motion avoiding secondary stiffening of the remaining small joints of the hand. Surgery of closed injuries most frequently involves the intra-articular traction fracture type of mallet deformities in which the DIP joint has taken the brunt of the injury. PMID:21286174

  2. Extensor Mechanism Disruption after Total Knee Arthroplasty: A Case Series and Review of Literature.

    PubMed

    Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul

    2016-02-04

    Extensor mechanism disruption following total knee arthroplasty (TKA) is a rare but devastating complication. These patients may require revision of the implants, but even then, it may not be possible to restore the normal function of the knee after the disruption. The patterns of extensor mechanism disruption can broadly be classified into three types: suprapatellar (quadriceps tendon rupture), transpatellar (patellar fracture), or infrapatellar (patellar tendon rupture). Infrapatellar tendon ruptures are the worst injuries, as they carry maximum morbidity and are challenging to manage. The disruption of the extensor mechanism may occur either intra-operatively or in the immediate postoperative period due to an injury. The treatment of extensor mechanism complications after TKA may include either nonsurgical management or surgical intervention in the form of primary repair or reconstruction with autogenous, allogeneic, or synthetic substitutes. We have provided an algorithm for the management of extensor mechanism disruption after TKA.

  3. Relationships between explosive and maximal triple extensor muscle performance and vertical jump height.

    PubMed

    Chang, Eunwook; Norcross, Marc F; Johnson, Sam T; Kitagawa, Taichi; Hoffman, Mark

    2015-02-01

    The purpose of this study was to examine the relationships between maximum vertical jump height and (a) rate of torque development (RTD) calculated during 2 time intervals, 0-50 milliseconds (RTD50) and 0-200 milliseconds (RTD200) after torque onset and (b) peak torque (PT) for each of the triple extensor muscle groups. Thirty recreationally active individuals performed maximal isometric voluntary contractions (MVIC) of the hip, knee and ankle extensors, and a countermovement vertical jump. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after the onset of joint torque. Peak torque was identified and defined as the maximum torque value during each MVIC trial. Greater vertical jump height was associated with greater knee and ankle extension RTD50, RTD200, and PT (p ≤ 0.05). However, hip extension RTD50, RTD200, and PT were not significantly related to maximal vertical jump height (p > 0.05). The results indicate that 47.6 and 32.5% of the variability in vertical jump height was explained by knee and ankle extensor RTD50, respectively. Knee and ankle extensor RTD50 also seemed to be more closely related to vertical jump performance than RTD200 (knee extensor: 28.1% and ankle extensor: 28.1%) and PT (knee extensor: 31.4% and ankle extensor: 13.7%). Overall, these results suggest that training specifically targeted to improve knee and ankle extension RTD, especially during the early phases of muscle contraction, may be effective for increasing maximal vertical jump performance.

  4. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    PubMed

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.

  5. Knee extension range of motion and self-report physical function in total knee arthroplasty: mediating effects of knee extensor strength

    PubMed Central

    2013-01-01

    Background Knee extensor strength and knee extension range of motion (ROM) are important predictors of physical function in patients with a total knee arthroplasty (TKA). However, the relationship between the two knee measures remains unclear. The purpose of this study was to examine whether changes in knee extensor strength mediate the association between changes in knee extension ROM and self-report physical function. Methods Data from 441 patients with a TKA were collected preoperatively and 6 months postoperatively. Self-report measure of physical function was assessed by the Short Form 36 (SF-36) questionnaire. Knee extensor strength was measured by handheld dynamometry and knee extension ROM by goniometry. A bootstrapped cross product of coefficients approach was used to evaluate mediation effects. Results Mediation analyses, adjusted for clinicodemographic measures, revealed that the association between changes in knee extension ROM and SF-36 physical function was mediated by changes in knee extensor strength. Conclusions In patients with TKA, knee extensor strength mediated the influence of knee extension ROM on physical function. These results suggest that interventions to improve the range of knee extension may be useful in improving knee extensor performance. PMID:23332039

  6. Effects of Postmortem Freezing on Passive Properties of Rabbit Extensor Digtorum Longus Muscle Tendon Complex

    DTIC Science & Technology

    1993-06-14

    AD-A266 429 INSTITUTE REPORT NO. 483 Effects of Postmortem Freezing on Passive Properties of Rabbit Extensor Digtorum Longus Muscle Tendon Complex D...Extensor Digtorum Longus Muscle Tendon Complex -- Paul H. Leitschuh, Tammy J. Doherty, Dean C. Taylor, Daniel E. Brooks, John B. Ryan This document has...ABSTRACT The tensile properties of the extensor digitorum longus muscle tendon unit (EDL MTU) were studied in 16 white male New Zealand rabbits in both

  7. Soreness-related changes in three-dimensional running biomechanics following eccentric knee extensor exercise.

    PubMed

    Paquette, Max R; Peel, Shelby A; Schilling, Brian K; Melcher, Dan A; Bloomer, Richard J

    2017-06-01

    Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8 ± 6.8 years; 84.1 ± 9.2 kg; 1.77 ± 0.07 m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35 m s -1 ±5% were measured before eccentric exercise (baseline) and, 24 h and 48 h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48 h (P = 0.01; d = 0.26), and peak knee extensor moment was reduced at 24 h (P = 0.001; d = 0.49) and 48 h (P < 0.001; d = 0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P > 0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24 h and 48 h (P < 0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.

  8. Impact of Fat Infiltration in Cervical Extensor Muscles on Cervical Lordosis and Neck Pain: A Cross-Sectional Study.

    PubMed

    Kim, Choong-Young; Lee, Sang-Min; Lim, Seong-An; Choi, Yong-Soo

    2018-06-01

    Weakness of cervical extensor muscles causes loss of cervical lordosis, which could also cause neck pain. The aim of this study was to investigate the impact of fat infiltration in cervical extensor muscles on cervical lordosis and neck pain. Fifty-six patients who suffered from neck pain were included in this study. Fat infiltration in cervical extensor muscles was measured at each level of C2-3 and C6-7 using axial magnetic resonance imaging. The visual analogue scale (VAS), 12-Item Short Form Health Survey (SF-12), and Neck Disability Index (NDI) were used for clinical assessment. The mean fat infiltration was 206.3 mm 2 (20.3%) at C2-3 and 240.6 mm 2 (19.5%) at C6-7. Fat infiltration in cervical extensor muscles was associated with high VAS scores at both levels ( p = 0.047 at C2-3; p = 0.009 at C6-7). At C2-3, there was a negative correlation between fat infiltration of the cervical extensor muscles and cervical lordosis (r = -0.216; p = 0.020). At C6-7, fat infiltration in the cervical extensor muscles was closely related to NDI ( p = 0.003) and SF-12 ( p > 0.05). However, there was no significant correlation between cervical lordosis and clinical outcomes (VAS, p = 0.112; NDI, p = 0.087; and SF-12, p > 0.05). These results suggest that fat infiltration in the upper cervical extensor muscles has relevance to the loss of cervical lordosis, whereas fat infiltration in the lower cervical extensor muscles is associated with cervical functional disability.

  9. The variation of the strength of neck extensor muscles and semispinalis capitis muscle size with head and neck position.

    PubMed

    Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L

    2013-04-01

    Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Articulation and oromyofunctional behavior in children seeking orthodontic treatment.

    PubMed

    Van Lierde, K M; Luyten, A; D'haeseleer, E; Van Maele, G; Becue, L; Fonteyne, E; Corthals, P; De Pauw, G

    2015-05-01

    The purpose of this controlled study is to document articulation and oromyofunctional behavior in children seeking orthodontic treatment. In addition, relations between malocclusions, articulation, and oromyofunctional behavior are studied. The study included 56 children seeking orthodontic treatment. The control group, consisting of 54 subjects matched for age and gender, did not undergo orthodontic intervention. To determine the impact of the occlusion on speech, the Oral Health Impact Profile was used. Speech characteristics, intelligibility and several lip and tongue functions were analyzed using consensus evaluations. A significant impact of the occlusion on speech and more articulation disorders for/s,n,l,t/were found in the subjects seeking orthodontic treatment. Several other phenomena were seen more often in this group, namely more impaired lip positioning during swallowing, impaired tongue function at rest, mouth breathing, open mouth posture, lip sucking/biting, anterior tongue position at rest, and tongue thrust. Moreover, all children with a tongue thrust showed an anterior tongue position at rest. Children seeking orthodontics have articulatory and oromyofunctional disorders. To what extent a combined orthodontic and logopaedic treatment can result in optimal oral health (i.e. perfect dentofacial unit with perfect articulation) is subject for further multidisciplinary research. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  12. Function and structure of the deep cervical extensor muscles in patients with neck pain.

    PubMed

    Schomacher, Jochen; Falla, Deborah

    2013-10-01

    The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Use of Game Console for Rehabilitation of Parkinson's Disease.

    PubMed

    Özgönenel, Levent; Çağırıcı, Sultan; Çabalar, Murat; Durmuşoğlu, Gülis

    2016-07-01

    Parkinson's disease (PD) predisposes to falls due to postural instability and decreased coordination. Postural and coordination exercises could ameliorate the incoordination and decrease falls. In this study, we explored the efficiency of a game console as an adjunct to an exercise program in treating incoordination in patients with PD. Case-control study. In this single-blind, prospective clinical trial, rehabilitation with the Xbox (Microsoft; Washington, USA) game console was used as an adjunct to a standard rehabilitation program. Thirty-three patients with PD at stages 1-3 were enrolled in the study. All patients received the three-times weekly exercise program and electrotherapy to back and hip extensors for 5 weeks. Study patients played catch the ball and obstacle games on the Xbox in addition to the standard exercise program. Patients were evaluated based on the scores from the Timed Up-and-Go Test, the Berg Balance Scale (BBS), and the Unified Parkinson's Disease Rating Scale-II (UPDRS-II). Post-treatment scores were compared between groups. Thirty-three patients were enrolled in the study (15 in the game-console group, and 18 controls). Patients in both groups had improvements in all scores. The end-of-treatment scores were significantly better in the study group compared to the control group in all parameters: UPDRS (10±5 versus 16±6, p=0.002), BBS (53±4 versus 47±8, p=0.004), and TUG (11±4 seconds versus 20±8 seconds, p<0.001). Game-exercise with a game-console was noted to be a significant adjunct to the rehabilitation program in patients with PD in this study.

  14. The immediate effects of foot orthoses on hip and knee kinematics and muscle activity during a functional step-up task in individuals with patellofemoral pain.

    PubMed

    Lack, Simon; Barton, Christian; Woledge, Roger; Laupheimer, Markus; Morrissey, Dylan

    2014-11-01

    Evidence shows that anti-pronating foot orthoses improve patellofemoral pain, but there is a paucity of evidence concerning mechanisms. We investigated the immediate effects of prefabricated foot orthoses on (i) hip and knee kinematics; (ii) electromyography variables of vastus medialis oblique, vastus lateralis and gluteus medius during a functional step-up task, and (iii) associated clinical measures. Hip muscle activity and kinematics were measured during a step-up task with and without an anti-pronating foot orthoses, in people (n=20, 9 M, 11 F) with patellofemoral pain. Additionally, we measured knee function, foot posture index, isometric hip abductor and knee extensor strength and weight-bearing ankle dorsiflexion. Reduced hip adduction (0.82°, P=0.01), knee internal rotation (0.46°, P=0.03), and decreased gluteus medius peak amplitude (0.9mV, P=0.043) were observed after ground contact in the 'with orthoses' condition. With the addition of orthoses, a more pronated foot posture correlated with earlier vastus medialis oblique onset (r=-0.51, P=0.02) whilst higher Kujala scores correlated with earlier gluteus medius onset (r=0.52, P=0.02). Although small in magnitude, reductions in hip adduction, knee internal rotation and gluteus medius amplitude observed immediately following orthoses application during a task that commonly aggravates symptoms, offer a potential mechanism for their effectiveness in patellofemoral pain management. Given the potential for cumulative effects of weight bearing repetitions completed with a foot orthoses, for example during repeated stair ascent, the differences are likely to be clinically meaningful. Copyright © 2014. Published by Elsevier Ltd.

  15. Control of paraplegic ankle joint stiffness using FES while standing.

    PubMed

    Hunt, K J; Gollee, H; Jaime, R P

    2001-10-01

    The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. Two subjects participated in the study: one neurologically-intact person, and one paraplegic person with a complete thoracic spinal cord lesion. The results show that during forward-leaning postures, when the plantarflexor muscles are stimulated, relatively high ankle moments of up to 60 Nm can be generated and accurate moment tracking is achieved. As a consequence, ankle stiffness is close to the desired value. During backward lean, on the other hand, the dorsiflexor muscles are stimulated. These muscles are relatively weak and only modest ankle moments of up to around 15 Nm can be produced. As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.

  16. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.

    PubMed

    Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C

    2017-08-23

    The ability to walk contributes considerably to physical health and overall well-being, particularly in children with motor disability, and is therefore prioritized as a rehabilitation goal. However, half of ambulatory children with cerebral palsy (CP), the most prevalent childhood movement disorder, cease to walk in adulthood. Robotic gait trainers have shown positive outcomes in initial studies, but these clinic-based systems are limited to short-term programs of insufficient length to maintain improved function in a lifelong disability such as CP. Sophisticated wearable exoskeletons are now available, but their utility in treating childhood movement disorders remains unknown. We evaluated an exoskeleton for the treatment of crouch (or flexed-knee) gait, one of the most debilitating pathologies in CP. We show that the exoskeleton reduced crouch in a cohort of ambulatory children with CP during overground walking. The exoskeleton was safe and well tolerated, and all children were able to walk independently with the device. Rather than guiding the lower limbs, the exoskeleton dynamically changed the posture by introducing bursts of knee extension assistance during discrete portions of the walking cycle, a perturbation that resulted in maintained or increased knee extensor muscle activity during exoskeleton use. Six of seven participants exhibited postural improvements equivalent to outcomes reported from invasive orthopedic surgery. We also demonstrate that improvements in crouch increased over the course of our multiweek exploratory trial. Together, these results provide evidence supporting the use of wearable exoskeletons as a treatment strategy to improve walking in children with CP. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers.

    PubMed

    Schmidt, Kai; Duarte, Jaime E; Grimmer, Martin; Sancho-Puchades, Alejandro; Wei, Haiqi; Easthope, Chris S; Riener, Robert

    2017-01-01

    Muscle weakness-which can result from neurological injuries, genetic disorders, or typical aging-can affect a person's mobility and quality of life. For many people with muscle weakness, assistive devices provide the means to regain mobility and independence. These devices range from well-established technology, such as wheelchairs, to newer technologies, such as exoskeletons and exosuits. For assistive devices to be used in everyday life, they must provide assistance across activities of daily living (ADLs) in an unobtrusive manner. This article introduces the Myosuit, a soft, wearable device designed to provide continuous assistance at the hip and knee joint when working with and against gravity in ADLs. This robotic device combines active and passive elements with a closed-loop force controller designed to behave like an external muscle (exomuscle) and deliver gravity compensation to the user. At 4.1 kg (4.6 kg with batteries), the Myosuit is one of the lightest untethered devices capable of delivering gravity support to the user's knee and hip joints. This article presents the design and control principles of the Myosuit. It describes the textile interface, tendon actuators, and a bi-articular, synergy-based approach for continuous assistance. The assistive controller, based on bi-articular force assistance, was tested with a single subject who performed sitting transfers, one of the most gravity-intensive ADLs. The results show that the control concept can successfully identify changes in the posture and assist hip and knee extension with up to 26% of the natural knee moment and up to 35% of the knee power. We conclude that the Myosuit's novel approach to assistance using a bi-articular architecture, in combination with the posture-based force controller, can effectively assist its users in gravity-intensive ADLs, such as sitting transfers.

  18. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers

    PubMed Central

    Schmidt, Kai; Duarte, Jaime E.; Grimmer, Martin; Sancho-Puchades, Alejandro; Wei, Haiqi; Easthope, Chris S.; Riener, Robert

    2017-01-01

    Muscle weakness—which can result from neurological injuries, genetic disorders, or typical aging—can affect a person's mobility and quality of life. For many people with muscle weakness, assistive devices provide the means to regain mobility and independence. These devices range from well-established technology, such as wheelchairs, to newer technologies, such as exoskeletons and exosuits. For assistive devices to be used in everyday life, they must provide assistance across activities of daily living (ADLs) in an unobtrusive manner. This article introduces the Myosuit, a soft, wearable device designed to provide continuous assistance at the hip and knee joint when working with and against gravity in ADLs. This robotic device combines active and passive elements with a closed-loop force controller designed to behave like an external muscle (exomuscle) and deliver gravity compensation to the user. At 4.1 kg (4.6 kg with batteries), the Myosuit is one of the lightest untethered devices capable of delivering gravity support to the user's knee and hip joints. This article presents the design and control principles of the Myosuit. It describes the textile interface, tendon actuators, and a bi-articular, synergy-based approach for continuous assistance. The assistive controller, based on bi-articular force assistance, was tested with a single subject who performed sitting transfers, one of the most gravity-intensive ADLs. The results show that the control concept can successfully identify changes in the posture and assist hip and knee extension with up to 26% of the natural knee moment and up to 35% of the knee power. We conclude that the Myosuit's novel approach to assistance using a bi-articular architecture, in combination with the posture-based force controller, can effectively assist its users in gravity-intensive ADLs, such as sitting transfers. PMID:29163120

  19. Spinal sagittal contour affecting falls: cut-off value of the lumbar spine for falls.

    PubMed

    Ishikawa, Yoshinori; Miyakoshi, Naohisa; Kasukawa, Yuji; Hongo, Michio; Shimada, Yoichi

    2013-06-01

    Spinal deformities reportedly affect postural instability or falls. To prevent falls in clinical settings, the determination of a cut-off angle of spinal sagittal contour associated with increase risk for falls would be useful for screening for high-risk fallers. The purpose of this study was to calculate the spinal sagittal contour angle associated with increased risk for falls during medical checkups in community dwelling elders. The subjects comprised 213 patients (57 men, 156 women) with a mean age of 70.1 years (range, 55-85 years). The upright and flexion/extension thoracic kyphosis and lumbar lordosis angles, and the spinal inclination were evaluated with SpinalMouse(®). Postural instability was evaluated by stabilometry, using the total track length (LNG), enveloped areas (ENV), and track lengths in the lateral and anteroposterior directions (X LNG and Y LNG, respectively). The back extensor strength (BES) was measured using a strain-gauge dynamometer. The relationships among the parameters were analyzed statistically. Age, lumbar lordosis, spinal inclination, LNG, X LNG, Y LNG, and BES were significantly associated with falls (P<0.05). Multivariate logistic regression analyses revealed that lumbar lordosis was the most significant factor (P<0.01). Univariate logistic regression analyses for falls about lumbar lordosis angles revealed that angles of 3° and less were significant for falls. The present findings suggest that increased age, spinal inclination, LNG, X LNG, Y LNG, and decreased BES and lumbar lordosis, are associated with falls. An angle of lumbar lordosis of 3° or less was associated with falls in these community-dwelling elders. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960

  1. Validity and test–retest reliability of a novel simple back extensor muscle strength test

    PubMed Central

    Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth

    2017-01-01

    Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442

  2. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focussing on the diagnostic reliability.

    PubMed

    Bruyn, George A W; Hanova, Petra; Iagnocco, Annamaria; d'Agostino, Maria-Antonietta; Möller, Ingrid; Terslev, Lene; Backhaus, Marina; Balint, Peter V; Filippucci, Emilio; Baudoin, Paul; van Vugt, Richard; Pineda, Carlos; Wakefield, Richard; Garrido, Jesus; Pecha, Ondrej; Naredo, Esperanza

    2014-11-01

    To develop the first ultrasound scoring system of tendon damage in rheumatoid arthritis (RA) and assess its intraobserver and interobserver reliability. We conducted a Delphi study on ultrasound-defined tendon damage and ultrasound scoring system of tendon damage in RA among 35 international rheumatologists with experience in musculoskeletal ultrasound. Twelve patients with RA were included and assessed twice by 12 rheumatologists-sonographers. Ultrasound examination for tendon damage in B mode of five wrist extensor compartments (extensor carpi radialis brevis and longus; extensor pollicis longus; extensor digitorum communis; extensor digiti minimi; extensor carpi ulnaris) and one ankle tendon (tibialis posterior) was performed blindly, independently and bilaterally in each patient. Intraobserver and interobserver reliability were calculated by κ coefficients. A three-grade semiquantitative scoring system was agreed for scoring tendon damage in B mode. The mean intraobserver reliability for tendon damage scoring was excellent (κ value 0.91). The mean interobserver reliability assessment showed good κ values (κ value 0.75). The most reliable were the extensor digiti minimi, the extensor carpi ulnaris, and the tibialis posterior tendons. An ultrasound reference image atlas of tenosynovitis and tendon damage was also developed. Ultrasound is a reproducible tool for evaluating tendon damage in RA. This study strongly supports a new reliable ultrasound scoring system for tendon damage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Long-term outcomes following plate stabilization to address spontaneous luxation of the long digital extensor tendon of origin in 2 dogs.

    PubMed

    Hasiuk, Michelle M M; Drygas, Kevin A; Lewis, Daniel D

    2017-11-01

    Two dogs with spontaneous luxation of the long digital extensor tendon of origin were managed by performing a sulcoplasty and applying a plate bridging the extensor sulcus. Lameness resolved and neither dog had recurrence of lameness 59 and 15 months following surgery.

  4. Pedicled unipolar latissimus dorsi flap for reconstruction of finger extensor *

    PubMed Central

    Takahashi, Mitsuhiko; Kasai, Tokio; Hibino, Naohito; Ishii, Seiji; Mitsuhashi, Tadashi

    2017-01-01

    Abstract We describe the use of a pedicled unipolar latissimus dorsi flap to restore finger extension. The patient had large defects in the radial nerve and extensor musculature. A long-tailed, 50-cm-long flap was prepared, which enabled the end of the flap to be sutured to the extensor digitorum. PMID:28470032

  5. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy.

    PubMed

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.

  6. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  7. Effect of simultaneous stretching of the wrist and finger extensors for lateral epicondylitis: a gross anatomical study of the tendinous origins of the extensor carpi radialis brevis and extensor digitorum communis.

    PubMed

    Shirato, Rikiya; Wada, Takuro; Aoki, Mitsuhiro; Iba, Kousuke; Kanaya, Kohei; Fujimiya, Mineko; Yamashita, Toshihiko

    2015-11-01

    Pulling the wrist into flexion with the elbow in extension and forearm in pronation has been used as the stretching technique of wrist extensors for lateral epicondylitis. Simultaneous stretching of the fingers in addition to the wrist flexion has also been applied. However, the mechanism of this simultaneous stretching has not been clarified. This study is designed to clarify the mechanism underlying this simultaneous stretching technique based on the anatomical features of the origins of the extensor carpi radialis brevis (ECRB) and extensor digitorum communis (EDC). Thirty-nine arms from formalin-embalmed Japanese human specimens were dissected. The features of the origins of the ECRB and EDC were macroscopically observed, and the locations of each origin on the lateral epicondyle were measured. The ECRB had a long and wide, purely tendinous origin which originated from the anterior slope of the lateral epicondyle. The tendinous origin of the index finger of the EDC (EDC-IF) arose from the posterior aspect of the ECRB tendinous origin, with a coexisting muscular portion observed at the level of the proximal forearm. The middle finger of the EDC (EDC-MF) had a short tendinous origin with an associated muscular portion and originated proximo-laterally to the origin of the ECRB on the lateral epicondyle. In addition, the muscular origin of the EDC-MF arose on the superficial and posterior aspect of the ECRB tendinous origin. In contrast, the ring and little fingers of the EDC originated from the tendinous septum of the extensor digiti minimi and extensor carpi ulnaris, and had no connection with the ECRB tendinous origin. On the basis of our anatomical findings, simultaneous stretching of the wrist extensors by wrist, index and middle fingers flexion could provide stretching force to both the tendinous origins of the ECRB and EDC through the EDC-IF and EDC-MF.

  8. Nonparetic Knee Extensor Strength Is the Determinant of Exercise Capacity of Community-Dwelling Stroke Survivors

    PubMed Central

    Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che

    2014-01-01

    Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living. PMID:25197712

  9. Nonparetic knee extensor strength is the determinant of exercise capacity of community-dwelling stroke survivors.

    PubMed

    Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che

    2014-01-01

    To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO₂ peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living.

  10. Rate of Torque Development and Feedforward Control of the Hip and Knee Extensors: Gender Differences.

    PubMed

    Stearns-Reider, Kristen M; Powers, Christopher M

    2017-10-06

    The purpose of this study was to determine whether women demonstrate decreased rate of torque development (RTD) of the hip and knee extensors and altered onset timing of the vastus lateralis and gluteus maximus during a drop-jump task when compared with men. On average, women demonstrated significantly lower normalized RTD of the hip extensors (women: 11.6 ± 1.3 MVT.s -1 , men: 13.1 ± 0.9 MVT.s -1 ; p ≤ .01); however, there was no significant difference in knee extensor RTD. Women also demonstrated significantly earlier activation of their vastus lateralis (women: 206.0 ± 130.6 ms, men: 80.9 ± 69.6 ms; p ≤ .01) and gluteus maximus (women: 85.7 ± 58.6 ms, men: 54.5 ± 35.4 ms; p = .02). In both men and women, there was a significant negative correlation between the hip extensor RTD and the vastus lateralis electromyographic onset time (men: r = -.386, p = .046; women: r = -.531, p = .008). The study findings suggest that women may utilize a feedforward control strategy in which they activate their knee extensors earlier than men to compensate for deficits in hip extensor RTD. The impaired capacity to rapidly stabilize the hip and knee joints during dynamic maneuvers may contribute to the increased risk of anterior cruciate ligament injury observed in women.

  11. Extensor Tendon Instability Due to Sagittal Band Injury in a Martial Arts Athlete: A Case Report.

    PubMed

    Kochevar, Andrew; Rayan, Ghazi

    2017-03-01

    A Taekwondo participant sustained a hand injury from punching an opponent that resulted in painful instability of the ring finger extensor digitorum communis tendon due to sagittal band damage. His symptoms resolved after reconstructive surgery on the sagittal band (SB) with stabilization of the extensor tendon over the metacarpophalangeal joint.

  12. [Exercise program for chronic low back pain based on common clinical characteristics of patients].

    PubMed

    Grgić, Vjekoslav

    2014-01-01

    1. To determine which clinical characteristics are common in patients with chronic low back pain (CLBP) and 2. To present an exercise program for CLBP composed on the basis of the common clinical characteristics of patients. In the prospective study, we have included 420 patients with nonspecific CLBP (group A), 420 patients with CLBP (with or without radicular pain) and degenerative changes of lumbosacral (LS) spine (group B) and 80 patients with CLBP after a lumbar disc herniation surgery (group C). The clinical characteristics of patients and especially the characteristics of the most important parameters for the selection of exercises have been evaluated by means of physiatric and manual functional examination. The vast majority of patients had these common clinical characteristics: 1. hypertonic/shortened lumbar extensors (A: 89,5%, B: 92%, C: 92,5%), 2. hypertonic/shortened psoas muscles (A: 83%, B: 90,5%, C: 92,5%), 3. restricted active (A: 71,4%, B: 89%, C: 94%) and passive (segmental) mobility (A: 86,4%, B: 92%, C: 95%) of LS spine, 4. painful active movements of LS spine (A: 44%, B: 88,6%, C: 95%), 5. scoliotic posture (more rarely scoliosis) usually in a combination with reduced/flattened lumbar lordosis (A: 87%, B: 89%, C: 90%), 6. hypotonic/ weak gluteal (A: 51,2%, B: 68%, C: 82,5%) and abdominal muscles (A: 33,8%, B: 56,5%, C: 60%) and 7. shortened hamstrings (A: 70,7%; hamstrings flexibility testing in patients from groups B and C is unreliable because of a frequently positive Lasegue's sign). In 6,7% of examinees from the group A, 4,8% examinees from the group B and 2,5% examinees from the group C, we have found LS spine hypermobility. Our exercise program for CLBP composed on the basis of the common clinical characteristics of the patients includes: 1. Stretching exercises for lumbar extensors, 2. Stretching exercises for psoas muscles, 3. Stretching exercises for hamstrings, 4. Strengthening exercises for abdominal muscles, 5. Strengthening exercises for gluteal muscles and 6. Flexion exercises for improvement of LS spine mobility. Our exercise program for CLBP comes unavoidably as a program of first choice in CLBP treatment. The main advantage of our program compared to standard programs is reflected in the targeted action on dysfunctional muscles and hypomobile facet joints. According to the results of our study, extension exercises for strengthening of lumbar extensors and hyperextension exercises for improvement of LS spine mobility are not appropriate for the majority of patients with CLBP.

  13. Transposition of branches of radial nerve innervating supinator to posterior interosseous nerve for functional reconstruction of finger and thumb extension in 4 patients with middle and lower trunk root avulsion injuries of brachial plexus.

    PubMed

    Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing

    2017-12-01

    This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.

  14. Comparison of physical fitness between rice farmers with and without chronic low back pain: a cross-sectional study.

    PubMed

    Taechasubamorn, Panada; Nopkesorn, Tawesak; Pannarunothai, Supasit

    2010-12-01

    To compare physical fitness between rice farmers with chronic low back pain (CLBP) and a healthy control group. Sixty-eight rice farmers with CLBP were matched according to age and sex with healthy farmers. All subjects underwent nine physical fitness tests for body composition, lifting capacity, static back extensor endurance, leg strength, static abdominal endurance, handgrip strength, hamstring flexibility, posterior leg and back muscles flexibility and abdominal flexibility. There was no significant difference between CLBP and healthy groups for all tests, except the static back extensor endurance. The back extensor endurance times of the CLBP group was significantly lower than that of the control group (p = 0.002). Static back extensor endurance is the deficient physical fitness in CLBP rice farmers. Back extensor endurance training should be emphasized in both prevention and rehabilitation programs.

  15. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-05-01

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.

  16. Comparison between parameters of muscle performance and inflammatory biomarkers of non-sarcopenic and sarcopenic elderly women.

    PubMed

    Lustosa, Lygia Paccini; Batista, Patrícia Parreira; Pereira, Daniele Sirineu; Pereira, Leani Souza Máximo; Scianni, Aline; Ribeiro-Samora, Giane Amorim

    2017-01-01

    Sarcopenia is a multifactorial geriatric syndrome with complex interrelationships. Increased plasma levels of inflammatory mediators increase the catabolic stimuli of the musculature, thereby causing a decrease in mass and muscular function. The objective of this study was to compare the performance of the knee extensors test (by isokinetic dynamometer) and plasma levels of interleukin-6 (IL-6) and soluble receptors of tumor necrosis factor alpha (sTNFR1) between sarcopenics and non-sarcopenics community-dwelling elderly women residents of Brazil. The diagnosis of sarcopenia included measurements of body composition (by densitometry with dual energy source of X-ray), handgrip strength (by Jamar ® dynamometer), and the usual gait velocity according to the recommendations of the European Working Group on Sarcopenia in Older People. In both sarcopenics and non-sarcopenics elderly women, we evaluated the muscle function by knee extensors test (using an isokinetic dynamometer Byodex System 4 Pro ® ) at angular speeds of 60°/s and 180°/s) and also we evaluated the plasma concentrations of IL-6 and sTNFR1. Comparisons of muscle performance between groups were carried out using mixed factorial ANOVA with post hoc Bonferroni test; sTNFR1 and IL-6 variables were analyzed by applying Mann-Whitney U test. Statistical differences were observed between groups regarding muscle power ( P =0.01), total work adjusted to body weight ( P =0.01) at a rate of 180°/s, and plasma levels of sTNFR1 ( P =0.01). Sarcopenic elder women showed lower performance of the lower limbs, especially at a higher speed, predisposing these older women to greater vulnerability in functional activities that require agility and postural stability. Plasma levels of sTNFR1 were higher for non-sarcopenics elderlies. However, due to the observational nature of the study, it was impossible to infer causality among the variables surveyed.

  17. Clinical Sign for Missed Decompression of a Separate Extensor Pollicis Brevis Compartment in de Quervain's Disease.

    PubMed

    Benatar, Niels

    2017-08-01

    Persistent pain despite previous surgery for de Quervain's disease might be due to an overlooked septum between the abductor pollicis longus tendon slips and the extensor pollicis brevis tendon, or an overlooked completely separate compartment for the extensor pollicis brevis tendon alone. In both of these instances, extension of the MP joint of the thumb against resistance elicits pain at the distal level of the first extensor compartment of the wrist. When this sign is positive, revisional surgery and decompression of the remaining septum or separate compartment is indicated. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Rupture of the extensor hood of the fifth toe: a rare injury.

    PubMed

    Venturini, Sara; Gaba, Suchi; Mangwani, Jitendra

    2017-02-27

    Closed injuries of the extensor hood of the lesser toes are rare and seldom reported in the literature. We present the case of a woman aged 25 years who presented to the orthopaedic fracture clinic with a 2-week history of pain in the left fifth toe and inability to extend following a ballet dancing session. Investigations showed no fracture on plain radiographs, but an ultrasound scan demonstrated rupture to the extensor hood of the little toe. Successful surgical repair of the extensor hood was performed, and the patient made a good recovery with return to dancing activities. 2017 BMJ Publishing Group Ltd.

  19. Measurement of fatigue in knee flexor and extensor muscles.

    PubMed

    Kawabata, Y; Senda, M; Oka, T; Yagata, Y; Takahara, Y; Nagashima, H; Inoue, H

    2000-04-01

    In order to examine fatigue of the knee flexor and extensor muscles and to investigate the characteristics of muscular fatigue in different sports, a Cybex machine was used to measure muscle fatigue and recovery during isokinetic knee flexion and extension. Eighteen baseball players, 12 soccer players and 13 marathon runners were studied. Each subject was tested in the sitting position and made to perform 50 consecutive right knee bends and stretches at maximum strength. This was done 3 times with an interval of 10 min between each series. The peak torque to body weight ratio and the fatigue rate were determined in each case. In all subjects, the peak torque to body weight ratio was higher for extensors than flexors. Over the 3 trials, the fatigue rate of extensors showed little change, while that of flexors had a tendency to increase. In each subject, knee extensors showed a high fatigue rate but a quick recovery, while knee flexors showed a low fatigue rate but a slow recovery. As the marathon runners had the smallest fatigue rates for both flexors and extensors, we concluded that marathon runners had more stamina than baseball players and soccer players.

  20. The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.

    PubMed

    Hu, Boyi; Ning, Xiaopeng

    2015-01-01

    Lumbar muscle fatigue is a potential risk factor for the development of low back pain. In this study, we investigated the influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination patterns during weightlifting. Each of the 15 male subjects performed five repetitions of weightlifting tasks both before and after a lumbar extensor muscle fatiguing protocol. Lumbar muscle electromyography was collected to assess fatigue. Trunk kinematics was recorded to calculate lumbar-pelvic continuous relative phase (CRP) and CRP variability. Results showed that fatigue significantly reduced the average lumbar-pelvic CRP value (from 0.33 to 0.29 rad) during weightlifting. The average CRP variability reduced from 0.17 to 0.15 rad, yet this change ws statistically not significant. Further analyses also discovered elevated spinal loading during weightlifting after the development of lumbar extensor muscle fatigue. Our results suggest that frequently experienced lumbar extensor muscle fatigue should be avoided in an occupational environment. Lumbar extensor muscle fatigue generates more in-phase lumbar-pelvic coordination patterns and elevated spinal loading during lifting. Such increase in spinal loading may indicate higher risk of back injury. Our results suggest that frequently experienced lumbar muscle fatigue should be avoided to reduce the risk of LBP.

  1. Effects of Lumbar Strengthening Exercise in Lower-Limb Amputees With Chronic Low Back Pain.

    PubMed

    Shin, Min Kyung; Yang, Hee Seung; Yang, Hea-Eun; Kim, Dae Hyun; Ahn, Bo Ram; Kwon, Hyup; Lee, Ju Hwan; Jung, Suk; Choi, Hyun Chul; Yun, Sun Keaung; Ahn, Dong Young; Sim, Woo Sob

    2018-02-01

    To analyze the effect of lumbar strengthening exercise in lower-limb amputees with chronic low back pain. We included in this prospective study 19 lower-limb amputees who had experienced low back pain for longer than 6 months. Participants were treated with 30-minute lumbar strengthening exercises, twice weekly, for 8 weeks. We used the visual analog scale (VAS), and Oswestry low back pain disability questionnaire, and measured parameters such as iliopsoas length, abdominal muscle strength, back extensor strength, and back extensor endurance. In addition, we assessed the isometric peak torque and total work of the trunk flexors and extensors using isokinetic dynamometer. The pre- and post-exercise measurements were compared. Compared with the baseline, abdominal muscle strength (from 4.4±0.7 to 4.8±0.6), back extensor strength (from 2.6±0.6 to 3.5±1.2), and back extensor endurance (from 22.3±10.7 to 46.8±35.1) improved significantly after 8 weeks. The VAS decreased significantly from 4.6±2.2 to 2.6±1.6 after treatment. Furthermore, the peak torque and total work of the trunk flexors and extensors increased significantly (p<0.05). Lumbar strengthening exercise in lower-limb amputees with chronic low back pain resulted in decreased pain and increased lumbar extensor strength. The lumbar strengthening exercise program is very effective for lower-limb amputees with chronic low back pain.

  2. Lower extremity muscle functions during full squats.

    PubMed

    Robertson, D G E; Wilson, Jean-Marie J; St Pierre, Taunya A

    2008-11-01

    The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during scent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.

  3. The first metatarsal web space: its applied anatomy and usage in tracing the first dorsal metatarsal artery in thumb reconstruction.

    PubMed

    Xu, Yong-Qing; Li, Jun; Zhong, Shi-Zhen; Xu, Da-Chuan; Xu, Xiao-Shan; Guo, Yuan-Fa; Wang, Xin-Min; Li, Zhu-Yi; Zhu, Yue-Liang

    2004-12-01

    To clarify the anatomical relationship of the structures in the first toe webbing space for better dissection of toes in thumb reconstruction. The first dorsal metatarsal artery, the first deep transverse metatarsal ligament and the extensor expansion were observed on 42 adult cadaveric lower extremities. Clinically the method of tracing the first dorsal metatarsal artery around the space of the extensor expansion was used in 36 cases of thumb reconstruction. The distal segments of the first dorsal metatarsal artery of Gilbert types I and II were located superficially to the extensor expansion. The harvesting time of a toe was shortened from 90 minutes to 50 minutes with 100% survival of reconstructed fingers. The distal segment of the first dorsal metatarsal artery lies constantly at the superficial layer of the extensor expansion. Most of the first metatarsal arteries of Gilbert types I and II can be easily located via the combined sequential and reverse dissection around the space of the extensor expansion.

  4. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases.

    PubMed

    Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.

  5. Anatomic factors related to the cause of tennis elbow.

    PubMed

    Bunata, Robert E; Brown, David S; Capelo, Roderick

    2007-09-01

    The pathogenesis of lateral epicondylitis remains unclear. Our purpose was to study the anatomy of the lateral aspect of the elbow under static and dynamic conditions in order to identify bone-to-tendon and tendon-to-tendon contact or rubbing that might cause abrasion of the tissues. Eighty-five cadaveric elbows were examined to determine details related to the bone structure and musculotendinous origins. We identified the relative positions of the musculotendinous units and the underlying bone when the elbow was in different degrees of flexion. We also recorded the contact between the extensor carpi radialis brevis and the lateral edge of the capitellum as elbow motion occurred, and we sought to identify the areas of the capitellum and extensor carpi radialis brevis where contact occurs. The average site of origin of the extensor carpi radialis brevis on the humerus lay slightly medial and superior to the outer edge of the capitellum. As the elbow was extended, the undersurface of the extensor carpi radialis brevis rubbed against the lateral edge of the capitellum while the extensor carpi radialis longus compressed the brevis against the underlying bone. The extensor carpi radialis brevis tendon has a unique anatomic location that makes its undersurface vulnerable to contact and abrasion against the lateral edge of the capitellum during elbow motion.

  6. Early reduction in toe flexor strength is associated with physical activity in elderly men.

    PubMed

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi

    2016-05-01

    [Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18-23 years) and elderly (n=60, 65-88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men's mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men.

  7. Is the Sørensen test valid to assess muscle fatigue of the trunk extensor muscles?

    PubMed

    Demoulin, Christophe; Boyer, Mathieu; Duchateau, Jacques; Grosdent, Stéphanie; Jidovtseff, Boris; Crielaard, Jean-Michel; Vanderthommen, Marc

    2016-01-01

    Very few studies have quantified the degree of fatigue characterized by the decline in the maximal voluntary contraction (MVC) force of the trunk extensors induced by the widely used Sørensen test. Measure the degree of fatigue of the trunk extensor muscles induced by the Sørensen test. Eighty young healthy subjects were randomly divided into a control group (CG) and an experimental group (EG), each including 50% of the two genders. The EG performed an isometric MVC of the trunk extensors (pre-fatigue test) followed by the Sørensen test, the latter being immediately followed by another MVC (post-fatigue test). The CG performed only the pre- and post-fatigue tests without any exertion in between. The comparison of the pre- and post-fatigue tests revealed a significant (P< 0.05) decrease in MVC force normalized by body mass (-13%) in the EG, whereas a small increase occurred in the CG (+2.7%, P= 0.001). This study shows that the Sørensen test performed until failure in a young healthy population results in a reduced ability of the trunk extensor muscles to generate maximal force, and indicates that this test is valid for the assessment of fatigue in trunk extensor muscles.

  8. Functional recovery of completely denervated muscle: implications for innervation of tissue-engineered muscle.

    PubMed

    Kang, Sung-Bum; Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2012-09-01

    Tissue-engineered muscle has been proposed as a solution to repair volumetric muscle defects and to restore muscle function. To achieve functional recovery, engineered muscle tissue requires integration of the host nerve. In this study, we investigated whether denervated muscle, which is analogous to tissue-engineered muscle tissue, can be reinnervated and can recover muscle function using an in vivo model of denervation followed by neurotization. The outcomes of this investigation may provide insights on the ability of tissue-engineered muscle to integrate with the host nerve and acquire normal muscle function. Eighty Lewis rats were classified into three groups: a normal control group (n=16); a denervated group in which sciatic innervations to the gastrocnemius muscle were disrupted (n=32); and a transplantation group in which the denervated gastrocnemius was repaired with a common peroneal nerve graft into the muscle (n=32). Neurofunctional behavior, including extensor postural thrust (EPT), withdrawal reflex latency (WRL), and compound muscle action potential (CMAP), as well as histological evaluations using alpha-bungarotoxin and anti-NF-200 were performed at 2, 4, 8, and 12 weeks (n=8) after surgery. We found that EPT was improved by transplantation of the nerve grafts, but the EPT values in the transplanted animals at 12 weeks postsurgery were still significantly lower than those measured for the normal control group at 4 weeks (EPT, 155.0±38.9 vs. 26.3±13.8 g, p<0.001; WRL, 2.7±2.30 vs. 8.3±5.5 s, p=0.027). In addition, CMAP latency and amplitude significantly improved with time after surgery in the transplantation group (p<0.001, one-way analysis of variance), and at 12 weeks postsurgery, CMAP latency and amplitude were not statistically different from normal control values (latency, 0.9±0.0 vs. 1.3±0.7 ms, p=0.164; amplitude, 30.2±7.0 vs. 46.4±26.9 mV, p=0.184). Histologically, regeneration of neuromuscular junctions was seen in the transplantation group. This study indicates that transplanted nerve tissue is able to regenerate neuromuscular junctions within denervated muscle, and thus the muscle can recover partial function. However, the function of the denervated muscle remains in the subnormal range even at 12 weeks after direct nerve transplantation. These results suggest that tissue-engineered muscle, which is similarly denervated, could be innervated and become functional in vivo if it is properly integrated with the host nerve.

  9. The effects of two different frequencies of whole-body vibration on knee extensors strength in healthy young volunteers: a randomized trial

    PubMed Central

    Esmaeilzadeh, S.; Akpinar, M.; Polat, S.; Yildiz, A.; Oral, A.

    2015-01-01

    The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women. PMID:26636279

  10. Associations of knee extensor strength and standing balance with physical function in knee osteoarthritis.

    PubMed

    Pua, Yong-Hao; Liang, Zhiqi; Ong, Peck-Hoon; Bryant, Adam L; Lo, Ngai-Nung; Clark, Ross A

    2011-12-01

    Knee extensor strength is an important correlate of physical function in patients with knee osteoarthritis; however, it remains unclear whether standing balance is also a correlate. The purpose of this study was to evaluate the cross-sectional associations of knee extensor strength, standing balance, and their interaction with physical function. One hundred four older adults with end-stage knee osteoarthritis awaiting a total knee replacement (mean ± SD age 67 ± 8 years) participated. Isometric knee extensor strength was measured using an isokinetic dynamometer. Standing balance performance was measured by the center of pressure displacement during quiet standing on a balance board. Physical function was measured by the self-report Short Form 36 (SF-36) questionnaire and by the 10-meter fast-pace gait speed test. After adjustment for demographic and knee pain variables, we detected significant knee strength by standing balance interaction terms for both SF-36 physical function and fast-pace gait speed. Interrogation of the interaction revealed that standing balance in the anteroposterior plane was positively related to physical function among patients with lower knee extensor strength. Conversely, among patients with higher knee extensor strength, the standing balance-physical function associations were, or tended to be, negative. These findings suggest that although standing balance was related to physical function in patients with knee osteoarthritis, this relationship was complex and dependent on knee extensor strength level. These results are of importance in developing intervention strategies and refining theoretical models, but they call for further study. Copyright © 2011 by the American College of Rheumatology.

  11. Integrated multi sensors and camera video sequence application for performance monitoring in archery

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Arif Mat-Jizat, Jessnor; Amirul Abdullah, Muhammad; Muazu Musa, Rabiu; Razali Abdullah, Mohamad; Fauzi Ibrahim, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2018-03-01

    This paper explains the development of a comprehensive archery performance monitoring software which consisted of three camera views and five body sensors. The five body sensors evaluate biomechanical related variables of flexor and extensor muscle activity, heart rate, postural sway and bow movement during archery performance. The three camera views with the five body sensors are integrated into a single computer application which enables the user to view all the data in a single user interface. The five body sensors’ data are displayed in a numerical and graphical form in real-time. The information transmitted by the body sensors are computed with an embedded algorithm that automatically transforms the summary of the athlete’s biomechanical performance and displays in the application interface. This performance will be later compared to the pre-computed psycho-fitness performance from the prefilled data into the application. All the data; camera views, body sensors; performance-computations; are recorded for further analysis by a sports scientist. Our developed application serves as a powerful tool for assisting the coach and athletes to observe and identify any wrong technique employ during training which gives room for correction and re-evaluation to improve overall performance in the sport of archery.

  12. Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity.

    PubMed

    Edgerton, V R; Roy, R R; Recktenwald, M R; Hodgson, J A; Grindeland, R E; Kozlovskaya, I

    2000-12-01

    The functional properties of the motor system of humans and non-human primates are readily responsive to microgravity. There is a growing body of evidence that significant adaptations occur in the spinal cord and muscle in response to prolonged exposure to microgravity. Further, there is evidence that the processing of sensory information from the periphery, particularly that input associated with the function of muscle tendons and joints, is significantly altered as a result of prolonged microgravity. We present evidence that the fundamental neural mechanisms that control the relative activity of the motor pools of a slow and fast extensor muscle is changed such that a slow, postural muscle is less readily activated during locomotion following spaceflight. Another type of change observed in mammals exposed to spaceflight relates to the release of a growth factor, called bioassayable growth hormone, which is thought to be released from the pituitary. When an individual generates a series of isometric plantarflexor contractions, the plasma levels of bioassayable growth hormone increases significantly. This response is suppressed after several days of continuous bedrest or spaceflight. These results suggest a unique neuroendocrine control system and demonstrate its sensitivity to chronic patterns of proprioceptive input associated with load-bearing locomotion.

  13. The biomechanical demands of manual scaling on the shoulders & neck of dental hygienists.

    PubMed

    La Delfa, Nicholas J; Grondin, Diane E; Cox, Jocelyn; Potvin, Jim R; Howarth, Samuel J

    2017-01-01

    The purpose of this study was to evaluate the postural and muscular demands placed on the shoulders and neck of dental hygienists when performing a simulated manual scaling task. Nineteen healthy female dental hygienists performed 30-min of simulated manual scaling on a manikin head in a laboratory setting. Surface electromyography was used to monitor muscle activity from several neck and shoulder muscles, and neck and arm elevation kinematics were evaluated using motion capture. The simulated scaling task resulted in a large range of neck and arm elevation angles and excessive low-level muscular demands in the neck extensor and scapular stabilising muscles. The physical demands varied depending on the working position of the hygienists relative to the manikin head. These findings are valuable in guiding future ergonomics interventions aimed at reducing the physical exposures of dental hygiene work. Practitioner Summary: Given that this study evaluates the physical demands of manual scaling, a procedure that is fundamental to dental hygiene work, the findings are valuable to identify ergonomics interventions to reduce the prevalence of work-related injuries, disability and the potential for early retirement among this occupational group.

  14. Small flake, big problem: an unreported cause of extensor pollicis longus tendon rupture.

    PubMed

    Durrant, C A T; Bantick, G

    2010-01-01

    Fracture of the base of the third metacarpal with associated avulsion of the extensor carpi radialis brevis tendon is a rare injury. We report such a fracture and the unusual resulting complication of division of the extensor pollicis longus tendon by the avulsed bony fragment. Careful monitoring using lateral radiographs is needed to make the diagnosis and displacement of the avulsed fragment warrants open reduction and internal fixation.

  15. Salvage of the lower limb after a full thickness burn with loss of the knee extensor mechanism: a case report.

    PubMed

    Sarraf, Khaled M; Atherton, Duncan D; Jayaweera, Asantha R; Gibbons, Charles E; Jones, Isabel

    2013-04-01

    We report on a 79-year-old woman who underwent salvage of the knee and lower leg using a Whichita Fusion Nail for knee arthrodesis, combined with a medial gastrocnemius muscle flap for a 3% contact burn that resulted in loss of the extensor mechanism. This provided an alternative to above-knee amputation when extensor mechanism reconstruction was not feasible.

  16. Fracture of the proximal tibia after revision total knee arthroplasty with an extensor mechanism allograft.

    PubMed

    Klein, Gregg R; Levine, Harlan B; Sporer, Scott M; Hartzband, Mark A

    2013-02-01

    Extensor mechanism reconstruction with an extensor mechanism allograft (EMA) remains one of the most reliable methods for treating the extensor mechanism deficient total knee arthroplasty. We report 3 patients who were treated with an EMA who sustained a proximal tibial shaft fracture. In all 3 cases, a short tibial component was present that ended close to the level of the distal extent of the bone block. When performing an EMA, it is important to recognize that the tibial bone block creates a stress riser and revision to a long-stemmed tibial component should be strongly considered to bypass this point to minimize the risk of fracture. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Anatomic relationship of the proximal nail matrix to the extensor hallucis longus tendon insertion.

    PubMed

    Palomo López, P; Becerro de Bengoa Vallejo, R; López López, D; Prados Frutos, J C; Alfonso Murillo González, J; Losa Iglesias, M E

    2015-10-01

    The purpose of this study was to delineate the relationship of the terminal extensor hallucis longus tendon insertion to the proximal limit of the nail matrix of the great toe. Fifty fresh-frozen human cadaver great toes with no evidence of trauma (average age, 62.5 years; 29 males and 21 females) were used for this study. Under 25X magnification, the proximal limit of the nail matrix and the terminal bony insertion of the extensor hallucis longus tendons were identified. The distance from the terminal tendon insertion to the nail matrix was ascertained using precision calipers, an optical microscope, and autocad(®) software for windows. Twenty-five great toes were placed in a neutral formalin solution and further analysed by histological longitudinal-sections. The specimens were stained with haematoxylin and eosin and examined microscopically to determine the presence of the extensor hallucis longus tendon along the dorsal aspect of the distal phalanx of each great toe. The main result we found in great toes was that the extensor tendon is between the matrix and the phalanx and extends dorsally to the distal aspect of the distal phalanx in all, 100%, specimens. The nail matrix of the great toe is not attached to the periosteum of the dorsal aspect of the base of the distal phalanx as is the case for fingers, because the extensor hallucis tendon is plantar or directly underneath the nail matrix and the tendon is dorsal to the bone. We have found that the extensor tendon is between the matrix and the phalanx and extends dorsally to the distal aspect of the distal phalanx. The nail matrix of the great toe is not attached to the periosteum of the dorsal aspect of the base of distal phalanx as is the case in fingers, because the extensor hallucis tendon is plantar or directly underneath the nail matrix and the tendon is dorsal to the bone. Our anatomic study demonstrates that the proximal limit of the matrix and nail bed of the human great toe are dorsal and overlapping the terminal extensor hallucis longus tendon until its distal bony insertion in all specimens. © 2015 European Academy of Dermatology and Venereology.

  18. Neck pain: manipulating the upper back helps lessen pain and improve neck motion.

    PubMed

    2011-09-01

    Neck pain is very common. In the United States, between 30% and 50% of people suffer from an aching neck each year. Although neck pain can be caused by injury, most of this pain results from more gradual stresses, such as particular sitting, standing, or work postures, lifting patterns, or sleeping positions. Typical neck pain can also cause headaches, pain between your shoulders, or a feeling of knots in your neck and upper back muscles. Although manual therapy, sometimes called "manipulation," is a common treatment for many types of spine pain, some people are uncomfortable having their necks manipulated. Recently, though, researchers have tested the benefits of a thrust manipulation of the upper back to treat neck pain. A study published in the September 2011 issue of JOSPT provides new insight and an evidence-based summary of the benefits of manipulating the upper back to ease and eliminate neck pain.

  19. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  20. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  1. Knee Extensor Strength and Risk of Structural, Symptomatic, and Functional Decline in Knee Osteoarthritis: A Systematic Review and Meta-Analysis.

    PubMed

    Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin

    2017-05-01

    To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.

  2. Knee extensor strength and body weight in adolescent men and the risk of knee osteoarthritis by middle age.

    PubMed

    Turkiewicz, Aleksandra; Timpka, Simon; Thorlund, Jonas Bloch; Ageberg, Eva; Englund, Martin

    2017-10-01

    To assess the extent to which knee extensor strength and weight in adolescence are associated with knee osteoarthritis (OA) by middle age. We studied a cohort of 40 121 men who at age 18 years in 1969/1970 underwent mandatory conscription in Sweden. We retrieved data on isometric knee extensor strength, weight, height, smoking, alcohol consumption, parental education and adult occupation from Swedish registries. We identified participants diagnosed with knee OA or knee injury from 1987 to 2010 through the National Patient Register. We estimated the HR of knee OA using multivariable-adjusted Cox proportional regression model. To assess the influence of adult knee injury and occupation, we performed a formal mediation analysis. The mean (SD) knee extensor strength was 234 (47) Nm, the mean (SD) weight was 66 (9.3) kg. During 24 years (median) of follow-up starting at the age of 35 years, 2049 persons were diagnosed with knee OA. The adjusted HR (95% CI) of incident knee OA was 1.12 (1.06 to 1.18) for each SD of knee extensor strength and 1.18 (1.15 to 1.21) per 5 kg of body weight. Fifteen per cent of the increase in OA risk due to higher knee extensor strength could be attributed to knee injury and adult occupation. Higher knee extensor strength in adolescent men was associated with increased risk of knee OA by middle age, challenging the current tenet of low muscle strength being a risk factor for OA. We confirmed higher weight to be a strong risk factor for knee OA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Effect of Superimposed Electromyostimulation on Back Extensor Strengthening: A Pilot Study.

    PubMed

    Park, Jae Hyeon; Seo, Kwan Sik; Lee, Shi-Uk

    2016-09-01

    Park, JH, Seo, KS, and Lee, S-U. Effect of superimposed electromyostimulation on back extensor strengthening: a pilot study. J Strength Cond Res 30(9): 2470-2475, 2016-Electromyostimulation (EMS) superimposed on voluntary contraction (VC) can increase muscle strength. However, no study has examined the effect of superimposing EMS on back extensor strengthening. The purpose of this study was to determine the effect of superimposed EMS on back extensor strengthening in healthy adults. Twenty healthy men, 20-29 years of age, without low-back pain were recruited. In the EMS group, electrodes were attached to bilateral L2 and L4 paraspinal muscles. Stimulation intensity was set for maximally tolerable intensity. With VC, EMS was superimposed for 10 seconds followed by a 20-second rest period. The same protocol was used in the sham stimulation (SS) group, except that the stimulation intensity was set at the lowest intensity (5 mA). All subjects performed back extension exercise using a Swiss ball, with 10 repetitions per set, 2 sets each day, 5 times a week for 2 weeks. The primary outcome measure was the change in isokinetic strength of the back extensor using an isokinetic dynamometer. Additionally, endurance was measured using the Sorensen test. After 2 weeks of back extension exercise, the peak torque and endurance increased significantly in both groups (p ≤ 0.05). Effect size between the EMS group and the SS group was medium in strength and endurance. However, there was no statistically significant difference between 2 groups. In conclusion, 2 weeks of back extensor strengthening exercise was effective for strength and endurance. Superimposing EMS on back extensor strengthening exercise could provide an additional effect on increasing strength.

  4. Anatomical association between wrist extensor musculature and topographical pain sensitivity maps of the elbow area.

    PubMed

    Prados-Frutos, Juan Carlos; Ruiz-Ruiz, Beatriz; De-la-Llave-Rincón, Ana Isabel; Arendt-Nielsen, Lars; Madeleine, Pascal; Fernández-de-Las-Peñas, César

    2012-06-01

    High-density topographical sensitivity maps have been developed to visualize nonuniformity deep tissue pain sensitivity in, for example, lateral epicondylitis (LE). The aim of this cadaveric study was to determine the anatomical association between the topographical sensitivity maps over the elbow area and wrist extensor musculature. A topographical pressure sensitivity map consisting of 12 points forming a 3 × 4 matrix: 4 points in the superior part, 4 points in the middle, and 4 points in the lower part around the lateral epicondyle was marker on a 50-year embalmed cadaver. Color marker pins were inserted into each point. Pins were removed during the process of dissection, but the small holes created by their removal assured accurate relocation. Progressive dissection revealed that points 1 to 4 (superior line) were placed over the musculotendinous junction and belly of the extensor carpi radialis brevis (ECRB) muscle, points 6 to 8 (middle line) were placed over the musculotendinous junction and belly of the extensor digitorum communis muscle, and points 9 to 12 (inferior line) were located over the musculotendinous junction and belly of the extensor carpi ulnaris muscle. It was also observed that the superficial branch of the radial nerve runs between the belly of the ECRB and extensor digitorum communis muscles. This study confirmed that anatomical location previously assumed supporting the important wrist extensor muscles, particularly the ECRB, in patients with LE as depicted by pressure pain sensitivity maps. This study also suggests a potential role of the superficial branch of the radial nerve in LE. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  5. Age Differences in Dynamic Fatigability and Variability of Arm and Leg Muscles: Associations with Physical Function

    PubMed Central

    Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K.

    2016-01-01

    Introduction It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. Methods 35 young (16 males; 21.0±2.6 years) and 32 old (18 males; 71.3±6.2 years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Results Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=−0.34, P=0.048) and balance (r=−0.41, P=0.014) among old adults. Conclusions An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. PMID:27989926

  6. Isometric elbow extensors strength in supine- and prone-lying positions.

    PubMed

    Abdelzaher, Ibrahim E; Ababneh, Anas F; Alzyoud, Jehad M

    2013-01-01

    The purpose of this study was to compare isometric strength of elbow extensors measured in supine- and prone-lying positions at elbow flexion angles of 45 and 90 degrees. Twenty-two male subjects under single-blind procedures participated in the study. Each subject participated in both supine-lying and prone-lying measuring protocols. Calibrated cable tensiometer was used to measure isometric strength of the right elbow extensors and a biofeedback electromyography was used to assure no substitution movements from shoulder girdle muscles. The mean values of isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees were 11.1  ±  4.2 kg and 13.1  ±  4.6 kg, while those measured from prone-lying position were 9.9  ±  3.6 kg and 12  ±  4.2 kg, respectively. There is statistical significant difference between the isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees compared to that measured from prone-lying position (p  <  0.05). The results suggest that in manual muscle testing starting position can affect the isometric strength of elbow extensors since supine-lying starting position is better than prone-lying starting position.

  7. Isokinetic knee joint evaluation in track and field events.

    PubMed

    Deli, Chariklia K; Paschalis, Vassilis; Theodorou, Anastasios A; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Koutedakis, Yiannis

    2011-09-01

    The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.

  8. Early reduction in toe flexor strength is associated with physical activity in elderly men

    PubMed Central

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi

    2016-01-01

    [Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18–23 years) and elderly (n=60, 65–88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men’s mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men. PMID:27313353

  9. Analysis of elbow muscle strength parameters in Brazilian jiu-jitsu practitioners.

    PubMed

    Follmer, Bruno; Dellagrana, Rodolfo André; de Lima, Luis Antonio Pereira; Herzog, Walter; Diefenthaeler, Fernando

    2017-12-01

    Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque-angle (T-A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s -1 . Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T-A relationship had an inverted "U"-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.

  10. Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke.

    PubMed

    Conrad, Megan O; Qiu, Dan; Hoffmann, Gilles; Zhou, Ping; Kamper, Derek G

    2017-05-01

    Stroke survivors experience greater strength deficits during finger extension than finger flexion. Prior research indicates relatively little observed weakness is directly attributable to muscle atrophy. Changes in other muscle properties, however, may contribute to strength deficits. This study measured muscle fiber conduction velocity (MFCV) in a finger flexor and extensor muscle to infer changes in muscle fiber-type after stroke. Conduction velocity was measured using a linear EMG surface electrode array for both extensor digitorum communis and flexor digitorum superficialis in 12 stroke survivors with chronic hand hemiparesis and five control subjects. Measurements were made in both hands for all subjects. Stroke survivors had either severe (n = 5) or moderate (n = 7) hand impairment. Absolute MFCV was significantly lower in the paretic hand of severely impaired stroke patients compared to moderately impaired patients and healthy control subjects. The relative MFCV between the two hands, however, was quite similar for flexor muscles across all subjects and for extensor muscles for the neurologically intact control subjects. However, MFCV for finger extensors was smaller in the paretic as compared to the nonparetic hand for both groups of stroke survivors. One explanation for reduced MFCV may be a type-II to type-I muscle fiber, especially in extrinsic extensors. Clinically, therapists may use this information to develop therapeutic exercises targeting loss of type-II fiber in extensor muscles.

  11. Elbow flexor and extensor muscle weakness in lateral epicondylalgia.

    PubMed

    Coombes, Brooke K; Bisset, Leanne; Vicenzino, Bill

    2012-05-01

    To evaluate whether deficits of elbow flexor and extensor muscle strength exist in lateral epicondylalgia (LE) in comparison with a healthy control population. Cross-sectional study. 150 participants with unilateral LE were compared with 54 healthy control participants. Maximal isometric elbow flexion and extension strength were measured bilaterally using a purpose-built standing frame such that gripping was avoided. The authors found significant side differences in elbow extensor (-6.54 N, 95% CI -11.43 to -1.65, p=0.008, standardised mean difference (SMD) -0.45) and flexor muscle strength (-11.26 N, 95% CI -19.59 to -2.94, p=0.009, SMD -0.46) between LE and control groups. Within the LE group, only elbow extensor muscle strength deficits between sides was significant (affected-unaffected: -2.94 N, 95% CI -5.44 to -0.44). Small significant deficits of elbow extensor and flexor muscle strength exist in the affected arm of unilateral LE in comparison with healthy controls. Notably, comparing elbow strength between the affected and unaffected sides in unilateral epicondylalgia is likely to underestimate these deficits. Trial Registration Australian New Zealand Clinical Trials Register ACTRN12609000051246.

  12. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  13. Tendon rupture associated with excessive smartphone gaming.

    PubMed

    Gilman, Luke; Cage, Dori N; Horn, Adam; Bishop, Frank; Klam, Warren P; Doan, Andrew P

    2015-06-01

    Excessive use of smartphones has been associated with injuries. A 29-year-old, right hand-dominant man presented with chronic left thumb pain and loss of active motion from playing a Match-3 puzzle video game on his smartphone all day for 6 to 8 weeks. On physical examination, the left extensor pollicis longus tendon was not palpable, and no tendon motion was noted with wrist tenodesis. The thumb metacarpophalangeal range of motion was 10° to 80°, and thumb interphalangeal range of motion was 30° to 70°. The clinical diagnosis was rupture of the left extensor pollicis longus tendon. The patient subsequently underwent an extensor indicis proprius (1 of 2 tendons that extend the index finger) to extensor pollicis longus tendon transfer. During surgery, rupture of the extensor pollicis longus tendon was seen between the metacarpophalangeal and wrist joints. The potential for video games to reduce pain perception raises clinical and social considerations about excessive use, abuse, and addiction. Future research should consider whether pain reduction is a reason some individuals play video games excessively, manifest addiction, or sustain injuries associated with video gaming.

  14. Extensor Tendon Injuries

    MedlinePlus

    ... the Hand. Find a hand surgeon near you. Videos Figures Figure 1 - Extensor tendons, located on the ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  15. Multiple variations of the tendons of the anatomical snuffbox.

    PubMed

    Thwin, San San; Fazlin, Fazlin; Than, Myo

    2014-01-01

    Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3-14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery.

  16. Relationship between leg extensor muscle strength and knee joint loading during gait before and after total knee arthroplasty.

    PubMed

    Vahtrik, Doris; Gapeyeva, Helena; Ereline, Jaan; Pääsuke, Mati

    2014-01-01

    The aim of the present study was to evaluate an isometric maximal voluntary contraction (MVC) force of the leg extensor muscles and its relationship with knee joint loading during gait prior and after total knee arthroplasty (TKA). Custom-made dynamometer was used to assess an isometric MVC force of the leg extensor muscles and 3-D motion analysis system was used to evaluate the knee joint loading during gait in 13 female patients (aged 49-68 years) with knee osteoarthritis. Patients were evaluated one day before, and three and six months following TKA in the operated and non-operated leg. Six months after TKA, MVC force of the leg extensor muscles for the operated leg did not differ significantly as compared to the preoperative level, whereas it remained significantly lower for the non-operated leg and controls. The knee flexion moment and the knee joint power during mid stance of gait was improved six months after TKA, remaining significantly lowered compared with controls. Negative moderate correlation between leg extensor muscles strength and knee joint loading for the operated leg during mid stance was noted three months after TKA. The correlation analysis indicates that due to weak leg extensor muscles, an excessive load is applied to knee joint during mid stance of gait in patients, whereas in healthy subjects stronger knee-surrounding muscles provide stronger knee joint loading during gait. III (correlational study). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  18. Effect of hypnotic suggestion on knee extensor neuromuscular properties in resting and fatigued states

    PubMed Central

    Antonini Philippe, Roberta; Guglielmo, Luiz Guilherme A.

    2018-01-01

    Purpose The aim of this study was to investigate whether hypnotic suggestions can alter knee extensor neuromuscular function at rest and during exercise. Methods Thirteen healthy volunteers (8 men and 5 women, 27 ± 3 years old) took part in this counterbalanced, crossover study including two experimental (hypnosis and control) sessions. Knee extensor neuromuscular function was tested before and after hypnosis suggestion by using a combination of voluntary contraction, transcutaneous femoral nerve electrical stimulation and transcranial magnetic stimulation (TMS). A fatiguing exercise (sustained submaximal contraction at 20% maximal voluntary contraction (MVC) force) was also performed to evaluate the potential influence of hypnosis on the extent and origin of neuromuscular adjustments. Results Hypnosis did not (p>0.05) alter MVC force or knee extensor neural properties. Corticospinal excitability, assessed with the amplitude of knee extensor motor evoked potentials, was also unchanged (p>0.05), as was the level of intracortical inhibition assessed with paired pulse TMS (short-interval intracortical inhibition, SICI). Time to task failure (~300 s) was not different (p>0.05) between the two sessions; accordingly, hypnosis did not influence neuromuscular adjustments measured during exercise and at task failure (p>0.05). Conclusion Hypnotic suggestions did not alter neuromuscular properties of the knee extensor muscles under resting condition or during/after exercise, suggesting that hypnosis-induced improvement in exercise performance and enhanced corticospinal excitability might be limited to highly susceptible participants. PMID:29684047

  19. Neck Flexor and Extensor Muscle Endurance in Subclinical Neck Pain: Intrarater Reliability, Standard Error of Measurement, Minimal Detectable Change, and Comparison With Asymptomatic Participants in a University Student Population.

    PubMed

    Lourenço, Ana S; Lameiras, Carina; Silva, Anabela G

    2016-01-01

    The aims of this study were to assess intrarater reliability and to calculate the standard error of measurement (SEM) and minimal detectable change (MDC) for deep neck flexor and neck extensor muscle endurance tests, and compare the results between individuals with and without subclinical neck pain. Participants were students of the University of Aveiro reporting subclinical neck pain and asymptomatic participants matched for sex and age to the neck pain group. Data on endurance capacity of the deep neck flexors and neck extensors were collected by a blinded assessor using the deep neck flexor endurance test and the extensor endurance test, respectively. Intraclass correlation coefficients (ICCs), SEM, and MDC were calculated for measurements taken within a session by the same assessor. Differences between groups for endurance capacity were investigated using a Mann-Whitney U test. The deep neck flexor endurance test (ICC = 0.71; SEM = 6.91 seconds; MDC = 19.15 seconds) and neck extensor endurance test (ICC = 0.73; SEM = 9.84 minutes; MDC = 2.34 minutes) are reliable. No significant differences were found between participants with and without neck pain for both tests of muscle endurance (P > .05). The endurance capacity of the deep neck flexors and neck extensors can be reliably measured in participants with subclinical neck pain. However, the wide SEM and MDC might limit the sensitivity of these tests. Copyright © 2016. Published by Elsevier Inc.

  20. Delayed recovery of the affected finger extensors at chronic stage in a stroke patient: A case report.

    PubMed

    Jang, Sung Ho; Lee, Han Do

    2017-10-01

    A 33-year-old male presented with complete weakness of the right extremities due to corona radiata infarct. The main concerns of the patient is recovery of hand function especially related to finger extension. Right corona radiata infarct. He underwent physical therapy and occupational therapy at the outpatient clinic of the rehabilitation department of the same university hospital until 2 years after onset. In addition, he underwent neuromuscular electrical stimulation for the right finger extensors continuously until 4 years after onset. At 6 months after onset, the weakness of his right side recovered to subnormal state except for the right finger extensors which were completely weak. At 1.5 years after onset, the right finger extensors began to show slow and continuous recovery. At 4 years after onset, the patient showed motor recovery in the right finger extensors to the extent that he was able to move against gravity. Discontinuation of the left corticospinal tract was observed on 2-month diffusion tensor tractography (DTT); however, the integrity of this discontinuation had recovered to the primary motor cortex on 4-year DTT. On 2-month transcranial magnetic stimulation (TMS), no motor-evoked potential was evoked; in contrast, motor-evoked potentials were obtained at the right-hand muscle on 4-year TMS study. We demonstrated unusual delayed and long-term recovery of the affected finger extensors in a patient with corona radiata infarct using DTT and TMS.

  1. The intersection syndrome: Ultrasound findings and their diagnostic value

    PubMed Central

    Montechiarello, S.; Miozzi, F.; D’Ambrosio, I.; Giovagnorio, F.

    2010-01-01

    Introduction The intersection syndrome is a well-known overuse syndrome of the distal forearm. It is characterized by noninfectious, inflammatory changes involving the area of intersection of the first (abductor pollicis longus and extensor pollicis brevis) and second (extensor carpi radialis longus and extensor carpi radialis brevis) extensor compartments in the dorsoradial aspect of the distal forearm. Imaging modalities used to diagnosis this syndrome include ultrasonography (US) and magnetic resonance imaging. The purpose of this report is to describe typical US findings in the intersection syndrome and to demonstrate the diagnostic value of this approach. Materials and methods We reviewed US findings in 4 patients (mean age 40 years) referred to our staff for symptoms suggestive of the intersection syndrome (pain, swelling, erythema, and edema of the wrist). Results In all 4 cases, the US examination revealed peritendinous edema and synovial fluid within the tendon sheaths at the intersection between the first and the second dorsal extensor tendon compartments. Discussion Our experience shows that the intersection syndrome is associated with typical signs on US. This imaging modality can be considered a reliable tool for diagnosing this syndrome and may eliminate the need for other more expensive tests. PMID:23396515

  2. Trunk extensor muscle fatigue influences trunk muscle activities.

    PubMed

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  3. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Handgrip strength deficits best explain limitations in performing bimanual activities after stroke.

    PubMed

    Basílio, Marluce Lopes; de Faria-Fortini, Iza; Polese, Janaine Cunha; Scianni, Aline A; Faria, Christina Dcm; Teixeira-Salmela, Luci Fuscaldi

    2016-04-01

    [Purpose] To evaluate the relationships between residual strength deficits (RSD) of the upper limb muscles and the performance in bimanual activities and to determine which muscular group would best explain the performance in bimanual activities of chronic stroke individuals. [Subjects and Methods] Strength measures of handgrip, wrist extensor, elbow flexor/extensor, and shoulder flexor muscles of 107 subjects were obtained and expressed as RSD. The performance in bimanual activities was assessed by the ABILHAND questionnaire. [Results] The correlations between the RSD of handgrip and wrist extensor muscles with the ABILHAND scores were negative and moderate, whereas those with the elbow flexor/extensor and shoulder flexor muscles were negative and low. Regression analysis showed that the RSD of handgrip and wrist extensor muscles explained 38% of the variance in the ABILHAND scores. Handgrip RSD alone explained 33% of the variance. [Conclusion] The RSD of the upper limb muscles were negatively associated with the performance in bimanual activities and the RSD of handgrip muscles were the most relevant variable. It is possible that stroke subjects would benefit from interventions aiming at improving handgrip strength, when the goal is to increase the performance in bimanual activities.

  5. Lateral epicondylosis and calcific tendonitis in a golfer: a case report and literature review

    PubMed Central

    Yuill, Erik A.; Lum, Grant

    2011-01-01

    Objective To detail the progress of a young female amateur golfer who developed chronic left arm pain while playing golf 8 months prior to her first treatment visit. Clinical Features Findings included pain slightly distal to the lateral epicondyle of the elbow, decreased grip strength, and positive orthopedic testing. Diagnostic ultrasound showed thickening of the common extensor tendon origin indicating lateral epicondylosis. Radiographs revealed an oval shaped calcified density in the soft tissue adjacent to the lateral humeral epicondyle, indicating calcific tendonitis of the common extensor tendon origin. Intervention and Outcome Conventional care was aimed at decreasing the repetitive load on the common extensor tendon, specifically the extensor carpi radialis brevis. Soft tissue techniques, exercises and stretches, and an elbow brace helped to reduce repetitive strain. Outcome measures included subjective pain ratings, and follow up imaging 10 weeks after treatment began. Conclusion A young female amateur golfer with chronic arm pain diagnosed as lateral epicondylosis and calcific tendonitis was relieved of her pain after 7 treatments over 10 weeks of soft tissue and physical therapy focusing specifically on optimal healing and decreasing the repetitive load on the extensor carpi radialis brevis. PMID:22131570

  6. Reduction of cervical and respiratory muscle strength in patients with chronic nonspecific neck pain and having moderate to severe disability.

    PubMed

    López-de-Uralde-Villanueva, Ibai; Sollano-Vallez, Ernesto; Del Corral, Tamara

    2017-06-11

    To investigate whether patients with chronic nonspecific neck pain and having moderate to severe disability have a greater cervical motor function impairment and respiratory disturbances compared with patients with chronic nonspecific neck pain having mild disability and asymptomatic subjects; and the association between these outcomes in patients with chronic nonspecific neck pain and healthy controls. Cross-sectional study, 44 patients with chronic nonspecific neck pain and 31 healthy subjects participated. The neck disability index was used to divide the patients into 2 groups: 1) mild disability group (scores between 5 and 14 points); and 2) moderate to severe disability group (scores >14 points). Cervical motor function was measured by cervical range of motion, forward head posture, neck flexor, and extensor muscle strength. Respiratory function and maximum respiratory pressures were also measured. Statistically differences were found between the patients with chronic nonspecific neck pain having a moderate to severe disability and the asymptomatic subjects for cervical and respiratory muscle strength. Comparisons between chronic nonspecific neck pain and the asymptomatic groups showed differences for all the variables, except for forward head posture. The regression model determined that strength of cervical flexion explained 36.4 and 45.6% of the variance of maximum inspiratory pressures and maximum expiratory pressures, respectively. Only the chronic nonspecific neck pain group with moderate to severe disability showed differences compared with the healthy subjects. Neck muscle strength could be a good predictor of respiratory muscle function. Implications for rehabilitation Neck pain severity could be closely associated with decreased respiratory pressure in patients with chronic nonspecific neck pain. These findings suggest a new therapeutic approach for patients with moderate to severe disability, such as respiratory muscle training. The regression models show that a simple measurement of neck muscle strength could provide a reasonably accurate prediction for the respiratory function of these patients. Hence, this could provide an easy tool to assess respiratory function to physiotherapists without the need for sophisticated instrumentation.

  7. Isometric endurance of the back extensors in school-aged adolescents with and without low back pain.

    PubMed

    Johnson, Olubusola E; Mbada, Chidozie E; Akosile, Christopher O; Agbeja, Oyinade A

    2009-01-01

    Studies on back extensor endurance in adolescents are scarce. This study sought to establish reference data and pattern of back extensor endurance in school-aged adolescents with and without low-back pain (LBP) from Nigeria. This study recruited 625 adolescents aged 11 to 19 years from eight randomly selected secondary schools. The modified Biering-Sørensen test of Static Muscular Endurance (BSME) was used to assess isometric endurance of the back extensors. Demographic and anthropometric data were collected. A modified LBP questionnaire was used to assess the presence of LBP. Descriptive and inferential analyses were used to analyze data. Significance was set at 0.05 alpha-level. The mean isometric holding time (IHT) of all the participants was 132.9 $\\pm$ 65.6. Males had significantly higher significant (p=0.026) IHT than females. Adolescents without LBP had a higher significant IHT (p=0.042) than those with reported history of previous LBP and those with present LBP (p=0.000) respectively. Using percentile values, poor endurance was defined as IHT that is < 90.0 s and < 67 s for males and females respectively; medium endurance was defined as IHT that ranged between 90 and 193 s and 67 and 170 s for males and females respectively while good endurance was defined as IHT that is > 193 s and > 170 s for males and females respectively. IHT was significantly related to each of body mass index, hip circumference and waist-to-hip ratio (p < 0.05). Isometric back extensors endurance in Nigerian adolescents was comparable to the original Biering-Sørensen mean value. Majority of the participants had medium endurance performance with the back endurance pattern in the ratio 1:2:1. Male had higher isometric back extensors endurance than females. Decreased isometric back extensors endurance was associated with the presence of LBP in adolescents.

  8. Asymmetric Operation of the Locomotor Central Pattern Generator in the Neonatal Mouse Spinal Cord

    PubMed Central

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a “push–pull” operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase–related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase–related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a multilayered and distributed structure of the network. PMID:18829847

  9. [Patella fractures in knee arthroplasty].

    PubMed

    Roth, A; Ghanem, M; Fakler, J

    2016-05-01

    Periprosthetic patella fractures occur both with and without retropatellar joint replacement. A non-operative treatment yields satisfactory results with low morbidity. It can be applied in minimally displaced fractures that have an intact retropatellar component and an intact extensor mechanism, combined with an initial immobilization. The surgical treatment is associated with relatively poor results and with high complication rates. There was only minor improvement of functional results, no matter which surgical technique was used. Surgical intervention is still required in fractures with a loosening of the patellar component, considerable dislocations of fragments, and damage to or rupture of the extensor mechanism. In particular, type II fractures require repair of the extensor mechanism and the fracture or patellectomy. Type III fractures require a revision or resection of the patella, a patelloplasty or total patellectomy. In addition, early or late reconstruction using allograft to restore the extensor mechanism can be taken in consideration.

  10. Muscle Strength Imbalance in the Hip Joint Caused by Fast Movements

    NASA Astrophysics Data System (ADS)

    Pontaga, I.

    2003-07-01

    Eleven male sportsmen at the age of 24.3 ± 4.5 were examined. Their hip joint flexors and extensors were tested by an "REV-9000" Technogym dynamometer system during isokinetic movements at angular velocities of 100 (low) and 200 (high) °/s. The range of hip joint movements was from 30 (in flexion) to 130° (in extension). Torque values and their ratios for hip flexors and extensors at different angular positions were obtained and compared. It is shown that, at high speeds, the flexion movement significantly raises ( p < 0.001) the torque ratios of flexors and extensors in flexion positions of the hip (50 and 60°). These ratios approximately twofold exceed their values at moderate velocities. The weakness of hip joint extensors in extreme flexion positions of the hip may cause injury of this group of muscles at fast movements.

  11. Multiple variations of the tendons of the anatomical snuffbox

    PubMed Central

    Thwin, San San; Zaini, Fazlin; Than, Myo

    2014-01-01

    INTRODUCTION Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. METHODS Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. RESULTS In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3–14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. CONCLUSION Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery. PMID:24452976

  12. Inhibition of α-adrenergic vasoconstriction in exercising human thigh muscles

    PubMed Central

    Wray, D Walter; Fadel, Paul J; Smith, Michael L; Raven, Peter; Sander, Mikael

    2004-01-01

    The mechanisms underlying metabolic inhibition of sympathetic responses within exercising skeletal muscle remain incompletely understood. The aim of the present study was to test whether α2-adrenoreceptor-mediated vasoconstriction was more sensitive to metabolic inhibition than α1-vasoconstriction during dynamic knee-extensor exercise. We studied healthy volunteers using two protocols: (1) wide dose ranges of the α-adrenoreceptor agonists phenylephrine (PE, α1 selective) and BHT-933 (BHT, α2 selective) were administered intra-arterially at rest and during 27 W knee-extensor exercise (n = 13); (2) flow-adjusted doses of PE (0.3 μg kg−1 l−1) and BHT (15 μg kg−1 l−1) were administered at rest and during ramped exercise (7 W to 37 W; n= 10). Ultrasound Doppler and thermodilution techniques provided direct measurements of femoral blood flow (FBF). PE (0.8 μg kg−1) and BHT (40 μg kg−1) produced comparable maximal reductions in FBF at rest (−58 ± 6 versus−64 ± 4%). Despite increasing the doses, PE (1.6 μg kg−1 min−1) and BHT (80 μg kg−1 min−1) caused significantly smaller changes in FBF during 27 W exercise (−13 ± 4 versus−3 ± 5%). During ramped exercise, significant vasoconstriction at lower intensities (7 and 17 W) was seen following PE (−16 ± 5 and −16 ± 4%), but not BHT (−2 ± 4 and −4 ± 5%). At the highest intensity (37 W), FBF was not significantly changed by either drug. Collectively, these data demonstrate metabolic inhibition of α-adrenergic vasoconstriction in large postural muscles of healthy humans. Both α1- and α2-adrenoreceptor agonists produce comparable vasoconstriction in the resting leg, and dynamic thigh exercise attenuates α1- and α2-mediated vasoconstriction similarly. However, α2-mediated vasoconstriction appears more sensitive to metabolic inhibition, because α2 is completely inhibited even at low workloads, whereas α1 becomes progressively inhibited with increasing workloads. PMID:14694145

  13. Endoscopic-assisted Repair of Neglected Rupture or Rerupture After Primary Repair of Extensor Hallucis Longus Tendon.

    PubMed

    Lui, Tun Hing; Chang, Joseph Jeremy; Maffulli, Nicola

    2016-03-01

    Rerupture of the extensor hallucis longus tendon after primary repair and neglected rupture of the tendon poses surgical challenges to orthopedic surgeons. Open exploration and repair of the tendon ends usually requires large incision and extensive dissection. This may induce scarring and adhesion around the repaired tendon. Endoscopic-assisted repair has the advantage of minimally invasive surgery including less soft tissue trauma and scar formation and better cosmetic result. The use of Krackow locking suture and preservation of the extensor retinacula allow early mobilization of the great toe.

  14. A Reconstructive Stabilization Technique for Nontraumatic or Chronic Traumatic Extensor Tendon Subluxation.

    PubMed

    Lee, Jae Hoon; Baek, Jong Hun; Lee, Jung Seok

    2017-01-01

    Subluxation of the extensor tendon results from a disruption to the sagittal band at the metacarpophalangeal joint. When conservative treatment fails to correct the subluxation, surgical treatment may be necessary. Surgical techniques for chronic cases vary in graft source and graft pathway. We present a surgical technique to recentralize and stabilize the extensor tendon using a residual ruptured sagittal band. This technique is simple and effective without donor site morbidity and seems to provide potential biomechanical advantages by restoring nearly normal anatomy. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Reliability and Validity of a New Method for Isometric Back Extensor Strength Evaluation Using A Hand-Held Dynamometer.

    PubMed

    Park, Hee-Won; Baek, Sora; Kim, Hong Young; Park, Jung-Gyoo; Kang, Eun Kyoung

    2017-10-01

    To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65-0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was -63.1 N and the upper 95% LoA was 61.1 N. This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity.

  16. Effects of training and weight support on muscle activation in Parkinson's disease.

    PubMed

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-12-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3 km/h) were measured before, at the mid-point, and after training. Increasing BW support decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without BW support shorter knee extensor muscle off-activation time and increased relative peak muscle activation was observed in PD patients and did not improve with 8 weeks of training. In conclusion, patients with PD walked with excessive activation of the knee extensor and flexor muscles when compared to healthy participants. Specialized locomotor training may facilitate adaptive processes related to motor control of walking in PD patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Hip abductor, trunk extensor and ankle plantar flexor endurance in females with and without patellofemoral pain.

    PubMed

    Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique

    2017-01-01

    Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.

  18. Muscle torque and its relation to technique, tactics, sports level and age group in judo contestants.

    PubMed

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-03-29

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman's r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821).

  19. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  20. Muscle Torque and its Relation to Technique, Tactics, Sports Level and Age Group in Judo Contestants

    PubMed Central

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-01-01

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman’s r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821). PMID:25964820

  1. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    PubMed

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  2. Posture and gait abilities in patients with myotonic dystrophy (Steinert disease). Evaluation on the short-term of a rehabilitation program.

    PubMed

    Missaoui, B; Rakotovao, E; Bendaya, S; Mane, M; Pichon, B; Faucher, M; Thoumie, P

    2010-01-01

    To evaluate the effects of a rehabilitation program in terms of balance, gait and muscle strength in a population of patients with myotonic dystrophy. Twenty patients benefited, as outpatients in a hospital setting, from a rehabilitation program with clinical and instrumental evaluations. The evaluation focused on quantitative balance measurement by clinical and stabilometer tests, gait assessed by Locometre and extensors and flexors knee muscle strength measured in isokinetic concentric mode at 60°/s. After the rehabilitation program, we observed a significant improvement in the patients' balance capacities measured with the Berg Balance Scale (BBS), fast gait speed and muscle strength. However, the instrumental evaluation did not report any gains for static balance and spontaneous gait speed after the training program. No correlation was found between the various improvements. A rehabilitation program focused on strength, gait and balance allowed for significant improvements in some parameters of myotonic dystrophy. These results attest to the relevance of a short-term rehabilitation protocol for these patients in the framework of a multidisciplinary therapeutic care. The disparity observed in the results measured for these patients suggest the contribution of cognitive involvement in the limitations felt by patients with myotonic dystrophy in the areas of gait and balance. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  3. Pilates and Proprioceptive Neuromuscular Facilitation Methods Induce Similar Strength Gains but Different Neuromuscular Adaptations in Elderly Women.

    PubMed

    Teixeira de Carvalho, Fabiana; de Andrade Mesquita, Laiana Sepúlveda; Pereira, Rafael; Neto, Osmar Pinto; Amaro Zangaro, Renato

    2017-01-01

    Background/Study Context: The aging process is associated with a decline in muscle mass, strength, and conditioning. Two training methods that may be useful to improve muscle function are Pilates and proprioceptive neuromuscular facilitation (PNF). Thus, the present study aimed to compare the influence of training programs using Pilates and PNF methods with elderly women. Sixty healthy elderly women were randomly divided into three groups: Pilates group, PNF group, and control group. Pilates and PNF groups underwent 1-month training programs with Pilates and PNF methods, respectively. The control group received no intervention during the 1 month. The maximal isometric force levels from knee extension and flexion, as well as the electromyography (EMG) signals from quadriceps and biceps femoris, were recorded before and after the 1-month intervention period. A two-way analysis of variance revealed that the Pilates and PNF methods induced similar strength gains from knee flexors and extensors, but Pilates exhibited greater low-gamma drive (i.e., oscillations in 30-60 Hz) in the EMG power spectrum after the training period. These results support use of both Pilates and PNF methods to enhance lower limb muscle strength in older groups, which is very important for gait, postural stability, and performance of daily life activities.

  4. Clinical relevance vs. statistical significance: Using neck outcomes in patients with temporomandibular disorders as an example.

    PubMed

    Armijo-Olivo, Susan; Warren, Sharon; Fuentes, Jorge; Magee, David J

    2011-12-01

    Statistical significance has been used extensively to evaluate the results of research studies. Nevertheless, it offers only limited information to clinicians. The assessment of clinical relevance can facilitate the interpretation of the research results into clinical practice. The objective of this study was to explore different methods to evaluate the clinical relevance of the results using a cross-sectional study as an example comparing different neck outcomes between subjects with temporomandibular disorders and healthy controls. Subjects were compared for head and cervical posture, maximal cervical muscle strength, endurance of the cervical flexor and extensor muscles, and electromyographic activity of the cervical flexor muscles during the CranioCervical Flexion Test (CCFT). The evaluation of clinical relevance of the results was performed based on the effect size (ES), minimal important difference (MID), and clinical judgement. The results of this study show that it is possible to have statistical significance without having clinical relevance, to have both statistical significance and clinical relevance, to have clinical relevance without having statistical significance, or to have neither statistical significance nor clinical relevance. The evaluation of clinical relevance in clinical research is crucial to simplify the transfer of knowledge from research into practice. Clinical researchers should present the clinical relevance of their results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Interaction between descending input and thoracic reflexes for joint coordination in cockroach: I. descending influence on thoracic sensory reflexes.

    PubMed

    Mu, Laiyong; Ritzmann, Roy E

    2008-03-01

    Tethered cockroaches turn from unilateral antennal contact using asymmetrical movements of mesothoracic (T2) legs (Mu and Ritzmann in J Comp Physiol A 191:1037-1054, 2005). During the turn, the leg on the inside of the turn (the inside T2 leg) has distinctly different motor patterns from those in straight walking. One possible neural mechanism for the transformation from walking to inside leg turning could be that the descending commands alter a few critical reflexes that start a cascade of physical changes in leg movement or posture, leading to further alterations. This hypothesis has two implications: first, the descending activities must be able to influence thoracic reflexes. Second, one should be able to initiate the turning motor pattern without descending signals by mimicking a point farther down in the reflex cascade. We addressed the first implication in this paper by experiments on chordotonal organ reflexes. The activity of depressor muscle (Ds) and slow extensor tibia muscle (SETi) was excited and inhibited by stretching and relaxing the femoral chordotonal organ. However, the Ds responses were altered after eliminating the descending activity, while the SETi responses remain similar. The inhibition to Ds activity by stretching the coxal chordotonal organ was also altered after eliminating the descending activity.

  6. [The Omega "Omega" pulley plasty: a new technique for the surgical management of the De Quervain's disease].

    PubMed

    Bakhach, J; Sentucq-Rigal, J; Mouton, P; Boileau, R; Panconi, B; Guimberteau, J-C

    2006-02-01

    The Omega "Omega" pulley plasty: a new technique for the surgical management of the De Quervain's disease. The De Quervain tenosynovitis is an inadequacy into the first extensor compartment between the osteo-fibrous tunnel and the tendons. This mechanical conflict generates a tenosynovitis of the extensor pollicis brevis and the abductor pollicis longus tendons. This is generally expressed by a tenderness on the radial side of the wrist over the radial styloid process. The medical management consists on corticoids infiltrations of the first extensor compartment, the avoidance of repetitive and stress movements of the first ray with the use of a rest splint. The surgical approach is considered with the recurrence of the painful symptoms. This well-known pathology is reputated to require a simple section of the pulley. Our post-operative complications have been reported in the literature of this classical surgical solution. These complications concern an incomplete release of the extensor pollicis brevis and the abductor pollicis longus tendons particularly when an extensor sub-compartment exists and was overlooked, an irritation of the collateral branches of the sensitive radial nerve or the occurrence of a nevroma after a nerve injury and the most serious complication is a palmar subluxation of the extensor tendons which can occur with the thumb extended and the wrist flexed. In rare cases, this subluxation can be really painful and requires a surgical management with secondary reconstruction of the pulley. This reconstruction necessitates distal pedicle flaps from the dorsal retinaculum or the brachioradialis tendon. To prevent these complications, Codega and Kapandji described techniques of reconstruction of the pulley after its release. More recently, Le Viet reported a procedure using the anterior flap of the pulley; fixed to the dermis it will work as a barrier and maintain the tendons sliding on the radial styloid groove. These techniques require to divide the pulley and to reconstruct it suturing the different flaps. It can generate adherences between the extensor tendons, the overlying skin and the collateral branches of the radial nerve. The authors present a new and original plasty procedure of the first extensor compartment pulley, the "Omega" Omega plasty. It consists to liberate the anterior attachment of the pulley over the anterior lip of the styloïd process respecting its continuity with the periosteum flap. This conservative procedure is very interesting; it permits enough expansion of the tunnel volume decompressing the extensor tendons as a treatment of the De Quervain disease and respecting the anatomy and the continuity of the osteo-fibrous tunnel. This technique is simple, reliable and respects the first ray extensor tendons gliding physiology and biodynamic. In spite of our short clinical experience with only ten cases, all the patients retrieve a normal function of the thumb with complete disappearance of the first ray tenderness and pain without any complications. These preliminary results are encouraging and push us to consider the "Omega" plasty as a first choice for the surgical treatment of the De Quervain tenosynovitis.

  7. Are Females More Resistant to Extreme Neuromuscular Fatigue?

    PubMed

    Temesi, John; Arnal, Pierrick J; Rupp, Thomas; Féasson, Léonard; Cartier, Régine; Gergelé, Laurent; Verges, Samuel; Martin, Vincent; Millet, Guillaume Y

    2015-07-01

    Despite interest in the possibility of females outperforming males in ultraendurance sporting events, little is known about the sex differences in fatigue during prolonged locomotor exercise. This study investigated possible sex differences in central and peripheral fatigue in the knee extensors and plantar flexors resulting from a 110-km ultra-trail-running race. Neuromuscular function of the knee extensors and plantar flexors was evaluated via transcranial magnetic stimulation (TMS) and electrical nerve stimulation before and after an ultra-trail-running race in 20 experienced ultraendurance trail runners (10 females and 10 males matched by percent of the winning time by sex) during maximal and submaximal voluntary contractions and in relaxed muscle. Maximal voluntary knee extensor torque decreased more in males than in females (-38% vs -29%, P = 0.006) although the reduction in plantar flexor torque was similar between sexes (-26% vs -31%). Evoked mechanical plantar flexor responses decreased more in males than in females (-23% vs -8% for potentiated twitch amplitude, P = 0.010), indicating greater plantar flexor peripheral fatigue in males. Maximal voluntary activation assessed by TMS and electrical nerve stimulation decreased similarly in both sexes for both muscle groups. Indices of knee extensor peripheral fatigue and corticospinal excitability and inhibition changes were also similar for both sexes. Females exhibited less peripheral fatigue in the plantar flexors than males did after a 110-km ultra-trail-running race and males demonstrated a greater decrease in maximal force loss in the knee extensors. There were no differences in the magnitude of central fatigue for either muscle group or TMS-induced outcomes. The lower level of fatigue in the knee extensors and peripheral fatigue in the plantar flexors could partly explain the reports of better performance in females in extreme duration running races as race distance increases.

  8. Adaptation of skeletal muscle to spaceflight: Cosmos rhesus project. Cosmos 2044 and 2229

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue

    1994-01-01

    The proposed experiments were designed to determine the effects of the absence of weight support on hindlimb muscles of the monkey: an ankle flexor (tibialis anterior, TA), two ankle extensors (medial gastrocnemius, MG and soleus, SOL), and a knee extensor (vastus lateralis, VL). These effects were assessed by examining the biochemical and morphological properties of muscle fibers obtained from biopsies in young Rhesus monkeys (3-4 Kg). Biopsies taken from ground base experiments were analyzed to determine: (1) the effects of chair restraint at 1 G on muscle properties and (2) the growth rate of flexor and extensor muscles in the Rhesus. In addition, two sets of biopsies were taken from monkeys which were in the flight pool and the four monkeys that flew on the Cosmos 2044 and 2229 biosatellite missions. Based on data collected in rats it is generally assumed that extensors atrophy to a greater extent than flexors in response to spaceflight or hindlimb suspension. Consequently, the finding that fibers in the TA (a fast flexor) of the flight monkeys atrophied, whereas fibers in the Sol (a predominantly slow extensor) and MG (a fast extensor) grew after a 14-day spaceflight (Cosmos 2044) and 12-day spaceflight (Cosmos 2229) was unexpected. In Cosmos 2044, the TA in both flight monkeys had a 21 percent decrease in fiber size, whereas the Sol and MG both had a 79 percent increase in fiber size. In Cosmos 2229, the TA in both flight monkeys showed significant atrophy, whereas the Sol and MG showed slight growth in one monkey (906) and slight atrophy in the other monkey (151).

  9. Knee Extensor Strength and Gait Characteristics After Minimally Invasive Unicondylar Knee Arthroplasty vs Minimally Invasive Total Knee Arthroplasty: A Nonrandomized Controlled Trial.

    PubMed

    Braito, Matthias; Giesinger, Johannes M; Fischler, Stefan; Koller, Arnold; Niederseer, David; Liebensteiner, Michael C

    2016-08-01

    In light of the existing lack of evidence, it was the aim of this study to compare gait characteristics and knee extensor strength after medial unicondylar knee arthroplasty (MUKA) with those after total knee arthroplasty (TKA), given the same standardized minimally invasive surgery (MIS) approach in both groups. Patients scheduled for MIS-MUKA or MIS-TKA as part of clinical routine were invited to participate. A posterior cruciate ligament-retaining total knee design was used for all MIS-TKA. A 3-dimensional gait analysis was performed preoperatively with a VICON system and at 8 weeks postoperative to determine temporospatial parameters, ground reaction forces, joint angles, and joint moments. At the same 2 times, isokinetic tests were performed to obtain peak values of knee extensor torque. A multivariate analysis of variance was conducted and included the main effects time (before and after surgery) and surgical group and the group-by-time interaction effect. Fifteen MIS-MUKA patients and 17 MIS-TKA patients were eligible for the final analysis. The groups showed no differences regarding age, body mass index, sex, side treated, or stage of osteoarthritis. We determined neither intergroup differences nor time × group interactions for peak knee extensor torque or any gait parameters (temporospatial, ground reaction forces, joint angles, and joint moments). It is concluded that MUKA is not superior to TKA with regard to knee extensor strength or 3-dimensional gait characteristics at 8 weeks after operation. As gait characteristics and knee extensor strength are only 2 of the various potential outcome parameters (knee scores, activity scores…) and quadriceps strength might take a longer time to recover, our findings should be interpreted with caution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of cranial tibial and extensor carpi radialis reflexes before and after anesthetic block in cats.

    PubMed

    Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso

    2017-02-01

    Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.

  11. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing.

    PubMed

    Jonsson, Erika; Henriksson, Marketta; Hirschfeld, Helga

    2007-10-01

    Weight transfer designed to change the area of the supportive base during the performance of three different motor tasks (one-leg stance, tandem stance and gait initiation) was examined both in healthy, physically active elderly people and younger adults. The former two tasks are balance tests used clinically. Our hypothesis was that the elderly subjects would demonstrate age-related changes in their postural adjustments that could be detected by analysis of the ground reaction forces. While 24 healthy elderly adults (65-77 years of age) and 26 younger adults (24-40 years of age) performed these three tasks, the ground reaction forces were recorded from two force plates. Prior to the onset of all three tasks, the elderly placed significantly more weight on the leg that was to provide support (the stance leg), than did the younger individuals. The analyses revealed two distinct phases of weight transfer, i.e., an initial thrust and a subsequent unloading phase. The elderly individuals exhibited a significantly longer unloading phase, as well as a higher frequency of peaks of vertical and lateral forces during this phase. Moreover, the maximal force rate during this phase was achieved at an earlier time point by the elderly. However, both groups generated forces of similar magnitudes and force rates. In conclusion, our findings indicate the presence of age-related differences in the temporal phasing of the ground reaction forces in all three of these tasks involving weight transfer, whereas the magnitude and rates of change of these forces are independent of age.

  12. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    PubMed

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  13. Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat.

    PubMed Central

    Leighton, B; Challiss, R A; Lozeman, F J; Newsholme, E A

    1987-01-01

    1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle. PMID:3318810

  14. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome: ultrasonography as a diagnostic tool.

    PubMed

    Agarwal, Vikas; Dabra, Ajay Kumar; Kaur, Ravinder; Sachdev, Atul; Singh, Ram

    2005-09-01

    Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome is characterized by symmetrical synovitis and swelling of both the upper and lower extremities. The anatomical determinant of RS3PE is predominantly extensor tenosynovitis as revealed by magnetic resonance imaging (MRI). Given the cost constraints, time, and expertise required in carrying out MRI and ease in diagnosing tenosynovitis by ultrasound, we utilized high-frequency ultrasonography (USG) for evidence of tenosynovitis of the distal tendons in patients with RS3PE. Diagnosis of tenosynovitis was made on the basis of anechoic or hypoechoic signals around the tendon sheaths in both transverse and longitudinal planes. Flexor and extensor tendons at the wrist and metacarpal heads and extensor digitorum longus (EDL) tendons at the ankle were evaluated with a 7.5-10-MHz linear probe. There were ten patients (seven males) with a mean age of 59.5 years (range: 52-78 years) and mean disease duration of 6.1 months (range: 1.5-12 months). Disease onset was acute in all of the cases. Pitting edema of the hands was present in all except two patients whereas four patients, in addition, had edema of the feet. Edema was symmetrical in seven patients. Inability to make a complete fist was noted in all. Tenosynovitis of extensor and flexor tendons at the wrist and the metacarpal heads was documented in all patients with edema of the hands. In seven cases extensor tendon tenosynovitis was more prominent compared to the flexor tendons. Tenosynovitis of EDL tendons was detected in six cases. Dramatic relief with low-dose prednisolone was noted in all patients within 6 weeks of therapy. At a mean follow-up of 10.1 months all patients had marked relief in edema of extremities and improvement in the grip strength. Our study confirms that tenosynovitis of both flexor and extensor tendons at the wrist and extensor tendons of the feet is the hallmark of RS3PE syndrome. USG is a reliable and cost-effective modality for evaluation of patients with suspected RS3PE.

  15. Late extensor pollicis longus rupture following plate fixation in Galeazzi fracture dislocation

    PubMed Central

    Sabat, Dhananjaya; Dabas, Vineet; Dhal, Anil

    2014-01-01

    Late rupture of extensor pollicis longus (EPL) tendon after Galeazzi fracture dislocation fixation is an unknown entity though it is a well-established complication following distal radius fractures. We report the case of a 55-year old male who presented with late EPL tendon rupture 4 months following internal fixation of Galeazzi fracture dislocation with a Locking Compression Plate (LCP). He was managed with extensor indicis proprius (EIP) transfer to restore thumb extension. At 4 years followup, functional result of the transfer was good. We identify possible pitfalls with this particular patient and discuss how to avoid them in future. PMID:25143650

  16. Experiment K-7-33: Functional Neuromuscular Adaptation to Spaceflight

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Bodine-Fowler, S.; Hodgson, J. A.; Roy, R. R.; Kozlovskaya, I. B.

    1994-01-01

    The following data were collected from two Rhesus monkeys (782 and 2483) that were flown aboard a 14-day biosatellite mission (COSMOS 2044). The proposed study was designed to determine the effects of the absence of weight support on flexor and extensor muscles of the hindlimb. These effects were assessed morphologically and biochemically from muscle biopsies taken from a slow extensor, the soleus; a fast extensor, the medial gastrocnemius; and a fast flexor, the tibialis anterior. A second objective of this study was to determine the relative importance of activity (as determined by intramuscular electromyography, and force (as determined by joint torque) on the adaptation of muscle.

  17. Integrated NTP Vehicle Radiation Design

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Rodriquez, Mitchell A.

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.

  18. Integrated NTP Vehicle Radiation Design

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis; Rodriquez, Mitchell

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves

  19. Rhythmic Isometric Fatigue Patterns of the Elbow Flexors and Knee Extensors

    ERIC Educational Resources Information Center

    Ordway, George A.; And Others

    1977-01-01

    During a rhythmic, all-out task, the rates of fatigue experienced by elbow flexor and knee extendor muscle groups tend to differ, with the elbow flexors fatiguing more rapidly initially, but reaching a plateau at a relatively higher level than the knee extensors. (Author)

  20. THE ASSOCIATIONS BETWEEN HIP STRENGTH AND HIP KINEMATICS DURING A SINGLE LEG HOP IN RECREATIONAL ATHLETES POST ACL RECONSTRUCTION COMPARED TO HEALTHY CONTROLS.

    PubMed

    Tate, Jeremiah; Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin

    2017-06-01

    Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Controlled Laboratory Study; Cross-sectional. Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants' height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship ( r =-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved ( r =.62) and uninvolved limb ( r =.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Level 2a.

  1. Manipulation for the control of back pain and curve progression in patients with skeletally mature idiopathic scoliosis: two cases.

    PubMed

    Tarola, G A

    1994-05-01

    This report of two cases illustrates the potential effect of chiropractic manipulative therapy on back pain and curve progression in the at-risk, skeletally mature patient with adolescent idiopathic scoliosis. Two patients suffering from lumbar scoliosis and chronic back pain. Both had scoliosis that had progressed after skeletal maturity. Diversified type chiropractic manipulative therapy was used palliatively for back pain relief in one case, and routinely 1-2 times per month in the other case. The manipulation was applied manually, with the patients in the prone and side-posture positions. Vertebral levels manipulated were identified as fixated/dysfunctional segments based on static and/or motion palpation. They were generally applied to areas above and/or below the curve apex. When applied at the apex, cavitation was more easily achieved when the direction of thrust was into the concave side. This was also tolerated better by the patient. No attempt was made to "straighten the curve" by thrusting into the convex side. Gentle manual intersegmental mobilization, stretching and muscle massage techniques were also applied. The case treated palliatively had curve progression consistent with the literature over an 8-yr period. The case treated routinely did not. The procedure was effective in both cases for subjective relief of back pain. Diversified-type CMT has a favorable effect on acute back pain when used palliatively. The procedure may also have a favorable long term effect of preventing recurrence of back pain and on retarding curve progression when used routinely 1-2 times per month.

  2. Decrements in knee extensor and flexor strength are associated with performance fatigue during simulated basketball game-play in adolescent, male players.

    PubMed

    Scanlan, Aaron T; Fox, Jordan L; Borges, Nattai R; Delextrat, Anne; Spiteri, Tania; Dalbo, Vincent J; Stanton, Robert; Kean, Crystal O

    2018-04-01

    This study quantified lower-limb strength decrements and assessed the relationships between strength decrements and performance fatigue during simulated basketball. Ten adolescent, male basketball players completed a circuit-based, basketball simulation. Sprint and jump performance were assessed during each circuit, with knee flexion and extension peak concentric torques measured at baseline, half-time, and full-time. Decrement scores were calculated for all measures. Mean knee flexor strength decrement was significantly (P < 0.05) related to sprint fatigue in the first half (R = 0.65), with dominant knee flexor strength (R = 0.67) and dominant flexor:extensor strength ratio (R = 0.77) decrement significantly (P < 0.05) associated with sprint decrement across the entire game. Mean knee extensor strength (R = 0.71), dominant knee flexor strength (R = 0.80), non-dominant knee flexor strength (R = 0.75), mean knee flexor strength (R = 0.81), non-dominant flexor:extensor strength ratio (R = 0.71), and mean flexor:extensor strength ratio (R = 0.70) decrement measures significantly (P < 0.05) influenced jump fatigue during the entire game. Lower-limb strength decrements may exert an important influence on performance fatigue during basketball activity in adolescent, male players. Consequently, training plans should aim to mitigate lower-limb fatigue to optimise sprint and jump performance during game-play.

  3. Reliability and Validity of a New Method for Isometric Back Extensor Strength Evaluation Using A Hand-Held Dynamometer

    PubMed Central

    2017-01-01

    Objective To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. Methods A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. Results The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65–0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was −63.1 N and the upper 95% LoA was 61.1 N. Conclusion This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity. PMID:29201818

  4. Discharge behavior of motor units in knee extensors during the initial stage of constant-force isometric contraction at low force level.

    PubMed

    Kamo, Mifuyu

    2002-03-01

    To elucidate the strategy of the activity of motor units (MUs) to maintain a constant-force isometric contraction, I examined the behavior of MUs in knee extensor muscles [(vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF)] during a sustained contraction at 5% of maximal voluntary contraction for 5 min. In all cases, the spike interval exhibited an elongating trend, and two discharge patterns were observed, continuous discharge and decruitment. In continuous-discharge MUs, the trend slope was steep immediately after the onset of constant force (steep phase), and then became gentle (gentle phase). Decruitments were observed frequently during each phase, and additional MU recruitment was observed throughout the contraction. The mean value of recruitment threshold force did not differ among the extensors. The mean spike interval at the onset of constant-force isometric contractions was shorter in RF than in VL. However, there were no differences in the duration and extent of the elongating trend, decruitment time and recruitment time among the extensors. The electromyogram of the antagonist biceps femoris muscle revealed no compensatory change for extensor activity. These results indicated that at a low force level, the strategy employed by the central nervous system to maintain constant force appears to involve cooperation among elongating trends in the spike interval, decruitment following elongation, and additional MU recruitment in synergistic muscles.

  5. [Pattern of paralysis and reconstructive operations after traumatic brachial plexus lesions].

    PubMed

    Rühmann, O; Schmolke, S; Carls, J; Wirth, C J

    2002-12-01

    The aim of this study was to evaluate persistent patterns of paralysis after traumatic brachial plexus lesions. As a result, consecutive reconstructive operations according to our differential therapy concept are presented. Between 04/1994 and 12/2000 in 104 patients with brachial plexus palsy, the grade of muscle power of the affected upper extremities was evaluated prospectively. The neuromuscular patterns of defect showed, in most cases, insufficient muscle power grades of 0-2 for the deltoid muscle (90%), supraspinatus muscle (82%), infraspinatus muscle (93%), elbow flexors (67% to 77%), hand and finger extensors (69% to 71%), and the abductor and extensors of the thumb (67% to 70%). In corresponding frequency, the following operations were performed between 04/1994 and 06/2002: shoulder arthrodesis (n 26), trapezius transfer (n 80), rotation osteotomy of humerus (n 10), triceps to biceps transposition (n 11), transposition of forearm flexors or extensors/Steindler operation (n 12), latissimus transfer (n 7), pectoralis transfer (n 1), teres major transfer (n 1), transposition of forearm flexors to the tendons of extensor digitorum (n 19) and of the extensor pollicis longus (n 9), and wrist arthrodesis (n 5). On malfunction of muscles following brachial plexus lesions, taking into account the individual neuromuscular defect, passive joint function, and bony deformities, different procedures such as muscle transposition, arthrodesis, and corrective osteotomy can be performed to improve function of the upper extremity.

  6. Characterizing Knee Loading Asymmetry in Individuals Following Anterior Cruciate Ligament Reconstruction Using Inertial Sensors

    PubMed Central

    Sigward, Susan M.; Chan, Ming-Sheng M.; Lin, Paige E.

    2016-01-01

    Limitations in the ability to identify knee extensor loading deficits during gait in individuals following anterior cruciate ligament reconstruction (ACLr) may underlie their persistence. A recent study suggested that shank angular velocity, directly output from inertial sensors, differed during gait between individuals post-ACLr and controls. However, it is not clear if this kinematic variable relates to knee moments calculated using joint kinematics and ground reaction forces. Heel rocker mechanics during loading response of gait, characterized by rapid shank rotation, require knee extensor control. Measures of shank angular velocity may be reflective of knee moments. This study investigated the relationship between shank angular velocity and knee extensor moment during gait in individuals (n=19) 96.7±16.8 days post-ACLr. Gait was assessed concurrently using inertial sensors and a marker-based motion system with force platforms. Peak angular velocity and knee extensor moment were strongly correlated (r=0.75, p<0.001) and between limb ratios of angular velocity predicted between limb ratios of extensor moment (r2=0.57 ,p<0.001) in the absence of between limb differences in spatiotemporal gait parameters. The strength of these relationships indicate that shank kinematic data offer meaningful information regarding knee loading and provide a potential alternative to full motion analysis systems for identification of altered knee loading following ACLr PMID:27395452

  7. Comparing two methods to record maximal voluntary contractions and different electrode positions in recordings of forearm extensor muscle activity: Refining risk assessments for work-related wrist disorders.

    PubMed

    Dahlqvist, Camilla; Nordander, Catarina; Granqvist, Lothy; Forsman, Mikael; Hansson, Gert-Åke

    2018-01-01

    Wrist disorders are common in force demanding industrial repetitive work. Visual assessment of force demands have a low reliability, instead surface electromyography (EMG) may be used as part of a risk assessment for work-related wrist disorders. For normalization of EMG recordings, a power grip (hand grip) is often used as maximal voluntary contraction (MVC) of the forearm extensor muscles. However, the test-retest reproducibility is poor and EMG amplitudes exceeding 100% have occasionally been recorded during work. An alternative MVC is resisted wrist extension, which may be more reliable. To compare hand grip and resisted wrist extension MVCs, in terms of amplitude and reproducibility, and to examine the effect of electrode positioning. Twelve subjects participated. EMG from right forearm extensors, from four electrode pairs, was recorded during MVCs, on three separate occasions. The group mean EMG amplitudes for resisted wrist extension were 1.2-1.7 times greater than those for hand grip. Resisted wrist extension showed better reproducibility than hand grip. The results indicate that the use of resisted wrist extension is a more accurate measurement of maximal effort of wrist extensor contractions than using hand grip and should increase the precision in EMG recordings from forearm extensor muscles, which in turn will increase the quality of risk assessments that are based on these.

  8. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  9. Knee stabilisation following infected knee arthroplasty with bone loss and extensor mechanism impairment using a modular cemented nail.

    PubMed

    Rao, M C; Richards, O; Meyer, C; Jones, R Spencer

    2009-12-01

    Infected Total Knee Replacement with significant bone loss and loss of extensor mechanism poses a difficult management problem. Arthrodesis relying on bony union can be difficult to achieve and can result in significant limb shortening. We retrospectively looked at the outcome of seven patients with significant bone loss and extensor mechanism insufficiency following infected TKR who underwent knee stabilisation using a modular cemented nail. The nail relied on the strong coupling mechanism between the modular femoral and tibial components. Pain score improved from a mean of 7.9 pre-operatively to 1.5 post-operatively at a mean follow up of 39.6 months (range 7-68) months. Two patients underwent technically easy revision nailing for recurrent infection and aseptic loosening. The Endo-Model(R) Knee Fusion Nail (Newsplint, UK/Waldemar Link, GmbH & Co. KG, Hamburg, Germany) has good early results in terms of pain relief and provides a stable knee in cases with significant bone loss and extensor mechanism insufficiency following an infected TKR thus avoiding an above knee amputation.

  10. Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump.

    PubMed

    Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T

    2015-12-01

    To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.

  11. Joint capsule attachment to the extensor carpi radialis brevis origin: an anatomical study with possible implications regarding the etiology of lateral epicondylitis.

    PubMed

    Nimura, Akimoto; Fujishiro, Hitomi; Wakabayashi, Yoshiaki; Imatani, Junya; Sugaya, Hiroyuki; Akita, Keiichi

    2014-02-01

    To identify the unique anatomical characteristic of the extensor carpi radialis brevis (ECRB) origin and points of differentiation from other extensors and to clarify the specific relationship of the ECRB to the underlying structures. We studied the origin of each extensor macroscopically for its muscular and tendinous parts; to identify the relationship between the ECRB origin and the deeper structures, we also examined the attachment of the joint capsule under the ECRB origin. The ECRB simply originated as a tendon without any muscle, whereas other extensors originated as a mixture of tendon and muscle. At the anterior part of the ECRB origin, the thin attachment of the joint capsule (average width, 3.3 mm) lay deep to the ECRB and was distinct. However, at the posterodistal portion, the joint capsule, annular ligament, and supinator were intermingled and originated as a single wide sheet from the humerus (average width, 10.7 mm). The anterior part of the ECRB origin was delicate, because the ECRB origin was purely tendinous, and the attachment of the articular capsule was thin compared with that of the posterodistal attachment. This thin attachment could be an initial factor leading to the development of lateral epicondylitis. The results of the current study may enhance magnetic resonance imaging understanding and may help clarify the etiology of the lateral epicondylitis. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. THE INFLUENCE OF SEX AND MATURATION ON LANDING BIOMECHANICS: IMPLICATIONS FOR ACL INJURY

    PubMed Central

    Sigward, S. M.; Pollard, C. D.; Powers, C. M.

    2010-01-01

    During landing and cutting, females exhibit greater frontal plane moments at the knee (internal knee adductor moments or external knee abduction moments) and favor use of the knee extensors over the hip extensors to attenuate impact forces when compared to males. However, it is not known when this biomechanical profile emerges. The purpose of this study was to compare landing biomechanics between sexes across maturation levels. One hundred and nineteen male and female soccer players (9–22 years) participated. Subjects were grouped based on maturational development. Lower extremity kinematics and kinetics were obtained during a drop-land task. Dependent variables included the average internal knee adductor moment and sagittal plane knee/hip moment and energy absorption ratios during the deceleration phase of landing. When averaged across maturation levels, females demonstrated greater internal knee adductor moments (0.06±0.03 vs. 0.01±0.02 Nm/kg*m; P<0.005), knee/hip extensor moment ratios (2.0±0.1 vs. 1.4±0.1 Nm/kg*m; P<0.001), and knee/hip energy absorption ratios (2.9±0.1 vs. 1.96±0.1 Nm/kg*m; P<0.001) compared to males. Higher knee adductor moments combined with disproportionate use of knee extensors relative to hip extensors observed in females reflects a biomechanical pattern that increases ACL loading. This biomechanical strategy already was established in pre-pubertal female athletes. PMID:21210853

  13. The Effect of Tibial Plateau Levelling Osteotomy on Stifle Extensor Mechanism Load: A Canine Ex Vivo Study.

    PubMed

    Drew, Jarrod O; Glyde, Mark R; Hosgood, Giselle L; Hayes, Alex J

    2018-02-01

     To evaluate the effect of tibial plateau levelling osteotomy on stifle extensor mechanism load in an ex vivo cruciate-intact canine cadaveric model.   Ex vivo mechanical testing study.  Cadaveric canine pelvic limbs ( n  = 6).  A 21-mm tibial radial osteotomy was performed on pelvic limbs ( n  = 6) prior to being mounted into a load-bearing limb press. The proximal tibial segment was incrementally rotated until the anatomical tibial plateau angle had been rotated to at least 1°. The proportional change in stifle extensor mechanism load between the anatomical tibial plateau angle and the neutralized (∼6.5 degrees) and over-rotated (∼1°) tibial plateau angle was analysed using a one-sample t -test against a null hypothesis of no change. A p -value ≤0.05 was considered significant.  There was no significant change in the stifle extensor mechanism load from the anatomical tibial plateau angle (308 N [261-355 N]) to the neutralized tibial plateau angle (313 N [254-372 N]; p =.81), or from the anatomical tibial plateau angle to the over-rotated tibial plateau angle (303 N [254-352 N; p  = 0.67).  Tibial plateau levelling osteotomy does not significantly alter stifle extensor mechanism load at either a neutralized or over-rotated tibial plateau angle in our cruciate-intact model. Schattauer GmbH Stuttgart.

  14. Effects of the forearm support band on wrist extensor muscle fatigue.

    PubMed

    Knebel, P T; Avery, D W; Gebhardt, T L; Koppenhaver, S L; Allison, S C; Bryan, J M; Kelly, A

    1999-11-01

    A crossover experimental design with repeated measures. To determine whether the forearm support band alters wrist extensor muscle fatigue. Fatigue of the wrist extensor muscles is thought to be a contributing factor in the development of lateral epicondylitis. The forearm support band is purported to reduce or prevent symptoms of lateral epicondylitis but the mechanism of action is unknown. Fifty unimpaired subjects (36 men, 14 women; mean age = 29 +/- 6 years) were tested with and without a forearm support band before and after a fatiguing bout of exercise. Peak wrist extension isometric force, peak isometric grip force, and median power spectral frequency for wrist extensor electromyographic activity were measured before and after exercise and with and without the forearm support band. A 2 x 2 repeated measures multivariate analysis of variance was used to analyze the data, followed by univariate analysis of variance and Tukey's multiple comparison tests. Peak wrist extension isometric force, peak grip isometric force, and median power spectral frequency were all reduced after exercise. However, there was a significant reduction in peak grip isometric force and peak wrist extension isometric force values for the with-forearm support band condition (grip force 28%, wrist extension force 26%) compared to the without-forearm support band condition (grip force 18%, wrist extension force 15%). Wearing the forearm support band increased the rate of fatigue in unimpaired individuals. Our findings do not support the premise that wearing the forearm support band reduces muscle fatigue in the wrist extensors.

  15. The influence of Task-Related Training combined with Transcutaneous Electrical Nerve Stimulation on paretic upper limb muscle activation in patients with chronic stroke.

    PubMed

    Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young

    2017-01-01

    This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.

  16. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.

    PubMed

    Dolan, P; Adams, M A

    1993-01-01

    The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. Isometric contractions were investigated with the subjects pulling up on a load cell attached to the floor. Hand height was varied to produce different amounts of lumbar flexion, as indicated by changes in lumbar curvature. The extensor moment was found to be linearly related to EMG activity, and the 'gradient' and 'intercept' of the relationship were themselves dependent upon the lumbar curvature at the time of testing. Concentric contractions were investigated with the subjects extending from a seated toe-touching position, at various speeds, while the torque exerted on the arm of a Cybex dynamometer was continuously measured. Under these conditions the EMG signal (E) was higher than the isometric signal (E0) associated with the same torque. E and E0 were related as follows: E0 = E/(1 + A d theta/dt), where A = 0.0014 exp (0.045P) and P = percentage lumbar flexion. This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.

  17. The effect of whole-body vibration therapy on bone metabolism, motor function, and anthropometric parameters in women with postmenopausal osteoporosis.

    PubMed

    Luo, Xiaotian; Zhang, Jifeng; Zhang, Chi; He, Chengqi; Wang, Pu

    2017-11-01

    To review the research literature on the effectiveness of whole-body vibration (WBV) therapy in women with postmenopausal osteoporosis. A systematic review was conducted by two independent reviewers. Mean differences (MDs), standardized mean differences (SMDs), and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed with the I 2 test. The Cochrane risk of bias tool was used to assess the methodological quality of the selected studies. Nine randomized controlled trials involving 625 patients met the inclusion criteria. No significant improvement was found in bone mineral density (BMD) (SMD = -0.06, 95%CI= -0.22-0.11, p = 0.50); bone turnover markers (MD = -0.25, 95%CI= -0.54-0.03, p = 0.08); anthropometric parameters, including muscle mass, fat mass, body mass index (BMI), and weight (SMD = 0.02, 95%CI= -0.16-0.21, p = 0.81); or maximal isotonic knee extensor strength (SMD = 0.16, 95%CI= -0.63-0.95, p = 0.69). However, maximal isometric knee extensor strength improved (SMD = 0.71, 95%CI = 0.34-1.08, p = 0.0002). WBV is beneficial for enhancing maximal isometric knee extensor strength, but it has no overall treatment effect on BMD, bone turnover markers, anthropometric parameters, or maximal isotonic knee extensor strength in women with postmenopausal osteoporosis. Implication of rehabilitation Osteoporosis is the leading underlying cause of fractures in postmenopausal women, whole body vibration (WBV) has received much attention as a potential intervention for the management of osteoporosis in recent years. Whole body vibration is beneficial for enhancing maximal isometric knee extensor strength in women with postmenopausal osteoporosis. Whole body vibration has no overall treatment effect on bone mineral density, bone turnover markers, anthropometric parameters and maximal isotonic knee extensor strength in women with postmenopausal osteoporosis.

  18. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    PubMed

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae muscles when they support the extended hindlegs against gravity forces when the body hangs over. All ballistic movements of cricket knees are elicited by a basic but variable motor pattern: knee flexions by co-contraction of the antagonists prepare catapult extensions with speeds and forces as required in the different behaviours.

  19. THE ASSOCIATIONS BETWEEN HIP STRENGTH AND HIP KINEMATICS DURING A SINGLE LEG HOP IN RECREATIONAL ATHLETES POST ACL RECONSTRUCTION COMPARED TO HEALTHY CONTROLS

    PubMed Central

    Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin

    2017-01-01

    Background Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Study Design Controlled Laboratory Study; Cross-sectional Methods Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants’ height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Results Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship (r=-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved (r=.62) and uninvolved limb (r=.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. Conclusion The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Levels of Evidence Level 2a PMID:28593088

  20. Screening initial entry training trainees for postural faults and low back or hip pain.

    PubMed

    Lane, John R

    2014-01-01

    The frequency of postural faults and postural awareness in military trainees has not been assessed. Five hundred Soldiers entering Advanced Individual Training were screened for standing posture and completed an anonymous questionnaire during inprocessing. Postural faults were identified in 202 subjects. Chi square analysis demonstrated a relationship between posture observed and posture reported: 87% of subjects with postural faults were unaware of postural faults; 12% with proper posture reported having poor posture. Subjects reported comparable frequencies of back pain and hip pain with postural faults (33.2%, 21.2%) and without faults (28.5%, 14.7%). Anonymous reporting was higher than formal reporting and requests for care during the same period (37% vs 3.4%).

  1. Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.

    PubMed

    Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei

    2018-03-31

    To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. THE BIOMECHANICAL RESPONSE OF PERSONS WITH TRANSFEMORAL AMPUTATION TO VARIATIONS IN PROSTHETIC KNEE ALIGNMENT DURING LEVEL WALKING

    PubMed Central

    Koehler-McNicholas, Sara R.; Lipschutz, Robert D.; Gard, Steven A.

    2017-01-01

    Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (ANT), subjects significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, subjects also decreased the rate at which they loaded their prosthesis, decreased their step length, increased their trunk flexion, and maintained their limb in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, no significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee-joint control. PMID:28355034

  3. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking.

    PubMed

    Koehler-McNicholas, Sara R; Lipschutz, Robert D; Gard, Steven A

    2016-01-01

    Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.

  4. Specialized neuromuscular training to improve neuromuscular function and biomechanics in a patient with quiescent juvenile rheumatoid arthritis.

    PubMed

    Myer, Gregory D; Brunner, Hermine I; Melson, Paula G; Paterno, Mark V; Ford, Kevin R; Hewett, Timothy E

    2005-08-01

    The purpose of this case report is to describe a novel multidisciplinary approach for evaluating and preparing a patient with quiescent juvenile rheumatoid arthritis (JRA) for safe sports participation. The patient was a 10-year-old girl with a history of bilateral knee arthritis who desired to participate in soccer and basketball. Range of motion and manual muscle testing of the lower extremity were within normal limits. Neuromuscular testing included kinematic and kinetic testing, isokinetic assessment, and postural stability testing. The patient's gait was near normal; however, she had narrowed step width and increased knee flexion at heel-strike. Landing analysis during a box drop vertical jump task showed increased and imbalanced (right versus left lower extremity) peak impact forces. The testing was followed by specialized neuromuscular training (SNT). Following SNT, heel-strike and step width were within normal limits, peak impact forces on the box drop test decreased by 31%, imbalance decreased by 46%, and vertical jump increased 15%. The isokinetic strength ratio between knee flexors and extensors and the overall balance measures were within normal limits and equal bilaterally. Patients with quiescent JRA may have abnormal biomechanics, which could place them at increased risk for injury or future articular cartilage damage. Specialized neuromuscular training may have helped to decrease the patient's risk for future injury or disease progression.

  5. Optimal early active mobilisation protocol after extensor tendon repairs in zones V and VI: A systematic review of literature.

    PubMed

    Collocott, Shirley Jf; Kelly, Edel; Ellis, Richard F

    2018-03-01

    Early mobilisation protocols after repair of extensor tendons in zone V and VI provide better outcomes than immobilisation protocols. This systematic review investigated different early active mobilisation protocols used after extensor tendon repair in zone V and VI. The purpose was to determine whether any one early active mobilisation protocol provides superior results. An extensive literature search was conducted to identify articles investigating the outcomes of early active mobilisation protocols after extensor tendon repair in zone V and VI. Databases searched were AMED, Embase, Medline, Cochrane and CINAHL. Studies were included if they involved participants with extensor tendon repairs in zone V and VI in digits 2-5 and described a post-operative rehabilitation protocol which allowed early active metacarpophalangeal joint extension. Study designs included were randomised controlled trials, observational studies, cohort studies and case series. The Structured Effectiveness Quality Evaluation Scale was used to evaluate the methodological quality of the included studies. Twelve articles met the inclusion criteria. Two types of early active mobilisation protocols were identified: controlled active motion protocols and relative motion extension splinting protocols. Articles describing relative motion extension splinting protocols were more recent but of lower methodological quality than those describing controlled active motion protocols. Participants treated with controlled active motion and relative motion extension splinting protocols had similar range of motion outcomes, but those in relative motion extension splinting groups returned to work earlier. The evidence reviewed suggested that relative motion extension splinting protocols may allow an earlier return to function than controlled active motion protocols without a greater risk of complication.

  6. Genome-wide linkage scan for contraction velocity characteristics of knee musculature in the Leuven Genes for Muscular Strength Study.

    PubMed

    De Mars, Gunther; Windelinckx, An; Huygens, Wim; Peeters, Maarten W; Beunen, Gaston P; Aerssens, Jeroen; Vlietinck, Robert; Thomis, Martine A I

    2008-09-17

    The torque-velocity relationship is known to be affected by ageing, decreasing its protective role in the prevention of falls. Interindividual variability in this torque-velocity relationship is partly determined by genetic factors (h(2): 44-67%). As a first attempt, this genome-wide linkage study aimed to identify chromosomal regions linked to the torque-velocity relationship of the knee flexors and extensors. A selection of 283 informative male siblings (17-36 yr), belonging to 105 families, was used to conduct a genome-wide SNP-based (Illumina Linkage IVb panel) multipoint linkage analysis for the torque-velocity relationship of the knee flexors and extensors. The strongest evidence for linkage was found at 15q23 for the torque-velocity slope of the knee extensors (TVSE). Other interesting linkage regions with LOD scores >2 were found at 7p12.3 [logarithm of the odds ratio (LOD) = 2.03, P = 0.0011] for the torque-velocity ratio of the knee flexors (TVRF), at 2q14.3 (LOD = 2.25, P = 0.0006) for TVSE, and at 4p14 and 18q23 for the torque-velocity ratio of the knee extensors TVRE (LOD = 2.23 and 2.08; P = 0.0007 and 0.001, respectively). We conclude that many small contributing genes are involved in causing variation in the torque-velocity relationship of the knee flexor and extensor muscles. Several earlier reported candidate genes for muscle strength and muscle mass and new candidates are harbored within or in close vicinity of the linkage regions reported in the present study.

  7. Low back and lower-limb muscle performance in male and female recreational runners with chronic low back pain.

    PubMed

    Cai, Congcong; Kong, Pui W

    2015-06-01

    Controlled laboratory study, cross-sectional. To compare lumbar extensor muscle fatigability, lumbar stabilizing muscle activation, and lower-limb strength between male and female runners with chronic low back pain (LBP) and healthy runners. Little is known about muscle performance in runners with chronic LBP. Eighteen recreational runners with chronic LBP (9 men, 9 women; mean age, 27.8 years) and 18 healthy recreational runners (9 men, 9 women; mean age, 24.6 years) were recruited. The median frequency slopes for bilateral iliocostalis and longissimus were calculated from electromyographic signals captured during a 2-minute Sorensen test. The thickness changes of the transversus abdominis and lumbar multifidus between resting and contraction were measured using an ultrasound scanner. Peak concentric torques of the bilateral hip extensors, hip abductors, and knee extensors were measured using an isokinetic dynamometer at 60°/s. The average values for both sides were used for statistical analysis. When averaged across sexes, peak knee extensor torque was 12.2% lower in the LBP group compared to the healthy group (mean difference, 0.29 Nm/kg; 95% confidence interval: 0.06, 0.53; P = .016). Male runners with chronic LBP exhibited smaller lumbar multifidus thickness changes compared to healthy male runners (mean difference, 0.13 cm; 95% confidence interval: 0.01, 0.25; P = .033). No other group differences were observed. Runners with chronic LBP exhibited diminished knee extensor strength compared to healthy runners. Male runners with chronic LBP demonstrated additional deficits in lumbar multifidus activation.

  8. Effects of once weekly NMES training on knee extensors fatigue and body composition in a person with spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Caudill, Caelb; Khalil, Refka E

    2016-01-01

    Single-subject case (male, 33 years of age, T6 SCI AIS A). To determine the effect of surface neuromuscular electrical stimulation (NMES) training conducted once weekly on improving fatigue resistance as well as regional and whole body composition in an individual with spinal cord injury (SCI). Laboratory setting within a SCI Center. Surface NMES resistance training (RT) of the paralyzed knee extensors was conducted once weekly for 12 weeks using ankle weights. Knee extensor fatigue index was determined by the number of repetitions (reps) achieved out of 30 reps. Total and regional body composition including percentage body fat (%BF), fat mass (FM), lean mass (LM) were conducted before the first session and one week after the last training session using whole-body dual-energy X-ray absorptiometry. The participant had a compliance rate of 83% and he was able to lift 6 and 2 lbs on the right and left legs, respectively. Right knee extensors showed greater fatigue resistance compared to the left one. Leg LM increased by 6% accompanied with decrease in arm, trunk and total body LM by -4.7%, -13%, -5%, respectively. The %BF increased by 8%, 7.3%, 15.5%, 11.5% for arm, legs, trunk and total body. Once weekly of NMES RT evokes local positive changes in leg LM without reciprocating the continuous loss in LM or gain in FM in other regions and total body. Training was effective in increasing strength as well as fatigue resistance of the trained knee extensors.

  9. The influence of sex and maturation on landing biomechanics: implications for anterior cruciate ligament injury.

    PubMed

    Sigward, S M; Pollard, C D; Powers, C M

    2012-08-01

    During landing and cutting, females exhibit greater frontal plane moments at the knee (internal knee adductor moments or external knee abduction moments) and favor the use of the knee extensors over the hip extensors to attenuate impact forces when compared with males. However, it is not known when this biomechanical profile emerges. The purpose of this study was to compare landing biomechanics between sexes across maturation levels. One hundred and nineteen male and female soccer players (9-22 years) participated. Subjects were grouped based on maturational development. Lower extremity kinematics and kinetics were obtained during a drop-land task. Dependent variables included the average internal knee adductor moment and sagittal plane knee/hip moment and energy absorption ratios during the deceleration phase of landing. When averaged across maturation levels, females demonstrated greater internal knee adductor moments (0.06±0.03 vs 0.01±0.02 N m/kg m; P<0.005), knee/hip extensor moment ratios (2.0±0.1 vs 1.4±0.1 N m/kg m; P<0.001) and knee/hip energy absorption ratios (2.9±0.1 vs 1.96±0.1 N m/kg m; P<0.001) compared with males. Higher knee adductor moments combined with disproportionate use of knee extensors relative to hip extensors observed in females reflect a biomechanical pattern that increases anterior cruciate ligament loading. This biomechanical strategy already was established in pre-pubertal female athletes. © 2011 John Wiley & Sons A/S.

  10. Cervical spine injuries, mechanisms, stability and AIS scores from vertical loading applied to military environments.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Humm, John R; Maiman, Dennis J; Voo, Liming; Merkle, Andrew

    2016-07-01

    The purpose of this study was to determine injuries to osteo-ligamentous structures of cervical column, mechanisms, forces, severities and AIS scores from vertical accelerative loading. Seven human cadaver head-neck complexes (56.9 ± 9.5 years) were aligned based on seated the posture of military soldiers. Army combat helmets were used. Specimens were attached to a vertical accelerator to apply caudo-cephalad g-forces. They were accelerated with increasing insults. Intermittent palpation and radiography were done. A roof structure mimicking military vehicle interior was introduced after a series of tests and experiments were conducted following similar protocols. Upon injury detection, CT and dissection were done. Temporal force responses were extracted, peak forces and times of occurrence were obtained, injury severities were graded, and spine stability was determined. Injuries occurred in tests only when the roof structure was included. Responses were tri-phasic: initial thrust, secondary tensile, tertiary roof contact phases. Peak forces: 1364-4382 N, initial thrust, 165-169 N, secondary tensile, 868-3368 N tertiary helmet-head roof contact phases. Times of attainments: 5.3-9.6, 31.7-42.6, 55.0-70.8 ms. Injuries included fractures and joint disruptions. Multiple injuries occurred in all but one specimen. A majority of injury severities were AIS = 2. Spines were considered unstable in a majority of cases. Spine response was tri-phasic. Injuries occurred in roof contact tests with the helmeted head-neck specimen. Multiplicity and unstable nature of AIS = 2 level injuries, albeit at lower severities, might predispose the spine to long-term accelerated degenerative changes. Clinical protocols should include a careful evaluation of sub-catastrophic injuries in military patients.

  11. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits

    PubMed Central

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-01-01

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism. PMID:26911538

  12. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits.

    PubMed

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-02-25

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism.

  13. Muscular hypertrophy and atrophy in normal rats provoked by the administration of normal and denervated muscle extracts.

    PubMed

    Agüera, Eduardo; Castilla, Salvador; Luque, Evelio; Jimena, Ignacio; Leiva-Cepas, Fernando; Ruz-Caracuel, Ignacio; Peña, José

    2016-12-01

    This study was conducted to determine the effects of extracts obtained from both normal and denervated muscles on different muscle types. Wistar rats were used and were divided into a control group and four experimental groups. Each experimental group was treated intraperitoneally during 10 consecutive days with a different extract. These extracts were obtained from normal soleus muscle, denervated soleus, normal extensor digitorum longus, and denervated extensor digitorum longus. Following treatment, the soleus and extensor digitorum longus muscles were obtained for study under optic and transmission electron microscope; morphometric parameters and myogenic responses were also analyzed. The results demonstrated that the treatment with normal soleus muscle and denervated soleus muscle extracts provoked hypertrophy and increased myogenic activity. In contrast, treatment with extracts from the normal and denervated EDL had a different effect depending on the muscle analyzed. In the soleus muscle it provoked hypertrophy of type I fibers and increased myogenic activity, while in the extensor digitorum longus atrophy of the type II fibers was observed without changes in myogenic activity. This suggests that the muscular responses of atrophy and hypertrophy may depend on different factors related to the muscle type which could be related to innervation.

  14. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  15. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  16. Tread-water feeding of Bryde's whales.

    PubMed

    Iwata, Takashi; Akamatsu, Tomonari; Thongsukdee, Surasak; Cherdsukjai, Phaothep; Adulyanukosol, Kanjana; Sato, Katsufumi

    2017-11-06

    Many previous studies have shown that rorqual whales (Balaenopteridae), including the blue whale (Balaenoptera musculus), fin whale (B. physalus), sei whale (B. borealis), Bryde's whale (B. edeni), minke whale (B. acutorostrata), and humpback whale (Megaptera novaeangliae), employ a strategy called lunge feeding to capture a large amount of krill and/or fish for nourishment [1]. Lunge feeding entails a high energetic cost due to the drag created by an open mouth at high speeds [1,2]. In the upper Gulf of Thailand, Bryde's whales, which feed on small fish species [3], predominantly anchovies, demonstrated a range of feeding behaviors such as oblique, vertical, and lateral lunging. Moreover, they displayed a novel head-lifting feeding behavior characterized by holding the vertical posture for several seconds with an open mouth at the water surface. This study describes the head-lifting feeding by Bryde's whales, which is distinct from the typical lunge feeding of rorqual whales. Whales showing this behavior were observed on 58 occasions, involving 31 whales and including eight adult-calf pairs. Whales caught their prey using a series of coordinated movements: (i) lifting the head above the water with a closed mouth, (ii) opening the mouth until the lower jaw contacted the sea surface, which created a current of water flowing into the mouth, (iii) holding their position for several seconds, (iv) waiting for the prey to enter the mouth, and (v) closing the mouth and engulfing the prey underwater (Figure 1A-F, Movie S1 in Supplemental Information published with this article online). When a whale kept its upper jaw above the sea surface, many anchovies in the targeted shoal appeared to lose orientation and flowed passively into the mouth of the whale by the current created by the lower mandible breaking the surface of the water. We measured the duration of feeding events when the whales had a wide-open mouth mostly above the sea surface. The mean and maximum feeding durations were 14.5 ± 5.4 (SD; n = 58 events) and 32 s, respectively. Deployment of animal-borne data loggers yielded approximately 44 minutes of recordings from a single whale. The acceleration data showed that stroke rates, including tail beat and whole-body movements during feeding, were faster (approximately 0.7 s cycle) than during a cruising swim (approximately 3 s cycle) (Figure 1G). The swimming speed was lower than that in the stall speed (0.2 m s -1 ) of the device during the feeding phase, suggesting that thrust force was used to hold the head up and to stabilize body posture (Figure 1G). Stable positioning using the fluke and flipper was confirmed by video data for both the downward and upward direction of the whale (Figure S1). According to the visual and behavioral data, we named the head-lifting feeding as 'tread-water feeding'. Generally, all species of baleen whale, including rorqual whales, show active chasing and feeding, i.e., skimming, suction, and engulfing with lunging [1]. Tread-water feeding is considered passive feeding as compared with other feeding behaviors because the whales do not swim forward in pursuit of prey during the period from mouth opening to closing, and although they need thrust force to stabilize their posture, the head does not actively move. To the best of our knowledge, this discovery of tread-water feeding in Bryde's whales represents the first report of passive feeding in baleen whales, which indicates their flexible capacity to modify their foraging strategy in relation to variable environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gouty involvement of the patella and extensor mechanism of the knee mimicking aggressive neoplasm. A case series.

    PubMed

    Kester, Christopher; Wallace, Matthew T; Jelinek, James; Aboulafia, Albert

    2018-06-01

    Gout is a common inflammatory crystal deposition disease that occurs in many joints throughout the body. Active gout is most often associated with painful synovitis causing searing joint pains, but gout can also produce large masses of space-occupying deposits called tophi. Tophi are most frequently seen in juxta-articular locations with or without bony erosion and are often misdiagnosed as degenerative joint disease. Soft tissue deposits and tendon involvement are also known manifestations of gout, but can present with indeterminate and alarming findings on imaging. We present three cases of tophaceous gout mimicking aggressive neoplasms in the extensor mechanism of the knee. All cases presented as extensor tendon masses eroding into the patella, with imaging findings initially concerning for primary musculoskeletal malignancy.

  18. Posture variation among office workers when using different information and communication technologies at work and away from work.

    PubMed

    Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare

    2014-01-01

    Office workers perform tasks using different information and communication technologies (ICT) involving various postures. Adequate variation in postures and muscle activity is generally believed to protect against musculoskeletal complaints, but insufficient information exists regarding the effect on postural variation of using different ICT. Thus, this study among office workers aimed to determine and compare postures and postural variation associated with using distinct types of ICT. Upper arm, head and trunk postures of 24 office workers were measured with the Physiometer over a whole day in their natural work and away-from-work environments. Postural variation was quantified using two indices: APDF(90-10) and EVA(sd). Various ICT had different postural means and variation. Paper-based tasks had more non-neutral, yet also more variable postures. Electronics-based tasks had more neutral postures, with less postural variability. Tasks simultaneously using paper- and electronics-based ICT had least neutral and least variable postures. Tasks without ICT usually had the most posture variability. Interspersing tasks involving different ICT could increase overall exposure variation among office workers and may thus contribute to musculoskeletal risk reduction.

  19. Kinematics of the human mandible for different head postures.

    PubMed

    Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M

    2000-04-01

    The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.

  20. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior

    PubMed Central

    Fonseca, Cíntia Detsch; Cardoso dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-01-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322

  1. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior.

    PubMed

    Fonseca, Cíntia Detsch; Cardoso Dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-09-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine.

  2. Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity

    PubMed Central

    Moal, Bertrand; Bronsard, Nicolas; Raya, José G; Vital, Jean Marc; Schwab, Frank; Skalli, Wafa; Lafage, Virginie

    2015-01-01

    AIM: To investigate fat infiltration and volume of spino-pelvic muscles in adults spinal deformity (ASD) with magnetic resonance imaging (MRI) and 3D reconstructions. METHODS: Nineteen female ASD patients (mean age 60 ± 13) were included prospectively and consecutively and had T1-weighted Turbo Spin Echo sequence MRIs with Dixon method from the proximal tibia up to T12 vertebra. The Dixon method permitted to evaluate the proportion of fat inside each muscle (fat-water ratio). In order to investigate the accuracy of the Dixon method for estimating fat vs water, the same MRI acquisition was performed on phantoms of four vials composed of different proportion of fat vs water. With Muscl’X software, 3D reconstructions of 17 muscles or group of muscles were obtained identifying the muscle’s contour on a limited number of axial images [Deformation of parametric specific objects (DPSO) Method]. Musclar volume (Vmuscle), infiltrated fat volume (Vfat) and percentage of fat infiltration [Pfat, calculated as follow: Pfat = 100 × (Vfat/Vmuscle)] were characterized by extensor or flexor function respectively for the spine, hip and knee and theirs relationship with demographic data were investigated. RESULTS: Phantom acquisition demonstrated a non linear relation between Dixon fat-water ratio and the real fat-water ratio. In order to correct the Dixon fat-water ratio, the non linear relation was approximated with a polynomial function of degree three using the phantom acquisition. On average, Pfat was 13.3% ± 5.3%. Muscles from the spinal extensor group had a Pfat significantly greater than the other muscles groups, and the largest variability (Pfat = 31.9% ± 13.8%, P < 0.001). Muscles from the hip extensor group ranked 2nd in terms of Pfat (14% ± 8%), and were significantly greater than those of the knee extensor (P = 0.030). Muscles from the knee extensor group demonstrated the least Pfat (12% ± 8%). They were also the only group with a significant correlation between Vmuscle and Pfat (r = -0.741, P < 0.001), however this correlation was lacking in the other groups. No correlation was found between the Vmuscle total and age or body mass index. Except for the spine flexors, Pfat was correlated with age. Vmuscle and Vfat distributions demonstrated that muscular degeneration impacted the spinal extensors most. CONCLUSION: Mechanisms of fat infiltration are not similar among the muscle groups. Degeneration impacted the spinal and hip extensors most, key muscles of the sagittal alignment. PMID:26495250

  3. [Influence of spinal orthosis on gait and physical functioning in women with postmenopausal osteoporosis].

    PubMed

    Schmidt, K; Hübscher, M; Vogt, L; Klinkmüller, U; Hildebrandt, H D; Fink, M; Banzer, W

    2012-03-01

    Osteoporosis is a widespread chronic bone disease leading to an increased risk of bone fractures. The most common clinical consequences are back pain, hyperkyphosis, limitations of physical functioning and activities of daily living as well as reduced quality of life. Furthermore, osteoporosis is associated with decreased strength and deficits of gait and balance, all together resulting in an increased risk of falls and a subsequent aggravation of fracture risk. Besides pharmaceutical and exercise therapy, back orthoses are increasingly being used in the therapy of osteoporosis and rehabilitation after vertebral fractures. Previous studies have shown that wearing a spinal orthosis results in a reduction of pain as well as improvements of posture and back extensor strength. To date there is no study that has evaluated the effects of a spinal orthosis on gait stability and physical functioning in patients with osteoporosis. Therefore the purpose of the present study was to assess the effects of a spinal orthosis on gait and pain-induced limitations of activities of daily living (ADL) in women with osteoporosis. A total of 69 postmenopausal osteoporotic women with and without vertebral fractures were randomly assigned to receive either a spinal orthosis (Thämert Osteo-med intervention group n=35; average age 74 ± 8.3 years, height 158.3 ± 6.3 cm, weight 62.8 ± 9.6 kg, t-score -2.6  ± 1.0, number of vertebral fractures 1.4 ± 2.0) or to a waiting list control group (n= 34, age 74.1 ± 7.7 years, height 159.6 ± 5.9 cm, weight 65.4 ± 11.3 kg, t-score -2.9± 0.8, number of vertebral fractures: 0.9 ± 1.2). The following outcome measures were collected at baseline and at 3 and 6 months follow-up: gait parameters including gait analysis: velocity, stride length and width, double support time (% of gait cycle) and perceived limitations in activities of daily living (numeric rating scale 1-10; 1=best, 10= worst situation). The ANCOVA indicated a significant reduction of the double support time at 6 months in the intervention group (p < 0.05) without a significant influence of the covariate vertebral fractures status. The other parameters remained unchanged (p > 0 .05). Regarding the pain-related ADL limitations there were significant differences in the amount of change over the study period depending on the baseline value. Stratified into terciles (≤ 2.5; 2.6-5.0; >5) patients with initially high values showed a significantly greater reduction in perceived ADL restrictions compared to patients in the lowest tercile (-2.7 ± 2.7 versus 1.5 ± 2.1). The study demonstrated that wearing a spinal orthosis introduced a reduction in double support time associated with a beneficial impact on gait stability. Furthermore, there was a positive effect on pain-related restrictions of ADL evident in women with a high level of limitations at baseline. Besides previously shown reductions in pain, improvements in back extensor strength and correction of posture, the application of a spinal orthosis may induce advantages for gait stability and physical functioning in women with postmenopausal osteoporosis. Future studies should consider a longer follow-up to evaluate possible effects on the risk of falling and fractures.

  4. Extensor tendon injury during cesarean delivery.

    PubMed

    Rinker, Brian

    2011-01-01

    Fetal laceration is a recognized complication of cesarean delivery; however, major injuries are rare. The case of a healthy newborn who sustained an injury to the extensor pollicis longus tendon during cesarean delivery is reported. The tendon was repaired surgically on the sixth day of life with good recovery of function. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Recovery Kinetics of Knee Flexor and Extensor Strength after a Football Match

    PubMed Central

    Draganidis, Dimitrios; Chatzinikolaou, Athanasios; Avloniti, Alexandra; Barbero-Álvarez, José C.; Mohr, Magni; Malliou, Paraskevi; Gourgoulis, Vassilios; Deli, Chariklia K.; Douroudos, Ioannis I.; Margonis, Konstantinos; Gioftsidou, Asimenia; Fouris, Andreas D.; Jamurtas, Athanasios Z.; Koutedakis, Yiannis; Fatouros, Ioannis G.

    2015-01-01

    We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level. PMID:26043222

  6. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women.

    PubMed

    Francis, Peter; Toomey, Clodagh; Mc Cormack, William; Lyons, Mark; Jakeman, Philip

    2017-07-01

    Muscle quality is defined as strength per unit muscle mass. The aim of this study was to measure the maximal voluntary isometric torque of the knee extensor and flexor muscle groups in healthy older women and to develop an index of muscle quality based on the combined knee extensor and flexor torque per unit lean tissue mass (LTM) of the upper leg. One hundred and thirty-six healthy 50- to 70-year-old women completed an initial measurement of isometric peak torque of the knee extensors and flexors (Con-Trex MJ; CMV AG, Dubendorf, Switzerland) that was repeated 7 days later. Subsequently, 131 women returned for whole- and regional-body composition analysis (iDXA ™ ; GE Healthcare, Chalfont St Giles, Buckinghamshire, UK). Isometric peak torque demonstrated excellent within-assessment reliability for both the knee extensors and flexors (ICC range: 0·991-1·000). Test-retest reliability was lower (ICC range: 0·777-0·828) with an observed mean increase of 5% in peak torque [6·2 (17·2) N m] on the second day of assessment (P<0·001). The relative mean decrease in combined isometric peak torque (-12·2%; P = 0·001) was double that of the relative, non-significant, median difference in upper leg LTM (-5·3%; P = 0·102) between those in the 5th and 6th decade. The majority of difference in peak isometric torque came from the knee extensors (15·1 N m, P<0·001 versus 2·4 N m, P = 0·234). Isometric peak torque normalized for upper leg LTM (muscle quality) was 8% lower between decades (P = 0·029). These findings suggest strength per unit tissue may provide a better indication of age-related differences in muscle quality prior to change in LTM. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Clinical, Radiologic, and Legal Significance of "Extensor Response" in Posttraumatic Coma.

    PubMed

    Firsching, Raimund; Woischneck, Dieter; Langejürgen, Alexander; Parreidt, Andreas; Bondar, Imre; Skalej, Martin; Röhl, Friedrich; Voellger, Benjamin

    2015-11-01

    The timely detection of neurologic deterioration can be critical for the survival of a neurosurgical patient following head injury. Because little reliable evidence is available on the prognostic value of the clinical sign "extensor response" in comatose posttraumatic patients, we investigated the correlation of this clinical sign with outcome and with early radiologic findings from magnetic resonance imaging (MRI). This retrospective analysis of prospectively obtained data included 157 patients who had remained in a coma for a minimum of 24 hours after traumatic brain injury. All patients received a 1.5-T MRI within 10 days (median: 2 days) of the injury. The correlations between clinical findings 12 and 24 hours after the injury-in particular, extensor response and pupillary function, MRI findings, and outcome after 1 year-were investigated. Statistical analysis included contingency tables, Fisher exact test, odds ratios (ORs) with confidence intervals (CIs), and weighted κ values. There were 48 patients with extensor response within the first 24 hours after the injury. Patients with extensor response (World Federation of Neurosurgical Societies coma grade III) statistically were significantly more likely to harbor MRI lesions in the brainstem when compared with patients in a coma who had no further deficiencies (coma grade I; p = 0.0004 by Fisher exact test, OR 10.8 with 95% CI, 2.7-42.5) and patients with unilateral loss of pupil function (coma grade II; p = 0.0187, OR 2.8 with 95% CI, 1.2-6.5). The correlation of brainstem lesions as found by MRI and outcome according to the Glasgow Outcome Scale after 1 year was also highly significant (p ≤ 0.016). The correlation of extensor response and loss of pupil function with an unfavorable outcome and with brainstem lesions revealed by MRI is highly significant. Their sudden onset may be associated with the sudden onset of brainstem dysfunction and should therefore be regarded as one of the most fundamental warning signs in the clinical monitoring of comatose patients. Georg Thieme Verlag KG Stuttgart · New York.

  8. Testing postural control among various osteoporotic patient groups: a literature review.

    PubMed

    de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C

    2012-10-01

    Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.

  9. Work-Related Pain in Extrinsic Finger Extensor Musculature of Instrumentalists Is Associated with Intracellular pH Compartmentation during Exercise

    PubMed Central

    Moreno-Torres, Angel; Rosset-Llobet, Jaume; Pujol, Jesus; Fàbregas, Sílvia; Gonzalez-de-Suso, Jose-Manuel

    2010-01-01

    Background Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. Methodology/Principal Findings We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. Conclusions/Significance Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself. PMID:20161738

  10. Activation amplitude and temporal synchrony among back extensor and abdominal muscles during a controlled transfer task: comparison of men and women.

    PubMed

    Hubley-Kozey, Cheryl L; Butler, Heather L; Kozey, John W

    2012-08-01

    Muscle synergies are important for spinal stability, but few studies examine temporal responses of spinal muscles to dynamic perturbations. This study examined activation amplitudes and temporal synergies among compartments of the back extensor and among abdominal wall muscles in response to dynamic bidirectional moments of force. We further examined whether responses were different between men and women. 19 women and 18 men performed a controlled transfer task. Surface electromyograms from bilateral sites over 6 back extensor compartments and 6 abdominal wall muscle sites were analyzed using principal component analysis. Key features were extracted from the measured electromyographic waveforms capturing amplitude and temporal variations among muscle sites. Three features explained 97% of the variance. Scores for each feature were computed for each measured waveform and analysis of variance found significant (p<.05) muscle main effects and a sex by muscle interaction. For the back extensors, post hoc analysis revealed that upper and more medial sites were recruited to higher amplitudes, medial sites responded to flexion moments, and the more lateral sites responded to lateral flexion moments. Women had more differences among muscle sites than men for the lateral flexion moment feature. For the abdominal wall muscles the oblique muscles responded with synergies related to fiber orientation, with women having higher amplitudes and more responsiveness to the lateral flexion moment than men. Synergies between the abdominal and back extensor sites as the moment demands change are discussed. These findings illustrate differential activation among erector spinae compartments and abdominal wall muscle sites supporting a highly organized pattern of response to bidirectional external moments with asynchronies more apparent in women. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Hip Strength in Patients with Quadriceps Strength Deficits after ACL Reconstruction.

    PubMed

    Bell, David R; Trigsted, Stephanie M; Post, Eric G; Walden, Courtney E

    2016-10-01

    Quadriceps strength deficits persist for years after anterior cruciate ligament (ACL) reconstruction, and patients with these deficits often shift torque demands away from the knee extensors to the hip during functional tasks. However, it is not clear how quadriceps strength deficits may affect hip strength. Therefore, the purpose of this study was to investigate differences in lower extremity strength in individuals with ACL reconstruction with differing levels of quadriceps strength asymmetry. Isometric strength was recorded bilaterally in 135 participants (73 control and 62 with unilateral ACL reconstruction, time from surgery = 30.9 ± 17.6 months) from the knee extensors and flexors, hip extensors and abductors, and hip internal and external rotator muscle groups. Symmetry indices (limb symmetry index (LSI)) were created based on quadriceps strength, and subjects with ACL reconstruction were subdivided (high quadriceps (LSI ≥ 90%), n = 37; low quadriceps (LSI < 85%), n = 18). Individual group (control vs high quadriceps vs low quadriceps) by limb (reconstructed/nondominant vs healthy/dominant) repeated-measures ANOVA was used to compare strength (%BW) for each of the six joint motions of interest (knee extensors/flexors, hip abductors/extensors/external, and internal rotators) while controlling for time from surgery. An interaction was observed for quadriceps strength (P < 0.001), and the reconstructed limb in the low quadriceps group was weaker than all other limbs. A main effect for group was observed with the low quadriceps group having greater hip extension (P = 0.007) strength in both limbs compared with the other groups. Knee flexion strength was weaker in the reconstructed limb of the high quadriceps group (P = 0.047) compared with all other groups and limbs. Individuals with ACL reconstruction and involved limb quadriceps weakness have greater hip extension strength in both limbs compared with patients with bilateral strength symmetry and controls.

  12. High-intensity aerobic interval training can lead to improvement in skeletal muscle power among in-hospital patients with advanced heart failure.

    PubMed

    Taya, Masanobu; Amiya, Eisuke; Hatano, Masaru; Maki, Hisataka; Nitta, Daisuke; Saito, Akihito; Tsuji, Masaki; Hosoya, Yumiko; Minatsuki, Shun; Nakayama, Atsuko; Fujiwara, Takayuki; Konishi, Yuto; Yokota, Kazuhiko; Watanabe, Masafumi; Morita, Hiroyuki; Haga, Nobuhiko; Komuro, Issei

    2018-01-15

    This study investigated the effectiveness and safety of interval training during in-hospital treatment of patients with advanced heart failure. Twenty-four consecutive patients with advanced symptomatic heart failure who were referred for cardiac transplant evaluation were recruited. After performing aerobic exercise for approximate intensity, high-intensity interval training (HIIT) was performed. The protocol consisted of 3 or 4 sessions of 1-min high-intensity exercise aimed at 80% of peak VO 2 or 80% heart rate reserve, followed by 4-min recovery periods of low intensity. In addition to the necessary laboratory data, hand grip strength and knee extensor strength were evaluated at the start of exercise training and both at the start and the end of HIIT. Knee extensor strength was standardized by body weight. The BNP level at the start of exercise training was 432 (812) pg/mL and it significantly decreased to 254 (400) pg/mL (p < 0.001) at the end of HIIT. Hand grip strength did not change during course. By contrast, knee extensor strength significantly increased during HIIT [4.42 ± 1.43 → 5.28 ± 1.45 N/kg, p < 0.001], whereas the improvement of knee extensor strength was not significant from the start of exercise training to the start of HIIT. In addition, the change in knee extensor strength during HIIT was significantly associated with the hemoglobin A1c level at the start of exercise (R = - 0.55; p = 0.015). HIIT has a positive impact on skeletal muscle strength among in-hospital patients with advanced heart failure.

  13. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord

    PubMed Central

    2016-01-01

    Abstract We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral flexor/extensor coupling was stronger than both the contralateral flexor/extensor and the bilateral extensor coupling. For both types of stimulation, the coupling was greatest between the bilateral L1/L2 flexor-dominated roots. This indicates that the recruitment and/or the firing pattern of motoneurons differed in DR and VR-evoked episodes. However, the DR and VR trains do not appear to activate distinct CPGs because trains of DR and VR stimuli at frequencies too low to evoke locomotor-like activity did so when they were interleaved. These results indicate that the excitatory actions of VR stimulation converge onto the CPG through an unknown pathway that is not captured by current models of the locomotor CPG. PMID:27419215

  14. Bilateral movements increase sustained extensor force in the paretic arm.

    PubMed

    Kang, Nyeonju; Cauraugh, James H

    2018-04-01

    Muscle weakness in the extensors poststroke is a common motor impairment. Unfortunately, research is unclear on whether bilateral movements increase extensor force production in the paretic arm. This study investigated sustained force production while stroke individuals maximally extended their wrist and fingers on their paretic arm. Specifically, we determined isometric force production in three conditions: (a) unilateral paretic arm, (b) unilateral nonparetic arm, and (c) bilateral (both arms executing the same movement simultaneously). Seventeen chronic stroke patients produced isometric sustained force by executing wrist and fingers extension in unilateral and bilateral contraction conditions. Mean force, force variability (coefficient of variation), and signal-to-noise ratio were calculated for each contraction condition. Analysis of two-way (Arm × Type of Condition: 2 × 2; Paretic or Nonparetic Arm × Unilateral or Bilateral Conditions) within-subjects ANOVAs revealed that the bilateral condition increased sustained force in the paretic arm, but reduced sustained force in the nonparetic arm. Further, although the paretic arm exhibited more force variability and less signal-to-noise ratio than the nonparetic arm during a unilateral condition, there were no differences when participants simultaneously executed isometric contractions with both arms. Our unique findings indicate that bilateral contractions transiently increased extensor force in the paretic arm. Implications for Rehabilitation Bilateral movements increased isometric wrsit extensor force in paretic arms and redcued force in nonparetic arms versus unilateral movements. Both paretic and nonparetic arms produced similar force variability and signal-to-noise ratio during bilateral movements. Increased sustained force in the paretic arm during the bilateral condition indicates that rehabilitation protocols based on bilateral movements may be beneficial for functional recovery.

  15. Superior Effects of Eccentric to Concentric Knee Extensor Resistance Training on Physical Fitness, Insulin Sensitivity and Lipid Profiles of Elderly Men

    PubMed Central

    Chen, Trevor Chung-Ching; Tseng, Wei-Chin; Huang, Guan-Ling; Chen, Hsin-Lian; Tseng, Kuo-Wei; Nosaka, Kazunori

    2017-01-01

    It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60–76 years) were assigned to either eccentric training or concentric training group (n = 13/group), and performed 30–60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin showed improvement of insulin sensitivity only after eccentric training (P ≤ 0.05). Greater (P ≤ 0.05) decreases in fasting triacylglycerols, total, and low-density lipoprotein cholesterols were evident after eccentric training than concentric training, and high-density lipoprotein cholesterols increased only after eccentric training. These results support the hypothesis and suggest that it is better to focus on eccentric contractions in exercise medicine. PMID:28443029

  16. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  17. The role of muscle strengthening in exercise therapy for knee osteoarthritis: A systematic review and meta-regression analysis of randomized trials.

    PubMed

    Bartholdy, Cecilie; Juhl, Carsten; Christensen, Robin; Lund, Hans; Zhang, Weiya; Henriksen, Marius

    2017-08-01

    To analyze if exercise interventions for patients with knee osteoarthritis (OA) following the American College of Sports Medicine (ACSM) definition of muscle strength training differs from other types of exercise, and to analyze associations between changes in muscle strength, pain, and disability. A systematic search in 5 electronic databases was performed to identify randomized controlled trials comparing exercise interventions with no intervention in knee OA, and reporting changes in muscle strength and in pain or disability assessed as standardized mean differences (SMD) with 95% confidence intervals (95% CI). Interventions were categorized as ACSM interventions or not-ACSM interventions and compared using stratified random effects meta-analysis models. Associations between knee extensor strength gain and changes in pain/disability were assessed using meta-regression analyses. The 45 eligible trials with 4699 participants and 56 comparisons (22 ACSM interventions) were included in this analysis. A statistically significant difference favoring the ACSM interventions with respect to knee extensor strength was found [SMD difference: 0.448 (95% CI: 0.091-0.805)]. No differences were observed regarding effects on pain and disability. The meta-regressions indicated that increases in knee extensor strength of 30-40% would be necessary for a likely concomitant beneficial effect on pain and disability, respectively. Exercise interventions following the ACSM criteria for strength training provide superior outcomes in knee extensor strength but not in pain or disability. An increase of less than 30% in knee extensor strength is not likely to be clinically beneficial in terms of changes in pain and disability (PROSPERO: CRD42014015344). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sex Comparison of Knee Extensor Size, Strength and Fatigue Adaptation to Sprint Interval Training.

    PubMed

    Bagley, Liam; Al-Shanti, Nasser; Bradburn, Steven; Baig, Osamah; Slevin, Mark; McPhee, Jamie S

    2018-03-12

    Regular sprint interval training (SIT) improves whole-body aerobic capacity and muscle oxidative potential, but very little is known about knee extensor anabolic or fatigue resistance adaptations, or whether effects are similar for males and females. The purpose of this study was to compare sex-related differences in knee extensor size, torque-velocity relationship and fatigability adaptations to 12 weeks SIT. Sixteen males and fifteen females (mean (SEM) age: 41 (±2.5) yrs) completed measurements of total body composition assessed by DXA, quadriceps muscle cross-sectional area (CSAQ) assessed by MRI, the knee extensor torque-velocity relationship (covering 0 - 240°·sec) and fatigue resistance, which was measured as the decline in torque from the first to the last of 60 repeated concentric knee extensions performed at 180°·sec. SIT consisted of 4 x 20 second sprints on a cycle ergometer set at an initial power output of 175% of power at VO2max, three times per week for 12 weeks. CSAQ increased by 5% (p=0.023) and fatigue resistance improved 4.8% (p=0.048), with no sex differences in these adaptations (sex comparisons: p=0.140 and p=0.282, respectively). Knee extensor isometric and concentric torque was unaffected by SIT in both males and females (p>0.05 for all velocities). 12 weeks SIT, totalling 4 minutes very intense cycling per week, significantly increased fatigue resistance and CSAQ similarly in males and females, but did not significantly increase torque in males or females. These results suggest that SIT is a time-effective training modality for males and females to increase leg muscle size and fatigue resistance.

  19. Contributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathy.

    PubMed

    Handsaker, Joseph C; Brown, Steven J; Bowling, Frank L; Cooper, Glen; Maganaris, Constantinos N; Boulton, Andrew J M; Reeves, Neil D

    2014-11-01

    Although patients with diabetic peripheral neuropathy (DPN) are more likely to fall than age-matched controls, the underlying causative factors are not yet fully understood. This study examines the effects of diabetes and neuropathy on strength generation and muscle activation patterns during walking up and down stairs, with implications for fall risk. Sixty-three participants (21 patients with DPN, 21 diabetic controls, and 21 healthy controls) were examined while walking up and down a custom-built staircase. The speed of strength generation at the ankle and knee and muscle activation patterns of the ankle and knee extensor muscles were analyzed. Patients with neuropathy displayed significantly slower ankle and knee strength generation than healthy controls during stair ascent and descent (P < 0.05). During ascent, the ankle and knee extensor muscles were activated significantly later by patients with neuropathy and took longer to reach peak activation (P < 0.05). During descent, neuropathic patients activated the ankle extensors significantly earlier, and the ankle and knee extensors took significantly longer to reach peak activation (P < 0.05). Patients with DPN are slower at generating strength at the ankle and knee than control participants during walking up and down stairs. These changes, which are likely caused by altered activations of the extensor muscles, increase the likelihood of instability and may be important contributory factors for the increased risk of falling. Resistance exercise training may be a potential clinical intervention for improving these aspects and thereby potentially reducing fall risk. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    PubMed

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  2. A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.

    PubMed

    Elyasi, Nahid; Taheri, Kimia Karimi; Narooei, Keivan; Taheri, Ali Karimi

    2017-06-01

    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney-Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney-Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the Ogden order 1 represents a stable behavior, although the fitting of experimental data and theoretical model was not satisfactory. However, the Ogden order 6 model was unstable in the simple tension mode and the Ogden order 5 and general exponential models presented accurate and stable results. In order to reduce the material parameters, the invariants model with four material parameters was investigated and this model presented the minimum error and stable behavior in all deformation modes. The ABAQUS Explicit solver was coupled with the VUMAT subroutine code of the invariants model to simulate the mechanical behavior of the central and terminal slips of the extensor apparatus during the passive finger flexion, which is important in the prediction of boutonniere deformity and chronic mallet finger injuries, respectively. Also, to evaluate the adequacy of constitutive models in simulations, the results of the Ogden order 5 were presented. The difference between the predictions was attributed to the better fittings of the invariants model compared with the Ogden model.

  3. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    PubMed

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Voluntarily controlled but not merely observed visual feedback affects postural sway

    PubMed Central

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  5. Development of low postural tone compensatory patterns in children - theoretical basis.

    PubMed

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.

  6. Analysis of Muscle Force-Velocity Parameter Changes in Elderly Women Resulting from Physical Activity--In Continuous Examinations

    ERIC Educational Resources Information Center

    Skrzek, Anna; Stefanska, Malgorzata

    2012-01-01

    The aim of the paper was to evaluate changes in muscle force-velocity parameters (F-v) in elderly women subjected to physical exercise. The examinations encompassed 20 women, aged 62-71, who were students at the University of the Third Age in Wroclaw. The evaluation of flexors and extensors of the knee joint, as well as flexors and extensors of…

  7. Sit-to-Stand Movement in Children with Hemiplegic Cerebral Palsy: Relationship with Knee Extensor Torque and Social Participation

    ERIC Educational Resources Information Center

    dos Santos, Adriana Neves; Pavao, Silvia Leticia; Santiago, Paulo Roberto Pereira; Salvini, Tania de Fatima; Rocha, Nelci Adriana Cicuto Ferreira

    2013-01-01

    This study aimed to investigate the relationship between sit-to-stand (STS) movement, knee extensor torque and social participation in children with cerebral palsy (CP). Seven spastic hemiplegic CP patients (8.0 plus or minus 2.2 years), classified by the Gross Motor Function Classification System as I and II, and 18 typical children (8.4 plus or…

  8. Risk factors and clinical features of text message injuries.

    PubMed

    Sharan, Deepak; Ajeesh, P S

    2012-01-01

    Use of mobile phone and sending text message is a very common in today's life. While sending a text message the users need to use their thumb and other palm muscles extensively. The thumb most of the time adducted on the key pad of the mobile and use high force to type the letters. Studies in literature showed that text messaging has an adverse effect on musculoskeletal system of hand. But the extensive study on the type of disorders set in among the users who extensively use mobile phone for texting. This study aims at to evaluate risk factor and clinical feature of the MSD due to hand held devices. Twenty seven subjects participated in this study. Predefined protocols were used to evaluate type of MSD occurred among the subjects. The study revealed that development of tendinitis in extensor pollicis longus, myofascial pain syndrome (70.37%) of adductor pollicis, 1st interossei and extensor digitorum communis . Other associated problems diagnosed were thoracic outlet syndrome (51.85%), fibromyalgia syndrome (25.93%), hypothyroidism (7.41%), wrist tendinitis (14.81%) and De Quervain's syndrome (7.41%). It has been observed that the pathology were tendinitis of extensor pollicis longus, myofascial pain syndrome of thenar muscles and 1st interossei, extensor digitorum communis.

  9. Elbow flexor fatigue modulates central excitability of the knee extensors.

    PubMed

    Aboodarda, Saied Jalal; Copithorne, David B; Power, Kevin E; Drinkwater, Eric; Behm, David G

    2015-09-01

    The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax(-1) ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

  10. Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors

    PubMed Central

    Ye, Xin; Beck, Travis W.; Wages, Nathan P.; Carr, Joshua C.

    2018-01-01

    Objectives: To examine non-local muscle fatigue (NLMF) in both contralateral homologous and non-related heterogonous muscles for both sexes. Methods: Ten men and nine women participated in this study. After the familiarization visit, subjects completed four separate randomly sequenced experimental visits, during which the fatiguing interventions (six sets of 30-second maximal isometric contractions) were performed on either their right elbow flexors or knee extensors. Before (Pre-) and after (Post-) the fatiguing interventions, the isometric strength and the corresponding surface electromyographic (EMG) amplitude were measured for the non-exercised left elbow flexors or knee extensors. Results: For the non-exercised elbow flexors, the isometric strength decreased for both sexes (sex combined mean±SE: Pre vs. Post=339.67±18.02 N vs. 314.41±16.37 N; p<0.001). For the non-exercised knee extensors, there is a time ´ sex interaction (p=0.025), showing a decreased isometric knee extension strength for men (Pre vs. Post =845.02±66.26 N vs. 817.39±67.64 N; p=0.019), but not for women. Conclusions: The presence of NMLF can be affected by factors such as sex and muscle being tested. Women are less likely to demonstrate NLMF in lower body muscle groups. PMID:29504584

  11. Richly innervated soft tissues covering the superficial aspect of the extensor origin in patients with chronic painful tennis elbow - Implication for treatment?

    PubMed

    Spang, C; Alfredson, H

    2017-06-01

    Tennis elbow is difficult to treat. The results of surgical treatments are not convincing. Treatment studies on Achilles and patellar tendinopathy targeting the richly innervated and vascularized soft tissues outside the tendon have shown promising outcomes. The innervation patterns in the fibrous/fatty tissues superficially to the elbow extensor origin have not been clarified. Nine tissue specimens from the fibrous/fatty tissue covering the extensor origin was taken from seven patients (mean age: 45 years) undergoing surgical treatment for chronic painful tennis elbow. The specimens were stained for morphology (haematoxylin and eosin, H and E) and immunohistochemically for general nerve marker protein gene product 9.5 (PGP 9.5) and markers for sympathetic (tyrosine hydroxylase, TH) and sensory nerve fibres (calcitonin gene-related peptide, CGRP). All specimens contained multiple blood vessels and nerve structures indicated by morphology and immunoreactions. There was a frequent occurrence of TH reactions, especially peri-vascularly, but also in nerve fascicles. Immunoreactions for CGRP were seen in nerve fascicles and isolated nerve fibres. The results provide new information on the innervation patterns of the superficial tissues of the extensor origin and their potential as source of tennis elbow pain. IV.

  12. Richly innervated soft tissues covering the superficial aspect of the extensor origin in patients with chronic painful tennis elbow – Implication for treatment?

    PubMed Central

    Spang, C.; Alfredson, H.

    2017-01-01

    Background: Tennis elbow is difficult to treat. The results of surgical treatments are not convincing. Treatment studies on Achilles and patellar tendinopathy targeting the richly innervated and vascularized soft tissues outside the tendon have shown promising outcomes. The innervation patterns in the fibrous/fatty tissues superficially to the elbow extensor origin have not been clarified. Methods: Nine tissue specimens from the fibrous/fatty tissue covering the extensor origin was taken from seven patients (mean age: 45 years) undergoing surgical treatment for chronic painful tennis elbow. The specimens were stained for morphology (haematoxylin & eosin, H&E) and immunohistochemically for general nerve marker protein gene product 9.5 (PGP 9.5) and markers for sympathetic (tyrosine hydroxylase, TH) and sensory nerve fibres (calcitonin gene-related peptide, CGRP). Results: All specimens contained multiple blood vessels and nerve structures indicated by morphology and immunoreactions. There was a frequent occurrence of TH reactions, especially peri-vascularly, but also in nerve fascicles. Immunoreactions for CGRP were seen in nerve fascicles and isolated nerve fibres. Conclusion: The results provide new information on the innervation patterns of the superficial tissues of the extensor origin and their potential as source of tennis elbow pain. Level of Evidence: IV. PMID:28574416

  13. Effects of 17-day spaceflight on knee extensor muscle function and size

    NASA Technical Reports Server (NTRS)

    Tesch, Per A.; Berg, Hans E.; Bring, Daniel; Evans, Harlan J.; LeBlanc, Adrian D.

    2005-01-01

    It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean approximately 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78). Knee extensor muscle function was measured during maximal bilateral voluntary isometric and iso-inertial concentric, and eccentric actions. Cross-sectional area (CSA) of the knee extensor and flexor, and gluteal muscle groups was assessed by means of magnetic resonance imaging. The decrease in strength (P<0.05) across different muscle actions after spaceflight amounted to 10%. Eight ambulatory men, examined on two occasions 20 days apart, showed unchanged (P>0.05) muscle strength. CSA of the knee extensor and gluteal muscles, each decreased (P<0.05) by 8%. Knee flexor muscle CSA showed no significant (P>0.05) change. The magnitude of these changes concord with earlier results from ground-based studies of similar duration. The results of this study, however, do contrast with the findings of no decrease in maximal voluntary ankle plantar flexor force previously reported in the same crew.

  14. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    PubMed

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.

    PubMed

    Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn

    2017-08-01

    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hip and knee extensor moments predict vertical jump height in adolescent girls.

    PubMed

    Ford, Kevin R; Myer, Gregory D; Brent, Jensen L; Hewett, Timothy E

    2009-07-01

    Biomechanical factors, such as hip and knee extensor moments, related to drop jump (DJ) performance have not been investigated in adolescent girls. The purpose of this study was to determine the key independent biomechanical variables that predict overall vertical jump performance in adolescent girls. Sixteen high school adolescent girls from club-sponsored and high school-sponsored volleyball teams performed DJ at 3 different drop heights (15, 30, and 45 cm). A motion analysis system consisting of 10 digital cameras and a force platform was used to calculate vertical jump height, joint angles, and joint moments during the tasks. A multiple linear regression was used to determine the biomechanical parameters that were best predictive of vertical jump height at each box drop distance. The 2 predictor variables in all 3 models were knee and hip extensor moments. The models predicted 82.9, 81.9, and 88% of the vertical jump height variance in the 15, 30, and 45 cm trials, respectively. The results of the investigation indicate that knee and hip joint moments are the main contributors to vertical jump height during the DJ in adolescent girls. Strength and conditioning specialists attempting to improve vertical jump performance should target power and strength training to the hip and knee extensors in their athletes.

  17. Neuromuscular plasticity in the locust after permanent removal of an excitatory motoneuron of the extensor tibiae muscle.

    PubMed

    Büschges, A; Djokaj, S; Bässler, D; Bässler, U; Rathmayer, W

    2000-01-01

    The capacity of the larval insect nervous system to compensate for the permanent loss of one of the two excitatory motoneurons innervating a leg muscle was investigated in the locust (Locusta migratoria). In the fourth instar, the fast extensor tibiae (FETi) motoneuron in the mesothoracic ganglion was permanently removed by photoinactivation with a helium-cadmium laser. Subsequently, the animals were allowed to develop into adulthood. When experimental animals were tested as adults after final ecdysis, fast-contracting fibers in the most proximal region of the corresponding extensor muscle, which are normally predominantly innervated by FETi only, uniformly responded to activity of the slow extensor tibiae (SETi) neuron. In adult operated animals, single pulses to SETi elicited large junctional responses in the fibers which resulted in twitch contractions of these fibers similar to the responses to FETi activity in control animals. The total number of muscle fibers, their properties as histochemically determined contractional types (fast and slow), and their distribution were not affected by photoinactivation of FETi. Possible mechanisms enabling the larval neuromuscular system to compensate for the loss of FETi through functionally similar innervation by a different motoneuron, i.e. SETi, are discussed. Copyright 2000 John Wiley & Sons, Inc.

  18. Feed artery role in blood flow control to rat hindlimb skeletal muscles.

    PubMed Central

    Williams, D A; Segal, S S

    1993-01-01

    1. Vasomotor tone and reactivity were investigated in feed arteries of the extensor digitorum longus and soleus muscles. Feed arteries are located external to the muscle and give rise to the microcirculation within each muscle. Resting diameter was smaller in feed arteries of the soleus muscle. 2. Feed arteries of both muscles dilated to similar peak values with sodium nitroprusside. 3. Micropressure measurements demonstrated resistance to blood flow in the feed arteries supplying both muscles. Feed arteries supplying soleus muscle demonstrated greater resistance to blood flow compared to feed arteries of extensor digitorum longus muscle. 4. Greater resting tone and larger pressure drop for feed arteries of soleus muscle suggest greater range of flow control compared to feed arteries of extensor digitorum longus muscle. 5. In both muscles, feed artery diameter increased with muscle contraction (functional dilatation) and in response to transient ischaemia (reactive dilatation). The magnitude of these responses varied between muscles. 6. Feed arteries are active sites of blood flow control in extensor digitorum longus and soleus muscles of the rat. These muscles differ in fibre type and recruitment properties. Differences in feed artery reactivity may contribute to differences in blood flow between these muscles observed at rest and during exercise. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8246199

  19. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    PubMed

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.

  20. Postural orientation and standing postural alignment in ambulant children with bilateral cerebral palsy.

    PubMed

    Domagalska-Szopa, Małgorzata; Szopa, Andrzej

    2017-11-01

    Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Perceived body discomfort and trunk muscle activity in three prolonged sitting postures

    PubMed Central

    Waongenngarm, Pooriput; Rajaratnam, Bala S.; Janwantanakul, Prawit

    2015-01-01

    [Purpose] This study aimed to investigate the perceived discomfort and trunk muscle activity in three different 1-hour sitting postures. [Subjects] A repeated-measures design study was conducted on 10 healthy subjects. [Methods] Each subject sat for an hour in three sitting postures (i.e., upright, slumped, and forward leaning sitting postures). Subjects rated perceived body discomfort using Borg’s CR-10 scale at the beginning and after 1 hour sitting. The electromyographic activity of the trunk muscle activity was recorded during the 1-hour period of sitting. [Results] The forward leaning sitting posture led to higher Borg scores in the low back than those in the upright (p = 0.002) and slumped sitting postures (p < 0.001). The forward leaning posture was significantly associated with increased iliocostalis lumborum pars thoracis (ICL) and superficial lumbar multifidus (MF) muscle activity compared with the upright and slumped sitting postures. The upright sitting posture was significantly associated with increased internal oblique (IO)/transversus abdominis (TrA) and ICL muscle activity compared with the slumped sitting posture. [Conclusion] The sitting posture with the highest low back discomfort after prolonged sitting was the forward leaning posture. Sitting in an upright posture is recommended because it increases IO/TrA muscle activation and induces only relatively moderate ICL and MF muscle activation. PMID:26311951

  2. A comparison of three observational techniques for assessing postural loads in industry.

    PubMed

    Kee, Dohyung; Karwowski, Waldemar

    2007-01-01

    This study aims to compare 3 observational techniques for assessing postural load, namely, OWAS, RULA, and REBA. The comparison was based on the evaluation results generated by the classification techniques using 301 working postures. All postures were sampled from the iron and steel, electronics, automotive, and chemical industries, and a general hospital. While only about 21% of the 301 postures were classified at the action category/level 3 or 4 by both OWAS and REBA, about 56% of the postures were classified into action level 3 or 4 by RULA. The inter-method reliability for postural load category between OWAS and RULA was just 29.2%, and the reliability between RULA and REBA was 48.2%. These results showed that compared to RULA, OWAS, and REBA generally underestimated postural loads for the analyzed postures, irrespective of industry, work type, and whether or not the body postures were in a balanced state.

  3. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?

    PubMed

    Horak, Fay B

    2006-09-01

    Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.

  4. Effect of posture on oxygenation and respiratory muscle strength in convalescent infants

    PubMed Central

    Dimitriou, G; Greenough, A; Pink, L; McGhee, A; Hickey, A; Rafferty, G

    2002-01-01

    Objective: To determine if differences in respiratory muscle strength could explain any posture related effects on oxygenation in convalescent neonates. Methods: Infants were examined in three postures: supine, supine with head up tilt of 45°, and prone. A subsequent study was performed to determine the influence of head position in the supine posture. In each posture/head position, oxygen saturation (SaO2) was determined and respiratory muscle strength assessed by measurement of the maximum inspiratory pressure (PIMAX). Patients: Twenty infants, median gestational age 34.5 weeks (range 25–43), and 10 infants, median gestational age 33 weeks (range 30–36), were entered into the first and second study respectively. Results: Oxygenation was higher in the prone and supine with 45° head up tilt postures than in the supine posture (p<0.001), whereas PIMAX was higher in the supine and supine with head up tilt of 45° postures than in the prone posture (p<0.001). Head position did not influence the effect of posture on PIMAX or oxygenation. Conclusion: Superior oxygenation in the prone posture in convalescent infants was not explained by greater respiratory muscle strength, as this was superior in the supine posture. PMID:11978742

  5. Thermoregulatory postures limit antipredator responses in peafowl

    PubMed Central

    Lam, Jennifer; Schultz, Rachel; Davis, Melissa

    2018-01-01

    ABSTRACT Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. PMID:29305466

  6. Thermoregulatory postures limit antipredator responses in peafowl.

    PubMed

    Yorzinski, Jessica L; Lam, Jennifer; Schultz, Rachel; Davis, Melissa

    2018-01-05

    Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl ( Pavo cristatus ) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. © 2018. Published by The Company of Biologists Ltd.

  7. Distinguishing thrust sequences in gravity-driven fold and thrust belts

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Weinberger, R.; Marco, S.

    2018-04-01

    Piggyback or foreland-propagating thrust sequences, where younger thrusts develop in the footwalls of existing thrusts, are generally assumed to be the typical order of thrust development in most orogenic settings. However, overstep or 'break-back' sequences, where later thrusts develop above and in the hangingwalls of earlier thrusts, may potentially form during cessation of movement in gravity-driven mass transport deposits (MTDs). In this study, we provide a detailed outcrop-based analysis of such an overstep thrust sequence developed in an MTD in the southern Dead Sea Basin. Evidence that may be used to discriminate overstep thrusting from piggyback thrust sequences within the gravity-driven fold and thrust belt includes upright folds and forethrusts that are cut by younger overlying thrusts. Backthrusts form ideal markers that are also clearly offset and cut by overlying younger forethrusts. Portions of the basal detachment to the thrust system are folded and locally imbricated in footwall synclines below forethrust ramps, and these geometries also support an overstep sequence. However, new 'short-cut' basal detachments develop below these synclines, indicating that movement continued on the basal detachment rather than it being abandoned as in classic overstep sequences. Further evidence for 'synchronous thrusting', where movement on more than one thrust occurs at the same time, is provided by displacement patterns on sequences of thrust ramp imbricates that systematically increases downslope towards the toe of the MTD. Older thrusts that initiate downslope in the broadly overstep sequence continue to move and therefore accrue greater displacements during synchronous thrusting. Our study provides a template to help distinguish different thrust sequences in both orogenic settings and gravity-driven surficial systems, with displacement patterns potentially being imaged in seismic sections across offshore MTDs.

  8. Body posture modulates action perception.

    PubMed

    Zimmermann, Marius; Toni, Ivan; de Lange, Floris P

    2013-04-03

    Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.

  9. Body Composition, Neuromuscular Performance, and Mobility: Comparison Between Regularly Exercising and Inactive Older Women.

    PubMed

    Rava, Anni; Pihlak, Anu; Ereline, Jaan; Gapeyeva, Helena; Kums, Tatjana; Purge, Priit; Jürimäe, Jaak; Pääsuke, Mati

    2017-01-01

    The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.

  10. Enthesopathy of the Extensor Carpi Radialis Brevis Origin: Effective Communication Strategies.

    PubMed

    Drake, Matthew L; Ring, David C

    2016-06-01

    Enthesopathy of the extensor carpi radialis brevis origin, generally known as tennis elbow, is a common condition arising in middle-aged persons. The diagnosis is typically clear based on the patient interview and physical examination alone; therefore, imaging and other diagnostic tests are usually unnecessary. The natural history of the disorder is spontaneous resolution, but it can last for >1 year. The patient's attitude and circumstances, including stress, distress, and ineffective coping strategies, determine the intensity of the pain and the magnitude of the disability. Despite the best efforts of medical science, no treatments, invasive or noninvasive, have been proven to alter the natural history of the condition. Given the lack of disease-modifying treatments for enthesopathy of the extensor carpi radialis brevis origin, orthopaedic surgeons can benefit from learning effective communication strategies to help convey accurate information that is hopeful and enabling.

  11. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  12. Relation between functional mobility and dynapenia in institutionalized frail elderly.

    PubMed

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.

  13. The influence of foot posture on dorsiflexion range of motion and postural control in those with chronic ankle instability.

    PubMed

    Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C

    2016-10-01

    To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of lower limb muscle fatigue induced by high-level isometric contractions on postural maintenance and postural adjustments associated with bilateral forward-reach task.

    PubMed

    Yiou, E; Heugas, A M; Mezaour, M; Le Bozec, S

    2009-01-01

    This study tested the effect of lower limb muscle fatigue induced by series of high-level isometric contractions (IC) on postural adjustments and maintenance of erect posture. Subjects (N=7) displaced a bar (grasp-bar) forward with both hands at maximal velocity towards a target ("bilateral forward-reach" task, BFR), before and after a procedure designed to induce fatigue in dorsal leg muscles. This procedure included IC at 60% of maximum. Postural joint and grasp-bar motion, along with electrical activity of postural and focal muscles were recorded. Integrated electromyographical (EMG) activity per 20 ms period ranging from 400 ms before BFR onset (t0) to 400 ms after t0 was compared before and after the fatiguing procedure. This time-window included "anticipatory", "on-line" and "corrective" postural adjustments, i.e. those postural adjustments occurring before (APAs), during (OPAs) and after (CPAs) BFR, respectively. In contrast to the literature, results showed that the fatiguing procedure had no effect on muscle excitation or timing in any of the recorded postural muscles, regardless of APA, OPA or CPA-related time-window. Therefore, the postural drive did not change with fatigue. Furthermore, the peak-to-peak motion at postural joints did not change. Postural maintenance was therefore not additionally challenged. These results are in line with the hypothesis that the effect of fatigue on postural adjustments is dependent on the adequacy between fatigued motor units (MUs) and MUs recruited during the postural adjustments. Increasing IC intensity during the fatiguing procedure might therefore not necessarily exacerbate the effect of fatigue on postural control highlighted during lower level IC.

  15. The reliability and validity of the Saliba Postural Classification System

    PubMed Central

    Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M.; Pappas, Evangelos

    2016-01-01

    Objectives To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Methods Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Results Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524–0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702–0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594–0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). Discussion The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated. PMID:27559288

  16. The reliability and validity of the Saliba Postural Classification System.

    PubMed

    Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M; Pappas, Evangelos

    2016-07-01

    To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524-0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702-0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594-0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated.

  17. Evaluation of various thrust calculation techniques on an F404 engine

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1990-01-01

    In support of performance testing of the X-29A aircraft at the NASA-Ames, various thrust calculation techniques were developed and evaluated for use on the F404-GE-400 engine. The engine was thrust calibrated at NASA-Lewis. Results from these tests were used to correct the manufacturer's in-flight thrust program to more accurately calculate thrust for the specific test engine. Data from these tests were also used to develop an independent, simplified thrust calculation technique for real-time thrust calculation. Comparisons were also made to thrust values predicted by the engine specification model. Results indicate uninstalled gross thrust accuracies on the order of 1 to 4 percent for the various in-flight thrust methods. The various thrust calculations are described and their usage, uncertainty, and measured accuracies are explained. In addition, the advantages of a real-time thrust algorithm for flight test use and the importance of an accurate thrust calculation to the aircraft performance analysis are described. Finally, actual data obtained from flight test are presented.

  18. Assessment of body posture in 12- and 13-year-olds attending primary schools in Pabianice.

    PubMed

    Motylewski, Sławomir; Zientala, Aleksandra; Pawlicka-Lisowska, Agnieszka; Poziomska-Piątkowska, Elżbieta

    2015-12-01

    of study was to estimate the body posture in children finishing primary schools. This is the last moment to make any improvement in body posture needed, because after the end of the child's growth the correction of postural defects is practically impossible. The study was conducted on 236 pupils aged 12-13 years attending primary schools number 3, 5 and 17 in Pabianice. To evaluate body posture Kasperczyk's points method was used. It is a commonly applied method for screening purposes. Over 50% of studied children had poor body posture and just under 6% of pupils' posture was assessed as very good. In the study population of children finishing primary schools the occurrence of faulty posture was shown to be very high. The most common defect in body posture among pupils was an uneven alignment of shoulders and shoulder blades. The results obtained in this study indicate the need to undertake action reducing the occurrence of faulty posture among children in Pabianice. © 2015 MEDPRESS.

  19. Associations between cervical and scapular posture and the spatial distribution of trapezius muscle activity.

    PubMed

    Gaffney, Brecca M; Maluf, Katrina S; Curran-Everett, Douglas; Davidson, Bradley S

    2014-08-01

    The first aim of this investigation was to quantify the distribution of trapezius muscle activity with different scapular postures while seated. The second aim of this investigation was to examine the association between changes in cervical and scapular posture when attempting to recruit different subdivisions of the trapezius muscle. Cervical posture, scapular posture, and trapezius muscle activity were recorded from 20 healthy participants during three directed shoulder postures. Planar angles formed by reflective markers placed on the acromion process, C7, and tragus were used to quantify cervical and scapular posture. Distribution of trapezius muscle activity was recorded using two high-density surface electromyography (HDsEMG) electrodes positioned over the upper, middle, and lower trapezius. Results validated the assumption that directed scapular postures preferentially activate different subdivisions of the trapezius muscle. In particular, scapular depression was associated with a more inferior location of trapezius muscle activity (r=0.53). Scapular elevation was coupled with scapular abduction (r=0.52). Scapular adduction was coupled with cervical extension (r=0.35); all other changes in cervical posture were independent of changes in scapular posture. This investigation provides empirical support for reductions in static loading of the upper trapezius and improvements in neck posture through verbal cueing of scapular posture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Does increased postural threat lead to more conscious control of posture?

    PubMed

    Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L

    2009-11-01

    Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).

  1. Decorticate posture

    MedlinePlus

    Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture ... Brain problem due to drugs, poisoning, or infection Traumatic brain injury Brain problem due to liver failure Increased pressure ...

  2. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  3. Decerebrate posture

    MedlinePlus

    ... posture; Decorticate posture - decerebrate posture References Ball JW, Dains JE, Flynn JA, Solomon BS, Stewart RW. Neurologic system. In: Ball JW, Dains JE, Flynn JA, Solomon BS, Stewart RW, eds. ...

  4. U.S. Overseas Military Posture: Relative Costs and Strategic Benefits

    DTIC Science & Technology

    2013-01-01

    C O R P O R A T I O N RESE ARCH BR IEF U.S. Overseas Military Posture Relative Costs and Strategic Benefits The United States is at an inflection...posture translates into benefits ; the risks that different poten- tial postures pose and the cost of maintaining these postures; how these benefits ...changes. Strategic Benefits of Overseas Posture Overseas presence contributes to contingency responsiveness, deterrence of adversaries and assurance of

  5. The prevention of selected and imposed posture-caused injury.

    PubMed

    Kemp, D

    1977-09-01

    It has been recognized for centuries that posture and health are interrelated. Poor health and injuries impose their own specific postures, and poor posture can contribute towards injury and poor health. The correlation between posture and health is not absolute. We can say that a certain posture will increase the probability of injury. Individual differences of age, sex, somatype, fitness, fatigue, load and frequency of posture adoption will dictate if injury will occur, or not, with any individual. There is no doubt that some postures are more stressful than others. The individual factors mentioned dictate whether the resulting strain is above or below the critical amount required for injury. Copyright © 1977 Australian Physiotherapy Association. Published by . All rights reserved.

  6. Body-Earth Mover's Distance: A Matching-Based Approach for Sleep Posture Recognition.

    PubMed

    Xu, Xiaowei; Lin, Feng; Wang, Aosen; Hu, Yu; Huang, Ming-Chun; Xu, Wenyao

    2016-10-01

    Sleep posture is a key component in sleep quality assessment and pressure ulcer prevention. Currently, body pressure analysis has been a popular method for sleep posture recognition. In this paper, a matching-based approach, Body-Earth Mover's Distance (BEMD), for sleep posture recognition is proposed. BEMD treats pressure images as weighted 2D shapes, and combines EMD and Euclidean distance for similarity measure. Compared with existing work, sleep posture recognition is achieved with posture similarity rather than multiple features for specific postures. A pilot study is performed with 14 persons for six different postures. The experimental results show that the proposed BEMD can achieve 91.21% accuracy, which outperforms the previous method with an improvement of 8.01%.

  7. Posture and posturology, anatomical and physiological profiles: overview and current state of art.

    PubMed

    Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni

    2017-04-28

    posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.

  8. Effects of the removal of vision on body sway during different postures in elite gymnasts.

    PubMed

    Asseman, F; Caron, O; Crémieux, J

    2005-03-01

    The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.

  9. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects

    PubMed Central

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800

  10. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.

    PubMed

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.

  11. [Self-evaluation of posture by elderly people with or without thoracic kyphosis].

    PubMed

    Gasparotto, Lívia Pimenta Renó; Reis, Camila Costa Ibiapina; Ramos, Luiz Roberto; Santos, José Francisco Quirino Dos

    2012-03-01

    This article lists the differences between self-perception of body posture among the elderly suffering from postural alterations or not, in order to ascertain whether self-evaluation of posture can lead to preventive measures. Eighteen cases from the elderly population participated in the EPIDOSO project at UNIFESP and were subjected to postural evaluation. Postures were photographed and copies given to the participants and their subsequent comments were analyzed by the qualitative method. The narratives were taped and cataloguedusingthe technique of theoretical axial and selective coding from the perspective of symbolic interactionism. A passive attitude was identified among the elderly in relation to postural alterations. There is a distortion of body image by those with postural deviation. Participants with adequate spinal alignment were more conscious about body posture and the importance of this being assimilated in the phases prior to aging. The adoption of postural self-care seems to occur in the earlier stages of aging and preventive measures should be implemented at this stage. Lack of concern about posture is linked to the concept of the elderly regarding the notion that aging is, in itself, the accumulation of inevitably simultaneous or successive dysfunctions.

  12. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning

    PubMed Central

    Roh, Jongryun; Park, Hyeong-jun; Lee, Kwang Jin; Hyeong, Joonho; Kim, Sayup

    2018-01-01

    Sitting posture monitoring systems (SPMSs) help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced. PMID:29329261

  13. Mechanical effort predicts the selection of ankle over hip strategies in nonstepping postural responses

    PubMed Central

    Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl

    2016-01-01

    Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362

  14. A 10 nN resolution thrust-stand for micro-propulsion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert, E-mail: herbert.shea@epfl.ch

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better thanmore » 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.« less

  15. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  16. A 10 nN resolution thrust-stand for micro-propulsion devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  17. Do oarsmen have asymmetries in the strength of their back and leg muscles?

    PubMed

    Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H

    2001-07-01

    The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.

  18. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-12-01

    Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles.

  19. Isometric strength ratios of the hip musculature in females with patellofemoral pain: a comparison to pain-free controls.

    PubMed

    Magalhães, Eduardo; Silva, Ana Paula M C C; Sacramento, Sylvio N; Martin, RobRoy L; Fukuda, Thiago Y

    2013-08-01

    The purpose of the study was to compare hip agonist-antagonist isometric strength ratios between females with patellofemoral pain (PFP) syndrome and pain-free control group. One hundred and twenty females between 15 and 40 years of age (control group: n = 60; PFP group: n = 60) participated in the study. Hip adductor, abductor, medial rotator, lateral rotator, flexor, and extensor isometric strength were measured using a hand-held dynamometer. Comparisons in the hip adductor/abductor and medial/lateral rotator and flexor/extensor strength ratios were made between groups using independent t-tests. Group comparisons also were made between the anteromedial hip complex (adductor, medial rotator, and flexor musculature) and posterolateral hip complex (abductor, lateral rotator, and extensor musculature). On average, the hip adductor/abductor isometric strength ratio in the PFP group was 23% higher when compared with the control group (p = 0.01). The anteromedial/posterolateral complex ratio also was significantly higher in the PFP group (average 8%; p = 0.04). No significant group differences were found for the medial/lateral rotator ratio and flexor/extensor strength ratios. The results of this study demonstrate that females with PFP have altered hip strength ratios when compared with asymptomatic controls. These strength imbalances may explain the tendency of females with PFP to demonstrate kinematic tendencies that increase loading on the patellofemoral joint (i.e., dynamic knee valgus).

  20. Effects of long term Tai Chi practice and jogging exercise on muscle strength and endurance in older people.

    PubMed

    Xu, D Q; Li, J X; Hong, Y

    2006-01-01

    To investigate the influence of regular Tai Chi (TC) practice and jogging on muscle strength and endurance in the lower extremities of older people. Twenty one long term older TC practitioners were compared with 18 regular older joggers and 22 sedentary counterparts. Maximum concentric strength of knee flexors and extensors was tested at angular velocities of 30 degrees/s and 120 degrees/s. Ankle dorsiflexors and plantar flexors were tested at 30 degrees/s and the dynamic endurance of the knee flexors and extensors was assessed at a speed of 180 degrees/s. The differences in the muscle strength of the knee joint amongst the three experimental groups were significant at the higher velocity. The strengths of knee extensors and flexors in the control group were significantly lower than those in the jogging group and marginally lower than those in the TC group. For the ankle joint, the subjects in both the TC and jogging groups generated more torque in their ankle dorsiflexors. In addition, the muscle endurance of knee extensors was more pronounced in TC practitioners than in controls. Regular older TC practitioners and joggers showed better scores than the sedentary controls on most muscle strength and endurance measures. However, the magnitude of the exercise effects on muscles might depend on the characteristics of different types of exercise.

  1. Poor correlation between handgrip strength and isokinetic performance of knee flexor and extensor muscles in community-dwelling elderly women.

    PubMed

    Felicio, Diogo Carvalho; Pereira, Daniele Sirineu; Assumpção, Alexandra Miranda; de Jesus-Moraleida, Fabianna Resende; de Queiroz, Barbara Zille; da Silva, Juscelio Pereira; de Brito Rosa, Naysa Maciel; Dias, João Marcos Domingues; Pereira, Leani Souza Máximo

    2014-01-01

    To investigate the correlation between handgrip strength and performance of knee flexor and extensor muscles determined using an isokinetic dynamometer in community-dwelling elderly women. This was a cross-sectional study. Sample selection for the study was made by convenience, and 221 (71.07 ± 4.93 years) community-dwelling elderly women were included. Knee flexor and extensor muscle performance was measured using an isokinetic dynamometer Biodex System 3 Pro. The isokinetic variables chosen for analysis were peak torque, peak torque/bodyweight, total work/bodyweight, total work, average power, and agonist/antagonist ratio at the angular velocities of 60°/s and 180°/s. Assessment of handgrip strength was carried out using the Jamar dynamometer. Spearman's correlation coefficient was calculated to identify intervariable correlations. Only knee flexor peak torque (60°/s) and average power (60°/s), and knee extensor peak torque (180°/s) and total work (180°/s) were significantly (P < 0.05), yet poorly, correlated with handgrip strength (r < 0.30). The majority of analyses did not show any correlation between variables assessed by isokinetic dynamometer and handgrip dynamometer. Caution is required when generalizing handgrip strength as a predictor of global muscle strength in community-dwelling elderly women. © 2013 Japan Geriatrics Society.

  2. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes.

    PubMed

    Sekir, U; Arabaci, R; Akova, B; Kadagan, S M

    2010-04-01

    The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.

  3. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  4. Can postural modification reduce kinetic and kinematic loading during the bowing postures of Islamic prayer?

    PubMed

    AbouHassan, J; Milosavljevic, S; Carman, A

    2010-12-01

    As stooped postures are known to increase kinematic and kinetic loading on the lumbar spine they can be problematic for people with low back pain and postural task modification is often recommended. For the Muslim with low back pain, the bowing postures during prayer can aggravate low back symptoms. The aims of this study were to describe lumbo-sacral and pelvic tilt kinematics and lumbo-sacral kinetics during the standard bowing postures of Islam and to compare these to kinematic and kinetic data gathered during a clinically recommended modified bowing posture. The study was a repeated measures within subject cross-over design with 33 healthy male Muslim participants. 3-D motion analysis data were gathered to calculate body joint angles during the two bowing postures. A 3-D biomechanical model was then used to calculate spinal loads. Paired t-test analyses showed that the use of the modified posture resulted in significantly less pelvic tilt range of motion and anterior shear force and compressive force L5/S1, at stages 1 and 5 of bowing. Although this study was conducted with healthy young Muslim males, the use of this modified bent knee posture is recommended for all Muslims with low back pain. Clinical trials are being considered to determine the clinical utility of this postural manoeuvre as an intervention. STATEMENT OF RELEVANCE: The presence of low back pain may hinder a Muslim's ability to use the traditional Islamic bowing posture. Muslims who have low back pain may benefit from adopting a modification to the traditional bowing posture, which has been found to reduce the loads and postural demands on the lower back.

  5. Postural complexity influences development in infants born preterm with brain injury: relating perception-action theory to 3 cases.

    PubMed

    Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole

    2014-10-01

    Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.

  6. Computer users' postures and associations with workstation characteristics.

    PubMed

    Gerr, F; Marcus, M; Ortiz, D; White, B; Jones, W; Cohen, S; Gentry, E; Edwards, A; Bauer, E

    2000-01-01

    This investigation tested the hypotheses that (1) physical workstation dimensions are important determinants of operator posture, (2) specific workstation characteristics systematically affect worker posture, and (3) computer operators assume "neutral" upper limb postures while keying. Operator head, neck, and upper extremity posture and selected workstation dimensions and characteristics were measured among 379 computer users. Operator postures were measured with manual goniometers, workstation characteristics were evaluated by observation, and workstation dimensions by direct measurement. Considerably greater variability in all postures was observed than was expected from application of basic geometric principles to measured workstation dimensions. Few strong correlations were observed between worker posture and workstation physical dimensions; findings suggest that preference is given to keyboard placement with respect to the eyes (r = 0.60 for association between keyboard height and seated elbow height) compared with monitor placement with respect to the eyes (r = 0.18 for association between monitor height and seated eye height). Wrist extension was weakly correlated with keyboard height (r = -0.24) and virtually not at all with keyboard thickness (r = 0.07). Use of a wrist rest was associated with decreased wrist flexion (21.9 versus 25.1 degrees, p < 0.01). Participants who had easily adjustable chairs had essentially the same neck and upper limb postures as did those with nonadjustable chairs. Sixty-one percent of computer operators were observed in nonneutral shoulder postures and 41% in nonneutral wrist postures. Findings suggest that (1) workstation dimensions are not strong determinants of at least several neck and upper extremity postures among computer operators, (2) only some workstation characteristics affect posture, and (3) contrary to common recommendations, a large proportion of computer users do not work in so-called neutral postures.

  7. Regional differences in lumbar spinal posture and the influence of low back pain

    PubMed Central

    Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne

    2008-01-01

    Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712

  8. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Forth, Katharine E. (Inventor); Paloski, William H. (Inventor); Lieberman, Erez (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  9. Maintenance of lateral stability during standing and walking in the cat.

    PubMed

    Karayannidou, A; Zelenin, P V; Orlovsky, G N; Sirota, M G; Beloozerova, I N; Deliagina, T G

    2009-01-01

    During free behaviors animals often experience lateral forces, such as collisions with obstacles or interactions with other animals. We studied postural reactions to lateral pulses of force (pushes) in the cat during standing and walking. During standing, a push applied to the hip region caused a lateral deviation of the caudal trunk, followed by a return to the initial position. The corrective hindlimb electromyographic (EMG) pattern included an initial wave of excitation in most extensors of the hindlimb contralateral to push and inhibition of those in the ipsilateral limb. In cats walking on a treadmill with only hindlimbs, application of force also caused lateral deviation of the caudal trunk, with subsequent return to the initial position. The type of corrective movement depended on the pulse timing relative to the step cycle. If the force was applied at the end of the stance phase of one of the limbs or during its swing phase, a lateral component appeared in the swing trajectory of this limb. The corrective step was directed either inward (when the corrective limb was ipsilateral to force application) or outward (when it was contralateral). The EMG pattern in the corrective limb was characterized by considerable modification of the hip abductor and adductor activity in the perturbed step. Thus the basic mechanisms for balance control in these two forms of behavior are different. They perform a redistribution of muscle activity between symmetrical limbs (in standing) and a reconfiguration of the base of support during a corrective lateral step (in walking).

  10. Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA

    PubMed Central

    Dalén, Nils; Berg, Hans E

    2010-01-01

    Background Patients with hip osteoarthritis (OA) have muscular weakness, impaired balance, and limp. Deficits in the different limb muscles and their recovery courses are largely unknown, however. We hypothesized that there is persisting muscular weakness in lower limb muscles and an impaired balance and gait 2 years after THA. Patients and methods 20 elderly patients with unilateral OA were assessed before, and 6 and 24 months after surgery for maximal voluntary isometric strength of hip and knee muscles and by gait analysis, postural stability, and clinical scores (HHS, SF-36, EuroQoL). Results Hip muscles showed a remaining 6% weakness compared to the contralateral healthy limb 2 years after THA. Preoperatively and 6 months postoperatively, that deficit was 18% and 12%, respectively. Knee extensors fully recovered a preoperative 27% deficit after 2 years. Gait analysis demonstrated a shorter single stance phase for the OA limb compared to healthy limb preoperatively, that had already recovered at the 6-month follow-up. Balance of two-foot standing showed improvement in both sagittal and lateral sway after operation. All clinical scores improved. Interpretation Muscle strength data demonstrated a slow but full recovery of muscles acting about the knee, but there was still a deficit in hip muscle strength 2 years after THA. Gait and balance recovered after the operation. To accelerate improvement in muscular strength after THA, postoperative training should probably be more intense and target hip abductors. PMID:20367414

  11. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work.

    PubMed

    Bosch, Tim; van Eck, Jennifer; Knitel, Karlijn; de Looze, Michiel

    2016-05-01

    Exoskeletons may form a new strategy to reduce the risk of developing low back pain in stressful jobs. In the present study we examined the potential of a so-called passive exoskeleton on muscle activity, discomfort and endurance time in prolonged forward-bended working postures. Eighteen subjects performed two tasks: a simulated assembly task with the trunk in a forward-bended position and static holding of the same trunk position without further activity. We measured the electromyography for muscles in the back, abdomen and legs. We also measured the perceived local discomfort. In the static holding task we determined the endurance, defined as the time that people could continue without passing a specified discomfort threshold. In the assembly task we found lower muscle activity (by 35-38%) and lower discomfort in the low back when wearing the exoskeleton. Additionally, the hip extensor activity was reduced. The exoskeleton led to more discomfort in the chest region. In the task of static holding, we observed that exoskeleton use led to an increase in endurance time from 3.2 to 9.7 min, on average. The results illustrate the good potential of this passive exoskeleton to reduce the internal muscle forces and (reactive) spinal forces in the lumbar region. However, the adoption of an over-extended knee position might be, among others, one of the concerns when using the exoskeleton. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Wavelet coherence analysis: A new approach to distinguish organic and functional tremor types.

    PubMed

    Kramer, G; Van der Stouwe, A M M; Maurits, N M; Tijssen, M A J; Elting, J W J

    2018-01-01

    To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. In this pilot study, polymyography recordings were studied retrospectively of 26 Parkinsonian (PT), 26 functional (FT), 26 essential (ET), and 20 enhanced physiological (EPT) tremor patients. Per patient one segment of 20 s in duration, in which tremor was present continuously in the same posture, was selected. We studied several coherence and phase related parameters, and analysed all possible muscle combinations of the flexor and extensor muscles of the upper and fore arm. The area under the receiver operating characteristic curve (AUC-ROC) was applied to compare WCA and standard coherence analysis to distinguish tremor subtypes. The percentage of time with significant coherence (PTSC) and the number of periods without significant coherence (NOV) proved the most discriminative parameters. FT could be discriminated from organic (PT, ET, EPT) tremor by high NOV (31.88 vs 21.58, 23.12 and 10.20 respectively) with an AUC-ROC of 0.809, while standard coherence analysis resulted in an AUC-ROC of 0.552. EMG-EMG WCA analysis might provide additional variables to distinguish functional from organic tremor. WCA might prove to be of additional value to discriminate between tremor types. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Potentially risky postural behaviors during worksite keyboard use

    PubMed Central

    Baker, Nancy A.; Redfern, Mark

    2016-01-01

    Objective This study describes the frequency and distribution of potentially risky postural behaviors of keyboard users. Method Forty-three subjects’ keyboard postural behaviors were rated with the Keyboard – Personal Computer Style instrument (K-PeCS) while they worked at their own workstations. The frequency and distribution of keyboard postural behaviors, and the associations and differences between the right and left sides were assessed. Results Generally, each static body posture had a single criterion that occurred most frequently, (e.g. elbow flexion posture 80 – 120 degrees), while dynamic postures of the wrists and hands were distributed throughout their criteria. Right and left side postural behaviors were significantly associated for shoulder flexion, elbow flexion, hand displacement, wrist extension, forearm rotation, isolated 5th digit, MCP hyperextension, and wrist support use, and significantly different for hand displacement, isolated thumb, number of digits used, and MCP hyperextension. Conclusion Potentially problematic keyboard postural behaviors are common among keyboard users. Our results suggest that occupational therapists must systematically assess body, arm, wrist, and hand postures on both the right and left sides to be able to develop the most effective intervention strategies. PMID:19708467

  14. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    PubMed Central

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  15. Interference between oculomotor and postural tasks in 7-8-year-old children and adults.

    PubMed

    Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle

    2016-06-01

    Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.

  16. Relationship between Biomechanical Characteristics of Spinal Manipulation and Neural Responses in an Animal Model: Effect of Linear Control of Thrust Displacement versus Force, Thrust Amplitude, Thrust Duration, and Thrust Rate

    PubMed Central

    Reed, William R.; Cao, Dong-Yuan; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    High velocity low amplitude spinal manipulation (HVLA-SM) is used frequently to treat musculoskeletal complaints. Little is known about the intervention's biomechanical characteristics that determine its clinical benefit. Using an animal preparation, we determined how neural activity from lumbar muscle spindles during a lumbar HVLA-SM is affected by the type of thrust control and by the thrust's amplitude, duration, and rate. A mechanical device was used to apply a linear increase in thrust displacement or force and to control thrust duration. Under displacement control, neural responses during the HVLA-SM increased in a fashion graded with thrust amplitude. Under force control neural responses were similar regardless of the thrust amplitude. Decreasing thrust durations at all thrust amplitudes except the smallest thrust displacement had an overall significant effect on increasing muscle spindle activity during the HVLA-SMs. Under force control, spindle responses specifically and significantly increased between thrust durations of 75 and 150 ms suggesting the presence of a threshold value. Thrust velocities greater than 20–30 mm/s and thrust rates greater than 300 N/s tended to maximize the spindle responses. This study provides a basis for considering biomechanical characteristics of an HVLA-SM that should be measured and reported in clinical efficacy studies to help define effective clinical dosages. PMID:23401713

  17. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias

    PubMed Central

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P.; Pulst, Stefan M.; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M.; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G.; Ying, Sarah H.; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D.; Xia, Guangbin; Subramony, S. H.; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Background Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. Methods We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Results Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = –0.91, p < 0.001; SCA6, β = –1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = –1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = –0.40, p = 0.032). Discussion Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor. PMID:29057148

  18. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias.

    PubMed

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P; Pulst, Stefan M; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.

  19. [Head posture in orthodontics: physiopathology and clinical aspects 2].

    PubMed

    Caltabiano, M; Verzi, P; Scire Scappuzzo, G

    1989-01-01

    The Authors review in orthodontic respects present knowledges about head posture involvement in craniofacial morphogenesis and pathology. Relationships between craniofacial morphology, craniocervical posture, craniomandibular posture, cervical spine curvature, hyoid bone position and posture of whole body in space are shown, in attempt to explain conditions such as "forward head posture", mouth breathing and some occlusal disorders. Main methods to evaluate craniocervical relations on lateral skull radiographs are analysed. Pathogenesis of pain syndromes associated with abnormal craniocervical and craniomandibular mechanics are also briefly treated.

  20. Gait, posture and cognition in Parkinson's disease

    PubMed Central

    Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen

    2016-01-01

    Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD. PMID:29213470

  1. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  2. Corticomotor excitability of arm muscles modulates according to static position and orientation of the upper limb.

    PubMed

    Mogk, Jeremy P M; Rogers, Lynn M; Murray, Wendy M; Perreault, Eric J; Stinear, James W

    2014-10-01

    We investigated how multi-joint changes in static upper limb posture impact the corticomotor excitability of the posterior deltoid (PD) and biceps brachii (BIC), and evaluated whether postural variations in excitability related directly to changes in target muscle length. The amplitude of individual motor evoked potentials (MEPs) was evaluated in each of thirteen different static postures. Four functional postures were investigated that varied in shoulder and elbow angle, while the forearm was positioned in each of three orientations. Posture-related changes in muscle lengths were assessed using a biomechanical arm model. Additionally, M-waves were evoked in the BIC in each of three forearm orientations to assess the impact of posture on recorded signal characteristics. BIC-MEP amplitudes were altered by shoulder and elbow posture, and demonstrated robust changes according to forearm orientation. Observed changes in BIC-MEP amplitudes exceeded those of the M-waves. PD-MEP amplitudes changed predominantly with shoulder posture, but were not completely independent of influence from forearm orientation. Results provide evidence that overall corticomotor excitability can be modulated according to multi-joint upper limb posture. The ability to alter motor pathway excitability using static limb posture suggests the importance of posture selection during rehabilitation aimed at retraining individual muscle recruitment and/or overall coordination patterns. Published by Elsevier Ireland Ltd.

  3. The effects of feedback on computer workstation posture habits.

    PubMed

    Epstein, Rhonda; Colford, Sean; Epstein, Ethan; Loye, Brandon; Walsh, Michael

    2012-01-01

    Repetitive stress injuries (RSI) and musculoskeletal disorders in the United States and worldwide are increasing at an alarming rate due to the advent of ubiquitous computer usage. Factors that lead to computer-related musculoskeletal disorders (MSD) include inadequately designed workstations, poor posture, and lack of knowledge about proper ergonomics and use habits. Studies have documented the negative impact of improper posture and the MSD seen in students and office workers due to frequent computer usage. Determine if the frequency (single vs. continuous reminder) and/or use of feedback affects posture at a computer workstation. Observations of posture habits were made in three local schools and one local company. Feedback effects were tested on the students (ages 10-15). Real time feedback was given in two studies. In one study, instructions and a verbal reminder were given to students and in a second study, a prototype 'Posture Pad' was developed to provide continuous feedback to the user. Verbal reminders to sit correctly led to transient improvement of posture. Use of the 'Posture Pad' resulted in significant improvement in posture with subjects exhibiting correct posture 98 ± 5% of the time. Real time feedback about how one is sitting is an effective mechanism for non-transient improvement of posture at computer workstations.

  4. Neutral lumbar spine sitting posture in pain-free subjects.

    PubMed

    O'Sullivan, Kieran; O'Dea, Patrick; Dankaerts, Wim; O'Sullivan, Peter; Clifford, Amanda; O'Sullivan, Leonard

    2010-12-01

    Sitting is a common aggravating factor in low back pain (LBP), and re-education of sitting posture is a common aspect of LBP management. However, there is debate regarding what is an optimal sitting posture. This pilot study had 2 aims; to investigate whether pain-free subjects can be reliably positioned in a neutral sitting posture (slight lumbar lordosis and relaxed thorax); and to compare perceptions of neutral sitting posture to habitual sitting posture (HSP). The lower lumbar spine HSP of seventeen pain-free subjects was initially recorded. Subjects then assumed their own subjectively perceived ideal posture (SPIP). Finally, 2 testers independently positioned the subjects into a tester perceived neutral posture (TPNP). The inter-tester reliability of positioning in TPNP was very good (intraclass correlation coefficient (ICC) = 0.91, mean difference = 3% of range of motion). A repeated measures ANOVA revealed that HSP was significantly more flexed than both SPIP and TPNP (p <0.05). There was no significant difference between SPIP and TPNP (p > 0.05). HSP was more kyphotic than all other postures. This study suggests that pain-free subjects can be reliably positioned in a neutral lumbar sitting posture. Further investigation into the role of neutral sitting posture in LBP subjects is warranted. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Birthing postures and birth canal lacerations.

    PubMed

    Suzuki, Shunji

    2017-05-01

    This study was performed to assess the differences in the birth canal lacerations following the lateral and fours posture deliveries compared with those following the supine posture deliveries. We examined the birth canal lacerations of our "low risk" pregnant women under the midwife-led delivery care at Japanese Red Cross Katsushika Maternity Hospital between April 2006 and March 2015. There were 3826, 1754 and 719 women who delivered with supine, lateral and fours postures. The rate of no laceration in the women who delivered with lateral posture was significant lower than that in the women who delivered with supine posture (OR 0.630, 95% CI 0.56-0.71, p < 0.01); however, the incidence of perineal laceration in the women who delivered with lateral posture was significant lower than that in the women who delivered with supine posture (OR 0.856, 95% CI 0.76-0.90, p < 0.01). The incidence of perineal laceration of third- or fourth-degree in the women who delivered with fours posture was significant higher than that in the women who delivered with supine posture (OR 2.28, 95% CI 1.2-4.2, p < 0.01). The current results may be to help for self-determination of birthing postures in prenatal women.

  6. Spinal postural training: Comparison of the postural and mobility effects of electrotherapy, exercise, biofeedback trainer in addition to postural education in university students.

    PubMed

    Çelenay, Şeyda Toprak; Kaya, Derya Özer; Özüdoğru, Anıl

    2015-01-01

    Spinal posture and mobility are significant for protecting spine. The aim was to compare effects of different postural training interventions on spinal posture and mobility. Ninety-six university students (ages: 18–25 years) were allocated into Electrical Stimulation (ES) (n = 24), Exercise (n = 24), Biofeedback Posture Trainer (Backtone) (n = 24), and Postural Education (n = 24, Controls) groups. All the groups got postural education. The interventions were carried out 3 days a week for 8 weeks. Spinal Mouse device (Idiag, Fehraltorf, Switzerland) was used to detect thoracic and lumbar curvatures and mobility (degrees) in standing and sitting positions. Paired Student’s t-test, one-way ANOVA, and pairwise post-hoc tests were used. ES decreased thoracic curvature, the exercise decreased thoracic and lumbar curvature and increased thoracic mobility in standing position between pre-post training (p < 0.05). Exercise and Backtone improved thoracic curvature in sitting (p <0.05). In Exercise Group, thoracic curvature decreased compared to Backtone and Education Groups, and thoracic mobility increased compared to all groups (p < 0.05). The exercise was effective and superior in improving thoracic and lumbar curves, and mobility among university students. ES decreased thoracic curve. Biofeedback posture trainer improved sitting posture. A prospective randomized controlled trial, Level 1.

  7. Stabilisation times after transitions to standing from different working postures.

    PubMed

    DiDomenico, Angela; McGorry, Raymond W; Banks, Jacob J

    2016-10-01

    Transitioning to standing after maintaining working postures may result in imbalance and could elicit a fall. The objective of this study was to quantify the magnitude of imbalance using a stabilisation time metric. Forty-five male participants completed three replications of conditions created by one of four working postures (bent at waist, squat, forward kneel, reclined kneel) and three durations within posture. Participants transitioned to quiet standing at a self-selected pace. Stabilisation time, based on changes in centre of pressure velocity, was used to indicate the initiation of steady state while standing. Stabilisation time was significantly affected by static postures but not duration within posture. The largest stabilisation times resulted from transitions initiated from a bent at waist posture. The smallest were associated with the kneeling postures, which were not significantly different from each other. Findings may lead to recommendations for redesign of tasks, particularly in high-risk environments such as construction. Statement of Relevance: Task performance on the jobsite often requires individuals to maintain non-erect postures. This study suggests that working posture affects stabilisation during transition to a standing position. Bending at the waist and squatting resulted in longer stabilisation times, whereas both kneeling postures evaluated resulted in greater imbalance but for a shorter duration.

  8. Implication of Posture Analysing Software to Evaluate the Postural Changes after Corrective Exercise Strategy on Subjects with Upper Body Dysfunction-A Randomized Controlled Trial

    PubMed Central

    Sudhakar, S; Porcelvan, S; Francis, T.G. Tilak; Rathnamala, D; Radhakrishnan, R

    2017-01-01

    Introduction The postural adaptation is very common now a days in school going children, office desk oriented job, computer users and frequent mobile users, and in all major industrial workers. Several studies have documented a high incidence of postural abnormalities in a given population; however, methods of postural measurement were poorly defined. The implication of postural pro software to analyse the postural imbalance of upper body dysfunction is very rare and literature studies says that the kinematic changes in particular segment will produce pain/discomfort and thereby lesser productivity of subjects. Aim To evaluate the postural changes in subjects with upper body dysfunction after a corrective exercise strategy using postural analysis software and pectoralis minor muscle length testing. Materials and Methods After explaining the procedure and benefits, informed consent was taken from the participating subjects (age 25-55 years). Subjects with upper body dysfunction were randomly allocated into two groups (each group 30 subjects). The Group–A received the corrective exercise strategy and Group-B received the conventional exercise for eight weeks of study duration (15 reps each exercise, total duration of 40 min; four days/week. Pre and Post posture analysis were analysed using posture pro software along with flexibility of pectoralis minor was assessed using ruler scale method. Results After interpretation of data, both the group showed the postural alteration and pectoralis minor muscle length changes, p-value (p<0.01) of both group showed highly significant changes. But comparing the both groups, the subjects who received the corrective exercise strategy shown more percentage of improvement in posture alteration (56.25%), pectoralis minor muscle length changes (68.69%) than the conventional exercise received subjects in posture alteration (24.86%) and pectoralis minor muscle length changes (21.9%). Conclusion Altered postural changes and pectoralis minor muscle flexibility before and after the corrective exercise strategy evaluated by postural analysis software method shown to be a significant tool in clinical practice, which is easier and reproducible method. PMID:28893030

  9. [Reconstruction of the extensor pollicis longus tendon by transposition of the extensor indicis tendon].

    PubMed

    Loos, A; Kalb, K; Van Schoonhoven, J; Landsleitner Dagger, B

    2003-12-01

    Rupture of the extensor pollicis longus-tendon (EPL) is a frequent complication after distal radius fractures. Other traumatic and non-traumatic reasons for this tendon lesion are known, including a theory about a disorder in the blood supply to the tendon itself. We examined 40 patients after reconstruction of the EPL-tendon in a mean follow-up time of 30 months. All patients were clinically examined and a DASH questionnaire was answered by all patients. The method to reconstruct the EPL-tendon was the transposition of the extensor indicis-tendon. After the operations the thumb was put in a splint for four weeks in a "hitch-hiker's-position". 31 ruptures of the tendon (77.5 %) were a result of trauma. In 20 of them (50 %) a distal radius fracture had occurred. Clinical examination included measurements of the movement of the thumb- and index-finger joints, the grip strength and the maximal span of the hand. Significant differences were not found. The isolated extension of the index finger was possible in all patients. But it was reduced in ten cases which represent 25 %. Our results were evaluated by the Geldmacher score to evaluate the reconstruction of the EPL-tendon. 20 % excellent, 65 % good, 12.5 % fair and 2.5 % poor results were reached. The Geldmacher score was used critically. We suggest its modification for the evaluation of thumb abduction. The DASH score reached a functional value of ten points which represents a very good result. In conclusion the extensor indicis-transposition is a safe method to reconstruct the EPL-tendon. Its substantial advantage is taking a healthy muscle as the motor, thereby avoiding the risk of using a degenerated muscle in late tendon reconstruction. A powerful extension of the index finger will be maintained by physical education. Generally, the loss of the extension of the index finger is negligible. It does not disturb the patients. But it has to be discussed with the patient before the operation.

  10. Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.

    PubMed

    Zapparoli, Fabricio Yuri; Riberto, Marcelo

    2017-11-01

    Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.

  11. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    PubMed

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  12. Comparison of shock transmission and forearm electromyography between experienced and recreational tennis players during backhand strokes.

    PubMed

    Wei, Shun-Hwa; Chiang, Jinn-Yen; Shiang, Tzyy-Yuang; Chang, Hsiao-Yun

    2006-03-01

    To test the hypothesis that recreational tennis players transmit more shock impact from the racket to the elbow joint than experienced tennis players during the backhand stroke. Also, to test whether recreational tennis players used higher electromyographic (EMG) activities in common wrist extensor and flexor around epicondylar region at follow-through phase. A repeated-measure, cross-sectional study. National College of Physical Education and Sports at Taipei, Taiwan. Twenty-four male tennis players with no abnormal forearm musculoskeletal injury participated in the study. According to performance level, subjects were categorized into 2 groups: experienced and recreational. Impact transmission and wrist extensor-flexor EMG for backhand acceleration, impact, and follow-through phases were recorded for each player. An independent t test with a significance level of 0.05 was used to examine mean differences of shock impact and EMG between the 2 test groups. One-way ANOVA associated with Tukey multiple comparisons was used to identify differences among different impact locations and EMG phases. Experienced athletes reduced the racket impact to the elbow joint by 89.2%, but recreational players reduced it by only 61.8%. The largest EMG differences were found in the follow-through phase (P<0.05). Experienced athletes showed that their extensor and flexor EMGs were at submaximal level for follow-through phase, whereas recreational players maintained their flexor and extensor EMGs at either supramaximal or maximal level. Our results support the hypothesis that recreational players transmit more shock impact from the racket to the elbow joint and use larger wrist flexor and extensor EMG activities at follow-through phase of the backhand stroke. Follow-through control is proposed as a critical factor for reduction of shock transmission. Clinicians or trainers should instruct beginners to quickly release their grip tightness after ball-to-racket impact to reduce shock impact transmission to the wrist and elbow.

  13. Changes in Gait over a 30-min Walking Session in Obese Females.

    PubMed

    Singh, Bhupinder; Vo, Huy; Francis, Shelby L; Janz, Kathleen F; Yack, H John

    2017-03-01

    This study assessed the biomechanical gait changes in obese and normal-weight female adult subjects after a commonly recommended 30-min walking session. Hip and knee adduction and extensor moments, which are the primary modulators of frontal and sagittal plane load distribution, were hypothesized to increase in obese females after a 30-min walking period, resulting in more stress across the hip and knee joint. Ten obese (37.7 ± 4.8 yr of age, body mass index [BMI] = 36.1 ± 4.2 kg·m) and 10 normal-weight control female subjects (38.1 ± 4.5 yr of age, BMI = 22.6 ± 2.3 kg·m) walked 30 min continuously on the treadmill at their self-selected speed. V˙O2max was estimated using Ebbeling protocol. A three-dimensional pre- and posttreadmill gait analysis was conducted using infrared markers and force plates to calculate hip and knee moments. Knee extensor moments increased in both obese, pretreadmill (0.54 ± 0.28 N·m·kg) to posttreadmill (0.78 ± 0.43 N·m·kg) (P = 0.01), and control subjects, pretreadmill (0.57 ± 0.34 N·m·kg) to posttreadmill (0.80 ± 0.49 N·m·kg) (P = 0.02). Hip extensor moments decreased for both obese and control subjects. Knee adduction moments did not change in either obese or control subjects. Knee extensor and adductor moments showed good to moderate relationships with V˙O2max, but not BMI or waist circumference. Obese and normal-weight subjects experienced an increase in knee extensor moments after 30 min of walking similarly; therefore, clinicians do not need special consideration for obese individuals when recommending 30-min walking sessions. Fitness may be the important factor in judging the implications of exercise on joint mechanics and parameters of a walking program.

  14. Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.

    PubMed

    Kipp, Kristof; Harris, Chad

    2017-07-01

    Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than manipulate EMA.

  15. Vibration-evoked reciprocal inhibition between human wrist muscles.

    PubMed

    Cody, F W; Plant, T

    1989-01-01

    Reciprocal inhibition of the voluntarily contracting wrist extensor (extensor carpi radialis, ECR) evoked by proprioceptive afferent input from the flexor (flexor carpi radialis, FCR), was studied in healthy human subjects. Vibration of the FCR tendon was used to elicit Ia-dominated afferent discharge whilst inhibition of ECR was assessed as the reduction in asynchronous, on-going EMG. A small early phase of inhibition (I1) was evident in 25% of trials. The latency (ca. 25 ms) of this component suggested that it was mediated by an Ia oligosynaptic. possibly 'classical' disynaptic, inhibitory pathway. A later and apparently separate phase of reduced activity (I2, ca. 40 ms) was, however, far more consistently observed (96% of trials) and of greater magnitude. The I2 component was usually followed, some 20 ms later, by a phase of elevated activity (E1, 72% trials). Reductions in simultaneously recorded net extensor torque commenced at about 60 ms following the onset of flexor tendon vibration, i.e. some 20 ms after the main I2 EMG component. These mechanical responses must have almost exclusively resulted from reciprocal inhibition of extensor EMG since vibration of the relaxed FCR evoked minimal excitatory flexor activity. The reflex pattern, in any individual subject, was relatively unaffected by altering the duration of the vibration train between one and nineteen cycles (125 Hz). This suggests that the entire response complex resulted largely from the initial afferent volley. The sizes of both the I1 and I2 reductions in ECR activity increased with increasing voluntary extensor contraction so that their depths remained constant proportions of background EMG. Very similar results were obtained when reciprocal inhibition of FCR was produced by vibration of the belly of ECR. Thus, reciprocal inhibition between wrist muscles is mainly expressed as a rather stereotyped, short duration reduction in EMG whose depth is determined by the pre-existing level of motor activity. Some functional implications of this form of reflex behaviour are discussed.

  16. The effect of labyrinthectomy on postural control of upside-down swimming catfish, Synodontis nigriventris, under pseudomicrogravity.

    PubMed

    Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T

    1999-08-01

    The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.

  17. Revolutionizing Space Propulsion Through the Characterization of Iodine as Fuel for Hall-Effect Thrusters

    DTIC Science & Technology

    2011-03-01

    for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13

  18. Posture recognition based on fuzzy logic for home monitoring of the elderly.

    PubMed

    Brulin, Damien; Benezeth, Yannick; Courtial, Estelle

    2012-09-01

    We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.

  19. Static body postural misalignment in individuals with temporomandibular disorders: a systematic review

    PubMed Central

    Chaves, Thaís C.; Turci, Aline M.; Pinheiro, Carina F.; Sousa, Letícia M.; Grossi, Débora B.

    2014-01-01

    BACKGROUND: The association between body postural changes and temporomandibular disorders (TMD) has been widely discussed in the literature, however, there is little evidence to support this association. OBJECTIVES: The aim of the present study was to conduct a systematic review to assess the evidence concerning the association between static body postural misalignment and TMD. METHOD: A search was conducted in the PubMed/Medline, Embase, Lilacs, Scielo, Cochrane, and Scopus databases including studies published in English between 1950 and March 2012. Cross-sectional, cohort, case control, and survey studies that assessed body posture in TMD patients were selected. Two reviewers performed each step independently. A methodological checklist was used to evaluate the quality of the selected articles. RESULTS: Twenty studies were analyzed for their methodological quality. Only one study was classified as a moderate quality study and two were classified as strong quality studies. Among all studies considered, only 12 included craniocervical postural assessment, 2 included assessment of craniocervical and shoulder postures,, and 6 included global assessment of body posture. CONCLUSION: There is strong evidence of craniocervical postural changes in myogenous TMD, moderate evidence of cervical postural misalignment in arthrogenous TMD, and no evidence of absence of craniocervical postural misalignment in mixed TMD patients or of global body postural misalignment in patients with TMD. It is important to note the poor methodological quality of the studies, particularly those regarding global body postural misalignment in TMD patients. PMID:25590441

  20. Effects of Head Rotation and Head Tilt on Pharyngeal Pressure Events Using High Resolution Manometry.

    PubMed

    Kim, Cheol Ki; Ryu, Ju Seok; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon

    2015-06-01

    To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx.

  1. Effects of Head Rotation and Head Tilt on Pharyngeal Pressure Events Using High Resolution Manometry

    PubMed Central

    Kim, Cheol Ki; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon

    2015-01-01

    Objective To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Methods Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. Results The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. Conclusion The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx. PMID:26161349

  2. Survey of faulty postures and associated factors among Chinese adolescents.

    PubMed

    Cho, Chiung-Yu

    2008-03-01

    This study investigates the prevalence of common faulty postures among adolescents and identify if significant relationships existed among the number of faulty postures, psychologic distress, and musculoskeletal symptoms. The Musculoskeletal Questionnaire and Chinese Health Questionnaire were randomly distributed to 300 high school students in the Tainan area. On-campus postural screening, which included digital photography, manual muscle tests, and flexibility tests, was also performed. Two hundred eighty-seven participants completed all of the evaluations. The most common faulty posture was uneven shoulder level (36%), followed by forward head posture (25%). There was a sex difference between groups. The incidence of forward head posture for the male students was higher than that of the female students (P < .0001). In addition, the high psychologic distress group tended to have a higher prevalence of uneven shoulder height than that of the low psychologic distress group (P < .0001). As for the correlation analysis, the researchers did not find a high correlation among the scores of the faulty posture, psychologic distress, and musculoskeletal symptoms. The results of this study show that the incidence of faulty posture was high for the adolescent group, especially for the uneven shoulder level. Subjects' awareness about being assessed might decrease the incidence for some faulty posture. However, the relationships among the number of faulty postures, psychologic distress, and musculoskeletal symptoms were low. We suggest that there are multiple factors that might contribute to musculoskeletal symptoms; faulty posture could be one important factor that causes symptoms.

  3. Was Himalayan normal faulting triggered by initiation of the Ramgarh-Munsiari Thrust?

    USGS Publications Warehouse

    Robinson, Delores M.; Pearson, Ofori N.

    2013-01-01

    The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.

  4. Common postural defects among music students.

    PubMed

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of Posture on Hip Angles and Moments during Gait

    PubMed Central

    Lewis, Cara L.; Sahrmann, Shirley A.

    2014-01-01

    Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565

  6. Effect of posture on hip angles and moments during gait.

    PubMed

    Lewis, Cara L; Sahrmann, Shirley A

    2015-02-01

    Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.

    PubMed

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W

    2010-03-31

    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (p<0.05), chest wall shape (p<0.05) and motion during breathing differed between postures. Compared to a reference posture, movement at the 9th rib lateral diameter increased in the thoracolumbar extension posture (p<0.008). In slumped posture movement at the AP diameters at T1 and axilla increased (p<0.00001). Rotation postures decreased movement in the lateral diameter at the axilla (p<0.0007). The data show that single plane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Are there specific conditions for which expertise in gymnastics could have an effect on postural control and performance?

    PubMed

    Asseman, François B; Caron, Olivier; Crémieux, Jacques

    2008-01-01

    The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.

  9. Atypical anticipatory postural adjustments during gait initiation among individuals with sub-acute stroke.

    PubMed

    Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril

    2017-02-01

    Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Increased alertness, better than posture prioritization, explains dual-task performance in prosthesis users and controls under increasing postural and cognitive challenge.

    PubMed

    Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S

    2017-11-01

    Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.

  11. Systematic review of postural control and lateral ankle instability, part I: can deficits be detected with instrumented testing.

    PubMed

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.

  12. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.

    PubMed

    Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou

    2014-11-01

    Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Postural Ataxia in Cerebellar Downbeat Nystagmus: Its Relation to Visual, Proprioceptive and Vestibular Signals and Cerebellar Atrophy.

    PubMed

    Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas

    2017-01-01

    The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.

  14. Postural Ataxia in Cerebellar Downbeat Nystagmus: Its Relation to Visual, Proprioceptive and Vestibular Signals and Cerebellar Atrophy

    PubMed Central

    Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas

    2017-01-01

    Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109

  15. High-power, null-type, inverted pendulum thrust stand.

    PubMed

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.

  16. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  17. Gender differences in the circadian variations in muscle strength assessed with and without superimposed electrical twitches.

    PubMed

    Giacomoni, Magali; Edwards, Ben; Bambaeichi, Effat

    The circadian rhythm in muscle strength was analysed in 12 males (28 +/- 4 years, 79.6 +/- 12.3 kg, 1.80 +/- 0.05 m) and eight females (28 +/- 4 years, 60.3 +/- 5.5 kg, 1.61 +/- 0.08 m). After two familiarization sessions, participants were tested at six different times of the day (02:00, 06:00, 10:00, 14:00, 18:00 and 22:00 hours), the order of which was randomly assigned over 3-4 days. Rectal temperature (T(rec)) was measured over 30 min before each test. Peak isokinetic torques (PT) of knee extensors and flexors were then measured at 1.05 rad s(-1) and 3.14 rad s(-1) through a 90 degrees range of motion. Maximal isometric voluntary contraction (MVC) of knee extensors and flexors was measured at 60 degrees of knee flexion and the MVC of knee extensors was also assessed with superimposed electrical twitches (50 Hz, 250 V, 200 mus pulse width) in order to control for motivational effects. Three trials were performed in each condition, separated by 3 min recovery, and the highest values were retained for subsequent analyses. A significant circadian rhythm was observed for T(rec) in both males and females (acrophase, Phi, 17:29 and 16:40 hours; mesor, Me, 37.0 and 36.8 degrees C; amplitude, A, 0.28 and 0.33 degrees C for males and females, respectively). The mesor of T(rec) was higher in males than in females (p < 0.05). Significant circadian rhythms were observed for knee extensor PT at 3.14 rad s(-1) in males (Phi, 17:06 hours; Me, 178.2 N m; A, 4.7 N m) and for knee extensor PT at 1.05 rad s(-1) in females (Phi, 15:35 hours; Me, 128.7 N m; A, 3.7 N m). In males, the MVC of knee extensors demonstrated a significant circadian rhythm, but only when electrical twitches were superimposed (Phi, 16:17 h; Me, 302.1 N m; A, 13.6 N m). Acrophases of all indices of muscle strength were not statistically different between the two groups and were located in the afternoon (12:47 < Phi < 17:16 hours). The amplitude (percentage of mesor) of extensors MVC (electrically stimulated) was higher in males (6.4%) than in females (4.2%; p < 0.05). Significant circadian rhythms were not consistently observed for all indices of muscle strength whatever the gender. Our group of female subjects tended to show lower circadian amplitudes than the males. In males, maximal voluntary contraction of electrically stimulated muscles followed a circadian curve, which was not significant without the superimposed twitches. These results suggest that motivation could have a masking effect on the circadian rhythm in muscle performance and strengthen the view that peripheral factors are implicated in this rhythm.

  18. Postural Stability in Healthy Child and Youth Athletes: The Effect of Age, Sex, and Concussion-Related Factors on Performance.

    PubMed

    Paniccia, Melissa; Wilson, Katherine E; Hunt, Anne; Keightley, Michelle; Zabjek, Karl; Taha, Tim; Gagnon, Isabelle; Reed, Nick

    Postural stability plays a key role in sport performance, especially after concussion. Specific to healthy child and youth athletes, little is known about the influence development and sex may have on postural stability while considering other subjective clinical measures used in baseline/preinjury concussion assessment. This study aims to describe age- and sex-based trends in postural stability in uninjured child and youth athletes at baseline while accounting for concussion-related factors. (1) Postural stability performance will improve with age, (2) females will display better postural stability compared to males, and (3) concussion-like symptoms will affect postural stability performance in healthy children and youth. Cross-sectional study. Level 3. This study comprised 889 healthy/uninjured child and youth athletes (54% female, 46% male) between the ages of 9 and 18 years old. Participants completed preseason baseline testing, which included demographic information (age, sex, concussion history), self-report of concussion-like symptoms (Post-Concussion Symptom Inventory [PCSI]-Child and PCSI-Youth), and measures of postural stability (BioSway; Biodex Medical Systems). Two versions of the PCSI were used (PCSI-C, 9- to 12-year-olds; PCSI-Y, 13- to 18-year-olds). Postural stability was assessed via sway index under 4 sway conditions of increasing difficulty by removing visual and proprioceptive cues. In children aged 9 to 12 years old, there were significant age- ( P < 0.05) and sex-based effects ( P < 0.05) on postural stability. Performance improved with age, and girls performed better than boys. For youth ages 13 to 18 years old, postural stability also improved with age ( P < 0.05). In both child and youth subgroups, postural stability worsened with increasing concussion-like symptoms ( P < 0.05). There are developmental and baseline symptom trends regarding postural stability performance. These findings provide a preliminary foundation for postconcussion comparisons and highlight the need for a multimodal approach in assessing and understanding physical measures such as postural stability.

  19. The postural control can be optimized by the first movement initiation condition encountered when submitted to muscle fatigue.

    PubMed

    Monjo, Florian; Forestier, Nicolas

    2017-08-01

    We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Postural awareness among dental students in Jizan, Saudi Arabia

    PubMed Central

    Kanaparthy, Aruna; Kanaparthy, Rosaiah; Boreak, Nezar

    2015-01-01

    Objective: The study was conducted to assess the postural awareness of dental students in Jizan, Saudi Arabia. Materials and Methods: Close-ended, self-administered questionnaires were used for data collection in the survey. The questionnaire was prepared by observing the positions of students working in the clinics and the common mistakes they make with regard to their postures. The questionnaires were distributed among the dental students who were present and reported to work in the clinics. Levels of postural awareness and the relationship between postural awareness and the degree of musculoskeletal disorder (MSD) among the students was evaluated. This study was carried out in the College of Dental Sciences and Hospital, Jizan. Statistical Analysis: The level of knowledge of postural awareness was evaluated and correlated with the presence or absence of the MSDs. Categorical variables were compared using Chi-square test. P values of less than 0.05 were considered statistically significant. Results: A total of 162 dental students from the age group of 20–25 years were included in the survey, of which 134 dentists responded (83%). When their postural awareness was evaluated, results showed that 89% of the students had poor-to-medium levels of postural awareness. The relation between postural awareness and prevalence of MSDs indicated that 75% of the students with poor awareness, 49% of the students with average awareness, and 40% of the students with good awareness have MSDs. The results were statistically significant (0.002127, which is <0.005) stating that better awareness about proper postures while working helps to minimize the risk of MSDs. Conclusion: Evaluation of levels of postural awareness showed that 21% of the students had poor postural awareness, 67% had average awareness, and 11% had good postural awareness. The analysis of results showed that those students with low-to-average postural awareness had significantly greater prevalence of MSDs. PMID:26942113

  1. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  2. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    PubMed Central

    Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo

    2016-01-01

    Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008

  3. Effectiveness of a lumbopelvic monitor and feedback device to change postural behaviour: a protocol for the ELF cluster randomised controlled trial

    PubMed Central

    Milosavljevic, Stephan

    2017-01-01

    Introduction Low back pain (LBP) is the most common, costly and disabling musculoskeletal disorder worldwide, and is prevalent in healthcare workers. Posture is a modifiable risk factor for LBP shown to reduce the prevalence of LBP. Our feasibility research suggests that postural feedback might help healthcare workers avoid hazardous postures. The Effectiveness of Lumbopelvic Feedback (ELF) trial will investigate the extent to which postural monitor and feedback (PMF) can reduce exposure to hazardous posture associated with LBP. Methods This is a participant-blinded, randomised controlled trial with blocked cluster random allocation. Participants will include volunteer healthcare workers recruited from aged care institutions and hospitals. A postural monitoring and feedback device will monitor and record lumbopelvic forward bending posture, and provide audio feedback whenever the user sustains a lumbopelvic forward bending posture that exceeds predefined thresholds. The primary outcome measure will be postural behaviour (exceeding thresholds). Secondary outcome measures will be incidence of LBP, participant-reported disability and adherence. Following baseline assessment, we will randomly assign participants to 1 of 2 intervention arms: a feedback group and a no-feedback control group. We will compare between-group differences of changes in postural behaviour by using a repeated measures mixed-effect model analysis of covariance (ANCOVA) at 6 weeks. Postural behaviour baseline scores, work-related psychosocial factors and disability scores will be input as covariates into the statistical models. We will use logistic mixed model analysis and Cox's proportional hazards for assessing the effect of a PMF on LBP incidence between groups. Discussion Posture is a modifiable risk factor for low back disorders. Findings from the ELF trial will inform the design of future clinical trials assessing the effectiveness of wearable technology on minimising hazardous posture during daily living activities in patients with low back disorders. Trial registration number ACTRN12616000449437. PMID:28073798

  4. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e.g., 44 percent increase as relative humidity changed from 18 percent and dew point 33 degF to 50 percent and dew point of 57 degF.

  5. Influences of arm proprioception and degrees of freedom on postural control with light touch feedback.

    PubMed

    Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R

    2008-02-01

    Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.

  6. Ergonomic strategies to improve radiographers' posture during mammography activities.

    PubMed

    Cernean, Nicolai; Serranheira, Florentino; Gonçalves, Pedro; Sá Dos Reis, Cláudia

    2017-08-01

    To identify alternatives for radiographers' postures while performing mammography that can contribute to reduce the risk of work-related musculoskeletal disorders (WRMSDs). Radiographers' postures to positioning craniocaudal (CC) and mediolateral oblique (MLO) views were simulated without any intervention for three scenarios: radiographer/patient with similar statures, radiographer smaller than patient and radiographer taller than patient. Actions were taken to modify the postures: seated radiographer; patient on a step; seated patient; radiographer on a step. All the postures were analysed using kinovea 0.8.15 software and the angles were measured twice and classified according to European standard EN1005-4: 2005. The non-acceptable angles were measured mainly during MLO positioning when radiographer was taller than the patient: 139° and 120° for arm-flexion and abduction, 72° for trunk and -24° for head/neck-flexion. The introduction of alternative postures (radiographer seated), allowed improvements in posture (60° and 99° for arm flexion and abduction, 14° for trunk and 0° for head/neck flexion), being classified as acceptable. The alternative postures simulated have the potential to reduce the risk of developing WRMSDs when radiographers and patients have different statures. • Radiographers' postures in mammography can contribute to work-related musculoskeletal disorders • Non-acceptable posture was identified for MLO breast positioning (radiographer taller than patient) • Adapting posture to patient biotype reduces the WRMSD risk for radiographers.

  7. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  8. Powerful postures versus powerful roles: which is the proximate correlate of thought and behavior?

    PubMed

    Huang, Li; Galinsky, Adam D; Gruenfeld, Deborah H; Guillory, Lucia E

    2011-01-01

    Three experiments explored whether hierarchical role and body posture have independent or interactive effects on the main outcomes associated with power: action in behavior and abstraction in thought. Although past research has found that being in a powerful role and adopting an expansive body posture can each enhance a sense of power, two experiments showed that when individuals were placed in high- or low-power roles while adopting an expansive or constricted posture, only posture affected the implicit activation of power, the taking of action, and abstraction. However, even though role had a smaller effect on the downstream consequences of power, it had a stronger effect than posture on self-reported sense of power. A final experiment found that posture also had a larger effect on action than recalling an experience of high or low power. We discuss body postures as one of the most proximate correlates of the manifestations of power.

  9. Specificity of learning: why infants fall over a veritable cliff.

    PubMed

    Adolph, K E

    2000-07-01

    Nine-month-old infants were tested at the precipice of safe and risky gaps in the surface of support. Their reaching and avoidance responses were compared in two postures, an experienced sitting posture and a less familiar crawling posture. The babies avoided reaching over risky gaps in the sitting posture but fell into risky gaps while attempting to reach in the crawling posture. This dissociation between developmental changes in posture suggests that (a) each postural milestone represents a different, modularly organized control system and (b) infants' adaptive avoidance responses are based on information about their postural stability relative to the gap size. Moreover, the results belie previous accounts suggesting that avoidance of a disparity in depth of the ground surface depends on general knowledge such as fear of heights, associations between depth information and falling, or knowledge that the body cannot be supported in empty space.

  10. Effect of chronic low level manganese exposure on postural balance: A pilot study of residents in southwest Ohio

    PubMed Central

    Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin

    2009-01-01

    OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498

  11. Effects of deep breathing on internal oblique and multifidus muscle activity in three sitting postures

    PubMed Central

    Ko, Min-Joo; Jung, Eun-Joo; Kim, Moon-Hwan; Oh, Jae-Seop

    2018-01-01

    [Purpose] This study was to investigate differences in the level of activity of the external oblique (EO), internal oblique (IO), and multifidus (MF) muscles with deep breathing in three sitting postures. [Subjects and Methods] Sixteen healthy women were recruited. The muscle activity (EO, IO, MF) of all subjects was measured in three sitting postures (slumped, thoracic upright, and lumbo-pelvic upright sitting postures) using surface electromyography. The activity of the same muscles was then remeasured in the three sitting postures during deep breathing. [Results] Deep breathing significantly increased activity in the EO, IO, and MF compared with normal breathing. Comparing postures, the activity of the MF and IO muscles was highest in the lumbo-pelvic upright sitting posture. [Conclusion] An lumbo-pelvic upright sitting posture with deep breathing could increase IO and MF muscle activity, thus improving lumbo-pelvic region stability. PMID:29706695

  12. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  13. Relation between functional mobility and dynapenia in institutionalized frail elderly

    PubMed Central

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148

  14. Common extensor origin release in recalcitrant lateral epicondylitis - role justified?

    PubMed Central

    2010-01-01

    The aim of our study was to analyse the efficacy of operative management in recalcitrant lateral epicondylitis of elbow. Forty patients included in this study were referred by general practitioners with a diagnosis of tennis elbow to the orthopaedic department at a district general hospital over a five year period. All had two or more steroid injections at the tender spot, without permanent relief of pain. All subsequently underwent simple fasciotomy of the extensor origin. Of forty patients thirty five had improvement in pain and function, two had persistent symptoms and three did not perceive any improvement. Twenty five had excellent, ten had well, two had fair and three had poor outcomes (recurrent problem; pain at rest and night). Two patients underwent revision surgery. Majority of the patients had improvement in pain and function following operative treatment. In this study, an extensor fasciotomy was demonstrated to be an effective treatment for refractory chronic lateral epicondylitis; however, further studies are warranted. PMID:20459701

  15. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  16. Age-Related Locomotion Characteristics in Association with Balance Function in Young, Middle-Aged, and Older Adults.

    PubMed

    Lee, Hwang-Jae; Chang, Won Hyuk; Hwang, Sun Hee; Choi, Byung-Ok; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-04-01

    The purpose of this study was to examine age-related gait characteristics and their associations with balance function in older adults. A total of 51 adult volunteers participated. All subjects underwent locomotion analysis using a 3D motion analysis and 12-channel dynamic electromyography system. Dynamic balance function was assessed by the Berg Balance Scale. Older adults showed a higher level of muscle activation than young adults, and there were significant positive correlations between increased age and activation of the trunk and thigh muscles in the stance and swing phase of the gait cycle. In particular, back extensor muscle activity was mostly correlated with the dynamic balance in older adults. Thus, back extensor muscle activity in walking may provide a clue for higher falling risk in older adults. This study demonstrates that the back extensor muscles play very important roles with potential for rehabilitation training to improve balance and gait in older adults.

  17. How are tonic and phasic cardiovascular changes related to central motor command?

    PubMed

    Jennings, J R; van der Molen, M W; Brock, K; Somsen, R J

    1993-07-01

    We examined the influence of central motor command on heart rate, respiration, and peripheral vascular activity. Central command was enhanced or reduced using tendon vibration. Muscle tension was held constant permitting the examination of variation in central command. Experiment 1 demonstrated in 13 college-aged males an enhancement of heart rate and vascular responses to an isometric, extensor contraction when vibration of the flexor tendon was added. Experiment 2 asked whether changes in central command interacted with phasic cardiovascular changes such as stimulus-linked anticipatory cardiac deceleration. Twenty college-aged males performed either an isometric flexor or extensor contraction with or without flexor tendon vibration. As expected, vibration enhanced cardiovascular change with extensor contraction more than with flexor contraction. Relative to control contractions, however, the flexor change was not an absolute decrease in cardiovascular change. More importantly, tendon vibration failed to alter phasic cardiovascular changes. Force and central commands for force induce cardiovascular change, but this change seems independent of phasic changes induced by the anticipation and processing of environmental stimuli.

  18. The effect of instructions on postural-suprapostural interactions in three working memory tasks.

    PubMed

    Burcal, Christopher J; Drabik, Evan C; Wikstrom, Erik A

    2014-06-01

    Examining postural control while simultaneously performing a cognitive, or suprapostural task, has shown a fairly consistent trend of improving postural control in young healthy adults and provides insight into postural control mechanisms used in everyday life. However, the role of attention driven by explicit verbal instructions while dual-tasking is less understood. Therefore, the purpose of this investigation is to determine the effects of explicit verbal instructions on the postural-suprapostural interactions among various domains of working memory. A total of 22 healthy young adults with a heterogeneous history of ankle sprains volunteered to participate (age: 22.2±5.1 years; n=10 history of ankle sprains, n=12 no history). Participants were asked to perform single-limb balance trials while performing three suprapostural tasks: backwards counting, random number generation, and the manikin test. In addition, each suprapostural task was completed under three conditions of instruction: no instructions, focus on the postural control task, focus on the suprapostural task. The results indicate a significant effect of instructions on postural control outcomes, with postural performance improving in the presence of instructions across all three cognitive tasks which each stress different aspects of working memory. Further, postural-suprapostural interactions appear to be related to the direction or focus of an individual's attention as instructions to focus on the suprapostural task resulted in the greatest postural control improvements.Thus, attention driven by explicit verbal instructions influence postural-suprapostural interactions as measured by a temporal-spatial postural control outcome, time-to-boundary, regardless of the suprapostural task performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl

    PubMed Central

    Daley, Monica A; Voloshina, Alexandra; Biewener, Andrew A

    2009-01-01

    Here we investigate the interplay between intrinsic mechanical and neural factors in muscle contractile performance during running, which has been less studied than during walking. We report in vivo recordings of the gastrocnemius muscle of the guinea fowl (Numida meleagris), during the response and recovery from an unexpected drop in terrain. Previous studies on leg and joint mechanics following this perturbation suggested that distal leg extensor muscles play a key role in stabilisation. Here, we test this through direct recordings of gastrocnemius fascicle length (using sonomicrometry), muscle–tendon force (using buckle transducers), and activity (using indwelling EMG). Muscle recordings were analysed from the stride just before to the second stride following the perturbation. The gastrocnemius exhibits altered force and work output in the perturbed and first recovery strides. Muscle work correlates strongly with leg posture at the time of ground contact. When the leg is more extended in the drop step, net gastrocnemius work decreases (−5.2 J kg−1versus control), and when the leg is more flexed in the step back up, it increases (+9.8 J kg−1versus control). The muscle's work output is inherently stabilising because it pushes the body back toward its pre-perturbation (level running) speed and leg posture. Gastrocnemius length and force return to level running means by the second stride following the perturbation. EMG intensity differs significantly from level running only in the first recovery stride following the perturbation, not within the perturbed stride. The findings suggest that intrinsic mechanical factors contribute substantially to the initial changes in muscle force and work. The statistical results suggest that a history-dependent effect, shortening deactivation, may be an important factor in the intrinsic mechanical changes, in addition to instantaneous force–velocity and force–length effects. This finding suggests the potential need to incorporate history-dependent muscle properties into neuromechanical simulations of running, particularly if high muscle strains are involved and stability characteristics are important. Future work should test whether a Hill or modified Hill type model provides adequate prediction in such conditions. Interpreted in light of previous studies on walking, the findings support the concept of speed-dependent roles of reflex feedback. PMID:19359369

  20. Forward head posture: its structural and functional influence on the stomatognathic system, a conceptual study.

    PubMed

    Gonzalez, H E; Manns, A

    1996-01-01

    An extensive conceptual analysis to establish the primary role a forward head posture plays in the appearance of some craniomandibular dysfunctions and internal derangements of the temporomandibular joints, associated to craniocervical postural disturbances. The analysis is based on findings contributed by scientific investigations in the field of dentofacial orthopedics and dysfunction. Special emphasis has been put on the influence of forward head posture on the craniofacial growth as it can determine a morphoskeletal and neuromuscular pattern leading to a dysfunctional condition. A correlation is established between Class II Occlusion, forward head posture, and craniomandibular dysfunction. The concept of craniocervical postural position is defined, as well as its close relation to the mandibular postural position.

  1. The thrust belt in Southwest Montana and east-central Idaho

    USGS Publications Warehouse

    Ruppel, Edward T.; Lopez, David A.

    1984-01-01

    The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear faults during thrusting, and seem to have controlled the curving patterns of salients and reentrants at the leading edge of the thrust belt. Radiometric and stratiographic evidence shows that the thrust belt was in its present position by about 75 million year go.

  2. Statistical Models for Predicting Automobile Driving Postures for Men and Women Including Effects of Age.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-03-01

    Previously published statistical models of driving posture have been effective for vehicle design but have not taken into account the effects of age. The present study developed new statistical models for predicting driving posture. Driving postures of 90 U.S. drivers with a wide range of age and body size were measured in laboratory mockup in nine package conditions. Posture-prediction models for female and male drivers were separately developed by employing a stepwise regression technique using age, body dimensions, vehicle package conditions, and two-way interactions, among other variables. Driving posture was significantly associated with age, and the effects of other variables depended on age. A set of posture-prediction models is presented for women and men. The results are compared with a previously developed model. The present study is the first study of driver posture to include a large cohort of older drivers and the first to report a significant effect of age. The posture-prediction models can be used to position computational human models or crash-test dummies for vehicle design and assessment. © 2015, Human Factors and Ergonomics Society.

  3. The Relationship Between Postural and Movement Stability.

    PubMed

    Feldman, Anatol G

    2016-01-01

    Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.

  4. Plasticity of the postural function to sport and/or motor experience.

    PubMed

    Paillard, Thierry

    2017-01-01

    This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    PubMed

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  6. The effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the Musculus brachiocephalicus and the Musculus extensor carpi radialis in horses

    PubMed Central

    Zellner, Antonia; Bockstahler, Barbara; Peham, Christian

    2017-01-01

    Background information The present study aimed to investigate the effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. 19 horses and ponies of different breeds (body weight: 496±117 kg), gender (8 mares, 10 geldings and 3 stallions) and ages (14.9±6.9 years old) were analysed without Kinesio Tape (“no tape”), with Kinesio Tape (muscle facilitation application on both muscles of both sides, “with tape”) and immediately after Kinesio Taping (“post tape”) through kinematic motion analysis and surface electromyography on a treadmill at the walk (speed: 1.5±0.1 m/s) and trot (speed: 3.1±0.3 m/s). Results The results of the surface electromyography (maximum muscle activity at the walk and trot) and the kinematic motion analysis (maximum stride length and maximum height of the forelimbs flight arc at the walk and trot) showed that there were no significant differences between "no tape", "with tape" and "post tape". Conclusion To sum up, Kinesio Taping on the M. brachiocephalicus and the M. extensor carpi radialis does not affect (in a positive or negative manner) the trajectory of the forelimb or the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. PMID:29166657

  7. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  8. Net joint moments and muscle activation in barbell squats without and with restricted anterior leg rotation.

    PubMed

    Chiu, Loren Z F; vonGaza, Gabriella L; Jean, Liane M Y

    2017-01-01

    Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (P = 0.001) and posterior thigh (P < 0.001) rotations, resulting in a smaller knee flexion range of motion (P < 0.001). At maximum squat depth, ankle plantar flexor (P < 0.001) and knee extensor (P < 0.001) NJM were higher in unrestricted squats. Hip extensor NJM (P = 0.14) was not different between squat types at maximum squat depth. Vastus lateralis (P > 0.05), vastus medialis (P > 0.05) and rectus femoris (P > 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.

  9. Functional anatomy of the lateral collateral ligament of the elbow.

    PubMed

    Hackl, M; Bercher, M; Wegmann, K; Müller, L P; Dargel, J

    2016-07-01

    The aim of this study was to analyze the functional anatomy of the lateral collateral ligament complex (LCLC) and the surrounding forearm extensors. Using 81 human cadaveric upper extremities, the anatomy of the forearm extensors-especially the anconeus, supinator and extensor carpi ulnaris (ECU)-was analyzed. After removal of aforementioned extensors the functional anatomy of the LCLC was analyzed. The origin of the LCLC was evaluated for isometry. The insertion types of the lateral ulnar collateral ligament (LUCL) were analyzed and classified. The ECU runs parallel to the RCL to dynamically preserve varus stability. The supinator and anconeus muscle fibers coalesce with the LCLC and lengthen during pronation. The anconeus fibers run parallel to the LUCL in full flexion. The LCLC consists of the annular ligament (AL) and the isometric radial collateral ligament (RCL). During elbow flexion, its posterior branches (LUCL) tighten while the anterior branches loosen. When performing a pivot shift test, the loosened LUCL fibers do not fully tighten in full extension. The LUCL inserts along with the AL at the supinator crest. Three different insertion types could be observed. The LUCL represents the posterior branch of the RCL rather than a distinct ligament. It is non-isometric and lengthens during elbow flexion. The RCL was found to be of vital importance for neutralization of posterolateral rotatory forces. Pronation of the forearm actively stabilizes the elbow joint as the supinator, anconeus and biceps muscle work in unison to increase posterolateral rotatory stability.

  10. Extensor tendinopathy of the elbow assessed with sonoelastography: histologic correlation.

    PubMed

    Klauser, Andrea S; Pamminger, Mathias; Halpern, Ethan J; Abd Ellah, Mohamed M H; Moriggl, Bernhard; Taljanovic, Mihra S; Deml, Christian; Sztankay, Judit; Klima, Guenther; Jaschke, Werner R

    2017-08-01

    To compare agreement between conventional B-mode ultrasound (US) and compression sonoelastography (SEL) of the common extensor tendons of the elbow with histological evaluation. Twenty-six common extensor tendons were evaluated in 17 cadavers (11 females, median age 85 years and 6 males, median age 80 years). B-mode US was graded into: Grade 1, homogeneous fibrillar pattern; grade 2, hypoechoic areas and/or calcifications <30%; and grade 3 > 30%. SEL was graded into: Grade 1 indicated blue (hardest) to green (hard); grade 2 yellow (soft); and grade 3 red (softest). B-mode US, SEL, and a combined grading score incorporating both were compared to histological findings in 76 biopsies. Histological alterations were detected in 55/76 biopsies. Both modalities showed similar results (sensitivity, specificity, and accuracy 84%, 81%, and 83% for B-mode US versus 85%, 86%, and 86% for SEL, respectively, P > 0.3). However, a combination of both resulted in significant improvement in sensitivity (96%, P < 0.02) without significant change in specificity (81%, P < 0.3), yielding an improved overall accuracy (92%). Combined imaging of the extensor tendons with both modalities is superior to either modality alone for predicting the presence of pathologic findings on histology. • Combination of B-mode US and SEL proved efficiency in diagnosing lateral epicondylitis. • Combination of B-mode US and SEL in lateral epicondylitis correlates to histology. • Combination of both modalities provides improved sensitivity without loss of specificity.

  11. A Novel Two-Velocity Method for Elaborate Isokinetic Testing of Knee Extensors.

    PubMed

    Grbic, Vladimir; Djuric, Sasa; Knezevic, Olivera M; Mirkov, Dragan M; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2017-09-01

    Single outcomes of standard isokinetic dynamometry tests do not discern between various muscle mechanical capacities. In this study, we aimed to (1) evaluate the shape and strength of the force-velocity relationship of knee extensors, as observed in isokinetic tests conducted at a wide range of angular velocities, and (2) explore the concurrent validity of a simple 2-velocity method. Thirteen physically active females were tested for both the peak and averaged knee extensor concentric force exerted at the angular velocities of 30°-240°/s recorded in the 90°-170° range of knee extension. The results revealed strong (0.960

  12. Omega "Ω" Pulley Plasty for Surgical Management of DeQuervain's Disease.

    PubMed

    Bakhach, Joseph; Chaya, Bachar; Papazian, Nazareth

    2018-06-01

    DeQuervain tenosynovitis, refractory to medical conservative treatment, has been traditionally treated by a simple division of the pulley, a procedure associated with several complications. Many authors attempted to prevent these complications by describing techniques of pulley reconstruction after its release necessitating suturing the different flaps and subsequently promoting extensor tendons adhesions. The authors present an alternative procedure for the first extensor compartment pulley decompression: "Omegaplasty". 25 Patients with 29 DeQuervain tenosynovitis cases were enrolled in a prospective, nonrandomized clinical trial from 2012 to 2016. At enrollment they were offered the option of Omegaplasty as a surgical treatment modality for their cases. The procedure is based on liberating the anterior attachment of the pulley from the anterior lip of the styloïd process while respecting its continuity with the periosteal flap as well as promoting expansion of the tunnel volume. All operated patients were evaluated using the "Opposition Kapandji Score". The authors present the results of 29 different "Omegaplasty" procedures. Based on the Kapandji opposition score, twenty cases scored 10/10 while the remaining nine cases yielded an 8/10 score each. The described technique is simple, reliable and respects the extensor tendons gliding physiology and biodynamics. By preserving the anatomical continuity of the first extensor compartment pulley at the wrist, the risk of adhesion formation is reduced. The preliminary results are encouraging and provide the "Ω" plasty the potential to be considered as a surgical option for treatment of De Quervain Tenosynovitis.

  13. Traumatic Extensor Tendon Injuries to the Hand: Clinical Anatomy, Biomechanics, and Surgical Procedure Review.

    PubMed

    Colzani, Giulia; Tos, Pierluigi; Battiston, Bruno; Merolla, Giovanni; Porcellini, Giuseppe; Artiaco, Stefano

    2016-04-01

    The extensor apparatus is a complex muscle-tendon system that requires integrity or optimal reconstruction to preserve hand function. Anatomical knowledge and the understanding of physiopathology of extensor tendons are essential for an accurate diagnosis of extensor tendon injuries (ETIs) of the hand and wrist, because these lesions are complex and commonly observed in clinical practice. A careful clinical history and assessment still remain the first step for the diagnosis, followed by US and MR to confirm the suspect of ETI or to investigate some doubtful conditions and rule out associate lesions. During last decades the evolution of surgical techniques and rehabilitative treatment protocol led to gradual improvement in clinical results of ETI treatment and surgical repair. Injury classification into anatomical zones and the evaluation of the characteristics of the lesions are considered key points to select the appropriate treatment for ETI. Both conservative and surgical management can be indicated in ETI, depending on the anatomical zone and on the characteristics of the injuries. As a general rule, an attempt of conservative treatment should be performed when the lesion is expected to have favorable result with nonoperative procedure. Many surgical techniques have been proposed over the time and with favorable results if the tendon injury is not underestimated and adequately treated. Despite recent research findings, a lack of evidence-based knowledge is still observed in surgical treatment and postoperative management of ETI. Further clinical and biomechanical investigations would be advisable to clarify this complex issue.

  14. Traumatic Extensor Tendon Injuries to the Hand: Clinical Anatomy, Biomechanics, and Surgical Procedure Review

    PubMed Central

    Colzani, Giulia; Tos, Pierluigi; Battiston, Bruno; Merolla, Giovanni; Porcellini, Giuseppe; Artiaco, Stefano

    2016-01-01

    The extensor apparatus is a complex muscle-tendon system that requires integrity or optimal reconstruction to preserve hand function. Anatomical knowledge and the understanding of physiopathology of extensor tendons are essential for an accurate diagnosis of extensor tendon injuries (ETIs) of the hand and wrist, because these lesions are complex and commonly observed in clinical practice. A careful clinical history and assessment still remain the first step for the diagnosis, followed by US and MR to confirm the suspect of ETI or to investigate some doubtful conditions and rule out associate lesions. During last decades the evolution of surgical techniques and rehabilitative treatment protocol led to gradual improvement in clinical results of ETI treatment and surgical repair. Injury classification into anatomical zones and the evaluation of the characteristics of the lesions are considered key points to select the appropriate treatment for ETI. Both conservative and surgical management can be indicated in ETI, depending on the anatomical zone and on the characteristics of the injuries. As a general rule, an attempt of conservative treatment should be performed when the lesion is expected to have favorable result with nonoperative procedure. Many surgical techniques have been proposed over the time and with favorable results if the tendon injury is not underestimated and adequately treated. Despite recent research findings, a lack of evidence-based knowledge is still observed in surgical treatment and postoperative management of ETI. Further clinical and biomechanical investigations would be advisable to clarify this complex issue. PMID:27616821

  15. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    PubMed

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing).The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only).In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation).IN ORDER TO INCREASE THE VALIDITY OF TRUNK STRENGTH TESTING THE LETTER SHOULD INCLUDE: specific warm-up, good pelvic fixation and visual feedback.

  16. Assessment of Isometric Trunk Strength – The Relevance of Body Position and Relationship between Planes of Movement

    PubMed Central

    Kocjan, Andrej; Sarabon, Nejc

    2014-01-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R2 = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key points Maximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing). The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only). In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation). In order to increase the validity of trunk strength testing the letter should include: specific warm-up, good pelvic fixation and visual feedback. PMID:24790491

  17. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  18. Investigation of compensatory postures with videofluoromanometry in dysphagia patients

    PubMed Central

    Solazzo, Antonio; Monaco, Luigi; Del Vecchio, Lucia; Tamburrini, Stefania; Iacobellis, Francesca; Berritto, Daniela; Pizza, Nunzia Luisa; Reginelli, Alfonso; Di Martino, Natale; Grassi, Roberto

    2012-01-01

    AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysphagia patients were classified as follows: safe transit; penetration without aspiration; aspiration before, during or after swallowing; multiple aspirations and no transit. The patients with aspiration or no transit were tested with VFM to determine whether compensatory postures could correct their swallowing disorder. RESULTS: VFM revealed penetration without aspiration in 71 patients (22.1%); aspiration before swallowing in 17 patients (5.3%); aspiration during swallowing in 32 patients (10%); aspiration after swallowing in 21 patients (6.5%); multiple aspirations in six patients (1.9%); no transit in five patients (1.6%); and safe transit in 169 patients (52.6%). Compensatory postures guaranteed a safe transit in 66/75 (88%) patients with aspiration or no transit. A chin-down posture achieved a safe swallow in 42/75 (56%) patients, a head-turned posture in 19/75 (25.3%) and a hyperextended head posture in 5/75 (6.7%). The compensatory postures were not effective in 9/75 (12%) cases. CONCLUSION: VFM allows the speech-language the-rapist to choose the most effective compensatory posture without a trial-and-error process and check the effectiveness of the posture. PMID:22736921

  19. Experience of handicap and anxiety in phobic postural vertigo.

    PubMed

    Holmberg, Johan; Karlberg, Mikael; Harlacher, Uwe; Magnusson, Mans

    2005-03-01

    We found a difference in gender distribution in a population of phobic postural vertigo patients compared with dizzy patients seen in general neuro-otological practice. It appears as if women with phobic postural vertigo suffer more and are more handicapped by dizziness than both men with phobic postural vertigo and a population with dizziness. These differences may reflect other causes of phobic postural vertigo besides anxiety, such as gender-related coping behaviour and postural strategy. Anxiety influences the degree of suffering and handicap in dizzy patients. Experiences of anxiety and handicap were investigated among a population with phobic postural vertigo. Using the Dizziness Handicap Inventory, the Vertigo Symptom Scale and the Vertigo Handicap Questionnaire, 34 consecutive patients with phobic postural vertigo were compared with a population of 95 consecutive patients seen at a balance disorder clinic. Patients with phobic postural vertigo scored higher than the control subjects with respect to all parameters with the exception of the physical subscale of the Dizziness Handicap Inventory. Because there were significantly more women in the control group we performed a gender-specific analysis of the results. The higher test scores among patients with phobic postural vertigo can be explained by the higher scores among women in this group, while the test results for men were more similar to those of the control group.

  20. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    PubMed

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

Top