External Beam Radiation Therapy for Cancer
External beam radiation therapy is used to treat many types of cancer. it is a local treatment, where a machine aims radiation at your cancer. Learn more about different types of external beam radiation therapy, and what to expect if you're receiving treatment.
What to Know about External Beam Radiation Therapy
... Radiation Therapy: What To Know About External Beam Radiation Therapy Before treatment starts: You will meet with a doctor or ... and show the therapist where to aim the radiation. When you go for treatment: ■ Don’t have powder, deodorant, Band-Aids ® , or ...
NASA Astrophysics Data System (ADS)
Paganetti, Harald
2017-01-01
Cancer therapy is a multi-modality approach including surgery, systemic or targeted chemotherapy, radiation (external beam or radionuclide), and immunotherapy. Radiation is typically administered using external beam photon therapy. Proton therapy has been around for more than 60 years but was restricted to research laboratories until the 1990s. Since then clinical proton therapy has been growing rapidly with currently more than 50 facilities worldwide. The interest in proton therapy stems from the physical properties of protons allowing for advanced dose sculpting around the target and sparing of healthy tissue. This review first evaluates the basics of proton therapy physics and technology and then outlines some of the current physical, biological, and clinical challenges. Solving these will ultimately determine whether proton therapy will continue on its path to becoming mainstream.
The Patient Burden of Bladder Outlet Obstruction after Prostate Cancer Treatment.
Liberman, Daniel; Jarosek, Stephanie; Virnig, Beth A; Chu, Haitao; Elliott, Sean P
2016-05-01
Bladder outlet obstruction after prostate cancer therapy imposes a significant burden on health and quality of life in men. Our objective was to describe the burden of bladder outlet obstruction after prostate cancer therapy by detailing the type of procedures performed and how often those procedures were repeated in men with recurrent bladder outlet obstruction. Using SEER (Surveillance, Epidemiology and End Results)-Medicare linked data from 1992 to 2007 with followup through 2009 we identified 12,676 men who underwent at least 1 bladder outlet obstruction procedure after prostate cancer therapy, including external beam radiotherapy in 3,994, brachytherapy in 1,485, brachytherapy plus external beam radiotherapy in 1,847, radical prostatectomy in 4,736, radical prostatectomy plus external beam radiotherapy in 369 and cryotherapy in 245. Histogram, incidence rates and Cox proportional hazards models with repeat events analysis were done to describe the burden of repeat bladder outlet obstruction treatments stratified by prostate cancer therapy type. We describe the type of bladder outlet obstruction surgery grouped by level of invasiveness. At a median followup of 8.8 years 44.6% of men underwent 2 or more bladder outlet obstruction procedures. Compared to men who underwent radical prostatectomy those treated with brachytherapy and brachytherapy plus external beam radiotherapy were at increased adjusted risk for repeat bladder outlet obstruction treatment (HR 1.2 and 1.32, respectively, each p <0.05). After stricture incision the men treated with radical prostatectomy or radical prostatectomy plus external beam radiotherapy were most likely to undergo dilation at a rate of 34.7% to 35.0%. Stricture resection/ablation was more common after brachytherapy, external beam radiotherapy or brachytherapy plus external beam radiotherapy at a rate of 28.9% to 41.2%. Almost half of the men with bladder outlet obstruction after prostate cancer therapy undergo more than 1 procedure. Furthermore men with bladder outlet obstruction after radiotherapy undergo more invasive endoscopic therapies and are at higher risk for multiple treatments than men with bladder outlet obstruction after radical prostatectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
MO-A-BRB-03: Integration Issues in Electronic Charting for External Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutlief, S.
2015-06-15
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
The use of cognitive-behavioral treatment including hypnosis for claustrophobia in cancer patients.
Steggles, S
1999-04-01
Two case studies are reported to illustrate the use of a comprehensive cognitive-behavioral approach to treat claustrophobia in cancer patients undergoing external beam radiation therapy. Hypnosis was an essential component of the cognitive-behavioral approach. Both patients responded favorably to the psychological intervention and completed the required external beam radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsao, May N.; Mehta, Minesh P.; Whelan, Timothy J.
2005-09-01
Purpose: To systematically review the evidence for the use of stereotactic radiosurgery or stereotactic fractionated radiation therapy in adult patients with malignant glioma. Methods: Key clinical questions to be addressed in this evidence-based review were identified. Outcomes considered were overall survival, quality of life or symptom control, brain tumor control or response and toxicity. MEDLINE (1990-2004 June Week 2), CANCERLIT (1990-2003), CINAHL (1990-2004 June Week 2), EMBASE (1990-2004 Week 25), and the Cochrane library (2004 issue 2) databases were searched using OVID. In addition, the Physician Data Query clinical trials database, the proceedings of the American Society of Clinical Oncologymore » (1997-2004), ASTRO (1997-2004), and the European Society of Therapeutic Radiology and Oncology (ESTRO) (1997-2003) were searched. Data from the literature search were reviewed and tabulated. This process included an assessment of the level of evidence. Results: For patients with newly diagnosed malignant glioma, radiosurgery as boost therapy with conventional external beam radiation was examined in one randomized trial, five prospective cohort studies, and seven retrospective series. There is Level I evidence that the use of radiosurgery boost followed by external beam radiotherapy and carmustine (BCNU) does not confer benefit with respect to overall survival, quality of life, or patterns of failure as compared with external beam radiotherapy and BCNU. There is Level I-III evidence of toxicity associated with radiosurgery boost as compared with external beam radiotherapy alone. The results of the prospective and retrospective studies may be influenced by selection bias. Radiosurgery used as salvage for recurrent or progressive malignant glioma after conventional external beam radiotherapy failure was reported in zero randomized trials, three prospective cohort studies, and five retrospective series. The available data are sparse and insufficient to make absolute recommendations. Stereotactic fractionated radiation therapy has been reported as boost therapy with external beam radiotherapy for patients with newly diagnosed malignant glioma in only three prospective studies. As primary therapy alone without conventional external beam radiotherapy for newly diagnosed malignant glioma patients, stereotactic fractionated radiation therapy has been reported in only one prospective study. There were only three prospective series and two retrospective studies reported for patients with recurrent or progressive malignant glioma. Conclusions: For patients with malignant glioma, there is Level I-III evidence that the use of radiosurgery boost followed by external beam radiotherapy and BCNU does not confer benefit in terms of overall survival, local brain control, or quality of life as compared with external beam radiotherapy and BCNU. The use of radiosurgery boost is associated with increased toxicity. For patients with malignant glioma, there is insufficient evidence regarding the benefits/harms of using radiosurgery at the time progression or recurrence. There is also insufficient evidence regarding the benefits/harms in the use of stereotactic fractionated radiation therapy for patients with newly diagnosed or progressive/recurrent malignant glioma.« less
Carcinoma of the cervix, stage III. Results of radiation therapy.
Montana, G S; Fowler, W C; Varia, M A; Walton, L A; Mack, Y; Shemanski, L
1986-01-01
From April 1969 through December 1980, 203 patients with Stage III epidermoid carcinoma of the cervix were treated with radiation therapy with curative intent. The disease-free survival at 2, 5, and 10 years was 50%, 33%, and 27%, respectively. The survival was better for patients with Stage IIIB disease than for those with Stage IIIA disease. Eighty-eight patients were treated with external beam therapy only, and 115 received external beam and brachytherapy. The disease-free survival was better for the combination therapy group initially, but this difference was not sustained beyond 5 years. One hundred eight patients experienced recurrence within the irradiated field, for a locoregional recurrence rate of 53%. Twenty-seven patients had complications (13%). The complications were mild in 13 patients, moderate in 4 patients, and severe in 10 patients. A study was made of the relationship of the dose to Point A and the occurrence of complications. Similar analyses were made of the bladder and rectal doses and the subsequent occurrence of urinary and intestinal complications. In these analyses, the mean dose to Point A and the critical organs was higher for the groups of patients with complications than for those patients without complications. This relationship was also observed when the patients were stratified for treatment with either external beam plus brachytherapy or external beam therapy alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Kevin S.; Jani, Ashesh B.; Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.ed
Purpose: To characterize the bleeding toxicity associated with external beam radiotherapy for prostate cancer patients receiving anticoagulation (AC) therapy. Methods and Materials: The study cohort consisted of 568 patients with adenocarcinoma of the prostate who were treated with definitive external beam radiotherapy. Of these men, 79 were receiving AC therapy with either warfarin or clopidogrel. All patients were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Bleeding complications were recorded during treatment and subsequent follow-up visits. Results: With a median follow-up of 48 months, the 4-year actuarial risk of Grade 3 or worse bleeding toxicity was 15.5% for those receivingmore » AC therapy compared with 3.6% among those not receiving AC (p < .0001). On multivariate analysis, AC therapy was the only significant factor associated with Grade 3 or worse bleeding (p < .0001). For patients taking AC therapy, the crude rate of bleeding was 39.2%. Multivariate analysis within the AC group demonstrated that a higher radiotherapy dose (p = .0408), intensity-modulated radiotherapy (p = 0.0136), and previous transurethral resection of the prostate (p = .0001) were associated with Grade 2 or worse bleeding toxicity. Androgen deprivation therapy was protective against bleeding, with borderline significance (p = 0.0599). Dose-volume histogram analysis revealed that Grade 3 or worse bleeding was minimized if the percentage of the rectum receiving >=70 Gy was <10% or the rectum receiving >=50 Gy was <50%. Conclusion: Patients taking AC therapy have a substantial risk of bleeding toxicity from external beam radiotherapy. In this setting, dose escalation or intensity-modulated radiotherapy should be used judiciously. With adherence to strict dose-volume histogram criteria and minimizing hotspots, the risk of severe bleeding might be reduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechalakos, J.
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumsteg, Zachary S.; Spratt, Daniel E.; Pei, Xin
2013-03-15
Purpose: We investigated the benefit of short-term androgen-deprivation therapy (ADT) in patients with intermediate-risk prostate cancer (PC) receiving dose-escalated external beam radiation therapy. Methods and Materials: The present retrospective study comprised 710 intermediate-risk PC patients receiving external beam radiation therapy with doses of ≥81 Gy at a single institution from 1992 to 2005, including 357 patients receiving neoadjuvant and concurrent ADT. Prostate-specific antigen recurrence-free survival (PSA-RFS) and distant metastasis (DM) were compared using the Kaplan-Meier method and Cox proportional hazards models. PC-specific mortality (PCSM) was assessed using competing-risks analysis. Results: The median follow-up was 7.9 years. Despite being more likelymore » to have higher PSA levels, Gleason score 4 + 3 = 7, multiple National Comprehensive Cancer Network intermediate-risk factors, and older age (P≤.001 for all comparisons), patients receiving ADT had improved PSA-RFS (hazard ratio [HR], 0.598; 95% confidence interval [CI], 0.435-0.841; P=.003), DM (HR, 0.424; 95% CI, 0.219-0.819; P=.011), and PCSM (HR, 0.380; 95% CI, 0.157-0.921; P=.032) on univariate analysis. Using multivariate analysis, ADT was an even stronger predictor of improved PSA-RFS (adjusted HR [AHR], 0.516; 95% CI, 0.360-0.739; P<.001), DM (AHR, 0.347; 95% CI, 0.176-0.685; P=.002), and PCSM (AHR, 0.297; 95% CI, 0.128-0.685; P=.004). Gleason score 4 + 3 = 7 and ≥50% positive biopsy cores were other independent predictors of PCSM. Conclusions: Short-term ADT improves PSA-RFS, DM, and PCSM in patients with intermediate-risk PC undergoing dose-escalated external beam radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna
Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, eithermore » 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.« less
Ogawa, Kazuhiko; Nakamura, Katsumasa; Onishi, Hiroshi; Koizumi, Masahiko; Sasaki, Tomonari; Araya, Masayuki; Miyabe, Yuuki; Otani, Yuuki; Teshima, Teruki
2006-01-01
The influence of age on the patterns and outcomes of external beam radiotherapy for clinically localized prostate cancer patients was examined. The Japanese Patterns of Care Study surveys were used to compare the processes and outcomes of radical external beam radiotherapy in 140 elderly patients (>75 years old) and 304 younger patients (<75 years old). Although the Karnofsky performance status was significantly different between elderly and younger patients, there were no significant differences in disease characteristics such as pretreatment PSA level, differentiation, Gleason combined score and clinical T stage. There were also no significant differences in the treatment characteristics such as CT-based treatment planning, conformal therapy, total radiation doses (both a median of 66.0 Gy) and hormonal therapy usage. Moreover, no significant differences in overall survival, biochemical relapse-free survival and late toxicity rates were observed between elderly and younger patients. Age did not influence the disease characteristics, patterns of external beam radiotherapy, survival and late toxicities for clinically localized prostate cancer patients. Therefore, radiotherapy could represent an important treatment modality for elderly patients as well as for younger ones.
NASA Astrophysics Data System (ADS)
Xu, X. George; Bednarz, Bryan; Paganetti, Harald
2008-07-01
It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end.
Partial breast radiation therapy - external beam
APBI is used to prevent breast cancer from coming back. When radiation therapy is given after breast- ... breast conservation therapy reduces the risk of cancer coming back, and possibly even death from breast cancer.
Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Santanam, Lakshmi; Blodgett, Kurt; Curran, Bruce H; Engelsman, Martijn; Feng, Wenzheng; Mechalakos, Jim; Pavord, Dan; Simon, Tom; Sutlieff, Steven; Zhu, X Ronald
2010-12-04
The transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records. QA of the database state (logical consistency and information integrity) is also addressed to ensure that accurate data are transferred.
MO-A-BRB-02: Considerations and Issues in Electronic Charting for Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.
2015-06-15
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sole, Claudio V., E-mail: cvsole@uc.cl; School of Medicine, Complutense University, Madrid; Service of Radiation Oncology, Instituto de Radiomedicina, Santiago
Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up ofmore » 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, P; Molineu, A; Lowenstein, J
Purpose: IROC-H conducts external audits for output check verification of photon and electron beams. Many of these beams can meet the geometric requirements of the TG 51 calibration protocol. For those photon beams that are non TG 51 compliant like Elekta GammaKnife, Accuray CyberKnife and TomoTherapy, IROC-H has specific audit tools to monitor the reference calibration. Methods: IROC-H used its TLD and OSLD remote monitoring systems to verify the output of machines with TG 51 non compliant beams. Acrylic OSLD miniphantoms are used for the CyberKnife. Special TLD phantoms are used for TomoTherapy and GammaKnife machines to accommodate the specificmore » geometry of each machine. These remote audit tools are sent to institutions to be irradiated and returned to IROC-H for analysis. Results: The average IROC-H/institution ratios for 480 GammaKnife, 660 CyberKnife and 907 rotational TomoTherapy beams are 1.000±0.021, 1.008±0.019, 0.974±0.023, respectively. In the particular case of TomoTherapy, the overall ratio is 0.977±0.022 for HD units. The standard deviations of all results are consistent with values determined for TG 51 compliant photon beams. These ratios have shown some changes compared to values presented in 2008. The GammaKnife results were corrected by an experimentally determined scatter factor of 1.025 in 2013. The TomoTherapy helical beam results are now from a rotational beam whereas in 2008 the results were from a static beam. The decision to change modality was based on recommendations from the users. Conclusion: External audits of beam outputs is a valuable tool to confirm the calibrations of photon beams regardless of whether the machine is TG 51 or TG 51 non compliant. The difference found for TomoTherapy units is under investigation. This investigation was supported by IROC grant CA180803 awarded by the NCI.« less
NASA Astrophysics Data System (ADS)
Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.
2016-03-01
External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.
Stock, Richard G; Yalamanchi, Swati; Yamalachi, Swati; Hall, Simon J; Stone, Nelson N
2010-02-01
We assessed the impact of androgen suppressive therapy on biochemical failure in patients with intermediate risk prostate cancer treated with brachytherapy and external beam irradiation. From 1994 to 2006, 432 patients with intermediate risk prostate cancer as defined by the National Comprehensive Cancer Network were treated with low dose rate brachytherapy and external beam irradiation with or without 9 months of androgen suppressive therapy. Gleason score was 7 in 76% of cases and prostate specific antigen was 1.4 to 20 ng/ml (median 7.6). Of the patients 350 received androgen suppressive therapy and 82 did not. The biologically effective dose was 142 to 280 Gy2 (median 206). Followup was 23 to 155 months (median 56). The overall 8-year biochemical failure-free rate using the Phoenix definition in patients with vs without androgen suppressive therapy was 92% vs 92% (p = 0.4). The therapy had no significant impact on the biochemical failure-free rate in patients with Gleason score 7 (92% vs 90.5%, p = 0.55), prostate specific antigen 10 to 20 ng/ml (92% vs 100%, p = 0.32), T2b-T2c disease (89.5% vs 97%, p = 0.27) and more than 1 intermediate risk feature (90% vs 100%, p = 0.2). We addressed the relative importance of radiation dose vs hormonal therapy for intermediate risk prostate cancer. With high biologically effective dose combination treatment androgen suppressive therapy did not have a significant impact on the 8-year biochemical failure-free rate. We question its routine use in this setting. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.
Price, P M; Green, M M
2011-01-01
In an era in which it is possible to deliver radiation with high precision, there is a heightened need for enhanced imaging capabilities to improve tumour localisation for diagnostic, planning and delivery purposes. This is necessary to increase the accuracy and overall efficacy of all types of external beam radiotherapy (RT), including particle therapies. Positron emission tomography (PET) has the potential to fulfil this need by imaging fundamental aspects of tumour biology. The key areas in which PET may support the RT process include improving disease diagnosis and staging; assisting tumour volume delineation; defining tumour phenotype or biological tumour volume; assessment of treatment response; and in-beam monitoring of radiation dosimetry. The role of PET and its current developmental status in these key areas are overviewed in this review, highlighting the advantages and drawbacks. PMID:21427180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Yutaka, E-mail: shiraishi@rad.med.keio.ac.jp; Hanada, Takashi; Ohashi, Toshio
2013-09-01
Purpose: To propose a novel parameter predicting rectal bleeding on the basis of generalized equivalent uniform doses (gEUD) after {sup 125}I prostate brachytherapy combined with external beam radiation therapy and to assess the predictive value of this parameter. Methods and Materials: To account for differences among radiation treatment modalities and fractionation schedules, rectal dose–volume histograms (DVHs) of 369 patients with localized prostate cancer undergoing combined therapy retrieved from corresponding treatment planning systems were converted to equivalent dose-based DVHs. The gEUDs for the rectum were calculated from these converted DVHs. The total gEUD (gEUD{sub sum}) was determined by a summation ofmore » the brachytherapy and external-beam radiation therapy components. Results: Thirty-eight patients (10.3%) developed grade 2+ rectal bleeding. The grade 2+ rectal bleeding rate increased as the gEUD{sub sum} increased: 2.0% (2 of 102 patients) for <70 Gy, 10.3% (15 of 145 patients) for 70-80 Gy, 15.8% (12 of 76 patients) for 80-90 Gy, and 19.6% (9 of 46 patients) for >90 Gy (P=.002). Multivariate analysis identified age (P=.024) and gEUD{sub sum} (P=.000) as risk factors for grade 2+ rectal bleeding. Conclusions: Our results demonstrate gEUD to be a potential predictive factor for grade 2+ late rectal bleeding after combined therapy for prostate cancer.« less
Endometrial cancer - reduce to the minimum. A new paradigm for adjuvant treatments?
2011-01-01
Background Up to now, the role of adjuvant radiation therapy and the extent of lymph node dissection for early stage endometrial cancer are controversial. In order to clarify the current position of the given adjuvant treatment options, a systematic review was performed. Materials and methods Both, Pubmed and ISI Web of Knowledge database were searched using the following keywords and MESH headings: "Endometrial cancer", "Endometrial Neoplasms", "Endometrial Neoplasms/radiotherapy", "External beam radiation therapy", "Brachytherapy" and adequate combinations. Conclusion Recent data from randomized trials indicate that external beam radiation therapy - particularly in combination with extended lymph node dissection - or radical lymph node dissection increases toxicity without any improvement of overall survival rates. Thus, reduced surgical aggressiveness and limitation of radiotherapy to vaginal-vault-brachytherapy only is sufficient for most cases of early stage endometrial cancer. PMID:22118369
External-beam irradiation of carcinoma of the penis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagerman, R.H.; Yu, W.S.; Chung, C.T.
1984-07-01
Twenty-four patients with biopsy-proved squamous-cell carcinoma of the penis underwent external-beam radiation therapy between 1966 and 1980. Fifteen were treated for the primary tumor and 9 for metastatic inguinal lymphadenopathy; no patient received prophylactic nodal irradiation. Seven out of 9 tumors in stage I, 2/3 in stage II, and 1/3 in stage IV were controlled for three years. Control of fixed, inoperable groin nodes was poor, and none of these patients survived beyond 1 1/2 years.
NASA Astrophysics Data System (ADS)
Rucinski, A.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.
2018-03-01
Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like \
Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J
To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Tessonnier, Thomas; Marcelos, Tiago; Mairani, Andrea; Brons, Stephan; Parodi, Katia
2015-01-01
In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT), the beamline has been already modeled in the FLUKA Monte Carlo (MC) code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS) files for proton and carbon ion beams, for all energies and foci available at HIT. PSs are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation) at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the MC code FLUKA. The generated PSs were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations, including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles), with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for application to clinical treatment fields. It also offers a powerful tool to perform investigations on the contribution of primary and secondary particles produced in the beamline. These PSs are already made available to external teams upon request, to support interpretation of their measurements.
Late complications of pelvic irradiation in 16 dogs.
Anderson, Christine R; McNiel, Elizabeth A; Gillette, Edward L; Powers, Barbara E; LaRue, Susan M
2002-01-01
When external beam radiation therapy is administered to the pelvis, normal tissues irradiated may include the colon, small intestine, urethra, bladder, bone, and spinal cord. The objectives of this retrospective study were to determine the incidence and severity of late radiation effects following pelvic irradiation in dogs and to identify factors that increase the risk of these effects. Medical records of all dogs treated with curative intent external beam radiation therapy to the pelvic region between 1993 and 1999 were reviewed. Patients with follow-up longer than 9 months or any patient that developed late complications earlier than 9 months were evaluated. Sixteen dogs met criteria for inclusion in this study. All dogs were treated with a 6-MV linear accelerator with bilaterally opposed beams. Diseases treated included transitional cell carcinoma of the bladder, transitional cell carcinoma of the prostate, and anal sac apocrine gland adenocarcinoma. Four dose/fractionation schemes were used: 49.5 Gy in 3.3 Gy fractions, 54 Gy in 3.0 Gy fractions, 54 Gy in 2.7 Gy fractions, and 18 Gy intraoperative radiation therapy followed by 43 Gy external beam radiation therapy in 2.9 Gy fractions. Implantable chemotherapy in the form of an OPLA-Pt sponge was used in six dogs as a radiation potentiator. Colitis was the major late effect following pelvic irradiation, occurring in nine dogs (56%). Colitis was characterized as mild in three dogs, moderate in one dog, and severe in five dogs. Three of the dogs with severe effects suffered gastrointestinal perforation. All dogs with severe late effects received 3 or 3.3 Gy per fraction, and 80% received radiation potentiators. In the seven dogs that received 2.7 Gy or 2.9 Gy per fraction, late effects were classified as none (n = 5), mild colitis (n = 1), and moderate colitis (n = 1). Radiation therapy can be administered to the pelvic region with a minimal risk of late effects to the colon by giving smaller doses per fraction and avoiding systemic radiation potentiators.
Alecu, R; Loomis, T; Alecu, J; Ochran, T
1999-01-01
Semiconductor diodes offer many advantages for clinical dosimetry: high sensitivity, real-time readout, simple instrumentation, robustness and air pressure independence. The feasibility and usefulness of in vivo dosimetry with diodes has been shown by numerous publications, but very few, if any, refer to the utilization of diodes in electron beam dosimetry. The purpose of this paper is to present our methods for implementing an effective IVD program for external beam therapy with photons and electrons and to evaluate a new type of diodes. Methods of deciding on reasonable action levels along with calibration procedures, established according to the type of measurements intended to be performed and the action limits, are discussed. Correction factors to account for nonreference clinical conditions for new types of diodes (designed for photon and electron beams) are presented and compared with those required by older models commercially available. The possibilities and limitations of each type of diode are presented, emphasizing the importance of using the appropriate diode for each task and energy range.
Technologies for delivery of proton and ion beams for radiotherapy
NASA Astrophysics Data System (ADS)
Owen, Hywel; Holder, David; Alonso, Jose; Mackay, Ranald
2014-05-01
Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aluwini, Shafak, E-mail: s.aluwini@erasmusmc.nl; Rooij, Peter H.E. van; Kirkels, Wim J.
2014-03-01
Purpose: To report long-term results of a bladder preservation strategy for muscle-invasive bladder cancer (MIBC) using external beam radiation therapy and brachytherapy/interstitial radiation therapy (IRT). Methods and Materials: Between May 1989 and October 2011, 192 selected patients with MIBC were treated with a combined regimen of preoperative external beam radiation therapy and subsequent surgical exploration with or without partial cystectomy and insertion of source carrier tubes for afterloading IRT using low dose rate and pulsed dose rate. Data for oncologic and functional outcomes were prospectively collected. The primary endpoints were local recurrence-free survival (LRFS), bladder function preservation survival, and salvage cystectomy-freemore » survival. The endpoints were constructed according to the Kaplan-Meier method. Results: The mean follow-up period was 105.5 months. The LRFS rate was 80% and 73% at 5 and 10 years, respectively. Salvage cystectomy-free survival at 5 and 10 years was 93% and 85%. The 5- and 10-year overall survival rates were 65% and 46%, whereas cancer-specific survival at 5 and 10 years was 75% and 67%. The distant metastases-free survival rate was 76% and 69% at 5 and 10 years. Multivariate analysis revealed no independent predictors of LRFS. Radiation Therapy Oncology Group grade ≥3 late bladder and rectum toxicity were recorded in 11 patients (5.7%) and 2 patients (1%), respectively. Conclusions: A multimodality bladder-sparing regimen using IRT offers excellent long-term oncologic outcome in selected patients with MIBC. The late toxicity rate is low, and the majority of patients preserve their functional bladder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orman, Amber; Koru-Sengul, Tulay; Miao, Feng
2014-12-01
Purpose/Objective(s): To evaluate the effects of various patient characteristics and radiation therapy treatment variables on outcomes in advanced-stage retinoblastoma. Methods and Materials: This was a retrospective review of 41 eyes of 30 patients treated with external beam radiation therapy between June 1, 1992, and March 31, 2012, with a median follow-up time of 133 months (11 years). Outcome measures included overall survival, progression-free survival, local control, eye preservation rate, and toxicity. Results: Over 90% of the eyes were stage V. Definitive external beam radiation therapy (EBRT) was delivered in 43.9% of eyes, adjuvant EBRT in 22% of eyes, and second-line/salvage EBRT inmore » 34.1% of eyes. A relative lens sparing (RLS) technique was used in 68.3% of eyes and modified lens sparing (MLS) in 24.4% of eyes. Three eyes were treated with other techniques. Doses ≥45 Gy were used in 68.3% of eyes. Chemotherapy was a component of treatment in 53.7% of eyes. The 10-year overall survival was 87.7%, progression-free survival was 80.5%, and local control was 87.8%. White patients had significantly better overall survival than did African-American patients in univariate analysis (hazard ratio 0.09; 95% confidence interval 0.01-0.84; P=.035). Toxicity was seen in 68.3% of eyes, including 24.3% with isolated acute dermatitis. Conclusions: External beam radiation therapy continues to be an effective treatment modality for advanced retinoblastoma, achieving excellent long-term local control and survival with low rates of treatment-related toxicity and secondary malignancy.« less
Bauer-Nilsen, Kristine; Hill, Colin; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N
2018-01-01
To evaluate the delivery costs, using time-driven activity-based costing, and reimbursement for definitive radiation therapy for locally advanced cervical cancer. Process maps were created to represent each step of the radiation treatment process and included personnel, equipment, and consumable supplies used to deliver care. Personnel were interviewed to estimate time involved to deliver care. Salary data, equipment purchasing information, and facilities costs were also obtained. We defined the capacity cost rate (CCR) for each resource and then calculated the total cost of patient care according to CCR and time for each resource. Costs were compared with 2016 Medicare reimbursement and relative value units (RVUs). The total cost of radiation therapy for cervical cancer was $12,861.68, with personnel costs constituting 49.8%. Brachytherapy cost $8610.68 (66.9% of total) and consumed 423 minutes of attending radiation oncologist time (80.0% of total). External beam radiation therapy cost $4055.01 (31.5% of total). Personnel costs were higher for brachytherapy than for the sum of simulation and external beam radiation therapy delivery ($4798.73 vs $1404.72). A full radiation therapy course provides radiation oncologists 149.77 RVUs with intensity modulated radiation therapy or 135.90 RVUs with 3-dimensional conformal radiation therapy, with total reimbursement of $23,321.71 and $16,071.90, respectively. Attending time per RVU is approximately 4-fold higher for brachytherapy (5.68 minutes) than 3-dimensional conformal radiation therapy (1.63 minutes) or intensity modulated radiation therapy (1.32 minutes). Time-driven activity-based costing was used to calculate the total cost of definitive radiation therapy for cervical cancer, revealing that brachytherapy delivery and personnel resources constituted the majority of costs. However, current reimbursement policy does not reflect the increased attending physician effort and delivery costs of brachytherapy. We hypothesize that the significant discrepancy between treatment costs and physician effort versus reimbursement may be a potential driver of reported national trends toward poor compliance with brachytherapy, and we suggest re-evaluation of payment policies to incentivize quality care. Copyright © 2017 Elsevier Inc. All rights reserved.
Treatment of Head and Neck Paragangliomas With External Beam Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupin, Charles, E-mail: c.dupin@bordeaux.unicancer.fr; Lang, Philippe; Dessard-Diana, Bernadette
2014-06-01
Purpose: To retrospectively assess the outcomes of radiation therapy in patients with head and neck paragangliomas. Methods and Materials: From 1990 to 2009, 66 patients with 81 head and neck paragangliomas were treated by conventional external beam radiation therapy in 25 fractions at a median dose of 45 Gy (range, 41.4-68 Gy). One case was malignant. The median gross target volume and planning target volume were 30 cm{sup 3} (range, 0.9-243 cm{sup 3}) and 116 cm{sup 3} (range, 24-731 cm{sup 3}), respectively. Median age was 57.4 years (range, 15-84 years). Eleven patients had multicentric lesions, and 8 had family histories ofmore » paraganglioma. Paragangliomas were located in the temporal bone, the carotid body, and the glomus vagal in 51, 18, and 10 patients, respectively. Forty-six patients had exclusive radiation therapy, and 20 had salvage radiation therapy. The median follow-up was 4.1 years (range, 0.1-21.2 years). Results: One patient had a recurrence of temporal bone paraganglioma 8 years after treatment. The actuarial local control rates were 100% at 5 years and 98.7% at 10 years. Patients with multifocal tumors and family histories were significantly younger (42 years vs 58 years [P=.002] and 37 years vs 58 years [P=.0003], respectively). The association between family predisposition and multifocality was significant (P<.001). Two patients had cause-specific death within the 6 months after irradiation. During radiation therapy, 9 patients required hospitalization for weight loss, nausea, mucositis, or ophthalmic zoster. Two late vascular complications occurred (middle cerebral artery and carotid stenosis), and 2 late radiation-related meningiomas appeared 15 and 18 years after treatment. Conclusion: Conventional external beam radiation therapy is an effective and safe treatment option that achieves excellent local control; it should be considered as a first-line treatment of choice for head and neck paragangliomas.« less
Proton therapy detector studies under the experience gained at the CATANA facility
NASA Astrophysics Data System (ADS)
Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.
2007-10-01
Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.
... deliver the daily treatments. top of page What equipment is used? Radiation oncologists use linear accelerators or ... accelerator page top of page Who operates the equipment? The equipment is operated by a radiation therapist, ...
Roy, Catherine; Foudi, Fatah; Charton, Jeanne; Jung, Michel; Lang, Hervé; Saussine, Christian; Jacqmin, Didier
2013-04-01
The aim of this retrospective study was to determine the respective accuracies of three types of functional MRI sequences-diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, and 3D (1)H-MR spectroscopy (MRS)-in the depiction of local prostate cancer recurrence after two different initial therapy options. From a cohort of 83 patients with suspicion of local recurrence based on prostate-specific antigen (PSA) kinetics who were imaged on a 3-T MRI unit using an identical protocol including the three functional sequences with an endorectal coil, we selected 60 patients (group A, 28 patients who underwent radical prostatectomy; group B, 32 patients who underwent external-beam radiation) who had local recurrence ascertained on the basis of a transrectal ultrasound-guided biopsy results and a reduction in PSA level after salvage therapy. All patients presented with a local relapse. Sensitivity with T2-weighted MRI and 3D (1)H-MRS sequences was 57% and 53%, respectively, for group A and 71% and 78%, respectively, for group B. DCE-MRI alone showed a sensitivity of 100% and 96%, respectively, for groups A and B. DWI alone had a higher sensitivity for group B (96%) than for group A (71%). The combination of T2-weighted imaging plus DWI plus DCE-MRI provided a sensitivity as high as 100% in group B. The performance of functional imaging sequences for detecting recurrence is different after radical prostatectomy and external-beam radiotherapy. DCE-MRI is a valid and efficient tool to detect prostate cancer recurrence in radical prostatectomy as well as in external-beam radiotherapy. The combination of DCE-MRI and DWI is highly efficient after radiation therapy. Three-dimensional (1)H-MRS needs to be improved. Even though it is not accurate enough, T2-weighted imaging remains essential for the morphologic analysis of the area.
Radiation therapy for prostate cancer.
Koontz, Bridget F; Lee, W Robert
2013-07-01
Radiation therapy is an effective treatment for newly diagnosed prostate cancer, salvage treatment, or for palliation of advanced disease. Herein we briefly discuss the indications, results, and complications associated with brachytherapy and external beam radiotherapy, when used as monotherapy and in combination with each other or androgen deprivation. Copyright © 2013 Elsevier Inc. All rights reserved.
Palta, Jatinder R; Liu, Chihray; Li, Jonathan G
2008-01-01
The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this "one-size-fits-all" prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes.
Immune-Stimulating Combinatorial Therapy for Prostate Cancer
2016-10-01
infiltration. 2. Complementary to the studies in 1, we will sort myeloid, lymphoid and cancer cells from freshly dissociated tumors in cases where enough...MION) hyperthermia and external beam radiation therapy; and, 2) developed methodologies that will be used to elucidate the role of key immune cell ...radiation therapy, immunotherapy, prostate cancer, magnetic nanoparticle(s), abscopal effect, immune cells , tumor-infiltrating immune cells , T- cells , CD4
Contemporary Proton Therapy Systems Adequately Protect Patients from Exposure to Stray Radiation
NASA Astrophysics Data System (ADS)
Newhauser, Wayne D.; Fontenot, Jonas D.; Taddei, Phillip J.; Mirkovic, Dragan; Giebeler, Annelise; Zhang, Rui; Mahajan, Anita; Kornguth, David; Stovall, Marilyn; Yepes, Pablo; Woo, Shiao; Mohan, Radhe
2009-03-01
Proton beam therapy has provided safe and effective treatments for a variety of adult cancers. In recent years, there has been increasing interest in utilizing proton therapy for pediatric cancers because it allows better sparing of healthy tissues. Minimizing exposures of normal tissues is especially important in children because they are highly susceptible to consequential late effects, including the development of a radiogenic second cancer, which may occur years or even decades after treatment of the first cancer. While the dosimetric advantage of therapeutic proton beams is well understood, relatively little attention has been paid to the whole-body exposure to stray neutron radiation that is inherent in proton therapy. In this report, we review the physical processes that lead to neutron exposures, discuss the potential for mitigating these exposures using advanced proton beam delivery systems, and present a comparative analysis of predicted second cancer incidence following various external beam therapies. In addition, we discuss uncertainties in the relative biological effectiveness of neutrons for carcinogenesis and the impact that these uncertainties have on second-cancer risk predictions for survivors of adult and childhood cancer who receive proton therapy.
Wu, Rui-Yi; Wang, Guo-Min; Xu, Lei; Zhang, Bo-Heng; Xu, Ye-Qing; Zeng, Zhao-Chong; Chen, Bing
2011-05-01
The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam radiotherapy (CRT). We performed a prospective, controlled and non-randomized study on 120 patients with advanced PCa after HT who received HIFU, CRT, HIFU+LRT and HT alone, respectively. CT/MR imaging showed the primary tumours and pelvic lymph node metastases visibly shrank or even disappeared after HIFU+LRT treatment. There were significant differences among four groups with regard to overall survival (OS) and disease-specific survival (DSS) curves (P = 0.018 and 0.015). Further comparison between each pair of groups suggested that the long-term DSS of the HIFU+LRT group was higher than those of the other three groups, but there was no significant difference between the HIFU+LRT group and the CRT group. Multivariable Cox's proportional hazard model showed that both HIFU+LRT and CRT were independently associated with DSS (P = 0.001 and 0.035) and had protective effects with regard to the risk of death. Compared with CRT, HIFU+LRT significantly decreased incidences of radiation-related late gastrointestinal (GI) and genitourinary (GU) toxicity grade ≥ II. In conclusion, long-term survival of patients with advanced PCa benefited from strengthening local control of primary tumour and regional lymph node metastases after HT. As an alternative to CRT, HIFU+LRT showed good efficacy and better safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magallanes, L., E-mail: lorena.magallanes@med.uni-heidelberg.de; Rinaldi, I., E-mail: ilaria.rinaldi@med.uni-heidelberg.de; Brons, S., E-mail: stephan.brons@med.uni-heidelberg.de
External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are basedmore » on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.« less
Yoon, Jihyung; Xie, Yibo; Zhang, Rui
2018-03-01
The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas
2015-03-01
Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, Thomas J.; Chen Changhu; Rabinovitch, Rachel
Purpose: To determine the maximal tolerated dose of bortezomib with concurrent external beam radiation therapy in patients with incurable solid malignant tumors requiring palliative therapy. Methods and Materials: An open label, dose escalation, phase I clinical trial evaluated the safety of three dose levels of bortezomib administered intravenously (1.0 mg/m{sup 2}, 1.3 mg/m{sup 2}, and 1.6 mg/m{sup 2}/ dose) once weekly with concurrent radiation in patients with histologically confirmed solid tumors and a radiographically appreciable lesion suitable for palliative radiation therapy. All patients received 40 Gy in 16 fractions to the target lesion. Dose-limiting toxicity was the primary endpoint, definedmore » as any grade 4 hematologic toxicity, any grade {>=}3 nonhematologic toxicity, or any toxicity requiring treatment to be delayed for {>=}2 weeks. Results: A total of 12 patients were enrolled. Primary sites included prostate (3 patients), head and neck (3 patients), uterus (1 patient), abdomen (1 patient), breast (1 patient), kidney (1 patient), lung (1 patient), and colon (1 patient). The maximum tolerated dose was not realized with a maximum dose of 1.6 mg/m{sup 2}. One case of dose-limiting toxicity was appreciated (grade 3 urosepsis) and felt to be unrelated to bortezomib. The most common grade 3 toxicity was lymphopenia (10 patients). Common grade 1 to 2 events included nausea (7 patients), infection without neutropenia (6 patients), diarrhea (5 patients), and fatigue (5 patients). Conclusions: The combination of palliative external beam radiation with concurrent weekly bortezomib therapy at a dose of 1.6 mg/m{sup 2} is well tolerated in patients with metastatic solid tumors. The maximum tolerated dose of once weekly bortezomib delivered concurrently with radiation therapy is greater than 1.6 mg/m{sup 2}.« less
Outcomes of Pituitary Radiation for Cushing's Disease.
Ironside, Natasha; Chen, Ching-Jen; Lee, Cheng-Chia; Trifiletti, Daniel M; Vance, Mary Lee; Sheehan, Jason P
2018-06-01
Achievement of biochemical remission with preservation of normal pituitary function is the goal of treatment for Cushing's disease. For patients with persistent or recurrent Cushing's disease after transsphenoidal resection, radiation therapy may be a safe and effective treatment. Stereotactic radiosurgery is favored over conventional fractionated external beam radiation. Hormonal recurrence rates range from 0% to 36% at 8 years after treatment. Tumor control rates are high. New pituitary hormone deficiency is the most common adverse effect after stereotactic radiosurgery and external beam radiation. The effects of radiation planning optimization and use of adjuvant medication on endocrine remission rates warrant investigation. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticho, B.H.; Perez-Tamayo, C.; Konnak, J.W.
1988-06-01
We report a case of primary squamous cell carcinoma of the distal male urethra with a single inguinal node metastasis. Treatment consisted of unilateral pelvic and inguinal lymphadenectomy, and a combined course of external beam and interstitial radiation therapy to the distal urethra and penis by the Henschke modification of the Paris technique.
NASA Astrophysics Data System (ADS)
Solovov, V. A.; Vozdvizhenskiy, M. O.; Matysh, Y. S.
2017-03-01
Objectives. To evaluate the clinical efficacy of high-intensity focused ultrasound ablation (HIFU) for local recurrence of prostate cancer after external beam radiotherapy (EBRT) and radical prostatectomy (RPE). Materials and Methods: During 2007-2013 years 47 patients with local recurrence of prostate cancer after EBRT and RPE undertook HIFU therapy on the system "Ablaterm» (EDAP, France). Relapse arose after an average of 2 years after EBRT and RPE. Median follow-up after HIFU therapy was 38 (12-60) months. The mean age was 68.5 ± 5.8 years. The median PSA level before HIFU - 15.4 (7-48) ng / mL. Results: In 34 patients (72.3%) at six months after treatment the median PSA was 0.4 (0-3.2) ng / mL, in 48 months - 0.9 (0.4-7.5) ng / mL. In 13 patients (27.7%) at 6 months was observed progression of the disease. In general, after a 5-year follow-up 72.3% of the patients had no data for the progression and recurrence. Conclusion: HIFU therapy in patients with local recurrence of prostate cancer after EBRT and RPE is minimally invasive and effective technology.
Falcon: automated optimization method for arbitrary assessment criteria
Yang, Tser-Yuan; Moses, Edward I.; Hartmann-Siantar, Christine
2001-01-01
FALCON is a method for automatic multivariable optimization for arbitrary assessment criteria that can be applied to numerous fields where outcome simulation is combined with optimization and assessment criteria. A specific implementation of FALCON is for automatic radiation therapy treatment planning. In this application, FALCON implements dose calculations into the planning process and optimizes available beam delivery modifier parameters to determine the treatment plan that best meets clinical decision-making criteria. FALCON is described in the context of the optimization of external-beam radiation therapy and intensity modulated radiation therapy (IMRT), but the concepts could also be applied to internal (brachytherapy) radiotherapy. The radiation beams could consist of photons or any charged or uncharged particles. The concept of optimizing source distributions can be applied to complex radiography (e.g. flash x-ray or proton) to improve the imaging capabilities of facilities proposed for science-based stockpile stewardship.
Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.
Zhang, Rongxiao; Gladstone, David J; Jarvis, Lesley A; Strawbridge, Rendall R; Jack Hoopes, P; Friedman, Oscar D; Glaser, Adam K; Pogue, Brian W
2013-11-01
Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.
Clinical Ion Beam Applications: Basic Properties, Application, Quality Control, Planning
NASA Astrophysics Data System (ADS)
Kraft, Gerhard
2009-03-01
Heavy-ion therapy using beam scanning and biological dose optimization is a novel technique of high-precision external radiotherapy. It yields a better perspective for tumor cure of radio-resistant tumors. However, heavy-ion therapy is not a general solution for all types of tumors. As compared to conventional radiotherapy, heavy-ion radiotherapy has the advantages of higher tumor dose, improved sparing of normal tissue in the entrance channel, a more precise concentration of the dose in the target volume with steeper gradients to the normal tissue, and a higher radiobiological effectiveness for tumors which are radio-resistant in conventional therapy. These properties make it possible to treat radio-resistant tumors with great success, including those in close vicinity to critical organs.
Proton Therapy Facility Planning From a Clinical and Operational Model.
Das, Indra J; Moskvin, Vadim P; Zhao, Qingya; Cheng, Chee-Wai; Johnstone, Peter A
2015-10-01
This paper provides a model for planning a new proton therapy center based on clinical data, referral pattern, beam utilization and technical considerations. The patient-specific data for the depth of targets from skin in each beam angle were reviewed at our center providing megavoltage photon external beam and proton beam therapy respectively. Further, data on insurance providers, disease sites, treatment depths, snout size and the beam angle utilization from the patients treated at our proton facility were collected and analyzed for their utilization and their impact on the facility cost. The most common disease sites treated at our center are head and neck, brain, sarcoma and pediatric malignancies. From this analysis, it is shown that the tumor depth from skin surface has a bimodal distribution (peak at 12 and 26 cm) that has significant impact on the maximum proton energy, requiring the energy in the range of 130-230 MeV. The choice of beam angles also showed a distinct pattern: mainly at 90° and 270°; this indicates that the number of gantries may be minimized. Snout usage data showed that 70% of the patients are treated with 10 cm snouts. The cost of proton beam therapy depends largely on the type of machine, maximum beam energy and the choice of gantry versus fixed beam line. Our study indicates that for a 4-room center, only two gantry rooms could be needed at the present pattern of the patient cohorts, thus significantly reducing the initial capital cost. In the USA, 95% and 100% of patients can be treated with 200 and 230 MeV proton beam respectively. Use of multi-leaf collimators and pencil beam scanning may further reduce the operational cost of the facility. © The Author(s) 2014.
Takamura, Akio; Saito, Hiroya; Kamada, Tadashi; Hiramatsu, Kazuhide; Takeuchi, Shuhei; Hasegawa, Masakazu; Miyamoto, Noriyuki
2003-12-01
To evaluate the results of combined-modality therapy, including external beam radiotherapy, intraluminal (192)Ir, and biliary stenting for extrahepatic bile duct carcinoma. Between 1988 and 1998, 93 patients with unresectable extrahepatic bile duct carcinoma underwent definitive radiotherapy. The dose of external beam radiotherapy was 50 Gy in 25 fractions. Low-dose-rate (192)Ir was delivered at a dose of 27-50 Gy (mean 39.2) at 0.5 cm from the source. An expandable metallic endoprosthesis was used to establish an internal bile passage. The median survival was 12 months, with a 1-, 3-, and 5-year actuarial survival rate of 50%, 10%, and 4%, respectively. Tumor length, hepatic invasion, and distant metastasis significantly affected survival. Ninety-six percent of patients could successfully remove external drainage catheters. The actuarial biliary patency rate for these patients at 1, 3, and 5 years was 52%, 29%, and 18%, respectively. Tumor length, tumor diameter and T stage were significantly associated with the patency rate. Mild-to-severe gastroduodenal complications were observed in 32 patients and were significantly associated with the active length of (192)Ir and linear source activity. Eight patients had treatment-related biliary fistula. Our combined-modality therapy provided reasonable local control and improved the quality of life of patients with extrahepatic bile duct carcinoma. Because none of the treatment characteristics had any impact on survival or biliary patency, lower dose levels and/or a localized target volume are recommended to minimize morbidity.
Elquza, Emad; Babiker, Hani M; Howell, Krisha J; Kovoor, Andrew I; Brown, Thomas David; Patel, Hitendra; Malangone, Steven A; Borad, Mitesh J; Dragovich, Tomislav
2016-01-01
To establish the maximum tolerated dose (MTD) and safety profile of bi-weekly Pemetrexed (PEM) when combined with weekly cisplatin (CDDP) and standard dose external beam radiation (EBRT) in patients with locally advanced or metastatic esophageal and gastroesophageal junction (GEJ) carcinomas. We conducted an open label, single institution, phase I dose escalation study designed to evaluate up to 15-35 patients with advanced or metastatic esophageal and GEJ carcinomas. 10 patients were treated with bi-weekly PEM, weekly CDDP, and EBRT. The MTD of bi-weekly PEM was determined to be 500 mg/m(2).
Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system
NASA Astrophysics Data System (ADS)
Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald
2005-03-01
The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR can only be properly accounted for by image-based, patient-specific treatment planning, as has been common in external beam radiation therapy for many years. MINERVA offers 3D Monte Carlo-based MTR treatment planning as its first integrated operational capability. The new MINERVA system will ultimately incorporate capabilities for a comprehensive list of radiation therapies. In progress are modules for external beam photon-electron therapy and boron neutron capture therapy (BNCT). Brachytherapy and proton therapy are planned. Through the open application programming interface (API), other groups can add their own modules and share them with the community.
2012-01-01
Background External beam radiotherapy (EBRT) is the treatment of choice for irresectable meningioma. Due to the strong expression of somatostatin receptors, peptide receptor radionuclide therapy (PRRT) has been used in advanced cases. We assessed the feasibility and tolerability of a combination of both treatment modalities in advanced symptomatic meningioma. Methods 10 patients with irresectable meningioma were treated with PRRT (177Lu-DOTA0,Tyr3 octreotate or - DOTA0,Tyr3 octreotide) followed by external beam radiotherapy (EBRT). EBRT performed after PRRT was continued over 5–6 weeks in IMRT technique (median dose: 53.0 Gy). All patients were assessed morphologically and by positron emission tomography (PET) before therapy and were restaged after 3–6 months. Side effects were evaluated according to CTCAE 4.0. Results Median tumor dose achieved by PRRT was 7.2 Gy. During PRRT and EBRT, no side effects > CTCAE grade 2 were noted. All patients reported stabilization or improvement of tumor-associated symptoms, no morphologic tumor progression was observed in MR-imaging (median follow-up: 13.4 months). The median pre-therapeutic SUVmax in the meningiomas was 14.2 (range: 4.3–68.7). All patients with a second PET after combined PRRT + EBRT showed an increase in SUVmax (median: 37%; range: 15%–46%) to a median value of 23.7 (range: 8.0–119.0; 7 patients) while PET-estimated volume generally decreased to 81 ± 21% of the initial volume. Conclusions The combination of PRRT and EBRT is feasible and well tolerated. This approach represents an attractive strategy for the treatment of recurring or progressive symptomatic meningioma, which should be further evaluated. PMID:22720902
Ortiz López, P; Cosset, J M; Dunscombe, P; Holmberg, O; Rosenwald, J C; Pinillos Ashton, L; Vilaragut Llanes, J J; Vatnitsky, S
2009-08-01
Disseminating the knowledge and lessons learned from accidental exposures is crucial in preventing re-occurrence. This is particularly important in radiation therapy; the only application of radiation in which very high radiation doses are deliberately given to patients to achieve cure or palliation of disease. Lessons from accidental exposures are, therefore, an invaluable resource for revealing vulnerable aspects of the practice of radiotherapy, and for providing guidance for the prevention of future occurrences. These lessons have successfully been applied to avoid catastrophic events with conventional technologies and techniques. Recommendations, for example, include the independent verification of beam calibration and independent calculation of the treatment times and monitor units for external beam radiotherapy, and the monitoring of patients and their clothes immediately after brachytherapy. New technologies are meant to bring substantial improvement to radiation therapy. However, this is often achieved with a considerable increase in complexity, which in turn brings opportunities for new types of human error and problems with equipment. Dissemination of information on these errors or mistakes as soon as it becomes available is crucial in radiation therapy with new technologies. In addition, information on circumstances that almost resulted in serious consequences (near-misses) is also important, as the same type of events may occur elsewhere. Sharing information about near-misses is thus a complementary important aspect of prevention. Lessons from retrospective information are provided in Sections 2 and 4 of this report. Disseminating lessons learned for serious incidents is necessary but not sufficient when dealing with new technologies. It is of utmost importance to be proactive and continually strive to answer questions such as 'What else can go wrong', 'How likely is it?' and 'What kind of cost-effective choices do I have for prevention?'. These questions are addressed in Sections 3 and 5 of this report. Section 6 contains the conclusions and recommendations. This report is expected to be a valuable resource for radiation oncologists, hospital administrators, medical physicists, technologists, dosimetrists, maintenance engineers, radiation safety specialists, and regulators. While the report applies specifically to new external beam therapies, the general principles for prevention are applicable to the broad range of radiotherapy practices where mistakes could result in serious consequences for the patient and practitioner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkert, Michael R.; Tong, William Y.; LaQuaglia, Michael P.
Purpose: To assess outcomes and toxicity of high-dose-rate intraoperative radiation therapy (HDR-IORT) in the management of pediatric sarcoma. Methods and Materials: Seventy-five pediatric patients underwent HDR-IORT for sarcoma from May 1993 to November 2013. The median age was 9 years old (36 patients were ≤6 years old). HDR-IORT was part of initial therapy in 37 patients (49%) and for recurrent disease in 38 patients (51%). Forty-one patients (55%) received HDR-IORT and postoperative external beam RT (PORT), and 22 patients (29%) were previously treated with external beam radiation therapy to the IORT site. Local control (LC), overall survival (OS) and event-free survival (EFS)more » were estimated using Kaplan-Meier methods. Results: At a median follow-up of 7.8 years for surviving patients, 5-year projected rates of LC, EFS, and OS were 63% (95% confidence interval [CI] 50%-76%), 33% (95% CI 21%-45%), and 43% (95% CI 30%-55%), with a median survival of 3.1 years. The 5-year LC, EFS, and OS rates for patients with recurrent disease were 46% (95% CI, 28%-64%), 30% (95% CI, 13%-46%), and 36% (95% CI, 18%-54%). Acute toxicity ≥grade 3 occurred in 2 (2.5%) treatments; late toxicity ≥grade 3 occurred in 4 (5.3%) patients 0.3-9.9 years after HDR-IORT. The incidence of toxicity ≥grade 3 was not associated with HDR-IORT applicator size, HDR-IORT dose, prior RT or PORT, or prior or postoperative chemotherapy, but all toxicity ≥grade 3 occurred in patients ≤6 years treated with HDR-IORT doses ≥12 Gy. Conclusions: HDR-IORT is a well-tolerated component of multimodality therapy for pediatric sarcoma, allowing additional local treatment while reducing external beam exposure. Taking clinical considerations into account, doses between 8-12 Gy are appropriate for HDR-IORT in patients ≤6 years of age.« less
NASA Astrophysics Data System (ADS)
Nadège Ilembe Badouna, Audrey; Veres, Cristina; Haddy, Nadia; Bidault, François; Lefkopoulos, Dimitri; Chavaudra, Jean; Bridier, André; de Vathaire, Florent; Diallo, Ibrahima
2012-01-01
The aim of this paper was to determine anthropometric parameters leading to the least uncertain estimate of heart size when connecting a computational phantom to an external beam radiation therapy (EBRT) patient. From computed tomography images, we segmented the heart and calculated its total volume (THV) in a population of 270 EBRT patients of both sexes, aged 0.7-83 years. Our data were fitted using logistic growth functions. The patient age, height, weight, body mass index and body surface area (BSA) were used as explanatory variables. For both genders, good fits were obtained with both weight (R2 = 0.89 for males and 0.83 for females) and BSA (R2 = 0.90 for males and 0.84 for females). These results demonstrate that, among anthropometric parameters, weight plays an important role in predicting THV. These findings should be taken into account when assigning a computational phantom to a patient.
Swisher-McClure, Samuel; Mitra, Nandita; Lin, Alexander; Ahn, Peter; Wan, Fei; O’Malley, Bert; Weinstein, Gregory S.; Bekelman, Justin E.
2013-01-01
Background This study compared the risk of fatal cerebrovascular accidents (CVA) in patients with early stage glottic larynx cancer receiving surgery or external beam radiation therapy (EBRT). Methods and Materials Using a competing risks survival analysis, we compared the risk of death due to CVA among patients with early stage glottic larynx cancer receiving surgery or EBRT in the SEER database. Results The cumulative incidence of fatal CVA at 15 years was higher in patients receiving EBRT (2.8 %; 95% CI 2.3%–3.4%) compared to surgery (1.5 %; 95% CI 0.8 %–2.3%, p= 0.024). In multivariable competing risks regression models, EBRT remained associated with an increased risk of fatal CVA compared to surgery (adjusted HR 1.75; 95% CI 1.04–2.96, p= 0.037). Conclusion Treatment of early stage glottic larynx cancer with EBRT was associated with a small increase in the risk of late fatal CVA events relative to surgery. PMID:23595858
Soper, Margaret S; Iganej, Shawn; Thompson, Lester D R
2014-01-01
Salivary duct carcinoma (SDC) is an aggressive malignancy with high recurrence rates. Standard management includes surgical resection followed by adjuvant radiation. Androgen receptor positivity has been described to be present in 40% to 90% of SDCs, and a recent case series showed a benefit to androgen deprivation therapy (ADT) in recurrent or metastatic disease. We present the case of an 87-year-old woman with a locally advanced androgen receptor-positive parotid SDC treated definitively with ADT and external beam radiotherapy, a regimen modeled after the treatment of prostate cancer. She had a complete response on positron emission tomography (PET)/CT scan and had no evidence of disease 24 months after the completion of treatment. To our knowledge, this case report is the first to describe the use of ADT plus radiation to definitively treat SDC. This regimen could be considered in patients with androgen receptor-positive SDCs who are considered unresectable or who refuse surgery. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Felipe A.; School of Medicine, Complutense University, Madrid; Sole, Claudio V., E-mail: cvsole@uc.cl
Background: A joint analysis of data from centers involved in the Spanish Cooperative Initiative for Intraoperative Electron Radiotherapy was performed to investigate long-term outcomes of locally recurrent soft tissue sarcoma (LR-STS) patients treated with a multidisciplinary approach. Methods and Materials: Patients with a histologic diagnosis of LR-STS (extremity, 43%; trunk wall, 24%; retroperitoneum, 33%) and no distant metastases who underwent radical surgery and intraoperative electron radiation therapy (IOERT; median dose, 12.5 Gy) were considered eligible for participation in this study. In addition, 62% received external beam radiation therapy (EBRT; median dose, 50 Gy). Results: From 1986 to 2012, a totalmore » of 103 patients from 3 Spanish expert IOERT institutions were analyzed. With a median follow-up of 57 months (range, 2-311 months), 5-year local control (LC) was 60%. The 5-year IORT in-field control, disease-free survival (DFS), and overall survival were 73%, 43%, and 52%, respectively. In the multivariate analysis, no EBRT to treat the LR-STS (P=.02) and microscopically involved margin resection status (P=.04) retained significance in relation to LC. With regard to IORT in-field control, only not delivering EBRT to the LR-STS retained significance in the multivariate analysis (P=.03). Conclusion: This joint analysis revealed that surgical margin and EBRT affect LC but that, given the high risk of distant metastases, DFS remains modest. Intensified local treatment needs to be further tested in the context of more efficient concurrent, neoadjuvant, and adjuvant systemic therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulson, Eric S., E-mail: epaulson@mcw.edu; Erickson, Beth; Schultz, Chris
Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP ofmore » brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In their experience, these strategies provide robust, high fidelity, high contrast MR images suitable for external beam RTP.« less
Hamers, H P; Johansson, K A; Venselaar, J L; de Brouwer, P; Hansson, U; Moudi, C
1993-01-01
Two anthropomorphic phantom breasts and six patients with breast carcinoma were irradiated according the prescriptions of the EORTC protocol 22881 on the conservative management of breast carcinoma by tumorectomy and radiotherapy. During the implantation procedure for an iridium-192 boost, three tubes were implanted, enabling the measurement with TLD rods of the dose within the breasts of the phantom and the patients during one fraction of the external x-ray therapy and during the interstitial therapy. Measured doses were compared with calculated values from a 2-D dose planning system. In general a fair agreement was found between the measured and calculated doses in points within the breast for the external beam therapy as well as for the interstitial treatment.
The Application of FLUKA to Dosimetry and Radiation Therapy
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni
2005-01-01
Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.
Hurwitz, Mark D
2008-11-01
External-beam radiation therapy (EBRT) combined with brachytherapy is an attractive treatment option for selected patients with clinically localized prostate cancer. This therapeutic strategy offers dosimetric coverage if local-regional microscopic disease is present and provides a highly conformal boost of radiation to the prostate and immediate surrounding tissues. Either low-dose-rate (LDR) permanent brachytherapy or high-dose-rate (HDR) temporary brachytherapy can be combined with EBRT; such combined-modality therapy (CMT) is typically used to treat patients with intermediate-risk to high-risk, clinically localized disease. Controversy persists with regard to indications for CMT, choice of LDR or HDR boost, isotope selection for LDR, and integration of EBRT and brachytherapy. Initial findings from prospective, multicenter trials of CMT support the feasibility of this strategy. Updated results from these trials as well as those of ongoing and new phase III trials should help to define the role of CMT in the management of prostate cancer. In the meantime, long-term expectations for outcomes of CMT are based largely on the experience of single institutions, which demonstrate that CMT with EBRT and either LDR or HDR brachytherapy can provide freedom from disease recurrence with acceptable toxicity.
SU-F-T-151: Measurement Evaluation of Skin Dose in Scanning Proton Beam Therapy for Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J; Nichols, E; Strauss, D
Purpose: To measure the skin dose and compare it with the calculated dose from a treatment planning system (TPS) for breast cancer treatment using scanning proton beam therapy (SPBT). Methods: A single en-face-beam SPBT plan was generated by a commercial TPS for two breast cancer patients. The treatment volumes were the entire breasts (218 cc and 1500 cc) prescribed to 50.4 Gy (RBE) in 28 fractions. A range shifter of 5 cm water equivalent thickness was used. The organ at risk (skin) was defined to be 5 mm thick from the surface. The skin doses were measured in water withmore » an ADCL calibrated parallel plate (PP) chamber. The measured data were compared with the values calculated in the TPS. Skin dose calculations can be subject to uncertainties created by the definition of the external contour and the limitations of the correction based algorithms, such as proton convolution superposition. Hence, the external contours were expanded by 0, 3 mm and 1 cm to include additional pixels for dose calculation. In addition, to examine the effects of the cloth gown on the skin dose, the skin dose measurements were conducted with and without gown. Results: On average the measured skin dose was 4% higher than the calculated values. At deeper depths, the measured and calculated doses were in better agreement (< 2%). Large discrepancy occur for the dose calculated without external expansion due to volume averaging. The addition of the gown only increased the measured skin dose by 0.4%. Conclusion: The implemented TPS underestimated the skin dose for breast treatments. Superficial dose calculation without external expansion would result in large errors for SPBT for breast cancer.« less
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2014-01-01
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2013-12-30
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
MO-A-201-01: A Cliff’s Notes Version of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J.
Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatchesmore » between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ from standard x-ray approaches, due to equipment design or the desire to maximize efficiency within a high-cost proton therapy treatment room. Differences between x-ray and proton therapy delivery will be described. Learning Objectives: Understand how CT HU are calibrated to provide proton stopping power, and the sources of uncertainty in this process. Understand why a PTV is not suitable for proton therapy, and how robust treatment planning and evaluation are used to mitigate uncertainties. Understand the source and implications of variable RBE in proton therapy Learn about proton specific challenges and approaches in beam delivery and image guidance Jon Kruse has a research grant from Varian Medical Systems related to proton therapy treatment plannning.; J. Kruse, Jon Kruse has a research grant with Varian Medical Systems related to proton therapy planning.« less
MO-A-201-00: A Cliff’s Notes Version of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatchesmore » between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ from standard x-ray approaches, due to equipment design or the desire to maximize efficiency within a high-cost proton therapy treatment room. Differences between x-ray and proton therapy delivery will be described. Learning Objectives: Understand how CT HU are calibrated to provide proton stopping power, and the sources of uncertainty in this process. Understand why a PTV is not suitable for proton therapy, and how robust treatment planning and evaluation are used to mitigate uncertainties. Understand the source and implications of variable RBE in proton therapy Learn about proton specific challenges and approaches in beam delivery and image guidance Jon Kruse has a research grant from Varian Medical Systems related to proton therapy treatment plannning.; J. Kruse, Jon Kruse has a research grant with Varian Medical Systems related to proton therapy planning.« less
Temporally separating Cherenkov radiation in a scintillator probe exposed to a pulsed X-ray beam.
Archer, James; Madden, Levi; Li, Enbang; Carolan, Martin; Petasecca, Marco; Metcalfe, Peter; Rosenfeld, Anatoly
2017-10-01
Cherenkov radiation is generated in optical systems exposed to ionising radiation. In water or plastic devices, if the incident radiation has components with high enough energy (for example, electrons or positrons with energy greater than 175keV), Cherenkov radiation will be generated. A scintillator dosimeter that collects optical light, guided by optical fibre, will have Cherenkov radiation generated throughout the length of fibre exposed to the radiation field and compromise the signal. We present a novel algorithm to separate Cherenkov radiation signal that requires only a single probe, provided the radiation source is pulsed, such as a linear accelerator in external beam radiation therapy. We use a slow scintillator (BC-444) that, in a constant beam of radiation, reaches peak light output after 1 microsecond, while the Cherenkov signal is detected nearly instantly. This allows our algorithm to separate the scintillator signal from the Cherenkov signal. The relative beam profile and depth dose of a linear accelerator 6MV X-ray field were reconstructed using the algorithm. The optimisation method improved the fit to the ionisation chamber data and improved the reliability of the measurements. The algorithm was able to remove 74% of the Cherenkov light, at the expense of only 1.5% scintillation light. Further characterisation of the Cherenkov radiation signal has the potential to improve the results and allow this method to be used as a simpler optical fibre dosimeter for quality assurance in external beam therapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Radiation therapy and esophageal cancer.
Shridhar, Ravi; Almhanna, Khaldoun; Meredith, Kenneth L; Biagioli, Matthew C; Chuong, Michael D; Cruz, Alex; Hoffe, Sarah E
2013-04-01
Squamous cell carcinoma and adenocarcinoma account for more than 90% of all esophageal cancer cases. Although the incidence of squamous cell carcinoma has declined, the incidence of adenocarcinoma has risen due to increases in obesity and gastroesophageal reflux disease. The authors examine the role of radiation therapy alone (external beam and brachytherapy) for the management of esophageal cancer or combined with other modalities. The impact on staging and appropriate stratification of patients referred for curative vs palliative intent with modalities is reviewed. The authors also explore the role of emerging radiation technologies. Current data show that neoadjuvant chemoradiotherapy followed by surgical resection is the accepted standard of care, with 3-year overall survival rates ranging from 30% to 60%. The benefit of adjuvant radiation therapy is limited to patients with node-positive cancer. The survival benefit of surgical resection after chemoradiotherapy remains controversial. External beam radiation therapy alone results in few long-term survivors and is considered palliative at best. Radiation dose-escalation has failed to improve local control or survival. Brachytherapy can provide better long-term palliation of dysphagia than metal stent placement. Although three-dimensional conformal treatment planning is the accepted standard, the roles of IMRT and proton therapy are evolving and potentially reduce adverse events due to better sparing of normal tissue. Future directions will evaluate the benefit of induction chemotherapy followed by chemoradiotherapy, the role of surgery in locally advanced disease, and the identification of responders prior to treatment based on microarray analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callens, M; Verboven, E; Van Den Abeele, K
2015-06-15
Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are polymerizable under influence of ionizing radiation and are a promising design concept within the development of a novel non-invasive in-vivo radiation dosimeter for external beam radiation therapy. This work was funded by the Research Foundation - Flanders (FWO)« less
Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T
2017-01-01
To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.
BEST medical radioisotope production cyclotrons
NASA Astrophysics Data System (ADS)
Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.
2013-04-01
Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].
[Treatment of localized prostate cancer].
Vallancien, Guy; Cathelineau, Xavier; Rozet, François; Barret, Eric
2008-05-01
Treatments for localized prostate cancer include radical prostatectomy, brachytherapy, conformal external beam irradiation, and focused ultrasound. This paper describes the oncologic and functional results of each approach. The treatment choice depends on the patient's general status and on the results of biopsy and imaging studies. Watchful waiting and hormone therapy are other options for elderly patients.
Swisher-McClure, Samuel; Mitra, Nandita; Lin, Alexander; Ahn, Peter; Wan, Fei; O'Malley, Bert; Weinstein, Gregory S; Bekelman, Justin E
2014-05-01
This study compared the risk of fatal cerebrovascular accidents (CVAs) in patients with early-stage glottic laryngeal cancer receiving surgery or external beam radiation therapy (EBRT). Using a competing risks survival analysis, we compared the risk of death because of CVA among patients with early-stage glottic laryngeal cancer receiving surgery or EBRT in the Surveillance, Epidemiology, and End Results (SEER) database. The cumulative incidence of fatal CVA at 15 years was higher in patients receiving EBRT (2.8%; 95% confidence interval [CI], 2.3% to 3.4%) compared to surgery (1.5%; 95% CI, 0.8% to 2.3%; p = .024). In multivariable competing risks regression models, EBRT remained associated with an increased risk of fatal CVA compared to surgery (adjusted hazard ratio [HR], 1.75; 95% CI, 1.04-2.96; p = .037). Treatment for early-stage glottic laryngeal cancer with EBRT was associated with a small increase in the risk of late fatal CVA events relative to surgery. Copyright © 2013 Wiley Periodicals, Inc.
Jangda, Abdul Qadir; Hussein, Sherali
2012-05-01
In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility.
Generating AN Optimum Treatment Plan for External Beam Radiation Therapy.
NASA Astrophysics Data System (ADS)
Kabus, Irwin
1990-01-01
The application of linear programming to the generation of an optimum external beam radiation treatment plan is investigated. MPSX, an IBM linear programming software package was used. All data originated from the CAT scan of an actual patient who was treated for a pancreatic malignant tumor before this study began. An examination of several alternatives for representing the cross section of the patient showed that it was sufficient to use a set of strategically placed points in the vital organs and tumor and a grid of points spaced about one half inch apart for the healthy tissue. Optimum treatment plans were generated from objective functions representing various treatment philosophies. The optimum plans were based on allowing for 216 external radiation beams which accounted for wedges of any size. A beam reduction scheme then reduced the number of beams in the optimum plan to a number of beams small enough for implementation. Regardless of the objective function, the linear programming treatment plan preserved about 95% of the patient's right kidney vs. 59% for the plan the hospital actually administered to the patient. The clinician, on the case, found most of the linear programming treatment plans to be superior to the hospital plan. An investigation was made, using parametric linear programming, concerning any possible benefits derived from generating treatment plans based on objective functions made up of convex combinations of two objective functions, however, this proved to have only limited value. This study also found, through dual variable analysis, that there was no benefit gained from relaxing some of the constraints on the healthy regions of the anatomy. This conclusion was supported by the clinician. Finally several schemes were found that, under certain conditions, can further reduce the number of beams in the final linear programming treatment plan.
Sugimoto, Mikio; Takegami, Misa; Suzukamo, Yoshimi; Fukuhara, Shunichi; Kakehi, Yoshiyuki
2008-06-01
To evaluate health related quality of life (HRQOL) using the Medical Outcomes Study 8-items Short Form Health Survey (SF-8) questionnaire in Japanese patients with early prostate cancer. A cross-sectional analysis was done in 457 patients with prostate cancer treated with radical prostatectomy, external beam radiotherapy, brachytherapy, androgen deprivation therapy, and watchful waiting or a combination these therapies. General HRQOL was measured using the Japanese version of the SF-8 questionnaire and disease-specific HRQOL was assessed using the Japanese version of the Extended Prostate Cancer Index Composite. The external beam radiotherapy group reported significantly lower values for the physical health component summary score (PCS) in comparison to the radical prostatectomy and brachytherapy groups (P < 0.05). In the analysis of both the PCS and the mental health component summary score (MCS) over time after treatment, higher scores with time were found in the radical prostatectomy group. No significant change over time after androgen deprivation therapy in the PCS was found. In contrast, the MCS was found to deteriorate in the early period, showing a significant increase over time. SF-8 in combination with the Extended Prostate Cancer Index Composite has shown to be a helpful tool in the HRQOL assessment of Japanese patients treated for localized prostate cancer.
Brachytherapy of prostate cancer after colectomy for colorectal cancer: pilot experience.
Koutrouvelis, Panos G; Theodorescu, Dan; Katz, Stuart; Lailas, Niko; Hendricks, Fred
2005-01-01
We present a method of brachytherapy for prostate cancer using a 3-dimensional stereotactic system and computerized tomography guidance in patients without a rectum due to previous treatment for colorectal cancer. From June 1994 to November 2003 a cohort of 800 patients were treated with brachytherapy for prostate cancer. Four patients had previously been treated for colorectal cancer with 4,500 cGy external beam radiation therapy, abdominoperineal resection and chemotherapy, while 1 underwent abdominoperineal resection alone for ulcerative colitis. Because of previous radiation therapy, these patients were not candidates for salvage external beam radiation therapy or radical prostatectomy and they had no rectum for transrectal ultrasound guided transperineal brachytherapy or cryotherapy. A previously described, 3-dimensional stereotactic system was used for brachytherapy in these patients. The prescribed radiation dose was 120 to 144 Gy with iodine seeds in rapid strand format. Patient followup included clinical examination and serum prostate specific antigen measurement. Average followup was 18.6 months. Four patients had excellent biochemical control, while 1 had biochemical failure. Patients did not experience any gastrointestinal morbidity. One patient had a stricture of the distal ureter, requiring a stent. Three-dimensional computerized tomography guided brachytherapy for prostate cancer in patients with a history of colorectal cancer who have no rectum is a feasible method of treatment.
Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo
2013-06-01
Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
2016-01-01
Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called “cyclinacs”, are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637
Aaltonen, Leena-Maija; Rautiainen, Noora; Sellman, Jaana; Saarilahti, Kauko; Mäkitie, Antti; Rihkanen, Heikki; Laranne, Jussi; Kleemola, Leenamaija; Wigren, Tuija; Sala, Eeva; Lindholm, Paula; Grenman, Reidar; Joensuu, Heikki
2014-10-01
Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO2 laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality was assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, Leena-Maija, E-mail: leena-maija.aaltonen@hus.fi; Rautiainen, Noora; Sellman, Jaana
Objective: Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Methods and Materials: Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO{sub 2} laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality wasmore » assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Results: Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Conclusions: Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option.« less
Goodman, Karyn A; Patton, Caroline E; Fisher, George A; Hoffe, Sarah E; Haddock, Michael G; Parikh, Parag J; Kim, John; Baxter, Nancy N; Czito, Brian G; Hong, Theodore S; Herman, Joseph M; Crane, Christopher H; Hoffman, Karen E
2016-01-01
To summarize results of a Clinical Practice Statement on radiation therapy for stage II-III rectal cancer, which addressed appropriate customization of (neo)adjuvant radiation therapy and use of non-surgical therapy for patients who are inoperable or refuse abdominoperineal resection. The RAND/University of California, Los Angeles, Appropriateness Method was applied to combine current evidence with multidisciplinary expert opinion. A systematic literature review was conducted and used by the expert panel to rate appropriateness of radiation therapy options for different clinical scenarios. Treatments were categorized by median rating as Appropriate, May Be Appropriate, or Rarely Appropriate. In the neoadjuvant setting, chemoradiation was rated Appropriate and the ratings indicated short-course radiation therapy, chemotherapy alone, and no neoadjuvant therapy are potential options in selected patients. However, neoadjuvant endorectal brachytherapy was rated Rarely Appropriate. For adjuvant therapy, chemoradiation (plus ≥4 months of chemotherapy) was rated Appropriate and chemotherapy alone May Be Appropriate for most scenarios. For medically inoperable patients, definitive external beam radiation therapy and chemotherapy alone were rated May Be Appropriate, whereas endorectal brachytherapy and chemoradiation plus endorectal brachytherapy were possible approaches for some scenarios. The last option, definitive chemoradiation, was rated Appropriate to May Be Appropriate based on performance status. Finally, for patients with low-lying tumors refusing abdominoperineal resection, definitive chemoradiation alone, chemoradiation plus endorectal brachytherapy, and chemoradiation plus external beam radiation therapy were all rated Appropriate. This Clinical Practice Statement demonstrated the central role of radiation therapy in stage II-III rectal cancer management and evaluated ways to better individualize its use in the neoadjuvant, adjuvant, and definitive settings. Ongoing trials may clarify areas of continuing uncertainty and allow further customization. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Salvage image guided radiation therapy to the prostate after cryotherapy failure.
Hopper, Austin B; Sandhu, Ajay P S; Parsons, J Kellogg; Rose, Brent; Einck, John P
2018-01-01
Cryotherapy is an option for the primary treatment of localized prostate cancer, along with radical prostatectomy, external beam radiation therapy, and brachytherapy. Although it is known that local recurrence can occur in >20% of patients treated with primary cryotherapy, unfortunately there is a paucity of data on later salvage treatments. The use of external beam radiation therapy is an attractive option after cryotherapy failure, but there is little data on its efficacy and toxicity. We evaluated the biochemical control and complication rates of salvage dose-escalated image guided intensity modulated radiation therapy (IG-IMRT) after cryotherapy failure. Patients who were treated at our institution from 2005 to 2016 were reviewed for those who underwent cryotherapy as initial treatment followed by salvage IGRT. Patients were treated with dose-escalated IG-IMRT using standard treatment margins of 3 mm posterior and 7 mm in all other directions and daily cone beam computed tomography or kv imaging to implanted fiducial markers. Biochemical progression was defined in accordance with the Phoenix consensus conference definition. Eight patients were identified as having received post-cryotherapy salvage radiation within the study period. The median total dose was 77.7 Gy (range, 75.6-81.0 Gy). Median follow-up was 55 months (range, 6-88 months). Six patients remained biochemically controlled at the latest follow-up. One patient developed distant metastases after 22 months and one experienced biochemical failure at 30 months with no evidence of distant metastases. No patients experienced acute gastrointestinal toxicities of grade 2 or higher. There were no cases of late gastrointestinal or genitourinary toxicity. High-dose IG-IMRT results in high rates of salvage and extremely low rates of serious late toxicity for patients with locally recurrent prostate cancer after cryotherapy. Although the results are encouraging, given the small number of patients in this and other series, we remain cautious with regard to this treatment and believe the use of salvage radiation therapy after cryotherapy warrants further study.
Pickles, Tom
2006-04-01
To determine the false call (FC) rate for prostate-specific antigen (PSA) relapse according to nine different PSA relapse definitions after a PSA fluctuation (bounce) has occurred after external beam radiation therapy (EBRT) or brachytherapy, with or without adjuvant androgen deprivation therapy. An analysis of a prospective database of 2030 patients was conducted. Prostate-specific antigen relapse was scored according to the American Society for Therapeutic Radiology and Oncology (ASTRO), Vancouver, threshold + n, and nadir + n definitions for the complete data set and then compared against a truncated data set, with data subsequent to the height of the bounce deleted. The FC rate was calculated for each definition. The bounce rate, with this very liberal definition of bounce, was 58% with EBRT and 84% with brachytherapy. The FC rate was lowest with nadir + 2 and + 3 definitions (2.2% and 1.6%, respectively) and greatest with low-threshold and ASTRO definitions (32% and 18%, respectively). The ASTRO definition was particularly susceptible to FC when androgen deprivation therapy was used with radiation (24%). New definitions of biochemical non-evidence of disease that are more robust than the ASTRO definition have been identified. Those with the least FC rates are the nadir + 2 and nadir + 3 definitions, both of which are being considered to replace the ASTRO definition by the 2005 meeting of the Radiation Therapy Oncology Group-ASTRO consensus panel.
Management of severe urethral complications of prostate cancer therapy.
Elliott, Sean P; McAninch, Jack W; Chi, Thomas; Doyle, Sean M; Master, Viraj A
2006-12-01
We present our management of urethral stenosis and rectourinary fistula resulting from prostate cancer therapy. We concentrated on cases refractory to minimally invasive treatment, such as dilation, urethrotomy, and urinary and/or fecal diversion. In our prospectively collected urethral reconstruction database we identified patients who underwent reconstruction of urethral stenosis or rectourinary fistula who also received prior treatment for prostate cancer. We documented demographics, prostate cancer pretreatment characteristics, prostate cancer therapy type, urethral reconstruction type and success. A total of 48 patients met the inclusion criteria, including 16 with rectourinary fistula and 32 with urethral stenosis. Urethral complications followed prior radical prostatectomy, brachytherapy, external beam radiotherapy, cryotherapy, thermal ablation and any combination of these procedures. Stenosis repair was successful in 23 of 32 cases (73%) and it differed little between anterior and posterior urethral stenosis. Repair was accomplished by anastomotic urethroplasty in 19 cases, flap urethroplasty in 2, perineal urethrostomy in 2 and a urethral stent in 9. Prior external beam radiotherapy was a risk factor for urethral reconstruction failure. Fistula repair was successful in 14 of 15 patients (93%), excluding 1 who died postoperatively. The complexity of fistula management was dictated by fistula size and the presence or absence of coincident urethral stenosis. Urethral stenosis or rectourethral fistula following prostate cancer therapy can be managed by urethral reconstruction, such that normal voiding via the urethra is maintained, rather than abandoning the urethral outlet and performing heterotopic diversion. This can be accomplished with an acceptable rate of failure, given the complexity of the cases.
Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S
2008-06-23
The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.
Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes
2008-01-01
The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a
Pelvic radiotherapy in the setting of rheumatoid arthritis: Refining the paradigm.
Felefly, T; Mazeron, R; Huertas, A; Canova, C H; Maroun, P; Kordahi, M; Morice, P; Deutsch, É; Haie-Méder, C; Chargari, C
2017-04-01
Conflicting results concerning the toxicity of radiotherapy in the setting of rheumatoid arthritis were reported in literature. This work describes the toxicity profiles of patients with rheumatoid arthritis undergoing pelvic radiotherapy for gynecologic malignancies at our institution. Charts of patients with rheumatoid arthritis who underwent pelvic radiotherapy for cervical or endometrial cancer in a curative intent at the Gustave-Roussy Cancer Campus between 1990 and 2015 were reviewed for treatment-related toxicities. Acute and late effects were graded as per the Common Terminology Criteria for Adverse Events version 4.0 scoring system. Eight patients with cervical cancer and three with endometrial cancer were identified. Median follow-up was 56 months. Median external beam radiotherapy dose was 45Gy. All patients received a brachytherapy boost using either pulse- or low-dose rate technique. Concomitant chemotherapy was used in seven cases. Median time from rheumatoid arthritis diagnosis to external beam radiation therapy was 5 years. No severe acute gastrointestinal or genitourinary toxicity was reported. One patient had grade 3 dermatitis. Any late toxicity occurred in 7 /11 patients, and one patient experienced severe late toxicities. One patient with overt systemic rheumatoid arthritis symptoms at the time of external beam radiation therapy experienced late grade 3 ureteral stenosis, enterocolitis and lumbar myelitis. Pelvic radiotherapy, in the setting of rheumatoid arthritis, appears to be feasible, with potentially slight increase in low grade late events compared to other anatomic sites. Patients with overt systemic rheumatoid arthritis manifestation at the time of radiotherapy might be at risk of potential severe toxicities. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Bae, Kyounghwa; Lawton, Colleen
Introduction: It is believed that men diagnosed with prostate cancer and a low baseline serum testosterone (BST) may have more aggressive disease, and it is frequently recommended they forgo testosterone replacement therapy. We used two large Phase III trials involving androgen deprivation therapy and external beam radiation therapy to assess the significance of a BST. Methods and Materials: All patients with a BST and complete data (n = 2,478) were included in this analysis and divided into four categories: 'Very Low BST' (VLBST) {<=}16.5th percentile of BST ({<=}248 ng/dL; n = 408); 'Low BST' (LBST) >16.5th percentile and {<=}33rd percentilemore » (>248 ng/dL but {<=}314 ng/dL; n = 415); 'Average BST' (ABST) >33rd percentile and {<=}67th percentile (314-437 ng/dL; n = 845); and 'High BST' (HBST) >67th percentile (>437 ng/dL; n = 810). Outcomes included overall survival, distant metastasis, biochemical failure, and cause-specific survival. All outcomes were adjusted for the following covariates: treatment arm, BST, age (<70 vs. {>=}70), prostate-specific antigen (PSA; <10 vs. 10 {<=} PSA <20 vs. 20 {<=}), Gleason score (2-6 vs. 7 vs. 8-10); T stage (T1-T2 vs. T3-T4), and Karnofsky Performance Status (60-90 vs. 100). Results: On multivariable analysis age, Gleason score, and PSA were independently associated with an increased risk of biochemical failure, distant metastasis and a reduced cause-specific and overall survival (p < 0.05), but BST was not. Conclusions: BST does not affect outcomes in men treated with external beam radiation therapy and androgen deprivation therapy for prostate cancer.« less
Study of low energy neutron beam formation based on GEANT4 simulations
NASA Astrophysics Data System (ADS)
Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.
2017-07-01
The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.
Oertel, Susanne; Niethammer, Andreas G; Krempien, Robert; Roeder, Falk; Eble, Michael J; Baer, Claudia; Huber, Peter E; Kulozik, Andreas; Waag, Karl-Ludwig; Treiber, Martina; Debus, Juergen
2006-01-01
Intraoperative electron-beam radiotherapy (IOERT) has been applied for local dose escalation in over 1,400 patients in Heidelberg since 1991. Among these were 30 children, in 18 of whom IOERT was employed in radiation treatment with external-beam radiotherapy (EBRT) on account of incomplete resection. We address the question whether IOERT is able to compensate for microscopic or macroscopic tumor residue if employed in the overall radiation regimen. The data of the aforementioned 18 children were analyzed with regard to local recurrence, overall survival, and complication rates. All children suffered from either sarcomas or neuroblastomas. In all children, IOERT was employed for local dose escalation after or before EBRT. After a median follow-up of 60.5 months, 15 of the treated children are alive. One local failure has been observed. Six children show clinically significant late morbidity, including the loss of a treated limb (Radiation Therapy Oncology Group Grade 4 [RTOG 4]), a severe nerve lesion (RTOG 3), an orthopedic complication (RTOG 2), a ureteral stenosis (not clinically significant), and a kidney hypotrophy (not clinically significant). In 1 child a fracture due to radionecrosis (RTOG 4) was diagnosed; however, in the follow-up, local tumor relapse was diagnosed as another possible reason for the fracture. Regarding the low incidence of local failure, IOERT seems to be able to compensate incomplete tumor resection in childhood sarcoma and neuroblastoma patients. The incidence of late morbidity is low enough to justify the employment of IOERT as part of the radiation treatment regimen for pediatric patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamstra, Daniel A., E-mail: dhamm@med.umich.edu; Conlon, Anna S.C.; Daignault, Stephanie
Purpose: To evaluate patients treated with external beam radiation therapy as part of the multicenter Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment (PROSTQA), to identify factors associated with posttreatment patient-reported bowel health-related quality of life (HRQOL). Methods and Materials: Pretreatment characteristics and treatment details among 292 men were evaluated using a general linear mixed model for their association with measured HRQOL by the Expanded Prostate Cancer Index Composite instrument through 2 years after enrollment. Results: Bowel HRQOL had a median score of 100 (interquartile range 91.7-100) pretreatment and 95.8 (interquartile range 83.3-100) at 2 years, representing new moderate/bigmore » problems in 11% for urgency, 7% for frequency, 4% for bloody stools, and 8% for an overall bowel problems. Baseline bowel score was the strongest predictor for all 2-year endpoints. In multivariable models, a volume of rectum ≥25% treated to 70 Gy (V70) yielded a clinically significant 9.3-point lower bowel score (95% confidence interval [CI] 16.8-1.7, P=.015) and predicted increased risks for moderate to big fecal incontinence (P=.0008). No other radiation therapy treatment-related variables influenced moderate to big changes in rectal HRQOL. However, on multivariate analyses V70 ≥25% was associated with increases in small, moderate, or big problems with the following: incontinence (3.9-fold; 95% CI 1.1-13.4, P=.03), rectal bleeding (3.6-fold; 95% CI 1.3-10.2, P=.018), and bowel urgency (2.9-fold; 95% CI 1.1-7.6, P=.026). Aspirin use correlated with a clinically significant 4.7-point lower bowel summary score (95% CI 9.0-0.4, P=.03) and an increase in small, moderate, or big problems with bloody stools (2.8-fold; 95% CI 1.2-6.4, P=.018). Intensity modulated radiation therapy was associated with higher radiation therapy doses to the prostate and lower doses to the rectum but did not independently correlate with bowel HRQOL. Conclusion: After contemporary dose-escalated external beam radiation therapy up to 11% of patients have newly identified moderate/big problems with bowel HRQOL 2 years after treatment. Bowel HRQOL is related to baseline function, rectal V70, and aspirin use. Finally, our findings validate the commonly utilized cut-point of rectal V70 ≥25% as having significant impact on patient-reported outcomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Gomez, Daniel R.; Polkinghorn, William R.
2013-07-01
Purpose: To determine whether the response to neoadjuvant androgen deprivation therapy (ADT) defined by a decline in prostate-specific antigen (PSA) to nadir values is associated with improved survival outcomes after external beam radiation therapy (EBRT) for prostate cancer. Methods and Materials: One thousand forty-five patients with localized prostate cancer were treated with definitive EBRT in conjunction with neoadjuvant and concurrent ADT. A 6-month course of ADT was used (3 months during the neoadjuvant phase and 2 to 3 months concurrently with EBRT). The median EBRT prescription dose was 81 Gy using a conformal-based technique. The median follow-up time was 8.5more » years. Results: The 10-year PSA relapse-free survival outcome among patients with pre-radiation therapy PSA nadirs of ≤0.3 ng/mL was 74.3%, compared with 57.7% for patients with higher PSA nadir values (P<.001). The 10-year distant metastases-free survival outcome among patients with pre-radiation therapy PSA nadirs of ≤0.3 ng/mL was 86.1%, compared with 78.6% for patients with higher PSA nadir values (P=.004). In a competing-risk analysis, prostate cancer-related deaths were also significantly reduced among patients with pre-radiation therapy PSA nadirs of <0.3 ng/mL compared with higher values (7.8% compared with 13.7%; P=.009). Multivariable analysis demonstrated that the pre-EBRT PSA nadir value was a significant predictor of long-term biochemical tumor control, distant metastases-free survival, and cause-specific survival outcomes. Conclusions: Pre-radiation therapy nadir PSA values of ≤0.3 ng/mL after neoadjuvant ADT were associated with improved long-term biochemical tumor control, reduction in distant metastases, and prostate cancer-related death. Patients with higher nadir values may require alternative adjuvant therapies to improve outcomes.« less
Rim, Chai Hong; Yoon, Won Sup
2018-01-01
The use of external beam radiation therapy (EBRT) in the treatment of hepatocellular carcinoma (HCC), which was rarely performed due to liver toxicity with a previous technique, has increased. Palliation of portal vein thrombosis, supplementation for insufficient transarterial chemoembolization, and provision of new curative opportunities using stereotactic body radiotherapy are the potential indications for use of EBRT. The mechanism of EBRT treatment, with its radiobiological and physical perspectives, differs from those of conventional medical treatment or surgery. Therefore, understanding the effects of EBRT may be unfamiliar to physicians other than radiation oncologists, especially in the field of HCC, where EBRT has recently begun to be applied. The first objective of this review was to concisely explain the indications for use of EBRT for HCC for all physicians treating HCC. Therefore, this review focuses on the therapeutic outcomes rather than the detailed biological and physical background. We also reviewed recent clinical trials that may extend the indications for use of EBRT. Finally, we reviewed the current clinical practice guidelines for the treatment of HCC and discuss the current recommendations and future perspectives.
Sarkar, Biplab
2018-04-12
This article describe the three dimensional geometrical incompetency of the term "4π radiotherapy"; frequently used in radiation oncology to establish the superiority (or rather complexity) of particular kind of external beam delivery technique. It was claimed by several researchers, to obtain 4π c solid angle at target centre created by the tele-therapy delivery machine in three dimensional Euclidian space. However with the present design of linear accelerator (or any other tele-therapy machine) it is not possible to achieve more than 2π c with the allowed boundary condition of 0 ≤ Gnatry position≤π c and [Formula: see text]≤Couch Position≤[Formula: see text] .This article describes why it is not possible to achieve a 4π c solid angle at any point in three dimensional Euclidian spaces. This article also recommends not to use the terminology "4π radiotherapy" for describing any external beam technique or its complexity as this term is geometrically wrong.
Lee, Andrew S; Tang, Chad; Hong, Wan Xing; Park, Sujin; Bazalova-Carter, Magdalena; Nelson, Geoff; Sanchez-Freire, Veronica; Bakerman, Isaac; Zhang, Wendy; Neofytou, Evgenios; Connolly, Andrew J; Chan, Charles K; Graves, Edward E; Weissman, Irving L; Nguyen, Patricia K; Wu, Joseph C
2017-08-01
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced PSCs (hiPSCs), have great potential as an unlimited donor source for cell-based therapeutics. The risk of teratoma formation from residual undifferentiated cells, however, remains a critical barrier to the clinical application of these cells. Herein, we describe external beam radiation therapy (EBRT) as an attractive option for the treatment of this iatrogenic growth. We present evidence that EBRT is effective in arresting growth of hESC-derived teratomas in vivo at day 28 post-implantation by using a microCT irradiator capable of targeted treatment in small animals. Within several days of irradiation, teratomas derived from injection of undifferentiated hESCs and hiPSCs demonstrated complete growth arrest lasting several months. In addition, EBRT reduced reseeding potential of teratoma cells during serial transplantation experiments, requiring irradiated teratomas to be seeded at 1 × 10 3 higher doses to form new teratomas. We demonstrate that irradiation induces teratoma cell apoptosis, senescence, and growth arrest, similar to established radiobiology mechanisms. Taken together, these results provide proof of concept for the use of EBRT in the treatment of existing teratomas and highlight a strategy to increase the safety of stem cell-based therapies. Stem Cells 2017;35:1994-2000. © 2017 AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, David W., E-mail: David.Chang@petermac.org; Marvelde, Luc te; Chua, Boon H.
Purpose: To report the local recurrence rate and late toxicity of intraoperative radiation therapy (IORT) boost to the tumor bed using the Intrabeam System followed by external-beam whole-breast irradiation (WBI) in women with early-stage breast cancer in a prospective single-institution study. Methods and Materials: Women with breast cancer ≤3 cm were recruited between February 2003 and May 2005. After breast-conserving surgery, a single dose of 5 Gy IORT boost was delivered using 50-kV x-rays to a depth of 10 mm from the applicator surface. This was followed by WBI to a total dose of 50 Gy in 25 fractions. Patientsmore » were reviewed at regular, predefined intervals. Late toxicities were recorded using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring systems. Results: Fifty-five patients completed both IORT boost and external-beam WBI. Median follow-up was 3.3 years (range, 1.4-4.1 years). There was no reported locoregional recurrence or death. One patient developed distant metastases. Grade 2 and 3 subcutaneous fibrosis was detected in 29 (53%) and 8 patients (15%), respectively. Conclusions: The use of IORT as a tumor bed boost using kV x-rays in breast-conserving therapy was associated with good local control but a clinically significant rate of grade 2 and 3 subcutaneous fibrosis.« less
Multicentre dose audit for clinical trials of radiation therapy in Asia
Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C.R. Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-01-01
Abstract A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. PMID:27864507
External Beam Boost for Cancer of the Cervix Uteri When Intracavitary Therapy Cannot Be Performed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraclough, Lisa Helen; Swindell, Ric; Livsey, Jacqueline E.
2008-07-01
Purpose: To assess the outcome of patients treated with radical radiotherapy for cervical cancer who received an external beam boost, in place of intracavitary brachytherapy (ICT), after irradiation to the whole pelvis. Methods and Materials: Case notes were reviewed for all patients treated in this way in a single center between 1996 and 2004. Patient and tumor details, the reasons why ICT was not possible, and treatment outcome were documented. Results: Forty-four patients were identified. The mean age was 56.4 years (range, 26-88 years). Clinical International Federation of Gynecology and Obstetrics or radiologic stage for Stages I, II, III, andmore » IV, respectively, was 16%, 48%, 27%, and 7%. A total radiation dose of 54-70 Gy was given (75% received {>=}60 Gy). Reasons for ICT not being performed were technical limitations in 73%, comorbidity or isolation limitations in 23%, and patient choice in 4%. The median follow-up was 2.3 years. Recurrent disease was seen in 48%, with a median time to recurrence of 2.3 years. Central recurrence was seen in 16 of the 21 patients with recurrent disease. The 5-year overall survival rate was 49.3%. The 3-year cancer-specific survival rate by stage was 100%, 70%, and 42% for Stages I, II, and III, respectively. Late Grades 1 and 2 bowel, bladder, and vaginal toxicity were seen in 41%. Late Grade 3 toxicity was seen in 2%. Conclusion: An external beam boost is a reasonable option after external beam radiotherapy to the pelvis when it is not possible to perform ICT.« less
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Felipe A.; Institute of Research Investigation, Hospital General Universitario Gregorio Marañón, Madrid; School of Medicine, Complutense University, Madrid
Purpose: To analyze prognostic factors associated with survival in patients after intraoperative electrons containing resective surgical rescue of locally recurrent rectal cancer (LRRC). Methods and Materials: From January 1995 to December 2011, 60 patients with LRRC underwent extended surgery (n=38: multiorgan [43%], bone [28%], soft tissue [38%]) or nonextended (n=22) surgical resection, including a component of intraoperative electron-beam radiation therapy (IOERT) to the pelvic recurrence tumor bed. Twenty-eight (47%) of these patients also received external beam radiation therapy (EBRT) (range, 30.6-50.4 Gy). Survival outcomes were estimated by the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses.more » Results: The median follow-up time was 36 months (range, 2-189 months), and the 1-year, 3-year, and 5-year rates for locoregional control (LRC) and overall survival (OS) were 86%, 52%, and 44%; and 78%, 53%, 43%, respectively. On multivariate analysis, R1 resection, EBRT at the time of pelvic rerecurrence, no tumor fragmentation, and non-lymph node metastasis retained significance with regard to LRR. R1 resection and no tumor fragmentation showed a significant association with OS after adjustment for other covariates. Conclusions: EBRT treatment integrated for rescue, resection radicality, and not involved fragmented resection specimens are associated with improved LRC in patients with locally recurrent rectal cancer. Additionally, tumor fragmentation could be compensated by EBRT. Present results suggest that a significant group of patients with LRRC may benefit from EBRT treatment integrated with extended surgery and IOERT.« less
Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers
NASA Astrophysics Data System (ADS)
Berbeco, Ross I.; Mostafavi, Hassan; Sharp, Gregory C.; Jiang, Steve B.
2005-10-01
Due to the risk of pneumothorax, many clinicians are reluctant to implant radiopaque markers within patients' lungs for the purpose of radiographic or fluoroscopic tumour localization. We propose a method of gated therapy using fluoroscopic information without the implantation of radiopaque markers. The method presented here does not rely on any external motion signal either. Breathing phase information is found by analysing the fluoroscopic intensity fluctuations in the lung. As the lungs fill/empty, the radiological pathlength through them shortens/lengthens, giving brighter/darker fluoroscopic intensities. The phase information is combined with motion-enhanced template matching to turn the beam on when the tumour is in the desired location. A study based on patient data is presented to demonstrate the feasibility of this procedure. The resulting beam-on pattern is similar to that produced by an external gating system. The only discrepancies occur briefly and at the gate edges.
The role of external beam radiation therapy in well-differentiated thyroid cancer.
Hamilton, Sarah N; Tran, Eric; Berthelet, Eric; Wu, Jonn
2017-10-01
This review article explores the use of external beam radiotherapy (EBRT) in well differentiated thyroid cancer. Areas covered: The published literature on EBRT for advanced pT4 disease and macroscopic unresectable disease to improve locoregional control is reviewed. EBRT techniques, volumes and doses are discussed in detail. The potential acute and late toxicities of EBRT are discussed in the context of the published literature. The use of EBRT for patients with metastatic disease is also described. Expert commentary: There is good retrospective evidence for EBRT in the setting of unresectable gross residual well-differentiated thyroid cancer as this can result in long-term local control. However, the benefit of EBRT in patients with locally advanced disease that is completely resected is less clear. The use of EBRT for these patients requires careful consideration of age, pathologic factors, comorbidities and patient preference, preferably by a multi-disciplinary team.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D; Chung, E; Hess, C
2015-06-15
Purpose: Two newly emerging transmission detectors positioned upstream from the patient have been evaluated for online quality assurance of external beam radiotherapy. The prototype for the Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area ion chamber mounted on the linac accessory tray to monitor photon fluence, energy, beam shape, and gantry position during treatment. The ion chamber utilizes a thickness gradient which records variable response dependent on beam position. The prototype of Delta4 Discover™, developed by ScandiDos (Uppsala, Sweden) is a linac accessory tray mounted 4040 diode array that measures photon fluence during patientmore » treatment. Both systems are employable for patient specific QA prior to treatment delivery. Methods: Our institution evaluated the reproducibility of measurements using various beam types, including VMAT treatment plans with both the IQM ion chamber and the Delta4 Discover diode array. Additionally, the IQM’s effect on photon fluence, dose response, simulated beam error detection, and the accuracy of the integrated barometer, thermometer, and inclinometer were characterized. The evaluated photon beam errors are based on the annual tolerances specified in AAPM TG-142. Results: Repeated VMAT treatments were measured with 0.16% reproducibility by the IQM and 0.55% reproducibility by the Delta4 Discover. The IQM attenuated 6, 10, and 15 MV photon beams by 5.43±0.02%, 4.60±0.02%, and 4.21±0.03% respectively. Photon beam profiles were affected <1.5% in the non-penumbra regions. The IQM’s ion chamber’s dose response was linear and the thermometer, barometer, and inclinometer agreed with other calibrated devices. The device detected variations in monitor units delivered (1%), field position (3mm), single MLC leaf positions (13mm), and photon energy. Conclusion: We have characterized two new transmissions detector systems designed to provide in-vivo like measurements upstream from the patient. Both systems demonstrate substantial utility for online treatment verification and QA of photon external beam radiotherapy.« less
Optical Imaging of Ionizing Radiation from Clinical Sources
Shaffer, Travis M.; Drain, Charles Michael
2016-01-01
Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. PMID:27688469
Improving external beam radiotherapy by combination with internal irradiation.
Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M
2015-07-01
The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.
DeLaney, Thomas F
2011-01-01
The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost. Combinations of 3D protons with IMRT photons may offer improved treatment plans at lower cost than pure proton plans. Hypofractionation with proton therapy appears to be safe and cost-effective for many tumor sites, such as for selected liver, lung and pancreas cancers, and may yield significant reduction in the cost of a therapy course. Together, these offer practical strategies for expanding the clinical availability of proton therapy. Copyright © 2011 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, Tom
Purpose: To determine the false call (FC) rate for prostate-specific antigen (PSA) relapse according to nine different PSA relapse definitions after a PSA fluctuation (bounce) has occurred after external beam radiation therapy (EBRT) or brachytherapy, with or without adjuvant androgen deprivation therapy. Methods and Materials: An analysis of a prospective database of 2030 patients was conducted. Prostate-specific antigen relapse was scored according to the American Society for Therapeutic Radiology and Oncology (ASTRO), Vancouver, threshold + n, and nadir + n definitions for the complete data set and then compared against a truncated data set, with data subsequent to the heightmore » of the bounce deleted. The FC rate was calculated for each definition. Results: The bounce rate, with this very liberal definition of bounce, was 58% with EBRT and 84% with brachytherapy. The FC rate was lowest with nadir + 2 and + 3 definitions (2.2% and 1.6%, respectively) and greatest with low-threshold and ASTRO definitions (32% and 18%, respectively). The ASTRO definition was particularly susceptible to FC when androgen deprivation therapy was used with radiation (24%). Discussion: New definitions of biochemical non-evidence of disease that are more robust than the ASTRO definition have been identified. Those with the least FC rates are the nadir + 2 and nadir + 3 definitions, both of which are being considered to replace the ASTRO definition by the 2005 meeting of the Radiation Therapy Oncology Group-ASTRO consensus panel.« less
Smith, Graham D; Pickles, Tom; Crook, Juanita; Martin, Andre-Guy; Vigneault, Eric; Cury, Fabio L; Morris, Jim; Catton, Charles; Lukka, Himu; Warner, Andrew; Yang, Ying; Rodrigues, George
2015-03-01
To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2) intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Propensity score matched analysis showed that BT options led to statistically significant improvements in bFFS in low- and intermediate-risk prostate cancer patient populations. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Graham D.; Pickles, Tom; Crook, Juanita
2015-03-01
Purpose: To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Methods and Materials: Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2)more » intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Results: Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Conclusions: Propensity score matched analysis showed that BT options led to statistically significant improvements in bFFS in low- and intermediate-risk prostate cancer patient populations.« less
NASA Astrophysics Data System (ADS)
Fontenot, Jonas David
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, David A.; Carrier, Jean-Francois; Beauchemin, Marie-Claude
2012-09-01
Purpose: To determine the extent of gold fiducial marker (FM) migration in patients treated for prostate cancer with concurrent androgen deprivation and external-beam radiation therapy (EBRT). Methods and Materials: Three or 4 gold FMs were implanted in 37 patients with prostate adenocarcinoma receiving androgen deprivation therapy (ADT) in conjunction with 70-78 Gy. Androgen deprivation therapy was started a median of 3.9 months before EBRT (range, 0.3-12.5 months). To establish the extent of FM migration, the distance between each FM was calculated for 5-8 treatments once per week throughout the EBRT course. For each treatment, the distance between FMs was comparedmore » with the distance from the digitally reconstructed radiographs generated from the planning CT. A total of 281 treatments were analyzed. Results: The average daily migration was 0.8 {+-} 0.3 mm, with distances ranging from 0.2 mm-2.6 mm. Two of the 281 assessed treatments (0.7%) showed migrations >2 mm. No correlation between FM migration and patient weight or time delay between ADT and start of EBRT was found. There was no correlation between the extent of FM migration and prostate volume. Conclusion: This is the largest report of implanted FM migration in patients receiving concomitant ADT. Only 0.7% of the 281 treatments studied had significant marker migrations (>2 mm) throughout the course of EBRT. Consequently, the use of implanted FMs in these patients enables accurate monitoring of prostate gland position during treatment.« less
Kim, Young Suk; Choi, Jae Hyuck; Kim, Kwang Sik; Lim, Gil Chae; Kim, Jeong Hong; Kang, Ju Wan; Song, Hee-Sung; Lee, Sang Ah; Hyun, Chang Lim; Choi, Yunseon; Kim, Gwi Eon
2017-01-01
Purpose To evaluate the effect of adjuvant external beam radiation therapy (EBRT) on local failure-free survival rate (LFFS) for papillary thyroid cancer (PTC) invading the trachea. Materials and Methods Fifty-six patients with locally advanced PTC invading the trachea were treated with surgical resection. After surgery, 21 patients received adjuvant EBRT and radioactive iodine therapy (EBRT group) and 35 patients were treated with radioactive iodine therapy (control group). Results The age range was 26–87 years (median, 56 years). The median follow-up period was 43 months (range, 4 to 145 months). EBRT doses ranged from 50.4 to 66 Gy (median, 60 Gy). Esophagus invasion and gross residual disease was more frequent in the EBRT group. In the control group, local recurrence developed in 9 (9/35, 26%) and new distant metastasis in 2 (2/35, 6%) patients, occurring 4 to 68 months (median, 37 months) and 53 to 68 months (median, 60 months) after surgery, respectively. Two patients had simultaneous local recurrence and new distant metastasis. There was one local failure in the EBRT group at 18 months after surgery (1/21, 5%). The 5-year LFFS was 95% in the EBRT group and 63% in the control group (p = 0.103). In the EBRT group, one late grade 2 xerostomia was developed. Conclusion Although, EBRT group had a higher incidence of esophagus invasion and gross residual disease, EBRT group showed a better 5-year LFFS. Adjuvant EBRT may have contributed to the better LFFS in these patients. PMID:28712279
Flashes of light-radiation therapy to the brain.
Blumenthal, Deborah T; Corn, Benjamin W; Shtraus, Natan
2015-08-01
We present a series of three patients who received therapeutic external beam radiation to the brain and experienced a phenomenon of the sensation of flashes of bright or blue light, simultaneous with radiation delivery. We relate this benign phenomenon to low-dose exposure to the eye fields and postulate that the occurrence is underreported in this treated population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
On charged particle equilibrium violation in external photon fields.
Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo
2012-03-01
In a recent paper by Bouchard et al. [Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al. [Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k(Q(pcsr),Q) (f(pcsr),f(ref) )) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.
Ray, Saurabh; Bonafede, Machaon M.; Mohile, Nimish A.
2014-01-01
Background Glioblastoma multiforme is the most common malignant primary brain tumor in adults and is associated with poor survival rates. Symptoms often include headaches; nausea and vomiting; and progressive memory, personality, or neurologic deficits. The treatment remains a challenge, and despite the approval of multiple new therapies in the past decade, survival has not improved. Objective To describe treatment patterns, survival, and healthcare costs of patients with incident glioblastoma in a large US population. Methods For this population-based study, adult patients (aged ≥18 years) with incident malignant brain neoplasm who had undergone brain surgery between January 1, 2006, and December 31, 2010, were identified in the Truven Health Analytics MarketScan Research Databases. The patients were stratified into 4 cohorts based on the use of temozolomide and/or external beam radiation therapy within 90 days after brain surgery (ie, the index event). Treatment patterns, survival, and healthcare costs were assessed until patient death, disenrollment, or the end-of-study period. Results A total of 2272 patients met the inclusion criteria; of these, 37% received temozolomide and radiation therapy, 13.8% received radiation alone, 3.9% received temozolomide alone, and 45.3% of patients received neither. The average patient age ranged from 55.3 years to 59.8 years across the study cohorts; between 29.8% and 44% of patients in each cohort were female. The duration of temozolomide use was similar between the temozolomide-only cohort and patients receiving temozolomide with external beam radiation; approximately 76% of patients received temozolomide at least 60 days, dropping to 48.1% and 23% at 180 days and 360 days of follow-up, respectively. The median survival was 456 days, ranging from 331 days in the temozolomide-only cohort to 529 days in the cohort that received neither temozolomide nor external beam radiation. The average total costs in the 6 months postindex were $106,896, from $79,099 for patients who received neither temozolomide nor radiation to $138,767 for those who received both therapies. Conclusion The survival patterns of patients with glioblastoma seen in this real-world study of current treatments in a clinical setting is similar to the survival rate reported in clinical trials. However, further cost-effectiveness and quality-of-life analyses will be critical to better understand the role of temozolomide therapy in this patient population, considering its considerable cost burden and potential negative impact on survival seen in this study. PMID:24991398
Parodi, Katia; Mairani, Andrea; Sommerer, Florian
2013-07-01
Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica.
Parodi, Katia; Mairani, Andrea; Sommerer, Florian
2013-01-01
Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica. PMID:23824133
Badakh, Dinesh K; Grover, Amit H
2014-01-01
The purpose of this study was to analyze the impact of intra-cavitary brachytherapy (ICBT) as boost radiation after external beam radiotherapy (EBRT) in carcinoma of the external auditory canal and middle ear (EACMA): A retrospective analysis. A retrospective study of 18 patients with carcinoma of the EACMA who were treated with a curative intent from the year 1998 to 2010 was carried out. The age of the patients ranged from 25 years to 67 years. There were 11 male patients (61.1%) and 7 female patients (38.9%). A total of 15 (88.2%) patients were treated with curative radiation alone after a biopsy and two patients received post-operative radiation therapy. The patients were initially treated with EBRT with cobalt 60 machine up to 60-64 Gy. In our department, all the patients who were technically suitable for ICBT received an ICBT boost. The overall survival (OS) in these patients ranged from 7 months to 151 months (9 out of 17 patients, no evidence of disease 53%). The OS in patients treated with a combination of EBRT with ICBT was (8 out of 11) 72.7%, P value statistically significant (P value: 0.0024). The multivariate analysis shows statistically significant difference only for patients who got an ICBT boost (P Value: 0.020). ICBT as a boost after EBRT has got a positive impact on the OS. In conclusion, our results demonstrate that radical radiation therapy (EBRT and ICBT) is the treatment of choice for stage T2, carcinoma of EACMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirvani, Shervin M.; Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, Arizona; Jiang, Jing
Purpose: Older women with early-stage disease constitute the most rapidly growing breast cancer demographic, yet it is not known which local therapy strategies are most favored by this population in the current era. Understanding utilization trends and cost of local therapy is important for informing the design of bundled payment models as payers migrate away from fee-for-service models. We therefore used the Surveillance, Epidemiology, and End Results Medicare database to determine patterns of care and costs for local therapy among older women with breast cancer. Methods and Materials: Treatment strategy and covariables were determined in 55,327 women age ≥66 withmore » Tis-T2N0-1M0 breast cancer who underwent local therapy between 2000 and 2008. Trends in local therapy were characterized using Joinpoint. Polychotomous logistic regression determined predictors of local therapy. The median aggregate cost over the first 24 months after diagnosis was determined from Medicare claims through 2010 and reported in 2014 dollars. Results: The median age was 75. Local therapy distribution was as follows: 27,896 (50.3%) lumpectomy with external beam radiation, 18,356 (33.1%) mastectomy alone, 6159 (11.1%) lumpectomy alone, 1488 (2.7%) mastectomy with reconstruction, and 1455 (2.6%) lumpectomy with brachytherapy. Mastectomy alone declined from 39.0% in 2000 to 28.2% in 2008, and the use of breast conserving local therapies rose from 58.7% to 68.2%. Mastectomy with reconstruction was more common among the youngest, healthiest patients, whereas mastectomy alone was more common among patients living in rural low-income regions. By 2008, the costs were $36,749 for lumpectomy with brachytherapy, $35,030 for mastectomy with reconstruction, $31,388 for lumpectomy with external beam radiation, $21,993 for mastectomy alone, and $19,287 for lumpectomy alone. Conclusions: The use of mastectomy alone in older women declined in favor of breast conserving strategies between 2000 and 2008. Using these cost estimates, price points for local therapy bundles can be constructed to incentivize the treatment strategies that confer the highest value.« less
An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs
NASA Astrophysics Data System (ADS)
Zachiu, C.; Papadakis, N.; Ries, M.; Moonen, C.; de Senneville, B. Denis
2015-12-01
Magnetic resonance (MR) guided high intensity focused ultrasound and external beam radiotherapy interventions, which we shall refer to as beam therapies/interventions, are promising techniques for the non-invasive ablation of tumours in abdominal organs. However, therapeutic energy delivery in these areas becomes challenging due to the continuous displacement of the organs with respiration. Previous studies have addressed this problem by coupling high-framerate MR-imaging with a tracking technique based on the algorithm proposed by Horn and Schunck (H and S), which was chosen due to its fast convergence rate and highly parallelisable numerical scheme. Such characteristics were shown to be indispensable for the real-time guidance of beam therapies. In its original form, however, the algorithm is sensitive to local grey-level intensity variations not attributed to motion such as those that occur, for example, in the proximity of pulsating arteries. In this study, an improved motion estimation strategy which reduces the impact of such effects is proposed. Displacements are estimated through the minimisation of a variation of the H and S functional for which the quadratic data fidelity term was replaced with a term based on the linear L1norm, resulting in what we have called an L2-L1 functional. The proposed method was tested in the livers and kidneys of two healthy volunteers under free-breathing conditions, on a data set comprising 3000 images equally divided between the volunteers. The results show that, compared to the existing approaches, our method demonstrates a greater robustness to local grey-level intensity variations introduced by arterial pulsations. Additionally, the computational time required by our implementation make it compatible with the work-flow of real-time MR-guided beam interventions. To the best of our knowledge this study was the first to analyse the behaviour of an L1-based optical flow functional in an applicative context: real-time MR-guidance of beam therapies in moving organs.
Optical Imaging of Ionizing Radiation from Clinical Sources.
Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan
2016-11-01
Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Rouvière, O; Sbihi, L; Gelet, A; Chapelon, J-Y
2013-07-01
To assess the prognostic value of magnetic resonance imaging (MRI) before salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after external-beam radiotherapy (EBRT). Forty-six patients who underwent prostate MRI before salvage HIFU for locally recurrent prostate cancer after EBRT were retrospectively studied. HIFU failure was defined as a prostate-specific antigen (PSA) value >nadir + 2 ng/ml (Phoenix criteria) or positive follow-up biopsy or initiation of any other salvage therapy. The following prognostic parameters were assessed: neoadjuvant hormone therapy, clinical stage and Gleason score of recurrence, PSA level and velocity at HIFU treatment, and six MRI-derived parameters (prostate volume, tumour volume, extracapsular extension, seminal vesicle invasion, tumour extension into the apex or anterior to the urethra). Two factors were significant independent predictors of salvage HIFU failure: the PSA level at HIFU treatment (p < 0.012; risk ratio: 1.15, 95% CI: 1.03-1.29) and the tumour extension anterior to the urethra, as assessed by MRI (p = 0.046, risk ratio: 2.51, 95% CI: 1.02-6.16). The location of cancer recurrence anterior to the urethra on MRI is an independent significant predictor of salvage HIFU failure for locally recurrent prostate cancer after EBRT. Therefore, MRI may be useful for patient selection before post-EBRT salvage HIFU ablation. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Energy optimization in gold nanoparticle enhanced radiation therapy.
Sung, Wonmo; Schuemann, Jan
2018-06-25
Gold nanoparticles (GNPs) have been demonstrated as radiation dose enhancing agents. Kilovoltage external photon beams have been shown to yield the largest enhancement due to the high interaction probability with gold. While orthovoltage irradiations are feasible and promising, they suffer from a reduced tissue penetrating power. This study quantifies the effect of varying photon beam energies on various beam arrangements, body, tumor, and cellular GNP uptake geometries. Cell survival was modeled based on our previously developed GNP-local effect model with radial doses calculated using the TOPAS-nBio Monte Carlo code. Cell survival curves calculated for tumor sites with GNPs were used to calculate the relative biological effectiveness (RBE)-weighted dose. In order to evaluate the plan quality, the ratio of the mean dose between the tumor and normal tissue for 50-250 kVp beams with GNPs was compared to the standard of care using 6 MV photon beams without GNPs for breast and brain tumors. For breast using a single photon beam, kV + GNP was found to yield up to 2.73 times higher mean RBE-weighted dose to the tumor than two tangential megavoltage beams while delivering the same dose to healthy tissue. For irradiation of brain tumors using multiple photon beams, the GNP dose enhancement was found to be effective for energies above 50 keV. A small tumor at shallow depths was found to be the most effective treatment conditions for GNP enhanced radiation therapy. GNP uptake distributions in the cell (with or without nuclear uptake) and the beam arrangement were found to be important factors in determining the optimal photon beam energy.
Methods and computer readable medium for improved radiotherapy dosimetry planning
Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.
2005-11-15
Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.
Genetic and Epigenetic Biomarkers for Recurrent Prostate Cancer After Radiotherapy
2013-05-01
prostatectomy are urinary incontinence , erectile dysfunction, and typical post-operative complications. Radiation therapy (RT) shows several distinct...includes a low risk of urinary incontinence . Major disadvantage of external beam RT include a treatment course of 8-9 weeks. -50% of patients have some...this treatment include the risk of acute urinary retention. Currently, the level of PSA, clinical stage and the Gleason score are used to
Multicentre dose audit for clinical trials of radiation therapy in Asia.
Mizuno, Hideyuki; Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C R Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-05-01
A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
X-ray microbeam measurements with a high resolution scintillator fibre-optic dosimeter.
Archer, James; Li, Enbang; Petasecca, Marco; Dipuglia, Andrew; Cameron, Matthew; Stevenson, Andrew; Hall, Chris; Hausermann, Daniel; Rosenfeld, Anatoly; Lerch, Michael
2017-09-29
Synchrotron microbeam radiation therapy is a novel external beam therapy under investigation, that uses highly brilliant synchrotron x-rays in microbeams 50 μm width, with separation of 400 μm, as implemented here. Due to the fine spatial fractionation dosimetry of these beams is a challenging and complicated problem. In this proof-of-concept work, we present a fibre optic dosimeter that uses plastic scintillator as the radiation conversion material. We claim an ideal one-dimensional resolution of 50 μm. Using plastic scintillator and fibre optic makes this dosimeter water-equivalent, a very desirable dosimetric property. The dosimeter was tested at the Australian Synchrotron, on the Imaging and Medical Beam-Line. The individual microbeams were able to be resolved and the peak-to-valley dose ratio and the full width at half maximum of the microbeams was measured. These results are compared to a semiconductor strip detector of the same spatial resolution. A percent depth dose was measured and compared to data acquired by an ionisation chamber. The results presented demonstrate significant steps towards the development of an optical dosimeter with the potential to be applied in quality assurance of microbeam radiation therapy, which is vital if clinical trials are to be performed on human patients.
Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies.
Lopci, Egesta; Chiti, Arturo; Castellani, Maria Rita; Pepe, Giovanna; Antunovic, Lidija; Fanti, Stefano; Bombardieri, Emilio
2011-05-01
The technological advances in imaging and production of radiopharmaceuticals are driving an innovative way of evaluating the targets for antineoplastic therapies. Besides the use of imaging to better delineate the volume of external beam radiation therapy in oncology, modern imaging techniques are able to identify targets for highly specific medical therapies, using chemotherapeutic drugs and antiangiogenesis molecules. Moreover, radionuclide imaging is able to select targets for radionuclide therapy and to give the way to in vivo dose calculation to target tissues and to critical organs. This contribution reports the main studies published on matched pairs dosimetry with (124)I/(131)I- and (86)Y/(90)Y-labelled radiopharmaceuticals, with an emphasis on metaiodobenzylguanidine (MIBG) and monoclonal antibodies.
Serrano, Nicholas; Moghanaki, Drew; Asher, David; Karlin, Jeremy; Schutzer, Matthew; Chang, Michael; Hagan, Michael P
2016-01-01
Supplemental external beam radiation therapy (sEBRT) is often prescribed in men undergoing low-dose-rate (LDR) brachytherapy. A population of patients was analyzed to assess the effect of sEBRT on late rectal toxicity. It was hypothesized that sEBRT + LDR would be associated with a higher risk of late rectal toxicity. This retrospective cohort study examined LDR brachytherapy patients, treated with or without sEBRT, with a minimum of 5-year followup. Longitudinal assessments were evaluated using the computerized patient record system. The Kaplan-Meier method was used for analysis. Median followup was 7.5 years for 245 patients from 2004 to 2007. sEBRT was administered to 33.5%. Followup beyond 5 years was available for 89%. Overall rates of Grade ≥2 and ≥3 rectal toxicities were 6.9% and 2.9%, respectively. The risk of Grade ≥2 rectal toxicity was 2.8-fold higher for patients receiving sEBRT (95% confidence interval: 1.1-7.2; p = 0.02). The risk of Grade ≥3 rectal toxicity was 11.9-fold higher for patients who received sEBRT (1.5-97.4, 95% confidence interval; p = 0.003). Six of seven patients with a Grade ≥3 rectal toxicity received sEBRT, including one who required an abdominoperineal resection. Median post-LDR D90, V150, V200, and R100 values were 103.3%, 59.4%, 30.1%, and 0.5 cc. In a cohort of LDR brachytherapy patients with high rates of followup, sEBRT + LDR was associated with significantly higher risk of Grade ≥2 and ≥3 late rectal toxicity. This analysis supports previous findings and maintains concern about the supplemental use of external beam radiation therapy with LDR brachytherapy while its benefit for tumor control has yet to be prospectively validated. Published by Elsevier Inc.
Torshabi, Ahmad Esmaili; Nankali, Saber
2016-01-01
In external beam radiotherapy, one of the most common and reliable methods for patient geometrical setup and/or predicting the tumor location is use of external markers. In this study, the main challenging issue is increasing the accuracy of patient setup by investigating external markers location. Since the location of each external marker may yield different patient setup accuracy, it is important to assess different locations of external markers using appropriate selective algorithms. To do this, two commercially available algorithms entitled a) canonical correlation analysis (CCA) and b) principal component analysis (PCA) were proposed as input selection algorithms. They work on the basis of maximum correlation coefficient and minimum variance between given datasets. The proposed input selection algorithms work in combination with an adaptive neuro‐fuzzy inference system (ANFIS) as a correlation model to give patient positioning information as output. Our proposed algorithms provide input file of ANFIS correlation model accurately. The required dataset for this study was prepared by means of a NURBS‐based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex organs in human body along with motion information of dynamic organs. Moreover, a database of four real patients undergoing radiation therapy for lung cancers was utilized in this study for validation of proposed strategy. Final analyzed results demonstrate that input selection algorithms can reasonably select specific external markers from those areas of the thorax region where root mean square error (RMSE) of ANFIS model has minimum values at that given area. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation. PACS number(s): 87.55.km, 87.55.N PMID:27929479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camingue, Pamela; Christian, Rochelle; Ng, Davin
The purpose of this study was to compare 4 different external beam radiation therapy treatment techniques for the treatment of T1-2, N0, M0 glottic cancers: traditional lateral beams with wedges (3D), 5-field intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and proton therapy. Treatment plans in each technique were created for 10 patients using consistent planning parameters. The photon treatment plans were optimized using Philips Pinnacle{sub 3} v.9 and the IMRT and VMAT plans used the Direct Machine Parameter Optimization algorithm. The proton treatment plans were optimized using Varian Eclipse Proton v.8.9. The prescription used for each plan wasmore » 63 Gy in 28 fractions. The contours for spinal cord, right carotid artery, left carotid artery, and normal tissue were created with respect to the patient's bony anatomy so that proper comparisons of doses could be made with respect to volume. An example of the different isodose distributions will be shown. The data collection for comparison purposes includes: clinical treatment volume coverage, dose to spinal cord, dose to carotid arteries, and dose to normal tissue. Data comparisons will be displayed graphically showing the maximum, mean, median, and ranges of doses.« less
Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer.
Plastaras, John P; Berman, Abigail T; Freedman, Gary M
2014-12-01
The dose distributions that can be achieved with protons are usually superior to those of conventional photon external-beam radiation. There are special cases where proton therapy may offer a substantial potential benefit compared to photon treatments where toxicity concerns dominate. Re-irradiation may theoretically be made safer with proton therapy due to lower cumulative lifetime doses to sensitive tissues, such as the spinal cord. Proton therapy has been used in a limited number of patients with rectal, pancreatic, esophageal, and lung cancers. Chordomas and soft tissue sarcomas require particularly high radiation doses, posing additional challenges for re-irradiation. Lymphoma is another special case where proton therapy may be advantageous. Late toxicities from even relatively low radiation doses, including cardiac complications and second cancers, are of concern in lymphoma patients with high cure rates and long life expectancies. Proton therapy has begun to be used for consolidation after chemotherapy in patients with Hodgkin and non-Hodgkin lymphoma. Breast cancer is another emerging area of proton therapy development and use. Proton therapy may offer advantages compared to other techniques in the setting of breast boosts, accelerated partial breast irradiation, and post-mastectomy radiotherapy. In these settings, proton therapy may decrease toxicity associated with breast radiotherapy. As techniques are refined in proton therapy, we may be able to improve the therapeutic ratio by maintaining the benefits of radiotherapy while better minimizing the risks. Copyright © 2014 Elsevier Inc. All rights reserved.
Analysis of results of radiation therapy for Stage II carcinoma of the cervix.
Montana, G S; Fowler, W C; Varia, M A; Walton, L A; Mack, Y
1985-03-01
From April 1969 through December 1980, 251 patients with invasive, epidermoid carcinoma of the cervix received radical radiation therapy consisting of a combination of external beam and intracavitary therapy designed to deliver 7000 to 8000 rad to Point A and 6000 to 6500 rad to the pelvic lymph nodes. The disease-free survival at 2, 5, and 10 years for patients with Stage IIA disease was 90%, 76%, and 76%, respectively, whereas for patients with Stage IIB disease it was 77%, 62%, and 59%, respectively. The survival for the entire group at 2, 5, and 10 years was 80%, 65%, and 62%, respectively. Sixty-eight patients had a recurrence within the irradiated volume, for a locoregional recurrence rate of 27% (68/251). In 49 patients complications developed for an overall complication rate of 19.5% (49/251). An analysis of the complications and their degree of severity revealed a correlation with the dose of intracavitary plus external beam therapy given to Point A and to the rectum. The mean dose to Point A for patients with and without complications were 7877 rad (standard error [SE] +/- 95) and 7593 rad (SE +/- 67), respectively. The mean rectal dose for patients with and without intestinal complications were 6767 rad (SE +/- 157) and 6426 rad (SE +/- 78), respectively. The dose difference between patients with and without complications was statistically significant for Point A (P = to 0.0163) but not for the rectal dose (P = to 0.0887). There was no correlation between the bladder dose and urinary complications. Other treatment methods as well as patient and tumor parameters, are being currently analyzed to identify which factors, singly or in combination, may contribute to the development of treatment failures or complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swisher-McClure, Samuel, E-mail: Swisher-Mcclure@uphs.upenn.edu; Leonard Davis Institute of Health Economics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Mitra, Nandita
Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Usingmore » multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment.« less
Adjuvant radiotherapy with brachytherapy boost in soft tissue sarcomas
Cortesi, Annalisa; Galuppi, Andrea; Arcelli, Alessandra; Romani, Fabrizio; Mattiucci, Gian Carlo; Bianchi, Giuseppe; Ferrari, Stefano; Ferraro, Andrea; Farioli, Andrea; Gambarotti, Marco; Righi, Alberto; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Buwenge, Milly; Valentini, Vincenzo; Morganti, Alessio Giuseppe; Donati, Davide; Cammelli, Silvia
2017-01-01
Purpose The standard primary treatment for soft tissue sarcoma (STS) is a wide surgical resection, preceded or followed by radiotherapy. Purpose of this retrospective study was to assess the efficacy of perioperative brachytherapy (BRT) plus postoperative external beam radiation therapy (EBRT) in patients with intermediate-high risk STS. Material and methods BRT delivered dose was 20 Gy. External beam radiation therapy was delivered with 3D-technique using multiple beams. The prescribed dose was 46 Gy to the PTV. Neoadjuvant and adjuvant chemotherapy (CHT) was used in patients with potentially chemosensitive histological subtypes. The primary aim of the study was to analyze overall survival (OS) and local control (LC) in a large patient population treated with surgery, perioperative BRT, and adjuvant EBRT ± CHT. Secondary objective was to identify prognostic factors for patients outcome in terms of LC, disease-free survival (DFS), and OS. Results From 2000 to 2011, 107 patients presenting 2-3 grade (FNLCC) primary or recurrent STS were treated with surgery, perioperative BRT, and adjuvant EBRT ± CHT. Five-year LC and OS were 80.9% and 87.4%, respectively. At univariate analysis, a higher LC was recorded in primary vs. recurrent tumors (p = 0.015), and in lower limb tumors vs. other sites (p = 0.027). An improved DFS was recorded in patients with lower limb tumors vs. other sites (p = 0.034). Conclusions The combination of BRT and EBRT was able to achieve satisfactory results even in a patients population with intermediate-high risk STS. Patients with recurrent or other than lower limb sited tumors show a worse LC. PMID:28725250
TU-F-201-00: Radiochromic Film Dosimetry Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
TU-F-201-01: General Aspects of Radiochromic Film Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niroomand-Rad, A.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amstutz, Christoph A., E-mail: christoph.amstutz@usz.ch; Bechrakis, Nikolaos E.; Foerster, Michael H.
2012-03-15
Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial positionmore » of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.« less
Open-source software for collision detection in external beam radiation therapy
NASA Astrophysics Data System (ADS)
Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor
2017-03-01
PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu-Tsao, S.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
Wilson, Lydia J; Newhauser, Wayne D
2015-01-01
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833
Jagetic, Lydia J; Newhauser, Wayne D
2015-06-21
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.
Therapy operating characteristic curves: tools for precision chemotherapy
Barrett, Harrison H.; Alberts, David S.; Woolfenden, James M.; Caucci, Luca; Hoppin, John W.
2016-01-01
Abstract. The therapy operating characteristic (TOC) curve, developed in the context of radiation therapy, is a plot of the probability of tumor control versus the probability of normal-tissue complications as the overall radiation dose level is varied, e.g., by varying the beam current in external-beam radiotherapy or the total injected activity in radionuclide therapy. This paper shows how TOC can be applied to chemotherapy with the administered drug dosage as the variable. The area under a TOC curve (AUTOC) can be used as a figure of merit for therapeutic efficacy, analogous to the area under an ROC curve (AUROC), which is a figure of merit for diagnostic efficacy. In radiation therapy, AUTOC can be computed for a single patient by using image data along with radiobiological models for tumor response and adverse side effects. The mathematical analogy between response of observers to images and the response of tumors to distributions of a chemotherapy drug is exploited to obtain linear discriminant functions from which AUTOC can be calculated. Methods for using mathematical models of drug delivery and tumor response with imaging data to estimate patient-specific parameters that are needed for calculation of AUTOC are outlined. The implications of this viewpoint for clinical trials are discussed. PMID:27175376
Gustafsson, H; Lund, E; Olsson, S
2008-09-07
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
NASA Astrophysics Data System (ADS)
Gustafsson, H.; Lund, E.; Olsson, S.
2008-09-01
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
Kiess, Ana P.; Agrawal, Nishant; Brierley, James D.; Duvvuri, Umamaheswar; Ferris, Robert L.; Genden, Eric; Wong, Richard J.; Tuttle, R. Michael; Lee, Nancy Y.; Randolph, Gregory W.
2016-01-01
The use of external-beam radiotherapy (EBRT) in differentiated thyroid cancer (DTC) is debated because of a lack of prospective clinical data, but recent retrospective studies have reported benefits in selected patients. The Endocrine Surgery Committee of the American Head and Neck Society provides 4 recommendations regarding EBRT for locoregional control in DTC, based on review of literature and expert opinion of the authors. (1) EBRT is recommended for patients with gross residual or unresectable locoregional disease, except for patients <45 years old with limited gross disease that is radioactive iodine (RAI)-avid. (2) EBRT should not be routinely used as adjuvant therapy after complete resection of gross disease. (3) After complete resection, EBRT may be considered in select patients >45 years old with high likelihood of microscopic residual disease and low likelihood of responding to RAI. (4) Cervical lymph node involvement alone should not be an indication for adjuvant EBRT. PMID:26716601
Nuclear imaging and radiation therapy in canine and feline thyroid disease.
Feeney, Daniel A; Anderson, Kari L
2007-07-01
The indications, techniques, and expectations for radionuclide diagnostic studies on canine and feline thyroid glands are presented. In addition, the considerations surrounding radioiodine or external beam radiotherapy for benign and malignant thyroid disease are reviewed. The intent of this article is to familiarize primary care veterinarians with the utility of and outcome of the ionizing radiation-based diagnostic and therapeutic techniques for assessing and treating canine and feline thyroid disease.
NASA Astrophysics Data System (ADS)
Parodi, Katia; Bortfeld, Thomas; Enghardt, Wolfgang; Fiedler, Fine; Knopf, Antje; Paganetti, Harald; Pawelke, Jörg; Shakirin, Georgy; Shih, Helen
2008-06-01
Ion beams offer the possibility of improved conformation of the dose delivered to the tumor with better sparing of surrounding tissue and critical structures in comparison to conventional photon and electron external radiation treatment modalities. Full clinical exploitation of this advantage can benefit from in vivo confirmation of the actual beam delivery and, in particular, of the ion range in the patient. During irradiation, positron emitters like 15O (half-life T1/2≈2 min) and 11C ( T1/2≈20 min) are formed in nuclear interactions between the ions and the tissue. Detection of this transient radioactivity via positron emission tomography (PET) and comparison with the expectation based on the prescribed beam application may serve as an in vivo, non-invasive range validation method of the whole treatment planning and delivery chain. For technical implementation, PET imaging during irradiation (in-beam) requires the development of customized, limited angle detectors with data acquisition synchronized with the beam delivery. Alternatively, commercial PET or PET/CT scanners in close proximity to the treatment site enable detection of the residual activation from long-lived emitters shortly after treatment (offline). This paper reviews two clinical examples using a dedicated in-beam PET scanner for verification of carbon ion therapy at GSI Darmstadt, Germany, as well as a commercial offline PET/CT tomograph for post-radiation imaging of proton treatments at Massachusetts General Hospital, Boston, USA. Challenges as well as pros and cons of the two imaging approaches in dependence of the different ion type and beam delivery system are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, James R.; Gao Zhanrong; Merrick, Scott
2009-09-01
Purpose: Recent clinical outcome studies on prostate cancer have reported the influence of patient's obesity on the biochemical failure rates after various treatment modalities. In this study, we investigated the effect of patient's physical characteristics on prostate shift in external beam radiotherapy (EBRT) and hypothesized that there maybe a correlation between patient physique and tumor shift. Methods and Materials: A retrospective analysis was performed using data for 117 patients who received image-guided radiation therapy (IGRT) for prostate cancer between January 2005 and April 2007. A total of 1,465 CT scans were analyzed. The standard deviations (SDs) of prostate shifts formore » all patients, along with patient weight, body mass index (BMI), and subcutaneous adipose-tissue thickness (SAT), were determined. Spearman rank correlation analysis was performed. Results: Of the 117 patients, 26.5% were considered normal weight, 48.7% were overweight, 17.9% were mildly obese, and 6.9% were moderately to severely obese. Notably 1.3%, 1.5%, 2.0%, and 21.2% of the respective shifts were greater than 10 mm in the left-right (LR) direction for the four patient groups, whereas in the anterior-posterior direction the shifts are 18.2%, 12.6%, 6.7%, and 21.0%, respectively. Strong correlations were observed between SAT, BMI, patient weight, and SDs of daily shifts in the LR direction (p < 0.01). Conclusions: The strong correlation between obesity and shift indicates that without image-guided radiation therapy, the target volume (prostate with or without seminal vesicles) may not receive the intended dose for patients who are moderate to severely obese. This may explain the higher recurrence rate with conventional external beam radiation therapy.« less
Kapur, Ajay; Adair, Nilda; O'Brien, Mildred; Naparstek, Nikoleta; Cangelosi, Thomas; Zuvic, Petrina; Joseph, Sherin; Meier, Jason; Bloom, Beatrice; Potters, Louis
Modern external beam radiation therapy treatment delivery processes potentially increase the number of tasks to be performed by therapists and thus opportunities for errors, yet the need to treat a large number of patients daily requires a balanced allocation of time per treatment slot. The goal of this work was to streamline the underlying workflow in such time-interval constrained processes to enhance both execution efficiency and active safety surveillance using a Kaizen approach. A Kaizen project was initiated by mapping the workflow within each treatment slot for 3 Varian TrueBeam linear accelerators. More than 90 steps were identified, and average execution times for each were measured. The time-consuming steps were stratified into a 2 × 2 matrix arranged by potential workflow improvement versus the level of corrective effort required. A work plan was created to launch initiatives with high potential for workflow improvement but modest effort to implement. Time spent on safety surveillance and average durations of treatment slots were used to assess corresponding workflow improvements. Three initiatives were implemented to mitigate unnecessary therapist motion, overprocessing of data, and wait time for data transfer defects, respectively. A fourth initiative was implemented to make the division of labor by treating therapists as well as peer review more explicit. The average duration of treatment slots reduced by 6.7% in the 9 months following implementation of the initiatives (P = .001). A reduction of 21% in duration of treatment slots was observed on 1 of the machines (P < .001). Time spent on safety reviews remained the same (20% of the allocated interval), but the peer review component increased. The Kaizen approach has the potential to improve operational efficiency and safety with quick turnaround in radiation therapy practice by addressing non-value-adding steps characteristic of individual department workflows. Higher effort opportunities are identified to guide continual downstream quality improvements. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A detailed evaluation of TomoDirect 3DCRT planning for whole-breast radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Emma C.; Rabinovitch, Rachel; Ryan, Nicole E.
2013-01-01
The goal of this work was to develop planning strategies for whole-breast radiotherapy (WBRT) using TomoDirect three-dimensional conformal radiation therapy (TD-3DCRT) and to compare TD-3DCRT with conventional 3DCRT and TD intensity-modulated radiation therapy (TD-IMRT) to evaluate differences in WBRT plan quality. Computed tomography (CT) images of 10 women were used to generate 150 WBRT plans, varying in target structures, field width (FW), pitch, and number of beams. Effects on target and external maximum doses (EMD), organ-at-risk (OAR) doses, and treatment time were assessed for each parameter to establish an optimal planning technique. Using this technique, TD-3DCRT plans were generated andmore » compared with TD-IMRT and standard 3DCRT plans. FW 5.0 cm with pitch = 0.250 cm significantly decreased EMD without increasing lung V20 Gy. Increasing number of beams from 2 to 6 and using an additional breast planning structure decreased EMD though increased lung V20 Gy. Changes in pitch had minimal effect on plan metrics. TD-3DCRT plans were subsequently generated using FW 5.0 cm, pitch = 0.250 cm, and 2 beams, with additional beams or planning structures added to decrease EMD when necessary. TD-3DCRT and TD-IMRT significantly decreased target maximum dose compared to standard 3DCRT. FW 5.0 cm with 2 to 6 beams or novel planning structures or both allow for TD-3DCRT WBRT plans with excellent target coverage and OAR doses. TD-3DCRT plans are comparable to plans generated using TD-IMRT and provide an alternative to conventional 3DCRT for WBRT.« less
Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G
2014-12-01
The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.
NASA Astrophysics Data System (ADS)
Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios
2018-01-01
Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.
Bonfrate, A; Farah, J; De Marzi, L; Delacroix, S; Hérault, J; Sayah, R; Lee, C; Bolch, W E; Clairand, I
2016-04-01
In scattering proton therapy, the beam incidence, i.e. the patient's orientation with respect to the beam axis, can significantly influence stray neutron doses although it is almost not documented in the literature. MCNPX calculations were carried out to estimate stray neutron doses to 25 healthy organs of a 10-year-old female phantom treated for an intracranial tumor. Two beam incidences were considered in this article, namely a superior (SUP) field and a right lateral (RLAT) field. For both fields, a parametric study was performed varying proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and air gap size. Using a standard beam line configuration for a craniopharyngioma treatment, neutron absorbed doses per therapeutic dose of 63μGyGy(-1) and 149μGyGy(-1) were found at the heart for the SUP and the RLAT fields, respectively. This dose discrepancy was explained by the different patient's orientations leading to changes in the distance between organs and the final collimator where external neutrons are mainly produced. Moreover, investigations on neutron spectral fluence at the heart showed that the number of neutrons was 2.5times higher for the RLAT field compared against the SUP field. Finally, the influence of some irradiation parameters on neutron doses was found to be different according to the beam incidence. Beam incidence was thus found to induce large variations in stray neutron doses, proving that this parameter could be optimized to enhance the radiation protection of the patient. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Callaghan, Michael E., E-mail: elspeth.raymond@health.sa.gov.au; Freemasons Foundation Centre for Men's Health, University of Adelaide; Urology Unit, Repatriation General Hospital, SA Health, Flinders Centre for Innovation in Cancer
Purpose: To identify, through a systematic review, all validated tools used for the prediction of patient-reported outcome measures (PROMs) in patients being treated with radiation therapy for prostate cancer, and provide a comparative summary of accuracy and generalizability. Methods and Materials: PubMed and EMBASE were searched from July 2007. Title/abstract screening, full text review, and critical appraisal were undertaken by 2 reviewers, whereas data extraction was performed by a single reviewer. Eligible articles had to provide a summary measure of accuracy and undertake internal or external validation. Tools were recommended for clinical implementation if they had been externally validated and foundmore » to have accuracy ≥70%. Results: The search strategy identified 3839 potential studies, of which 236 progressed to full text review and 22 were included. From these studies, 50 tools predicted gastrointestinal/rectal symptoms, 29 tools predicted genitourinary symptoms, 4 tools predicted erectile dysfunction, and no tools predicted quality of life. For patients treated with external beam radiation therapy, 3 tools could be recommended for the prediction of rectal toxicity, gastrointestinal toxicity, and erectile dysfunction. For patients treated with brachytherapy, 2 tools could be recommended for the prediction of urinary retention and erectile dysfunction. Conclusions: A large number of tools for the prediction of PROMs in prostate cancer patients treated with radiation therapy have been developed. Only a small minority are accurate and have been shown to be generalizable through external validation. This review provides an accessible catalogue of tools that are ready for clinical implementation as well as which should be prioritized for validation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, P.P.; Good, R.R.; Jones, E.O.
The authors report their initial treatment results in 49 patients with glioblastoma multiforme (GM) who received intraoperative endocurietherapy (ECT) with high-activity cobalt 60 ({sup 60}Co) probe. Thirty poor prognosis (unresectable tumor) patients (Group I) with newly diagnosed GM were treated by either biopsy or subtotal excision, followed by 20.00-Gy single-fraction {sup 60}Co probe ECT, and 60.00-Gy external-beam radiation therapy (EXRT) (80.00 Gy total tumor dose). Nineteen patients (Group II) with recurrent, previously resected and externally irradiated GM were retreated with 20.00-Gy single-fraction {sup 60}Co probe ECT alone. The authors' initial experience with intraoperative ECT of GM is discussed.
Esophageal cancer management controversies: Radiation oncology point of view
Tai, Patricia; Yu, Edward
2014-01-01
Esophageal cancer treatment has evolved from single modality to trimodality therapy. There are some controversies of the role, target volumes and dose of radiotherapy (RT) in the literature over decades. The present review focuses primarily on RT as part of the treatment modalities, and highlight on the RT volume and its dose in the management of esophageal cancer. The randomized adjuvant chemoradiation (CRT) trial, intergroup trial (INT 0116) enrolled 559 patients with resected adenocarcinoma of the stomach or gastroesophageal junction. They were randomly assigned to surgery plus postoperative CRT or surgery alone. Analyses show robust treatment benefit of adjuvant CRT in most subsets for postoperative CRT. The Chemoradiotherapy for Oesophageal Cancer Followed by Surgery Study (CROSS) used a lower RT dose of 41.4 Gray in 23 fractions with newer chemotherapeutic agents carboplatin and paclitaxel to achieve an excellent result. Target volume of external beam radiation therapy and its coverage have been in debate for years among radiation oncologists. Pre-operative and post-operative target volumes are designed to optimize for disease control. Esophageal brachytherapy is effective in the palliation of dysphagia, but should not be given concomitantly with chemotherapy or external beam RT. The role of brachytherapy in multimodality management requires further investigation. On-going studies of multidisciplinary treatment in locally advanced cancer include: ZTOG1201 trial (a phase II trial of neoadjuvant and adjuvant CRT) and QUINTETT (a phase III trial of neoadjuvant vs adjuvant therapy with quality of life analysis). These trials hopefully will shed more light on the future management of esophageal cancer. PMID:25132924
NASA Astrophysics Data System (ADS)
Kemppainen, R.; Vaara, T.; Joensuu, T.; Kiljunen, T.
2018-03-01
Background and Purpose. Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. Materials and Methods. Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. Results. The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI]) -0.49 [-0.85 to -0.13] mm, 0.11 [-0.33 to +0.57] mm and -0.05 [-0.23 to +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. Conclusions. The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total geometric accuracy of pelvic radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedland, Stephen J., E-mail: steve.freedland@duke.edu; Department of Surgery; Department of Pathology, Duke University School of Medicine, Durham, North Carolina
Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-upmore » for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Darren M.; McAleese, Jonathan; Park, Richard M.
2007-12-01
Purpose: To investigate whether failure to suppress the prostate-specific antigen (PSA) level to {<=}1 ng/mL after {>=}2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy in patients scheduled to undergo external beam radiotherapy for localized prostate carcinoma is associated with reduced biochemical failure-free survival. Methods and Materials: A retrospective case note review of consecutive patients with intermediate- or high-risk localized prostate cancer treated between January 2001 and December 2002 with neoadjuvant hormonal deprivation therapy, followed by concurrent hormonal therapy and radiotherapy was performed. Patient data were divided for analysis according to whether the PSA level in Week 1 of radiotherapymore » was {<=}1.0 ng/mL. Biochemical failure was determined using the American Society for Therapeutic Radiology and Oncology (Phoenix) definition. Results: A total of 119 patients were identified. The PSA level after neoadjuvant hormonal deprivation therapy was {<=}1 ng/mL in 67 patients and >1 ng/mL in 52. At a median follow-up of 49 months, the 4-year actuarial biochemical failure-free survival rate was 84% vs. 60% (p = 0.0016) in favor of the patients with a PSA level after neoadjuvant hormonal deprivation therapy of {<=}1 ng/mL. The overall survival rate was 94% vs. 77.5% (p = 0.0045), and the disease-specific survival rate at 4 years was 98.5% vs. 82.5%. Conclusions: The results of our study have shown that patients with a PSA level >1 ng/mL at the beginning of external beam radiotherapy after {>=}2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy have a significantly greater rate of biochemical failure and lower survival rate compared with those with a PSA level of {<=}1 ng/mL. Patients without adequate PSA suppression should be considered a higher risk group and considered for dose escalation or the use of novel treatments.« less
Conventional external beam radiotherapy for central nervous system malignancies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halperin, E.C.; Burger, P.C.
1985-11-01
Fractionated external beam photon radiotherapy is an important component of the clinical management of malignant disease of the central nervous system. The practicing neurologist or neurosurgeon frequently relies on the consultative and treatment skills of a radiotherapist. This article provides a review for the nonradiotherapist of the place of conventional external beam radiotherapy in neuro-oncology. 23 references.
Magnetic Carbon nanoparticles enabled efficient photothermal alteration of mammalian cells
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Thomas, Patrick; Yu, Lingfeng; Mohanty, Samarendra
2011-03-01
While cw near-infrared (NIR) laser beams have been finding widespread application in photothermal therapy of cancer and pulsed NIR laser microbeams are recently being used for optoporation of exogeneous impermeable materials into cells. Since, carbon nanomaterials are very good in photothermal conversion, we utilized carbon nanoparticles (CNP) doped with Fe, so that they can be localized in a defined area by two fold selectivity, (i) external magnetic field for retention of the CNP in targeted area and (ii) surface functionalization for binding the targeted cells. Here, we report efficient photothermal therapy as well as poration of cells using magnetic CNPs with very low power continuous wave laser beam. Localization of CNPs on cell membrane under application of magnetic field was confirmed by scanning electron microscopy. At different power levels, cells could be damaged or microinjected with fluorescence protein-encoding plasmids or impermeable dyes. Monte Carlo simulation showed that the dose of NIR laser beam is sufficient to elicit response for magnetic CNP based photothermal treatment at significant depth. The results of our study suggest that magnetic CNP based photothermal alteration is a viable approach to remotely guide treatments offering high efficiency with significantly reduced cytotoxicity.
Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience.
Gobin, Y Pierre; Dunkel, Ira J; Marr, Brian P; Brodie, Scott E; Abramson, David H
2011-06-01
To determine whether intra-arterial chemotherapy is safe and effective in advanced intraocular retinoblastoma. Retinoblastoma often presents with advanced intraocular disease and, despite conventional treatment with intravenous chemotherapy and external beam radiation therapy, may still require enucleation. Single-arm, prospective registry from May 30, 2006, to May 30, 2010, at an ophthalmic oncology referral center with ambulatory care. A total of 95 eyes of 78 patients with unilateral or bilateral retinoblastoma were treated. The intervention was selective catheterization of the ophthalmic artery and injection of chemotherapy, usually melphalan with or without topotecan. Drug dosage was determined by age and angioanatomy. The main outcome measures were procedural success, event-free (enucleation or radiotherapy) ocular survival, and ocular and extraocular complications. Catheterization succeeded in 98.5% of procedures. There were 289 chemotherapy injections (median, 3 per eye). The Kaplan-Meier estimates of ocular event-free survival rates at 2 years were 70.0% (95% confidence interval, 57.9%-82.2%) for all eyes, 81.7% (95% confidence interval, 66.8%-96.6%) for eyes that received intra-arterial chemotherapy as primary treatment, and 58.4% (95% confidence interval, 39.5%-77.2%) for eyes that had previous treatment failure with intravenous chemotherapy and/or external beam radiation therapy. There were no permanent extraocular complications. Our experience suggests that intra-arterial chemotherapy is safe and effective in the treatment of advanced intraocular retinoblastoma.
Chang, Chih-Hsien; Liu, Shin-Yi; Chi, Chih-Wen; Yu, Hsiang-Lin; Chang, Tsui-Jung; Tsai, Tung-Hu; Lee, Te-Wei; Chen, Yu-Jen
2015-01-01
External beam radiotherapy (EBRT) treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 (188Re)-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We designed a combinatory treatment and examined its effects on human esophageal cancer xenografts, a malignancy with potential treatment resistance and poor prognosis. Human esophageal cancer cell lines BE-3 (adenocarcinoma) and CE81T/VGH (squamous cell carcinoma) were implanted and compared. The radiochemical purity of 188Re-liposome exceeded 95%. Molecular imaging by NanoSPECT/CT showed that BE-3, but not CE81T/VGH, xenografts could uptake the 188Re-liposome. The combination of EBRT and 188Re-liposome inhibited tumor regrowth greater than each treatment alone, as the tumor growth inhibition rate was 30% with EBRT, 25% with 188Re-liposome, and 53% with the combination treatment at 21 days postinjection. Combinatory treatment had no additive adverse effects and significant biological toxicities on white blood cell counts, body weight, or liver and renal functions. EBRT significantly enhanced the excretion of 188Re-liposome into feces and urine. In conclusion, the combination of EBRT with 188Re-liposome might be a potential treatment modality for esophageal cancer. PMID:26056445
In-air RBS measurements at the LAMFI external beam setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, T. F.; Added, N.; Moro, M. V.
2014-11-11
This work describes new developments in the external beam setup of the Laboratory of Material Analysis with Ion Beams of the University of São Paulo (LAMFI-USP). This setup was designed to be a versatile analytical station to analyze a broad range of samples. In recent developments, we seek the external beam Rutherford Backscattering Spectroscopy (RBS) analysis to complement the Particle Induced X-ray Emission (PIXE) measurements. This work presents the initial results of the external beam RBS analysis as well as recent developments to improve the energy resolution RBS measurements, in particular tests to seek for sources of resolution degradation. Thesemore » aspects are discussed and preliminary results of in-air RBS analysis of some test samples are presented.« less
Reft, Chester; Alecu, Rodica; Das, Indra J; Gerbi, Bruce J; Keall, Paul; Lief, Eugene; Mijnheer, Ben J; Papanikolaou, Nikos; Sibata, Claudio; Van Dyk, Jake
2003-06-01
This document is the report of a task group of the Radiation Therapy Committee of the AAPM and has been prepared primarily to advise hospital physicists involved in external beam treatment of patients with pelvic malignancies who have high atomic number (Z) hip prostheses. The purpose of the report is to make the radiation oncology community aware of the problems arising from the presence of these devices in the radiation beam, to quantify the dose perturbations they cause, and, finally, to provide recommendations for treatment planning and delivery. Some of the data and recommendations are also applicable to patients having implanted high-Z prosthetic devices such as pins, humeral head replacements. The scientific understanding and methodology of clinical dosimetry for these situations is still incomplete. This report is intended to reflect the current state of scientific understanding and technical methodology in clinical dosimetry for radiation oncology patients with high-Z hip prostheses.
On the need for quality assurance in superficial kilovoltage radiotherapy.
Austerlitz, C; Mota, H; Gay, H; Campos, D; Allison, R; Sibata, C
2008-01-01
External auditing of beam output and energy qualities of four therapeutic X-ray machines were performed in three radiation oncology centres in northeastern Brazil. The output and half-value layers (HVLs) were determined using a parallel-plate ionisation chamber and high-purity aluminium foils, respectively. The obtained values of absorbed dose to water and energy qualities were compared with those obtained by the respective institutions. The impact on the prescribed dose was analysed by determining the half-value depth (D(1/2)). The beam outputs presented percent differences ranging from -13 to +25%. The ratio between the HVL in use by the institution and the measurements obtained in this study ranged from 0.75 to 2.33. Such deviations in HVL result in percent differences in dose at D(1/2) ranging from -52 to +8%. It was concluded that dosimetric quality audit programmes in radiation therapy should be expanded to include dermatological radiation therapy and such audits should include HVL verification.
Robar, James L; Connell, Tanner; Huang, Weihong; Kelly, Robin G
2009-09-01
The purpose of this study is to investigate the improvement of megavoltage planar and cone-beam CT (CBCT) image quality with the use of low atomic number (Z) external targets in the linear accelerator. In this investigation, two experimental megavoltage imaging beams were generated by using either 3.5 or 7.0 MeV electrons incident on aluminum targets installed above the level of the carousel in a linear accelerator (2100EX, Varian Medical, Inc., Palo Alto, CA). Images were acquired using an amorphous silicon detector panel. Contrast-to-noise ratio (CNR) in planar and CBCT images was measured as a function of dose and a comparison was made between the imaging beams and the standard 6 MV therapy beam. Phantoms of variable diameter were used to examine the loss of contrast due to beam hardening. Porcine imaging was conducted to examine qualitatively the advantages of the low-Z target approach in CBCT. In CBCT imaging CNR increases by factors as high as 2.4 and 4.3 for the 7.0 and 3.5 MeV/Al beams, respectively, compared to images acquired with 6 MV. Similar factors of improvement are observed in planar imaging. For the imaging beams, beam hardening causes a significant loss of the contrast advantage with increasing phantom diameter; however, for the 3.5 MeV/Al beam and a phantom diameter of 25 cm, a contrast advantage remains, with increases of contrast by factors of 1.5 and 3.4 over 6 MV for bone and lung inhale regions, respectively. The spatial resolution is improved slightly in CBCT images for the imaging beams. CBCT images of a porcine cranium demonstrate qualitatively the advantages of the low-Z target approach, showing greater contrast between tissues and improved visibility of fine detail. The use of low-Z external targets in the linear accelerator improves megavoltage planar and CBCT image quality significantly. CNR may be increased by a factor of 4 or greater. Improvement of the spatial resolution is also apparent.
NASA Astrophysics Data System (ADS)
Kurz, C.; Mairani, A.; Parodi, K.
2012-08-01
Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight deviations between the experimentally determined and the real Bragg peak positions. For improved accuracy, the energy dependence of the stopping power, and herewith the water equivalent thickness, of the material downstream of the water tank should be considered in the analysis of measured data.
NASA Astrophysics Data System (ADS)
Fraser, Danielle
In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck imaging. Two case studies of nasopharyngeal cancer are discussed. The deformation of disease-positive cervical lymph nodes was monitored throughout treatment. Node volumes shrunk to 17% of the initial volume, moved up 1.3 cm, and received up to a 12% lower dose than that prescribed. It is shown that difficulties in imaging soft tissue in the neck region are circumvented with ultrasound imaging, and after dosimetric verification it is argued that adaptive replanning may be more beneficial than patient realignment when intensity modulated radiation therapy techniques are used. Some of the largest dose delivery errors were found in external electron beam treatments for breast cancer patients who underwent breast conserving surgery. Inaccuracies in conventional treatment planning resulted in substantial target dose discrepancies of up to 88%. When patient setup errors, interfraction tumour bed motion, and tissue remodeling were considered, inadequate target coverage was exacerbated. This thesis quantifies the dose discrepancy between that prescribed and that delivered. I delve into detail for common IGRT treatment sites, and illuminate problems that have not received much attention for less common IGRT treatment sites.
The cyclotron laboratory and the RFQ accelerator in Bern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braccini, S.; Ereditato, A.; Kreslo, I.
2013-07-18
Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University ofmore » Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.« less
The cyclotron laboratory and the RFQ accelerator in Bern
NASA Astrophysics Data System (ADS)
Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.
2013-07-01
Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.
Mohammadianpanah, M; Gramizadeh, B; Omidvari, Sh; Mosalaei, A
2004-01-01
Radiation-induced sarcoma is a rare complication of radiation therapy. We report a case of radiation-induced chondrosarcoma of the maxilla. An 80-year-old Persian woman developed radiation-induced chondrosarcoma of the left maxilla 7 years after combined chemotherapy and external beam radiation therapy for the Ann Arbor stage IE malignant lymphoma of the right tonsil. She underwent suboptimal tumour resection and died due to extensive locoregional disease 8 months later. An English language literature search of Medline using the terms chondrosarcoma, radiation-induced sarcoma and maxilla revealed only one earlier reported case. We describe the clinical and pathological features of this case and review the literature on radiation-induced sarcomas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, F.A.; Ali, M.M.; Kersh, R.
Three female patients (mean age 55) with carcinoma of the urethra were treated with combined external beam irradiation (4,000 to 5,000 rads) and interstitial irradiation with iridium Ir 192 (2,700 to 3,000 rads) applied with a modified Syed-Neblett template. Two patients are alive with no evidence of disease at 27 and 37 months. One patient died of a second primary tumor at 30 months, without histologic evidence of the original urethral neoplasm. No patient had significant complications of therapy. This treatment regimen is effective for selected women with urethral carcinoma.
Bellera, Carine; Proust-Lima, Cécile; Joseph, Lawrence; Richaud, Pierre; Taylor, Jeremy; Sandler, Howard; Hanley, James; Mathoulin-Pélissier, Simone
2018-04-01
Background Biomarker series can indicate disease progression and predict clinical endpoints. When a treatment is prescribed depending on the biomarker, confounding by indication might be introduced if the treatment modifies the marker profile and risk of failure. Objective Our aim was to highlight the flexibility of a two-stage model fitted within a Bayesian Markov Chain Monte Carlo framework. For this purpose, we monitored the prostate-specific antigens in prostate cancer patients treated with external beam radiation therapy. In the presence of rising prostate-specific antigens after external beam radiation therapy, salvage hormone therapy can be prescribed to reduce both the prostate-specific antigens concentration and the risk of clinical failure, an illustration of confounding by indication. We focused on the assessment of the prognostic value of hormone therapy and prostate-specific antigens trajectory on the risk of failure. Methods We used a two-stage model within a Bayesian framework to assess the role of the prostate-specific antigens profile on clinical failure while accounting for a secondary treatment prescribed by indication. We modeled prostate-specific antigens using a hierarchical piecewise linear trajectory with a random changepoint. Residual prostate-specific antigens variability was expressed as a function of prostate-specific antigens concentration. Covariates in the survival model included hormone therapy, baseline characteristics, and individual predictions of the prostate-specific antigens nadir and timing and prostate-specific antigens slopes before and after the nadir as provided by the longitudinal process. Results We showed positive associations between an increased prostate-specific antigens nadir, an earlier changepoint and a steeper post-nadir slope with an increased risk of failure. Importantly, we highlighted a significant benefit of hormone therapy, an effect that was not observed when the prostate-specific antigens trajectory was not accounted for in the survival model. Conclusion Our modeling strategy was particularly flexible and accounted for multiple complex features of longitudinal and survival data, including the presence of a random changepoint and a time-dependent covariate.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grivas, Nikolaos, E-mail: n.grivas@nki.nl; Wit, Esther; Pos, Floris
Purpose: To assess the efficacy of robotic-assisted laparoscopic sentinel lymph node (SLN) dissection (SLND) to select those patients with prostate cancer (PCa) who would benefit from additional pelvic external beam radiation therapy and long-term androgen deprivation therapy (ADT). Methods and Materials: Radioisotope-guided SLND was performed in 224 clinically node-negative patients scheduled to undergo external beam radiation therapy. Patients with histologically positive SLNs (pN1) were also offered radiation therapy to the pelvic lymph nodes, combined with 3 years of ADT. Biochemical recurrence (BCR), overall survival, and metastasis-free (including pelvic and nonregional lymph nodes) survival (MFS) rates were retrospectively calculated. The Briganti andmore » Kattan nomogram predictions were compared with the observed pN status and BCR. Results: The median prostate-specific antigen (PSA) value was 15.4 ng/mL (interquartile range [IQR] 8-29). A total number of 834 SLNs (median 3 per patient; IQR 2-5) were removed. Nodal metastases were diagnosed in 42% of the patients, with 150 SLNs affected (median 1; IQR 1-2). The 5-year BCR-free and MFS rates for pN0 patients were 67.9% and 87.8%, respectively. The corresponding values for pN1 patients were 43% and 66.6%. The PSA level and number of removed SLNs were independent predictors of BCR and MFS, and pN status was an additional independent predictor of BCR. The 5-year overall survival rate was 97.6% and correlated only with pN status. The predictive accuracy of the Briganti nomogram was 0.665. Patients in the higher quartiles of Kattan nomogram prediction of BCR had better than expected outcomes. The complication rate from SLND was 8.9%. Conclusions: For radioisotope-guided SLND, the high staging accuracy is accompanied by low morbidity. The better than expected outcomes observed in the lower quartiles of BCR prediction suggest a role for SLN biopsy as a potential selection tool for the addition of pelvic radiation therapy and ADT intensification in pN1 patients.« less
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Gay, Hiram Alberto; Sanda, Martin G.; Liu, Jingxia; Wu, Ningying; Hamstra, Daniel A.; Wei, John T.; Dunn, Rodney L.; Klein, Eric A.; Sandler, Howard M.; Saigal, Christopher S.; Litwin, Mark S.; Kuban, Deborah A.; Hembroff, Larry; Regan, Meredith M.; Chang, Peter; Michalski, Jeff M.
2017-01-01
PURPOSE The long-term effects of neoadjuvant androgen deprivation therapy (NADT) with radiation therapy on participant-reported health-related quality of life (HRQOL) have not been characterized in prospective multi-center studies. We evaluated HRQOL for 2 years among participants undergoing radiation therapy (RT) with or without NADT for newly diagnosed, early-stage prostate cancer. METHODS We analyzed longitudinal cohort data from the Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment Consortium to ascertain the HRQOL trajectory of men receiving NADT with external beam radiation therapy (EBRT) or brachytherapy (BT). HRQOL was measured with the EPIC-26 questionnaire at 2, 6, 12, and 24 months after the initiation of NADT. We used Chi-square or Fisher’s Exact test to compare the shift percentages between groups that did or did not receive NADT. Analyses were conducted at the two-sided 5% significance level. RESULTS For subjects receiving EBRT, questions regarding the ability to have an erection, ability to reach an orgasm, quality of erections, frequency of erections, ability to function sexually, and lack of energy were in a significantly worse dichotomized category for the patients receiving NADT. Comparing baseline versus 24 months, 24%, 23%, and 30% of participants receiving EBRT plus NADT shifted to the worse dichotomized category for the ability to reach an orgasm, quality of erections, and ability to function sexually compared to 14%, 13% and 16% in the EBRT group, respectively. CONCLUSION Compared to baseline, at 2 years participants receiving NADT plus EBRT compared with EBRT alone had worse HRQOL, as measured by the ability to reach orgasms, quality of erections, and ability to function sexually. However, there was no difference in the ability to have an erection, frequency of erections, overall sexual function, hot flashes, breast tenderness/enlargement, feeling depressed, lack of energy or change in body weight. The improved survival in intermediate and high-risk patients receiving ADT and EBRT necessitates pre-treatment counseling of the HRQOL impact of ADT and EBRT. PMID:28463150
Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C
2009-03-01
Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.
DeCruze, B; Guthrie, D
1999-01-01
Poor prognosis (poorly differentiated and/or deep myometrial invasion) Stage I endometrial cancer can have a relapse rate as high as 50%. Traditionally, most clinical oncologists treat these patients with external beam radiotherapy after surgery but there is no evidence to show that this improves survival. The retrospective study looks at the results of not giving external beam radiotherapy in 25 consecutive patients and compares the results with a group of 13 consecutive patients who did have such treatment. The two groups were comparable with regard to age, degree of differentiation and degree of invasion. Survival was comparable in the two groups. There is no evidence of any obvious decrease in survival from withholding external beam radiotherapy, but this was not a prospective randomized controlled trial. This study illustrates that it is essential that the Medical Research Council ASTEC trial should be supported because this will determine the true place of external beam radiotherapy in such patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peter Y.; Wallace, Michelle; Mitchell, Christina
2010-03-15
Purpose: This prospective study examines the use of three-dimensional conformal external beam radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). Four-year data on efficacy, cosmesis, and toxicity are presented. Methods: Patients with Stage O, I, or II breast cancer with lesions <=3 cm, negative margins, and negative nodes were eligible. The 3D-CRT delivered was 38.5 Gy in 3.85 Gy/fraction. Ipsilateral breast, ipsilateral nodal, contralateral breast, and distant failure (IBF, INF, CBF, DF) were estimated using the cumulative incidence method. Disease-free, overall, and cancer-specific survival (DFS, OS, CSS) were recorded. The National Cancer Institute Common Terminology Criteria for Adversemore » Events (version 3) toxicity scale was used to grade acute and late toxicities. Results: Ninety-four patients are evaluable for efficacy. Median patient age was 62 years with the following characteristics: 68% tumor size <1 cm, 72% invasive ductal histology, 77% estrogen receptor (ER) (+), 88% postmenopausal; 88% no chemotherapy and 44% with no hormone therapy. Median follow-up was 4.2 years (range, 1.3-8.3). Four-year estimates of efficacy were IBF: 1.1% (one local recurrence); INF: 0%; CBF: 1.1%; DF: 3.9%; DFS: 95%; OS: 97%; and CSS: 99%. Four (4%) Grade 3 toxicities (one transient breast pain and three fibrosis) were observed. Cosmesis was rated good/excellent in 89% of patients at 4 years. Conclusions: Four-year efficacy, cosmesis, and toxicity using 3D-CRT to deliver APBI appear comparable to other experiences with similar follow-up. However, additional patients, further follow-up, and mature Phase III data are needed to evaluate thoroughly the extent of application, limitations, and complete value of this particular form of APBI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Mehul K.; Cote, Michele L.; Ali-Fehmi, Rouba
2012-05-01
Purpose: The optimal adjuvant radiation treatment for endometrial carcinoma (EC) remains controversial. Adjuvant vaginal cuff brachytherapy (VB) has emerged as an increasingly common treatment modality. However, the time trends for using VB, external beam radiation therapy (EBRT), or combined therapy (VB+EBRT) have not been well characterized. We therefore examined the utilization trends of VB, EBRT, and VB+EBRT for adjuvant RT in International Federation of Gynecologic Oncology (FIGO) stage I and II EC over time. Methods and Materials: We evaluated treatment patterns for 48,122 patients with EC diagnosed between January 1995 and December 2005, using the National Cancer Institute's Surveillance, Epidemiology,more » and End Results (SEER) public use database. Chi-squared tests were used to assess differences by radiation type (VB, EBRT, and VB+EBRT) and various demographic and clinical variables. Results: Analyses were limited to 9,815 patients (20.4%) with EC who met the inclusion criteria. Among women who received adjuvant RT, the proportion receiving VB increased yearly (12.9% in 1995 compared to 32.8% in 2005 (p < 0.0001). The increasing use of VB was proportional to the decreasing use of EBRT (56.1% in 1995 to 45.8% in 2005; p < 0.0001) and VB+EBRT (31.0% in 1995 to 21.4% in 2005; p < 0.001). Conclusions: This population-based report demonstrates an increasing trend in the use of VB in the adjuvant setting after hysterectomy for treatment of women with FIGO stage I-II EC. VB alone appears to be replacing pelvic EBRT and VB+EBRT therapy in the management of stage I-II EC.« less
The clinical case for proton beam therapy
2012-01-01
Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy. PMID:23083010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayana, V; McLaughlin, P; University of Michigan, Ann Arbor, MI
2015-06-15
Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients weremore » set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.« less
Measurement and properties of the dose-area product ratio in external small-beam radiotherapy.
Niemelä, Jarkko; Partanen, Mari; Ojala, Jarkko; Sipilä, Petri; Björkqvist, Mikko; Kapanen, Mika; Keyriläinen, Jani
2017-06-21
In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR 20,10 , using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR 20,10 . With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR 20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR 20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR 20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR 20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR 20,10 value.
Watson, Linda C; Gies, Donna; Thompson, Emmanuel; Thomas, Bejoy
2012-05-01
Standard skin care instructions regarding the use of antiperspirants during radiotherapy to the breast varies across North America. Women have articulated that when instructed to not use antiperspirant, the potential for body odor is distressing. Historical practices and individual opinions have often guided practice in this field. The present study had 2 purposes. To evaluate whether the use of aluminum-based antiperspirant while receiving external beam radiotherapy for stage 0, I, or II breast cancer will increase axilla skin toxicity and to evaluate whether the use of antiperspirant during external beam radiotherapy improves quality of life. A total of 198 participants were randomized to either the experimental group (antiperspirant) or control group (standard care-wash only). The skin reactions in both groups were measured weekly and 2 weeks after treatment using the National Cancer Institute Common Toxicity Criteria Adverse Events, version 3, toxicity grading criteria. Both groups completed the Functional Assessment for Chronic Illness Therapy's questionnaire for the breast population quality of life assessment tool, with additional questions evaluating the effect of underarm antiperspirant use on quality of life before treatment, immediately after treatment, and 2 weeks after treatment during the study. The skin reaction data were analyzed using the generalized estimating equation. No statistically significant difference was seen in the skin reaction between the 2 groups over time. The quality of life data also revealed no statistically significant difference between the 2 groups over time. Data analysis indicates that using antiperspirant routinely during external beam radiotherapy for Stage 0, I, or II breast cancer does not affect the intensity of the skin reaction or the self-reported quality of life. This evidence supports that in this particular population, there is no purpose to restrict these women from using antiperspirants during their treatment, and the decision to use an antiperspirant or not in this setting should be left to the discretion of the patient. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Julian; Vaid, Moninder; Tyldesley, Scott, E-mail: styldesl@bccancer.bc.ca
2011-07-01
Purpose: There are conflicting studies of the impact of androgen deprivation therapy (ADT) on cardiovascular (CV) mortality among prostate cancer patients receiving curative intent external beam radiation therapy (EBRT). We assessed the impact of ADT on CV mortality in patients treated in British Columbia. Methods and Materials: Provincial pharmacy and radiotherapy databases were linked to the provincial cancer registry, and defined a cohort of patients treated with curative intent EBRT between 1998 and 2005. We determined the duration of ADT and the cumulative incidence of CV death. We compared death from CV disease with and without ADT, and by durationmore » of ADT using competing risk analysis and Fine and Gray multivariant analysis. A total of 600 randomly selected patients were reviewed to determine baseline CV disease, CV risk factors, and Charlson Index. Results: Of 5,948 prostate cancer patients treated with radical intent EBRT, of whom 1,933 were treated without ADT, 674 received ADT for {<=}6 months and 3,341 received > 6 months of ADT. The cumulative CV mortality at 7 years was 2.6% (95% confidence interval [CI] 1.9-3.5%), 2.1% (95% CI = 1.2-3.5%), and 1.4 (95% CI = 1.0-2.0%) for patients with no ADT, {<=}6 months of ADT, and >6 months of ADT, respectively (Gray's p = 0.002). Baseline CV disease and risk factors were more prevalent in the no-ADT group compared with the >6-month ADT group. Conclusions: This study demonstrated a lower CV mortality rate among patients treated with longer durations of ADT than those treated without ADT. These differences likely relate to selection of patients for ADT rather than effect of ADT itself.« less
Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine
2018-05-04
The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.
NASA Astrophysics Data System (ADS)
Moshiri Sedeh, Nader
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.
NASA Astrophysics Data System (ADS)
Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.
2013-11-01
The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.
Sample holder with optical features
Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David
2013-07-30
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
Transmission electron microscope sample holder with optical features
Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY
2012-03-27
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
MO-FG-BRA-07: Theranostic Gadolinium-Based AGuIX Nanoparticles for MRI-Guided Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detappe, A; Institut Lumiere-Matiere, Villeurbanne; Nano-H, St-Quentin Fallavier
2015-06-15
Purpose: AGuIX are gadolinium-based nanoparticles, initially developed for MRI, that have a potential role in radiation therapy as a radiosensitizer. Our goal is to demonstrate that these nanoparticles can both be used as an MRI contrast agent, as well as to obtain local dose enhancement in a pancreatic tumor when delivered in combination with an external beam irradiation. Methods: We performed in vitro cell uptake and radiosensitization studies of a pancreatic cancer cell line in a low energy (220kVp) beam, a standard clinical 6MV beam (STD) and a flattening filter free clinical 6MV beam (FFF). After injection of 40mM ofmore » nanoparticles, a biodistribution study was performed in vivo on mice with subcutaneous xenograft pancreatic tumors. In vivo radiation therapy studies were performed at the time point of maximum tumor uptake. Results: The concentration of AGuIX nanoparticles in Panc-1 pancreatic cancer cells, determined in vitro by MRI and ICPMS, peaks after 30 minutes with 0.3% of the initial concentration (5mg/g). Clonogenic assays show a significant effect (p<0.05) when the AGuIX are coupled with MV photon irradiation (DEF20%=1.31). Similar AGuIX tumor uptake is found in vivo by both MRI and ICPMS 30 minutes after intravenous injection. For long term survival studies, the choice of the radiation dose is determined with 5 control groups (3mice/group) irradiated with 0, 5, 10, 15, and 20Gy. Afterwards, 4 groups (8mice/group) are used to evaluate the effect of the nanoparticles. A Logrank test is performed as a statistical test to evaluate the effect of the nanoparticles. Conclusion: The combination of the MRI contrast and radiosensitization properties of gadolinium nanoparticles reveals a strong potential for usage with MRI-guided radiation therapy.« less
Automatic learning-based beam angle selection for thoracic IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amit, Guy; Marshall, Andrea; Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca
Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationallymore » efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume coverage and organ at risk sparing and were superior over plans produced with fixed sets of common beam angles. The great majority of the automatic plans (93%) were approved as clinically acceptable by three radiation therapy specialists. Conclusions: The results demonstrated the feasibility of utilizing a learning-based approach for automatic selection of beam angles in thoracic IMRT planning. The proposed method may assist in reducing the manual planning workload, while sustaining plan quality.« less
Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring.
Parodi, Katia
2015-12-01
Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy planning, delivery, and monitoring.
Zaorsky, Nicholas G; Egleston, Brian L; Horwitz, Eric M; Dicker, Adam P; Nguyen, Paul L; Showalter, Timothy N; Den, Robert B
2016-08-01
Randomized controlled trials (RCTs) are the most rigorous way of determining whether a cause-effect relation exists between treatment and outcome and for assessing the cost-effectiveness of a treatment. For many patients, cancer is a chronic illness; RCTs evaluating treatments for indolent cancers must evolve to facilitate medical decision-making, as "concrete" patient outcomes (eg, survival) will likely be excellent independent of the intervention, and detecting a difference between trial arms may be impossible. In this commentary, we articulate 9 recommendations that we hope future clinical trialists and funding agencies (including those under the National Cancer Institute) will take into consideration when planning RCTs to help guide subsequent interpretation of results and clinical decision making, based on RCTs of external beam radiation therapy dose escalation for the most common indolent cancer in men, that is, prostate cancer. We recommend routinely reporting: (1) race; (2) medical comorbidities; (3) psychiatric comorbidities; (4) insurance status; (5) education; (6) marital status; (7) income; (8) sexual orientation; and (9) facility-related characteristics (eg, number of centers involved, type of facilities, yearly hospital volumes). We discuss how these factors independently affect patient outcomes and toxicities; future clinicians and governing organizations should consider this information to plan RCTs accordingly (to maximize patient accrual and total n), select appropriate endpoints (eg, toxicity, quality of life, sexual function), actively monitor RCTs, and report results so as to identify the optimal treatment among subpopulations.
Diagnosis and treatment of a dermal malignant melanoma in an African lion (Panthera leo).
Steeil, James C; Schumacher, Juergen; Baine, Katherine; Ramsay, Edward C; Sura, Patricia; Hodshon, Rebecca; Donnell, Robert L; Lee, Nathan D
2013-09-01
A 13-yr-old intact male African lion (Panthera leo) presented with a 4-mo history of left maxillary lip swelling. On physical examination, a 10-cm-diameter, ulcerated, round, firm, and pigmented mass at the level of the left maxillary canine tooth was noticed. All other organ systems examined were within normal limits. Multiple biopsies of the mass were collected and fixed in 10% neutral buffered formalin. Histopathologic evaluation of the biopsies revealed a malignant dermal melanoma. Hematologic and plasma biochemical parameters were within normal reference ranges. Thoracic radiographs taken 3 days following initial presentation showed no evidence of metastasis of the tumor. Computed tomography of the skull and neck was performed to evaluate local tumor invasion and to plan for hypofractionated radiation therapy. Therapy included four weekly treatments of 8 gray external-beam hypofractionated radiation and four bimonthly immunotherapy treatments. Following this treatment regime, the tumor size was reduced by 50%, and surgical excision was performed. No major side effects associated with radiation or immunotherapy were seen. Six months after diagnosis, hematologic and plasma biochemical parameters were within normal limits, thoracic radiographs showed no evidence of metastasis, and the lion showed no clinical signs of disease. The lion will continue to receive immunotherapy every 6 mo for the rest of its life. To the authors' knowledge, this is the first report of a successful treatment of a malignant dermal melanoma with external-beam hypofractionated radiation, immunotherapy, and surgical excision in an African lion.
SU-F-T-232: Monthly Quality Assurance in External Beam Radiation Therapy Using a Single System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, K; Ji, T; Department of Radiation Oncology, The First Hospital, China Medical University, Shenyang, Liaoning
Purpose: Monthly quality assurance (QA) is time consuming for external beam radiation therapy, taking as long as 6–8 hours for each machine. It is due to the use and setup of multiple devices for different QA procedures. We have developed a single system with rotational capability for the measurement of both optical light and radiation which significantly reduces the time spent on Monthly QA. Methods: A single system using mirrors, a phosphor screen and a CCD camera is housed on a cylindrical motor so that it can rotate 360 degrees. For monthly QA, the system is placed on the patientmore » couch of the medical accelerator with the plane of the phosphor screen at isocenter for all measurements. For optical QA such as optical distance indicator, room laser and light field, the optical image is collected directly with the camera. For radiation QA such as beam profile, MLC speed, picket-fence test, collimator rotation, table rotation and gantry rotation, a brass build-up plate is attached to the top of the phosphor screen. Two brass plates with islands of different thickness were designed for photon energy and electron energy constancy checks. Flex map, distortion map and uniformity map were developed to calibrate the motor bearing, camera/lens distortion, and the phosphor screen’s measured response across the field. Results: Following the TG142 guidelines for monthly QA with our system, the overall run time is reduced from 6–8 hours to 1.5 hours. Our system’s rotating design allows for quick testing of the gantry radiation isocenter test that is also independent of the sag of the gantry and the EPID. Conclusion: Our system significantly shortens the time needed for monthly QA by unifying the tests with a single system. Future work will be focused on extending the technology to Brachytherapy, IMRT and proton therapy QAs. This work is funded in part by a sponsor research grant from JPLC who owns the Raven technology. John Wong is a co-founder of JPLC.« less
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria
2015-09-01
In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.
Ducasse, Eric; Cosset, Jean-Marc; Eschwege, François; Creusy, Colette; Chevalier, Jacques; Puppinck, Paul; Lartigau, Eric
2004-01-01
In recent years there has been intensive research on the use of ionizing radiation for inhibition of intimal hyperplasia (IH). Results have clearly established that beta ionizing radiation delivered from an endoluminal source after angioplasty inhibits intimal restenosis. This effect has been confirmed by recent multicenter clinical trials in patients undergoing coronary dilatation. The purpose of this study was to determine if gamma radiation therapy delivered superficially from an external source also reduced smooth muscle cell proliferation in two animals models-the first involving experimentally induced restenosis and the second involving anastomosis between a prosthesis and artery. Ultimately we hope to develop a therapeutic application for patients undergoing peripheral anastomoses, especially in the lower extremities. Two different animal models were used in this two-stage study. The first-stage rabbit model (model 1) involved balloon injury of the aorta to validate the dose effect of external beam irradiation. The second-stage porcine model (model 2) involved aortic bypass followed by external beam irradiation of the distal anastomosis site. In model 1 a total of 56 rabbits were studied. They were divided into five groups including one control group in which external radiation was not applied after balloon injury and four test groups in which external radiation was applied in a single fraction on day 0 at four different doses: 10 grays, 15 grays, 20 grays, and 25 grays. In model 2, a total of 24 pigs underwent aortic bypass with a 6-mm PTFE graft followed by irradiation of the distal end-to-side anastomosis at a dose of 20 grays on day 0. In both models specimens were harvested after 6 weeks and studied histologically after staining with HES and orcein, histomorphometrically by measuring intimal hyperplasia, and immunohistochemically using actin and factor VIII/von Willebrand factor (F VIII/vWF). The zones of study on the anastomosis were separated into base of the artery to the tip and heel of the anastomosis and the edge of the arteriotomy. Measurements were compared using the Mann Whitney test. In the first-stage model designed to study IH in rabbits, mean intimal and medial thickness values and the intima-to-media ratio showed no difference between the control group and the groups irradiated at doses of 10 grays and 15 grays (p = 0.111, p = 0.405, and p = 0.14); (p = 0.301, p = 0.206, and p = 0.199). Conversely, there was a significant difference between the control group and the groups irradiated at 20 grays and 25 grays (p < 0.0001, p = 0.107 and p = 0.008; p = 0.008, p = 0.155, and p = 0.008). Histological examination demonstrated extensive changes in the wall with high-grade fibrosis after application of ionizing radiation. In the second-stage swine model, irradiation significantly inhibited development of IH at the level of anastomosis both at the base of the artery (p < 0.01) (tip 0.06 vs. 0.27 mm and heel 0.04 vs. 0.36) and at the level of the arteriotomy at the suture site (p < 0.001) (0.13 vs. 0.86 mm). Immunochemical analysis of the thickened zones showed a positive reaction of endothelial cells to smooth muscle actin and F VII/vWF. Like irradiation applied using an endoluminal source, superficial gamma ionizing radiation from an external source inhibits IH. Analysis of the dose effect showed that the overall dose must be between 15 and 20 grays. External radiation also reduces overall IH at the anastomosis between a prosthesis and artery. Although these experimental data are promising, further study will probably be necessary before attempting to undertake clinical trials using external beam radiation therapy for patients undergoing peripheral anastomoses.
Malataras, G; Kappas, C; Lovelock, D M; Mohan, R
1997-01-01
This article presents a comparison between two implementations of an EGS4 Monte Carlo simulation of a radiation therapy machine. The first implementation was run on a high performance RISC workstation, and the second was run on an inexpensive PC. The simulation was performed using the MCRAD user code. The photon energy spectra, as measured at a plane transverse to the beam direction and containing the isocenter, were compared. The photons were also binned radially in order to compare the variation of the spectra with radius. With 500,000 photons recorded in each of the two simulations, the running times were 48 h and 116 h for the workstation and the PC, respectively. No significant statistical differences between the two implementations were found.
Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study
SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH
2014-01-01
Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141
Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle
NASA Astrophysics Data System (ADS)
Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack
2004-04-01
Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, Emma, E-mail: emmafitz1390@gmail.com; Miles, Wesley; Fenton, Paul
2014-09-15
Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cmmore » bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations.« less
Fitzgerald, Emma; Miles, Wesley; Fenton, Paul; Frantzis, Jim
2014-01-01
Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cm bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations. PMID:26229657
Pitfalls of tungsten multileaf collimator in proton beam therapy.
Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J
2011-12-01
Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H∗(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H∗(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 × 10⁴ Bq cm(-3) at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 × 10⁶ Bq cm(-3) after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase due to (179)Ta with a half-life of 1.82 yr and thus require prolonged storage for activity cooling. The H∗(10) near the patient side of the tungsten block is about 100 μSv/h and is 27 times higher at the upstream side of the block. This would lead to an accumulated dose for therapists in a year that may exceed occupational maximum permissible dose (50 mSv/yr). The value of H∗(10) at the upstream surface of the tungsten block is about 220 times higher than that of the brass. MLC is an efficient way for beam shaping and overall cost reduction device in proton therapy. However, based on this study, tungsten seems to be not an optimal material for MLC in proton beam therapy. Usage of tungsten MLC in clinic may create unnecessary risks associated with the secondary neutrons and induced radioactivity for patients and staff depending on the patient load. A careful selection of material for manufacturing of an optimal MLC for proton therapy is thus desired.
BEST medical radioisotope production cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan
2013-04-19
Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beammore » intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.« less
Brachytherapy next generation: robotic systems
Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina
2015-01-01
In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510
Pinard, Chantale L.; Mutsaers, Anthony J.; Mayer, Monique N.; Woods, J. Paul
2012-01-01
This retrospective study evaluated the ocular side effects of cancer-bearing dogs and cats treated with external–beam Cobalt-60 (Co-60) radiation in which one or both orbit(s) were included in the radiation field. A total of 37 dogs and 12 cats presented to the Ontario Veterinary College during the 10-year study period (1999–2009) were evaluated. The radiation protocols ranged from a maximum of 60 Gray (Gy) in 24 fractions for curative intent to a minimum of 8 Gy in 1 fraction for palliative treatment. The main ocular side effect reported in both dogs and cats was conjunctivitis (79% and 55%, respectively). Other common ocular side effects included eyelid lesions in dogs (44%), ulcerative keratitis in cats (36%), and keratoconjunctivitis sicca in both dogs and cats (44% and 27%, respectively). The high incidence of ocular side effects in both patient populations indicates a need for regular ophthalmic examinations as a component of routine follow-up for radiation therapy involving the orbit. Radiation damage to ocular tissues is also reviewed. PMID:23729828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, Hiram A., E-mail: hiramgay@wustl.edu; Sanda, Martin G.; Liu, Jingxia
Purpose: The long-term effects of neoadjuvant androgen deprivation therapy (NADT) with radiation therapy on participant-reported health-related quality of life (HRQOL) have not been characterized in prospective multicenter studies. We evaluated HRQOL for 2 years among participants undergoing radiation therapy (RT) with or without NADT for newly diagnosed, early-stage prostate cancer. Methods and Materials: We analyzed longitudinal cohort data from the Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment Consortium to ascertain the HRQOL trajectory of men receiving NADT with external beam RT (EBRT) or brachytherapy. HRQOL was measured using the expanded prostate cancer index composite 26-item questionnaire at 2, 6,more » 12, and 24 months after the initiation of NADT. We used the χ{sup 2} or Fisher exact test to compare the shift in percentages between groups that did or did not receive NADT. Analyses were conducted at the 2-sided 5% significance level. Results: For subjects receiving EBRT, questions regarding the ability to have an erection, ability to reach an orgasm, quality of erections, frequency of erections, ability to function sexually, and lack of energy were in a significantly worse dichotomized category for the patients receiving NADT. Comparing the baseline versus 24-month outcomes, 24%, 23%, and 30% of participants receiving EBRT plus NADT shifted to the worse dichotomized category for the ability to reach an orgasm, quality of erections, and ability to function sexually compared with 14%, 13%, and 16% in the EBRT group, respectively. Conclusions: Compared with baseline, at 2 years, participants receiving NADT plus EBRT compared with EBRT alone had worse HRQOL, as measured by the ability to reach orgasm, quality of erections, and ability to function sexually. However, no difference was found in the ability to have an erection, frequency of erections, overall sexual function, hot flashes, breast tenderness/enlargement, depression, lack of energy, or change in body weight. The improved survival in intermediate- and high-risk patients receiving NADT and EBRT necessitates pretreatment counseling of the HRQOL effect of NADT and EBRT.« less
Gay, Hiram A; Sanda, Martin G; Liu, Jingxia; Wu, Ningying; Hamstra, Daniel A; Wei, John T; Dunn, Rodney L; Klein, Eric A; Sandler, Howard M; Saigal, Christopher S; Litwin, Mark S; Kuban, Deborah A; Hembroff, Larry; Regan, Meredith M; Chang, Peter; Michalski, Jeff M
2017-06-01
The long-term effects of neoadjuvant androgen deprivation therapy (NADT) with radiation therapy on participant-reported health-related quality of life (HRQOL) have not been characterized in prospective multicenter studies. We evaluated HRQOL for 2 years among participants undergoing radiation therapy (RT) with or without NADT for newly diagnosed, early-stage prostate cancer. We analyzed longitudinal cohort data from the Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment Consortium to ascertain the HRQOL trajectory of men receiving NADT with external beam RT (EBRT) or brachytherapy. HRQOL was measured using the expanded prostate cancer index composite 26-item questionnaire at 2, 6, 12, and 24 months after the initiation of NADT. We used the χ 2 or Fisher exact test to compare the shift in percentages between groups that did or did not receive NADT. Analyses were conducted at the 2-sided 5% significance level. For subjects receiving EBRT, questions regarding the ability to have an erection, ability to reach an orgasm, quality of erections, frequency of erections, ability to function sexually, and lack of energy were in a significantly worse dichotomized category for the patients receiving NADT. Comparing the baseline versus 24-month outcomes, 24%, 23%, and 30% of participants receiving EBRT plus NADT shifted to the worse dichotomized category for the ability to reach an orgasm, quality of erections, and ability to function sexually compared with 14%, 13%, and 16% in the EBRT group, respectively. Compared with baseline, at 2 years, participants receiving NADT plus EBRT compared with EBRT alone had worse HRQOL, as measured by the ability to reach orgasm, quality of erections, and ability to function sexually. However, no difference was found in the ability to have an erection, frequency of erections, overall sexual function, hot flashes, breast tenderness/enlargement, depression, lack of energy, or change in body weight. The improved survival in intermediate- and high-risk patients receiving NADT and EBRT necessitates pretreatment counseling of the HRQOL effect of NADT and EBRT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J
2014-10-01
The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.
Yeh, Jekwon; Lehrich, Brandon; Tran, Carolyn; Mesa, Albert; Baghdassarian, Ruben; Yoshida, Jeffrey; Torrey, Robert; Gazzaniga, Michael; Weinberg, Alan; Chalfin, Stuart; Ravera, John; Tokita, Kenneth
2016-01-01
To present rectal toxicity rates in patients administered a polyethylene glycol (PEG) hydrogel rectal spacer in conjunction with combination high-dose-rate brachytherapy and external beam radiotherapy. Between February 2010 and April 2015, 326 prostate carcinoma patients underwent combination high-dose-rate brachytherapy of 16 Gy (average dose 15.5 Gy; standard deviation [SD] = 1.6 Gy) and external beam radiotherapy of 59.4 Gy (average dose 60.2 Gy; SD = 2.9 Gy). In conjunction with the radiation therapy regimen, each patient was injected with 10 mL of a PEG hydrogel in the anterior perirectal fat space. The injectable spacer (rectal spacer) creates a gap between the prostate and the rectum. The rectum is displaced from the radiation field, and rectal dose is substantially reduced. The goal is a reduction in rectal radiation toxicity. Clinical efficacy was determined by measuring acute and chronic rectal toxicity using the National Cancer Center Institute Common Terminology Criteria for Adverse Events v4.0 grading scheme. Median followup was 16 months. The mean anterior-posterior separation achieved was 1.6 cm (SD = 0.4 cm). Rates of acute Grade 1 and 2 rectal toxicity were 37.4% and 2.8%, respectively. There were no acute Grade 3/4 toxicities. Rates of late Grade 1, 2, and 3 rectal toxicity were 12.7%, 1.4%, and 0.7%, respectively. There were no late Grade 4 toxicities. PEG rectal spacer implantation is safe and well tolerated. Acute and chronic rectal toxicities are low despite aggressive dose escalation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Effect of electron beam cooling on transversal and longitudinal emittance of an external proton beam
NASA Astrophysics Data System (ADS)
Kilian, K.; Machner, H.; Magiera, A.; Prasuhn, D.; von Rossen, P.; Siudak, R.; Stein, H. J.; Stockhorst, H.
2018-02-01
Benefits of electron cooling to the quality of extracted ion beams from storage rings are discussed. The transversal emittances of an external proton beam with and without electron cooling at injection energy are measured with the GEM detector assembly. While the horizontal emittance remains the vertical emittance shrinks by the cooling process. The longitudinal momentum variance is also reduced by cooling.
2009-10-01
1500 ms). A clinical pilot study reported equivalence between central gland (CG) and peripheral zone (PZ) T1 values (CG: 1321±45 ms, n=14; PZ: 1359...across variable TI, the period of longitudinal recovery is kept independent of TI selection for any TR. Central to T1prep is RF cycling of an...pilot study A clinical pilot study involved 15 patients with low or intermediate risk localized prostate cancer and no history of prior therapy. The
Treatment- and Disease-Related Complications of Prostate Cancer
Simoneau, Anne R
2006-01-01
One of the highlights of the 16th International Prostate Cancer Update was a session on treatment- and disease-related complications of prostate disease. It began with presentation of a challenging case of rising prostate-specific antigen levels after radical prostatectomy, followed by an overview of the use of zoledronic acid in prostate cancer, a review of side effects of complementary medicines, an overview of complications of cryotherapy, an assessment of complications of brachytherapy and external beam radiation therapy, and a comparison of laparoscopy versus open prostatectomy. PMID:17021643
Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.
Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B
2017-03-01
A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
Soft-tissue reactions following irradiation of primary brain and pituitary tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglan, R.J.; Marks, J.E.
1981-04-01
One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less
Khourdaji, Iyad; Parke, Jacob; Burks, Frank
2015-01-01
Radiation therapy (RT), external beam radiation therapy (EBRT), brachytherapy (BT), photon beam therapy (PBT), high intensity focused ultrasound (HIFU), and cryotherapy are noninvasive treatment options for pelvic malignancies and prostate cancer. Though effective in treating cancer, urethral stricture disease is an underrecognized and poorly reported sequela of these treatment modalities. Studies estimate the incidence of stricture from BT to be 1.8%, EBRT 1.7%, combined EBRT and BT 5.2%, and cryotherapy 2.5%. Radiation effects on the genitourinary system can manifest early or months to years after treatment with the onus being on the clinician to investigate and rule-out stricture disease as an underlying etiology for lower urinary tract symptoms. Obliterative endarteritis resulting in ischemia and fibrosis of the irradiated tissue complicates treatment strategies, which include urethral dilation, direct-vision internal urethrotomy (DVIU), urethral stents, and urethroplasty. Failure rates for dilation and DVIU are exceedingly high with several studies indicating that urethroplasty is the most definitive and durable treatment modality for patients with radiation-induced stricture disease. However, a detailed discussion should be offered regarding development or worsening of incontinence after treatment with urethroplasty. Further studies are required to assess the nature and treatment of cryotherapy and HIFU-induced strictures. PMID:26494994
Quigley, Martin M; Mate, Timothy P; Sylvester, John E
2009-01-01
To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning and monitoring system to have alignment errors exceeding 5 mm. Almost all patients undergoing external beam radiation of the prostate have been shown to have target organ movement exceeding 3 mm during radiation therapy delivery. The ability of the electromagnetic technology to monitor tumor target location during the same time as radiation therapy is being delivered allows clinicians to provide real time adaptive radiation therapy for prostate cancer. This permits clinicians to intervene when the prostate moves outside the radiation isocenter, which should decrease adverse events and improve patient outcomes. Additionally, a cost-utility analysis has demonstrated that the electromagnetic patient positioning and monitoring system offers patient outcome benefits at a cost that falls well within the payer's customary willingness to pay (WTP) threshold of $50,000 per QALY.
Prostate cancer in senior adults: over- or undertreated?
Berger, Ingrid; Böhmer, Franz; Ponholzer, Anton; Madersbacher, Stephan
2009-01-01
Despite the widespread use of prostate specific antigen for early prostate cancer (PCa) detection in younger men, PCa is still as disease of the elderly as 2/3 of incident cases are detected in men older than 65 years and 25% are older than 75 years at diagnosis. Opportunistic screening for PCa is not recommended for men with a life expectancy of less than 10 years. The therapeutic strategy for senior adults is driven by tumour stage/aggressiveness, co-morbidity and chronological age. Elderly patients with low/intermediate risk tumours - particularly those with a life expectancy of less than 10 years - are best managed by watchful waiting. Senior adults with intermediate/high risk tumours and a life expectancy of >10 years may benefit from curative local therapy such as radical prostatectomy or combined external beam irradiation/androgen ablation therapy. For elderly patients with metastatic disease, androgen deprivation remains the mainstay of therapy, intermittent androgen ablation is a promising approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald
2017-04-21
A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.
NASA Astrophysics Data System (ADS)
Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald
2017-04-01
A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.
Blake, P; Swart, Ann Marie; Orton, J; Kitchener, H; Whelan, T; Lukka, H; Eisenhauer, E; Bacon, M; Tu, D; Parmar, M K B; Amos, C; Murray, C; Qian, W
2009-01-10
Early endometrial cancer with low-risk pathological features can be successfully treated by surgery alone. External beam radiotherapy added to surgery has been investigated in several small trials, which have mainly included women at intermediate risk of recurrence. In these trials, postoperative radiotherapy has been shown to reduce the risk of isolated local recurrence but there is no evidence that it improves recurrence-free or overall survival. We report the findings from the ASTEC and EN.5 trials, which investigated adjuvant external beam radiotherapy in women with early-stage disease and pathological features suggestive of intermediate or high risk of recurrence and death from endometrial cancer. Between July, 1996, and March, 2005, 905 (789 ASTEC, 116 EN.5) women with intermediate-risk or high-risk early-stage disease from 112 centres in seven countries (UK, Canada, Poland, Norway, New Zealand, Australia, USA) were randomly assigned after surgery to observation (453) or to external beam radiotherapy (452). A target dose of 40-46 Gy in 20-25 daily fractions to the pelvis, treating five times a week, was specified. Primary outcome measure was overall survival, and all analyses were by intention to treat. These trials were registered ISRCTN 16571884 (ASTEC) and NCT 00002807 (EN.5). After a median follow-up of 58 months, 135 women (68 observation, 67 external beam radiotherapy) had died. There was no evidence that overall survival with external beam radiotherapy was better than observation, hazard ratio 1.05 (95% CI 0.75-1.48; p=0.77). 5-year overall survival was 84% in both groups. Combining data from ASTEC and EN.5 in a meta-analysis of trials confirmed that there was no benefit in terms of overall survival (hazard ratio 1.04; 95% CI 0.84-1.29) and can reliably exclude an absolute benefit of external beam radiotherapy at 5 years of more than 3%. With brachytherapy used in 53% of women in ASTEC/EN.5, the local recurrence rate in the observation group at 5 years was 6.1%. Adjuvant external beam radiotherapy cannot be recommended as part of routine treatment for women with intermediate-risk or high-risk early-stage endometrial cancer with the aim of improving survival. The absolute benefit of external beam radiotherapy in preventing isolated local recurrence is small and is not without toxicity.
NASA Astrophysics Data System (ADS)
Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.
2007-07-01
Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.
NASA Astrophysics Data System (ADS)
Kernen, Kenneth M.; Miles, Brian J.
2000-05-01
Prostate cancer, the most common malignancy in men in the United States, accounts for more than 29% of all male cancers diagnosed and 13% of all cancer deaths. This translates into approximately 200,000 men diagnosed and 37,000 men who will die from the disease this year in this country. A significant number of patients ultimately choose external beam radiation or interstitial radioactive implants (brachytherapy) combined with external beam radiotherapy as their primary treatment. Approximately 25 - 35% of external beam irradiation patients and 20 - 30% of interstitial implants combined with external beam radiotherapy will fail within 10 years. The treatment options for patients with localized radiorecurrent disease include watchful waiting, endocrine therapy, salvage radiotherapy, and salvage radical prostatectomy, cryotherapy and now high intensity focused ultrasound therapy (HIFU). Although some studies regarding watchful waiting demonstrated comparable results to formal treatment for early prostate cancer, other studies have shown metastatic and mortality rates that are significantly higher, and that radiorecurrent patients would have even greater rates of metastasis and progression to death. Prostate cancer cure by means of endocrine therapy is highly unlikely and its role is still one of palliation with a side effect profile which includes hot flashes, osteoporosis, fatigue, loss of muscle mass, anemia, loss of libido and potency. The role of salvage radiotherapy may offer local control, however long term efficacy has yet to be determined. In a recent series, only 50% of the patients were controlled for a mean of four years with salvage radiotherapy. Salvage prostatectomy has the advantage of providing excellent local control and even a cure if the cancer is confined to the prostate or within the surrounding periprostatic tissue. Historically, salvage prostatectomy is technically demanding and fraught with higher complications. In one large series, investigators found rectal injuries in up to 15%, anastomotic strictures in 27% and urinary incontinence in approximately 58%, as well as an overall higher estimated blood loss, transfusions, and hospital stay greater than that of a standard radical retropubic prostatectomy. Cryotherapy also has a significant complication rate with incontinence (73%), impotence (72%), and prolonged dysuria in 67%. In this report, biopsies were negative in 77% but biochemical failure occurred in 58% of patients. High intensity focused ultrasound (HIFU) therapy is a relatively new treatment modality and is being applied transrectally for the treatment of both benign prostatic hyperplasia and adenocarcinoma of the prostate. The therapy is also under evaluation at multiple centers in the United States for the treatment of radiorecurrent prostate cancer. In Europe, it not only being evaluated as treatment for radiorecurrent prostate cancer, but is also being evaluated and offered as a minimally invasive primary therapy for prostate cancers localized to the gland. The technique of HIFU generation has been previously described in detail. The ablation device is comprised of a patient treatment table, main computer, an oscillator, power amplifier, power measurement system, probe movement system, endorectal probe with built-in ultrasound scanner and treatment transducer, and reprography equipment. The patient is administered either a spinal or general anesthesia, positioned on the treatment table on his side with the legs flexed, the endorectal probe is then inserted. The ultrasound imaging is used to detect the contours of the prostate and the target volume to be treated is then calculated. Under computer control, the HIFU device position and then successively repositions the endorectal probe, delivering the high intensity focused ultrasound according to the treatment blocks defined by the surgeon. This sequence then repeats until all sectors of the prostate have been treated. HIFU is generated by high power acoustic transducers, which produce focused ultrasound waves, that generate high temperatures to achieve coagulative necrosis of the target tissue. The ultrasound waves are emitted in discrete, timed bursts with a duration of several seconds. At the focal point of the ultrasound, the temperatures achieved are approximately 85 degrees Celsius, thereby ablating the prostate tissue. An attractive advantage of HIFU is its low risk of morbidity, due to the sudden, short bursts of the intensely focused ultrasound, which, along with the heat generated, are quickly absorbed by the target tissue, thereby protecting the surrounding tissues from damage.
Sexual (dys)function after radiotherapy for prostate cancer: a review.
Incrocci, Luca; Slob, A Koos; Levendag, Peter C
2002-03-01
Prostate cancer has become the most common nonskin malignant neoplasm in older men in Western countries. As treatment efficacy has improved, issues related to posttherapy quality of life and sexual functioning have become more important. We discuss the various methods used to evaluate erectile and sexual dysfunction and the definition of potency. The etiologies of erectile dysfunction after external beam radiotherapy and brachytherapy for prostate cancer are also reviewed. The literature is summarized, and comparative studies of radiation and surgery are surveyed briefly. Rates of erectile dysfunction vary from 6 to 84% after external beam radiotherapy and from 0 to 51% after brachytherapy. In most of the studies, the analysis is retrospective, the definition of erectile dysfunction is not clear, only one question about sexual functioning is asked, and nonvalidated instruments are used. The etiology of erectile dysfunction after radiation for prostate cancer is not completely understood. Because erectile function is only one component of sexual function, it is necessary to assess sexual desire, satisfaction, frequency of intercourse, and other such factors when evaluating the effects of therapy. Patients should be offered sexual counseling and informed about the availability of effective treatments for erectile dysfunction, such as sildenafil, intracavernosal injection, and vacuum devices.
Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper
2012-05-01
To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, C; Jirasek, A; Blackmore, E
Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients,more » yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.« less
Yoshioka, Yasuo; Suzuki, Osamu; Nishimura, Kazuo; Inoue, Hitoshi; Hara, Tsuneo; Yoshida, Ken; Imai, Atsushi; Tsujimura, Akira; Nonomura, Norio; Ogawa, Kazuhiko
2013-01-01
We aimed to analyse late toxicity associated with external beam radiation therapy (EBRT) for prostate cancer using uniform dose-fractionation and beam arrangement, with the focus on the effect of 3D (CT) simulation and portal field size. We collected data concerning patients with localized prostate adenocarcinoma who had been treated with EBRT at five institutions in Osaka, Japan, between 1998 and 2006. All had been treated with 70 Gy in 35 fractions, using the classical 4-field technique with gantry angles of 0°, 90°, 180° and 270°. Late toxicity was evaluated strictly in terms of the Common Terminology Criteria for Adverse Events Version 4.0. In total, 362 patients were analysed, with a median follow-up of 4.5 years (range 1.0-11.6). The 5-year overall and cause-specific survival rates were 93% and 96%, respectively. The mean ± SD portal field size in the right-left, superior-inferior, and anterior-posterior directions was, respectively, 10.8 ± 1.1, 10.2 ± 1.0 and 8.8 ± 0.9 cm for 2D simulation, and 8.4 ± 1.2, 8.2 ± 1.0 and 7.7 ± 1.0 cm for 3D simulation (P < 0.001). No Grade 4 or 5 late toxicity was observed. The actuarial 5-year Grade 2-3 genitourinary and gastrointestinal (GI) late toxicity rates were 6% and 14%, respectively, while the corresponding late rectal bleeding rate was 23% for 2D simulation and 7% for 3D simulation (P < 0.001). With a uniform setting of classical 4-field 70 Gy/35 fractions, the use of CT simulation and the resultant reduction in portal field size were significantly associated with reduced late GI toxicity, especially with less rectal bleeding.
SU-F-T-242: A Method for Collision Avoidance in External Beam Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzurovic, I; Cormack, R
2016-06-15
Purpose: We proposed a method for collision avoidance (CA) in external beam radiation therapy (EBRT). The method encompasses the analysis of all positions of the moving components of the beam delivery system such as the treatment table and gantry, including patient specific information obtained from the CT images. This method eliminates the need for time-consuming dry-runs prior to the actual treatments. Methods: The QA procedure for EBRT requires that the collision should be checked prior to treatment. We developed a system capable of a rigorous computer simulation of all moving components including positions of the couch and gantry during themore » delivery, position of the patients, and imaging equipment. By running this treatment simulation it is possible to quantify and graphically represent all positions and corresponding trajectories of all points of the moving parts during the treatment delivery. The development of the workflow for implementation of the CA includes several steps: a) derivation of combined dynamic equation of motion of the EBRT delivery systems, b) developing the simulation model capable of drawing the motion trajectories of the specific points, c) developing the interface between the model and the treatment plan parameters such as couch and gantry parameters for each field. Results: The patient CT images were registered to the treatment couch so the patient dimensions were included into the simulation. The treatment field parameters were structured in the xml-file which was used as the input into the dynamic equations. The trajectories of the moving components were plotted on the same graph using the dynamic equations. If the trajectories intersect that was the signal that collision exists. Conclusion: This CA method was proved to be effective in the simulation of treatment delivery. The proper implementation of this system can potentially improve the QA program and increase the efficacy in the clinical setup.« less
WE-F-16A-05: Use of 3D-Printers to Create a Tissue Equivalent 3D-Bolus for External Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleson, S; Baker, J; Hsia, A
2014-06-15
Purpose: The purpose of this project is to demonstrate that a non-expensive 3D-printer can be used to manufacture a 3D-bolus for external beam therapy. The printed bolus then can be modeled in our treatment planning system to ensure accurate dose delivery to the patient. Methods: We developed a simple method to manufacture a patient-specific custom 3Dbolus. The bolus is designed using Eclipse Treatment Planning System, contoured onto the patients CT images. The bolus file is exported from Eclipse to 3D-printer software, and then printed using a 3D printer. Various tests were completed to determine the properties of the printing material.more » Percent depth dose curves in this material were measured with electron and photon beams for comparison to other materials. In order to test the validity of the 3D printed bolus for treatment planning, a custom bolus was printed and tested on the Rando phantom using film for a dose plane comparison. We compared the dose plane measured on the film to the same dose plane exported from our treatment planning system using Film QA software. The gamma-dose distribution tool was used in our film analysis. Results: We compared point measurements throughout the dose plane and were able to achieve greater than 95% passing rate at 3% dose difference and 3 mm distance to agreement, which is our departments acceptable gamma pixel parameters. Conclusion: The printed 3D bolus has proven to be accurately modeled in our treatment planning system, it is more conformal to the patient surface and more durable than other bolus currently used (wax, superflab etc.). It is also more convenient and less costly than comparable bolus from milling machine companies.« less
Melchert, Corinna; Kovács, György
2016-01-01
Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer. PMID:27648082
Proton Therapy for Head and Neck Cancer.
Kim, Joseph K; Leeman, Jonathan E; Riaz, Nadeem; McBride, Sean; Tsai, Chiaojung Jillian; Lee, Nancy Y
2018-05-09
The application of proton beam radiation therapy in the treatment of head and neck cancer has grown tremendously in the past few years. Globally, widespread interest in proton beam therapy has led to multiple research efforts regarding its therapeutic value and cost-effectiveness. The current standard of care using modern photon radiation technology has demonstrated excellent treatment outcomes, yet there are some situations where disease control remains suboptimal with the potential for detrimental acute and chronic toxicities. Due to the advantageous physical properties of the proton beam, proton beam therapy may be superior to photon therapy in some patient subsets for both disease control and patient quality of life. As enthusiasm and excitement for proton beam therapy continue to increase, clinical research and widespread adoption will elucidate the true value of proton beam therapy and give a greater understanding of the full risks and benefits of proton therapy in head and neck cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, T.D.; Bugat, R.; Combes, P.F.
1982-07-01
During the period from January 1977-August 1979, 18 patients with biopsy-proven pancreas duct or ampullary adenocarcinoma with no distant or liver metastases underwent external beam radiation therapy following laparotomy. With the use of a 25 MEV photon beam and a four field ''box'' technique, the dose delivered to the target volume identified with radio-opaque clips at laparotomy was 6000 rad in six weeks, while largely sparing the spinal cord, kidney, liver and gut. All patients subjected to low fat, gluten free diet completed treatment as planned without any acute reaction. Three patients developed delayed pancreatic insufficiency. According to actuarial survivalmore » analysis and low morbidity such an approach may lead to increased survival in patients with pancreatic cancer.« less
An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.
1998-03-01
External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.
NASA Astrophysics Data System (ADS)
Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael
2015-10-01
We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.
National Trends and Predictors of Androgen Deprivation Therapy Use in Low-Risk Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, David D.; Muralidhar, Vinayak; Brigham and Women's Hospital, Boston, Massachusetts
Purpose: Androgen deprivation therapy (ADT) is not recommended for low-risk prostate cancer because of its lack of benefit and potential for harm. We evaluated the incidence and predictors of ADT use in low-risk disease. Methods and Materials: Using the National Cancer Database, we identified 197,957 patients with low-risk prostate cancer (Gleason score of 3 + 3 = 6, prostate-specific antigen level <10 ng/mL, and cT1-T2a) diagnosed from 2004 to 2012 with complete demographic and treatment information. We used multiple logistic regression to evaluate predictors of ADT use and Cox regression to examine its association with all-cause mortality. Results: Overall ADT use decreased from 17.6% in 2004more » to 3.5% in 2012. In 2012, 11.5% of low-risk brachytherapy patients and 7.6% of external beam radiation therapy patients received ADT. Among 82,352 irradiation-managed patients, predictors of ADT use included treatment in a community versus academic cancer program (adjusted odds ratio [AOR], 1.60; 95% confidence interval [CI], 1.50-1.71; P<.001; incidence, 14.0% vs 6.0% in 2012); treatment in the South (AOR, 1.51), Midwest (AOR, 1.81), or Northeast (AOR, 1.90) versus West (P<.001); and brachytherapy use versus external beam radiation therapy (AOR, 1.32; 95% CI, 1.27-1.37; P<.001). Among 25,196 patients who did not receive local therapy, predictors of primary ADT use included a Charlson-Deyo comorbidity score of ≥2 versus 0 (AOR, 1.42; 95% CI, 1.06-1.91; P=.018); treatment in a community versus academic cancer program (AOR, 1.61; 95% CI, 1.37-1.90; P<.001); and treatment in the South (AOR, 1.26), Midwest (AOR, 1.52), or Northeast (AOR, 1.28) versus West (P≤.008). Primary ADT use was associated with increased all-cause mortality in patients who did not receive local therapy (adjusted hazard ratio, 1.28; 95% CI, 1.14-1.43; P<.001) after adjustment for age and comorbidity. Conclusions: ADT use in low-risk prostate cancer has declined nationally but may remain an issue of concern in certain populations and regions.« less
Romesser, Paul B; Pei, Xin; Shi, Weiji; Zhang, Zhigang; Kollmeier, Marisa; McBride, Sean M; Zelefsky, Michael J
2018-01-01
To evaluate the difference in prostate-specific antigen (PSA) recurrence-free, distant metastasis-free, overall, and cancer-specific survival between PSA bounce (PSA-B) and non-bounce patients treated with dose-escalated external beam radiation therapy (DE-EBRT). During 1990-2010, 1898 prostate adenocarcinoma patients were treated with DE-EBRT to ≥75 Gy with ≥5 years follow-up. Patients receiving neoadjuvant/concurrent androgen-deprivation therapy (n=1035) or with fewer than 4 PSA values obtained 6 months or more after post-EBRT completion (n=87) were excluded. The evaluable 776 patients were treated (median, 81.0 Gy). Prostate-specific antigen bounce was defined as a ≥0.2-ng/mL increase above the interval PSA nadir, followed by a decrease to nadir or below. Prostate-specific antigen relapse was defined as post-radiation therapy PSA nadir + 2 ng/mL. Median follow-up was 9.2 years (interquartile range, 6.9-11.3 years). One hundred twenty-three patients (15.9%) experienced PSA-B after DE-EBRT at a median of 24.6 months (interquartile range, 16.1-38.5 months). On multivariate analysis, younger age (P=.001), lower Gleason score (P=.0003), and higher radiation therapy dose (P=.0002) independently predicted PSA-B. Prostate-specific antigen bounce was independently associated with decreased risk for PSA relapse (hazard ratio [HR] 0.53; 95% confidence interval [CI] 0.33-0.85; P=.008), distant metastatic disease (HR 0.34; 95% CI 0.12-0.94; P=.04), and all-cause mortality (HR 0.53; 95% CI 0.29-0.96; P=.04) on multivariate Cox analysis. Because all 50 prostate cancer-specific deaths in patients without PSA-B were in the non-bounce cohort, competing-risks analysis was not applicable. A nonparametric competing-risks test demonstrated that patients with PSA-B had superior cancer-specific survival compared with patients without PSA-B (P=.004). Patients treated with dose-escalated radiation therapy for prostate adenocarcinoma who experience posttreatment PSA-B have improved PSA recurrence-free survival, distant metastasis-free survival, overall survival, and cancer-specific survival outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Filler, Kristin; Lyon, Debra; McCain, Nancy; Bennett, James; Fernández-Martínez, Juan Luis; deAndrés-Galiana, Enrique Juan; Elswick, R. K.; Lukkahatai, Nada; Saligan, Leorey
2015-01-01
Purpose: Mitochondrial dysfunction is a plausible biological mechanism for cancer-related fatigue. Specific aims of this study were to (1) describe the levels of mitochondrial oxidative phosphorylation complex (MOPC) enzymes, fatigue, and health-related quality of life (HRQOL) before and at completion of external beam radiation therapy (EBRT) in men with nonmetastatic prostate cancer (PC); (2) examine relationships over time among levels of MOPC enzymes, fatigue, and HRQOL; and (3) compare levels of MOPC enzymes in men with clinically significant and nonsignificant fatigue intensification during EBRT. Methods: Fatigue was measured by the revised Piper Fatigue Scale and the Functional Assessment of Cancer Therapy–Fatigue subscale (FACT-F). MOPC enzymes (Complexes I–V) and mitochondrial antioxidant superoxide dismutase 2 were measured in peripheral blood using enzyme-linked immunosorbent assay at baseline and completion of EBRT. Participants were categorized into high or low fatigue (HF vs. LF) intensification groups based on amount of change in FACT-F scores during EBRT. Results: Fatigue reported by the 22 participants with PC significantly worsened and HRQOL significantly declined from baseline to EBRT completion. The HF group comprised 12 men with clinically significant change in fatigue (HF) during EBRT. Although no significant changes were observed in MOPC enzymes from baseline to EBRT completion, there were important differences in the patterns in the levels of MOPC enzymes between HF and LF groups. Conclusion: Distinct patterns of changes in the absorbance of MOPC enzymes delineated fatigue intensification among participants. Further investigation using a larger sample is warranted. PMID:26584846
External-cavity beam combining of 4-channel quantum cascade lasers
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-01
We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.
Two-dimensional silicon-based detectors for ion beam therapy
NASA Astrophysics Data System (ADS)
Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.
2012-02-01
Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.
Electron beam therapy with coil-generated magnetic fields.
Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming
2004-06-01
This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.
SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, J; Lin, H; Chow, J
Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beammore » profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less
2009-01-01
Summary Background Early endometrial cancer with low-risk pathological features can be successfully treated by surgery alone. External beam radiotherapy added to surgery has been investigated in several small trials, which have mainly included women at intermediate risk of recurrence. In these trials, postoperative radiotherapy has been shown to reduce the risk of isolated local recurrence but there is no evidence that it improves recurrence-free or overall survival. We report the findings from the ASTEC and EN.5 trials, which investigated adjuvant external beam radiotherapy in women with early-stage disease and pathological features suggestive of intermediate or high risk of recurrence and death from endometrial cancer. Methods Between July, 1996, and March, 2005, 905 (789 ASTEC, 116 EN.5) women with intermediate-risk or high-risk early-stage disease from 112 centres in seven countries (UK, Canada, Poland, Norway, New Zealand, Australia, USA) were randomly assigned after surgery to observation (453) or to external beam radiotherapy (452). A target dose of 40–46 Gy in 20–25 daily fractions to the pelvis, treating five times a week, was specified. Primary outcome measure was overall survival, and all analyses were by intention to treat. These trials were registered ISRCTN 16571884 (ASTEC) and NCT 00002807 (EN.5). Findings After a median follow-up of 58 months, 135 women (68 observation, 67 external beam radiotherapy) had died. There was no evidence that overall survival with external beam radiotherapy was better than observation, hazard ratio 1·05 (95% CI 0·75–1·48; p=0·77). 5-year overall survival was 84% in both groups. Combining data from ASTEC and EN.5 in a meta-analysis of trials confirmed that there was no benefit in terms of overall survival (hazard ratio 1·04; 95% CI 0·84–1·29) and can reliably exclude an absolute benefit of external beam radiotherapy at 5 years of more than 3%. With brachytherapy used in 53% of women in ASTEC/EN.5, the local recurrence rate in the observation group at 5 years was 6·1%. Interpretation Adjuvant external beam radiotherapy cannot be recommended as part of routine treatment for women with intermediate-risk or high-risk early-stage endometrial cancer with the aim of improving survival. The absolute benefit of external beam radiotherapy in preventing isolated local recurrence is small and is not without toxicity. Funding Medical Research Council, National Cancer Research Network, National Cancer Institute of Canada, with funds from the Canadian Cancer Society. PMID:19070891
Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance
NASA Astrophysics Data System (ADS)
Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario
2018-01-01
Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.
Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.
2000-03-01
The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.W.; Safai, C.; Goffinet, D.R.
Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium/sup 192/ (Ir/sup 192/). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy tomore » his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir/sup 192/ wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir/sup 192/ intracavitary boost is well tolerated and provides significant palliation.« less
Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?
Safdieh, Joseph; Wong, Andrew; Weiner, Joseph P; Schwartz, David; Schreiber, David
2016-08-01
Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy were abstracted from the National Cancer Database. In order to be included, men had to be clinically staged as T1c-T2aNx-0Mx-0, Gleason 6, PSA ≤ 10.0 ng/ml. Descriptive statistics were used to analyze brachytherapy utilization over time and were compared via χ(2). Multivariate logistic regression was used to assess for covariables associated with increased brachytherapy usage. There were 89,413 men included in this study, of which 37,054 (41.6%) received only external beam radiation, and 52,089 (58.4%) received prostate brachytherapy. The use of brachytherapy declined over time from 62.9% in 2004 to 51.3% in 2012 (p < 0.001). This decline was noted in both academic facilities (60.8% in 2004 to 47.0% in 2012, p < 0.001) as well as in non-academic facilities (63.7% in 2004 to 53.0% in 2012, p < 0.001). The decline was more pronounced in patients who lived closer to treatment facilities than those who lived further. The use of intensity modulated radiation therapy increased during this same time period from 18.4% in 2004 to 38.2% in 2012 (p < 0.001). On multivariate analysis, treatment at an academic center, increasing age, decreasing distance from the treatment center, and years of diagnosis from 2006-2012 were significantly associated with reduced brachytherapy usage. In this hospital-based registry, prostate brachytherapy usage has declined for low risk prostate cancer as intensity modulated radiation therapy usage has increased. However, it still remains the treatment of choice for 51.3% of patients as of 2012.
McPartlin, Andrew J; Glicksman, Rachel; Pintilie, Melania; Tsuji, Debbie; Mok, Gary; Bayley, Andrew; Chung, Peter; Bristow, Robert G; Gospodarowicz, Mary K; Catton, Charles N; Milosevic, Michael; Warde, Padraig R
2016-08-15
The role of hormone therapy (HT) with dose-escalated external-beam radiotherapy (DE-EBRT) in the treatment of intermediate-risk prostate cancer (IRPC) remains controversial. The authors report the long-term outcome of a phase 3 study of DE-EBRT with or without HT for patients with localized prostate cancer (LPC). From 1999 to 2006, 252 of an intended 338 patients with LPC were randomized to receive DE-EBRT with or without 5 months of neoadjuvant and concurrent bicalutamide 150 mg once daily. The study was closed early because of contemporary concerns surrounding bicalutamide. The primary outcome was biochemical failure (BF) incidence, and the secondary endpoints were overall survival (OS), local control (LC), and quality of life. The BF and OS rates were estimated using the cumulative incidence function and Kaplan-Meier methods and were compared using the Gray test and the log-rank test. Eleven patients were excluded from analysis. Characteristics were well balanced in each treatment arm. Ninety-five percent of patients had IRPC. The prescribed dose increased from 75.6 grays (Gy) in 42 fractions to 78 Gy in 39 fractions over the period. At a median follow-up of 9.1 years, 98 BFs occurred, with no significant effect of HT versus no HT on the BF rate (40% vs 47%; P = .32), the OS rate (82% vs 86%; P = .37), the LC rate (52% vs 48 %; P = .32) or quality of life, in the patients who completed the questionnaires. Dose escalation to 75.6 Gy versus >75.6 Gy reduced the BF rate by 26% (P = .004). For patients who predominantly have IRPC, the addition of HT to DE-EBRT did not significantly affect BF, OS, or LC. Bicalutamide appeared to be well tolerated. The conclusions from the study are limited by incomplete recruitment. Cancer 2016;122:2595-603. © 2016 American Cancer Society. © 2016 American Cancer Society.
Breen, William; Bancos, Irina; Young, William F; Bible, Keith C; Laack, Nadia N; Foote, Robert L; Hallemeier, Christopher L
2018-01-01
To evaluate the role of external beam radiation therapy (EBRT) for treatment of malignant paraganglioma (PGL) and pheochromocytoma (PCC). A retrospective review was performed of all patients with malignant PGL/PCC treated with EBRT at our institution between 1973 and 2015. Local control (LC) per treated lesion and overall survival were estimated using the Kaplan-Meier method. Toxicities were scored using the Common Toxicity Criteria for Adverse Events (AE), version 4. The cohort included 41 patients with 107 sites treated. Median (range) age at EBRT was 33 (11-80) years. Treatment intention was curative in 20 patients (30 lesions) and palliative in 21 patients (77 lesions). The primary tumor was PGL (63%) and PCC (37%). Previous local therapies were surgical resection (90%) and percutaneous ablation (19%). Indications for EBRT were local control (66%), pain (22%), or spinal cord compression (12%). Treatment site included bone (69%), soft tissue (30%), and liver (1%). Median (range) EBRT dose was 40 (6.5-70) Gy. Median biologic effective dose using α/β = 10 (BED 10 ) was 53 (9-132). Median follow-up was 3.8 years (0.04-41.5), and mean follow-up was 9.7 years. Overall survival at 5 years was 65%: 79% for curative- and 50% for palliative-intention patients ( P = .028). LC at 5 years was 81% for all lesions; 91% for lesions receiving BED 10 ≥53, and 62% for lesions receiving BED 10 <53 ( P = .001). All 11 lesions treated with stereotactic body RT or radiosurgery had LC at a median of 3.0 (0.2-5.4) years. For the symptomatic lesions, symptoms improved in 94%. There were no acute grade ≥3 treatment-related AEs, including no hypertensive crises. Two patients developed a late grade ≥3 AE. EBRT is a useful treatment modality for malignant PGL and PCC. Higher RT dose was associated with improved LC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Ping, E-mail: ping.jiang@uksh.de; Baumann, René; Dunst, Juergen
Purpose: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. Methods and Materials: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immediate perioperative high-dose-rate brachytherapy; 3 patients had been previously treated with adjuvant external beam radiation therapy and presented with recurrences in the pretreated areas. Two or more different treatment modalities had been tried in all patients and had failed to achieve remission. After (re-)excision of the keloids, a single brachytherapy tube was placed subcutaneously before closing the wound. The target volumemore » covered the scar in total length. Brachytherapy was given in 3 fractions with a single dose of 6 Gy in 5 mm tissue depth. The first fraction was given within 6 hours after surgery, the other 2 fractions on the first postoperative day. Thus, a total dose of 18 Gy in 3 fractions was administered within 36 hours after the resection. Results: The treatment was feasible in all patients. No procedure-related complications (eg, secondary infections) occurred. Nineteen patients had keloid-related symptoms before treatment like pain and pruritus; disappearance of symptoms was noticed in all patients after treatment. After a median follow-up of 29.4 months (range, 7.9-72.4 months), 2 keloid recurrences and 2 mildly hypertrophied scars were observed. The local control rate was 94%. Pigmentary abnormalities were detected in 3 patients, and an additional 6 patients had a mild delay in the wound-healing process. Conclusions: The early results of this study prove the feasibility and the efficacy of brachytherapy for the prevention of keloids. The results also suggest that brachytherapy may be advantageous in the management of high-risk keloids or as salvage treatment for failure after external beam therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chargari, Cyrus, E-mail: cyrus.chargari@gustaveroussy.fr; Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge; French Military Health Service Academy, Ecole du Val-de-Grâce, Paris
Purpose: To report the results of a conservative strategy based on partial surgery combined with brachytherapy in a prospective cohort of children with bladder–prostate rhabdomyosarcoma (BP RMS). Methods and Materials: We prospectively documented the outcome of children treated in our department between 1991 and 2015 for BP RMS and undergoing a multimodal approach combining conservative surgery (partial cystectomy and/or partial prostatectomy) and perioperative interstitial low-dose-rate or pulse-dose-rate brachytherapy. Before brachytherapy, children had received chemotherapy with modalities depending on their risk group of treatment. Results: A total of 100 patients were identified, with a median age of 28 months (range, 5.6 months-14more » years). According to the Intergroup Rhabdomyosarcoma Study (IRS) group, 84 were IRS-III, and 12 were IRS-IV tumors. Four patients were treated at relapse. The median number of chemotherapy cycles before local therapy was 6 (range, 4-13). After surgery, 63 patients had a macroscopic tumor residuum. Five patients underwent a brachytherapy boost before pelvic external beam radiation therapy because of nodal involvement, and 95 had exclusive brachytherapy. Median follow-up was 64 months (range, 6 months-24.5 years). Five-year disease-free and overall survival rates were 84% (95% confidence interval 80%-88%) and 91% (95% confidence interval 87%-95%), respectively. At last follow-up most survivors presented with only mild to moderate genitourinary sequelae and a normal diurnal urinary continence. Five patients required a secondary total cystectomy: 3 for a nonfunctional bladder and 2 for relapse. Conclusion: Brachytherapy is effective as part of a conservative strategy for BP RMS, with a relatively low delayed toxicity as compared with previously published studies using external beam radiation therapy. Longer follow-up is required to ensure that the functional results are maintained over time.« less
Risk of Radiation Retinopathy in Patients With Orbital and Ocular Lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, Megha; Pulido, Jose S.; Schild, Steven E.
2012-12-01
Purpose: Radiation retinopathy is a potential long-term complication of radiation therapy to the orbit. The risk of developing this adverse effect is dose dependent; however, the threshold is unclear. The aim of this study was to identify the risk of developing radiation retinopathy at increasing radiation doses. Methods and Materials: A 40-year retrospective review was performed of patients who received external beam radiation therapy for ocular/orbital non-Hodgkin lymphoma (NHL). Results: Sixty-seven patients who had at least one ophthalmic follow-up examination were included in this study. Most patients (52%) were diagnosed with NHL involving the orbit. Patients received external beam radiationmore » therapy at doses between 1886 and 5400 cGy (mean, 3033 {+-} 782 cGy). Radiation retinopathy developed in 12% of patients, and the median time to diagnosis was 27 months (range, 15-241months). The mean prescribed radiation dose in patients with retinopathy was 3309 {+-} 585 cGy, and the estimated retinal dose (derived by reviewing the dosimetry) was 3087 {+-} 1030 cGy. The incidence of retinopathy increased with dose. The average prescribed daily fractionated dose was higher in patients who developed retinopathy than in patients who did not (mean, 202 cGy vs 180 cGy, respectively; P = .04). More patients with radiation retinopathy had comorbid diabetes mellitus type 2 than patients without retinopathy (P = .015). In our study, the mean visual acuity of the eyes that received radiation was worse than that of the eyes that did not (P = .027). Other postradiotherapy ocular findings included keratitis (6%), dry eyes (39%), and cataract (33%). Conclusions: Radiation retinopathy, a known complication of radiotherapy for orbital tumors, relates to vascular comorbidities and dose. Higher total doses and larger daily fractions (>180 cGy) appear to be related to higher rates of retinopathy. Future larger studies are required to identify a statistically significant threshold for the development of retinopathy.« less
Koontz, Bridget F; Lee, W Robert
2011-10-01
Androgen deprivation plays a major role in the treatment of prostate cancer.Preclinical studies have shown that androgen deprivation provides both an independent cytotoxic effect and radiosensitization on prostate tumors. For men with non-metastatic prostate cancer, the addition of androgen deprivation to radiotherapy has been shown to improve survival for intermediate and high risk disease compared to radiation alone.This review discusses the clinical trial data regarding combination of androgen deprivation and radiation and provides recommendations for its use in men undergoing radiotherapy for localized prostate cancer.
[Biochemical failure after curative treatment for localized prostate cancer].
Zouhair, Abderrahim; Jichlinski, Patrice; Mirimanoff, René-Olivier
2005-12-07
Biochemical failure after curative treatment for localized prostate cancer is frequent. The diagnosis of biochemical failure is clear when PSA levels rise after radical prostatectomy, but may be more difficult after external beam radiation therapy. The main difficulty once biochemical failure is diagnosed is to distinguish between local and distant failure, given the low sensitivity of standard work-up exams. Metabolic imaging techniques currently under evaluation may in the future help us to localize the site of failures. There are several therapeutic options depending on the initial curative treatment, each with morbidity risks that should be considered in multidisciplinary decision-making.
Koontz, Bridget F; Chino, Junzo; Lee, W Robert; Hahn, Carol A; Buckley, Niall; Huang, Samuel; Kim, Jay; Reagan, Robert; Joyner, Raymond; Anscher, Mitchell S
2009-01-01
Dose escalation has been shown beneficial in prostate cancer. Brachytherapy (BT) provides an opportunity for dose escalation beyond what can be safely delivered using only teletherapy methods. The purpose of this study was to determine cancer control and morbidity of external beam radiation therapy (EBRT) plus low-dose-rate (LDR) BT boost in patients with prostate cancer treated at Duke University Health System. Between June 1997 and August 2007, 199 patients were consecutively treated at our facility with 46Gy EBRT followed by 100Gy palladium-103 ((103)Pd) or 120Gy iodine-125 ((125)I) LDR prostate implant. Treatment characteristics and followup data were retrospectively analyzed. Intermediate risk was defined as T2b-c, Gleason score 7 (GS 7), or prostate-specific antigen (PSA) of 10.1-19.9ng/mL. High risk was defined as GS 8-10, PSA>20, T3+, or two intermediate risk factors. The Radiation Therapy Oncology Group toxicity scale was used to report morbidity for gastrointestinal (GI) and genitourinary (GU) effects. PSA recurrence was defined as nadir+2ng/mL. Median followup was 4.2 years for all patients, 4.8 years for high-risk patients. Risk categories were as follows: 20% low risk, 47% intermediate risk, and 33% high risk. Forty five percent of patients received adjuvant androgen deprivation therapy (ADT). The median length of time since end of ADT to last followup was 2.7 years in all patients, 2.0 years for high-risk patients. Five-year biochemical relapse-free survival was 87% for all, 81% for high-risk patients. PSA control was similar at 92% for all and 86% for high-risk patients. Five-year actuarial risk of any and Grade 3 late GI morbidity was 38% and 7% respectively, and any and Grade 3 late GU morbidity was 21% and 3%, respectively. There were no significant differences in risk of Grade 2+GI or GU morbidity with choice of isotope. EBRT plus LDR BT has acceptable morbidity and, with 5-year followup, provides excellent cancer control even in high-risk patients.
Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality.
Tsai, Henry K; D'Amico, Anthony V; Sadetsky, Natalia; Chen, Ming-Hui; Carroll, Peter R
2007-10-17
We investigated whether androgen deprivation therapy (ADT) use is associated with an increased risk of death from cardiovascular causes in patients treated for localized prostate cancer. From the Cancer of the Prostate Strategic Urologic Research Endeavor database, data on 3262 patients treated with radical prostatectomy and 1630 patients treated with external beam radiation therapy, brachytherapy, or cryotherapy for localized prostate cancer were included in this analysis. Competing risks regression analyses were performed to assess whether use of ADT was associated with a shorter time to death from cardiovascular causes after controlling for age (as a continuous variable) and the presence of baseline cardiovascular disease risk factors. All tests for statistical significance were two-sided. The median follow-up time was 3.8 years (range = 0.1-11.3 years). Among the 1015 patients who received ADT, the median duration of ADT use was 4.1 months (range = 1.0-32.9 months). In a competing risks regression analysis that controlled for age and risk factors for cardiovascular disease, both ADT use (adjusted hazard ratio [HR] = 2.6; 95% confidence interval [CI] = 1.4 to 4.7; P = .002) and age (adjusted HR = 1.07; 95% CI = 1.02 to 1.1; P = .003) were associated with statistically significantly increased risks of death from cardiovascular causes in patients treated with radical prostatectomy. Among patients 65 years or older treated with radical prostatectomy, the 5-year cumulative incidence of cardiovascular death was 5.5% (95% CI = 1.2% to 9.8%) in those who received ADT and 2.0% (95% CI = 1.1% to 3.0%) in those who did not. Among patients 65 years or older treated with external beam radiation therapy, brachytherapy, or cryotherapy, ADT use was associated with a higher cumulative incidence of death from cardiovascular causes, but the difference did not reach statistical significance. The use of ADT appears to be associated with an increased risk of death from cardiovascular causes in patients undergoing radical prostatectomy for localized prostate cancer.
Production of clinically useful positron emitter beams during carbon ion deceleration.
Lazzeroni, M; Brahme, A
2011-03-21
In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy (11)C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary (12)C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The (11)C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary (11)C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum (11)C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C(2)H(4)). The purpose of the first section is to achieve a fast initial (11)C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated (11)C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary (12)C beam can be increased by an order of magnitude, a sufficient intensity of the secondary (11)C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an increase in the intensity might be easily achieved with a superconducting cyclotron.
Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity
NASA Astrophysics Data System (ADS)
Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao
2017-04-01
Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm-2 · sr-1.
Katz, Anne
2005-01-01
OBJECTIVE To describe the sexual consequences of prostate cancer and its treatments (prostatectomy, external beam radiation, brachytherapy, androgen deprivation therapy) and to suggest treatments for sexual side effects of these therapies. QUALITY OF EVIDENCE Most studies of the sexual consequences of prostate cancer treatments and studies of therapy for these side effects provide level II evidence. MAIN MESSAGE Diagnosis of prostate cancer in itself can cause sexual dysfunction. All forms of treatment for this cancer cause serious sexual problems for men. Treatments for the erectile dysfunction that results have varying success rates. Prostatectomy has been shown to cause erectile dysfunction in 30% to 98% of men, depending on whether both, one, or neither nerve bundles was spared. Radiation therapy results in erectile dysfunction in more than 70% of those treated; brachytherapy produces the least amount of sexual deficit. Hormone ablation therapy has serious consequences: more than 80% of men report loss of erections at 1 year after therapy in addition to profound loss of libido. CONCLUSION Family physicians are ideally placed to provide anticipatory guidance to men with prostate cancer on the sexual consequences of both the cancer and its treatments. Family physicians can also assist men and their partners in managing these sexual side effects. PMID:16060176
Gibbons, John P.; Antolak, John A.; Followill, David S.; Huq, M. Saiful; Klein, Eric E.; Lam, Kwok L.; Palta, Jatinder R.; Roback, Donald M.; Reid, Mark; Khan, Faiz M.
2014-01-01
A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism. PMID:24593704
Redler, Gage; Jones, Kevin C.; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C. H.
2018-01-01
Purpose Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. Methods To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Results Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Conclusions Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. PMID:29360151
Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H
2018-03-01
Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, Roger A.; Henesian, Mark A.
1987-01-01
The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.
Beam profiles measured with thermoluminescent dosimeters
NASA Technical Reports Server (NTRS)
Lucks, H.; Marcowitz, S. M.; Wheeler, R. W.
1969-01-01
Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined.
Fast wavelength tuning techniques for external cavity lasers
Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX
2011-01-11
An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.
McGunigal, Mary; Pollock, Ariel; Doucette, John T; Liu, Jerry; Chadha, Manjeet; Kalir, Tamara; Gupta, Vishal
2018-06-01
Randomized trials have shown a local control benefit with adjuvant radiotherapy (RT) in high-intermediate-risk endometrial cancer patients, although not all such patients receive RT. We reviewed the National Cancer Data Base to investigate which patient/tumor-related factors are associated with delivery of adjuvant RT. The National Cancer Data Base was queried for patients diagnosed with International Federation of Gynecology and Obstetrics 2009 stage I endometrioid adenocarcinoma from 1998 to 2012 who underwent surgery +/- adjuvant RT. Exclusion criteria were unknown stage/grade, nonsurgical primary therapy, less than 30 days' follow-up, RT of more than 6 months after surgery, or palliative treatment. High-intermediate risk was defined based on Post Operative Radiation Therapy in Endometrial Carcinoma 2 criteria: older than 60 years with stage IA grade 3 or stage IB grade 1-2. Seventeen thousand five hundred twenty-four met inclusion criteria, and the 13,651 patients with complete data were subjected to a multiple logistic regression analysis; 7814 (57.2%) received surgery alone, and 5837 (42.8%) received surgery + RT. Receipt of adjuvant RT was more likely among black women and women with higher income, Northeastern residence, diagnosis after 2010, greater than 50% myometrial invasion, and receipt of adjuvant chemotherapy (P < 0.05). Patients older than 80 years or those undergoing lymph node dissection were less likely to receive adjuvant RT (P < 0.05). Of those treated with RT, 44.0% received external beam therapy, 54.8% received vaginal cuff brachytherapy, and 0.6% received both. Among irradiated women, patients older than 80 years and those with Northeastern residence, treatment at academic facilities, diagnosis after 2004, and lymph node dissection were more likely to undergo brachytherapy over external beam radiation therapy (P < 0.05). Overall use of adjuvant RT was 28.8% between 1998 and 2004, 42.0% between 2005 and 2010, and 43.4% between 2011 and 2012; the difference between 1998-2004 and 2005-2010 was not statistically significant. Fewer than half of patients with high-intermediate-risk endometrial cancer by Post Operative Radiation Therapy in Endometrial Carcinoma 2 criteria received adjuvant RT despite evidence demonstrating improved local control. Both patient- and tumor-related factors are associated with delivery of adjuvant RT and the modality selected.
Schlussel Markovic, Emily; Buckstein, Michael; Stone, Nelson N; Stock, Richard G
2018-05-01
To evaluate the cancer control outcomes and long-term treatment-related morbidity of brachytherapy as well as combination brachytherapy and external beam radiation therapy (EBRT) in patients with intermediate-risk prostate cancer. A retrospective review was conducted in a prospectively collected database of patients with intermediate-risk prostate cancer who were treated either with brachytherapy or brachytherapy and EBRT, with or without androgen deprivation therapy (ADT), in the period 1990-2014. Urinary and erectile dysfunction symptoms were measured using the International Prostate Symptom Score (IPSS), the Mount Sinai erectile function scale and the Sexual Health Inventory for Men (SHIM). Cancer control endpoints included biochemical failure and development of distant metastases. All statistical analyses were carried out using the Statistical Package for Social Science (SPSS). Survival curves were calculated using Kaplan-Meier actuarial methods and compared using log-rank tests. Cox regression multivariate analyses were used to test the effect of multiple variables on treatment outcomes. A total of 902 patients were identified, with a median follow-up of 91 months. Of these, 390 received brachytherapy and 512 received combination therapy with EBRT. In patients with one intermediate-risk factor, the addition of EBRT did not significantly affect freedom from biochemical failure or distant metastases. Among patients with two or three intermediate-risk factors, added EBRT did not improve freedom from biochemical failure. Significant differences in late toxicity between patients treated with brachytherapy vs combination brachytherapy and EBRT were identified including urge incontinence (P < 0.001), haematuria (P < 0.001), dysuria (P < 0.001), and change in quality-of-life IPSS (P = 0.002). These symptoms were reported by patients at any point during treatment follow-up. Analysis of patients who were potent before treatment using actuarial methods showed that patients receiving combination therapy more frequently experienced loss of potency, as measured by the Mount Sinai erectile function scale (P = 0.040). Brachytherapy monotherapy results in equal biochemical and distant control in both patients with one and more than one intermediate-risk features. While no significant benefit was shown, we believe that the addition of EBRT may prevent recurrence in patients with multiple intermediate-risk features and should be considered. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hayeon, E-mail: kimh2@upmc.edu; Rajagopalan, Malolan S.; Beriwal, Sushil
Purpose: Stereotactic body radiation therapy (SBRT) has been proposed for the palliation of painful vertebral bone metastases because higher radiation doses may result in superior and more durable pain control. A phase III clinical trial (Radiation Therapy Oncology Group 0631) comparing single fraction SBRT with single fraction external beam radiation therapy (EBRT) in palliative treatment of painful vertebral bone metastases is now ongoing. We performed a cost-effectiveness analysis to compare these strategies. Methods and Materials: A Markov model, using a 1-month cycle over a lifetime horizon, was developed to compare the cost-effectiveness of SBRT (16 or 18 Gy in 1 fraction)more » with that of 8 Gy in 1 fraction of EBRT. Transition probabilities, quality of life utilities, and costs associated with SBRT and EBRT were captured in the model. Costs were based on Medicare reimbursement in 2014. Strategies were compared using the incremental cost-effectiveness ratio (ICER), and effectiveness was measured in quality-adjusted life years (QALYs). To account for uncertainty, 1-way, 2-way and probabilistic sensitivity analyses were performed. Strategies were evaluated with a willingness-to-pay (WTP) threshold of $100,000 per QALY gained. Results: Base case pain relief after the treatment was assumed as 20% higher in SBRT. Base case treatment costs for SBRT and EBRT were $9000 and $1087, respectively. In the base case analysis, SBRT resulted in an ICER of $124,552 per QALY gained. In 1-way sensitivity analyses, results were most sensitive to variation of the utility of unrelieved pain; the utility of relieved pain after initial treatment and median survival were also sensitive to variation. If median survival is ≥11 months, SBRT cost <$100,000 per QALY gained. Conclusion: SBRT for palliation of vertebral bone metastases is not cost-effective compared with EBRT at a $100,000 per QALY gained WTP threshold. However, if median survival is ≥11 months, SBRT costs ≤$100,000 per QALY gained, suggesting that selective SBRT use in patients with longer expected survival may be the most cost-effective approach.« less
External beam pixe programs at the University of California, Davis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, R.A.
A PIXE system in which large or delicate samples are excited by a low-current external proton beam is described. This system has been used to analyze historical printed books and manuscripts, as well as a large variety of archeological artifacts. The steps used to protect the sample from unnecessary beam current are examined. A recent thorough study of the first volume of the Gutenberg 42-line Bible is described in some detail.
Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod
2015-12-01
Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high-dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 28 fractions to the pelvis, incorporating the involved internal iliac node and the prostate. A boost of 24 Gy in 12 fractions was delivered to the prostate only, using VMAT. Treatment-related toxicities and follow-up prostate-specific antigen and carcinoembryonic antigen were collected for data analysis. At 12 months, the patient achieved complete response for both rectal and prostate cancers without significant treatment-related toxicities.
Carvalho, Heloisa de Andrade; Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb
2016-08-01
To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation.
Palliative radiation therapy practice for advanced esophageal carcinoma in Africa.
Sharma, V; Gaye, P M; Wahab, S A; Ndlovu, N; Ngoma, T; Vanderpuye, V; Sowuhami, A; Dawotola, D A; Kigula-Mugambe, J; Jeremic, B
2010-04-01
While numerous surveys of pattern of practices of palliative radiotherapy (RT) in advanced esophageal cancers have been published in developed countries, there is no such survey in African countries. During and after a regional training course by the International Atomic Energy Agency (IAEA) in palliative cancer care, a questionnaire was distributed to African RT centers to gather information about infrastructure and human resources available, and the pattern of practice of palliative RT for esophageal cancers. Twenty-four of the 35 centers (60%) completed the questionnaire. Twenty out of 23 (87%) centers treat patients with esophageal cancer presenting with dysphagia using external beam RT (16 centers external beam RT alone and 4 centers also use brachytherapy as a boost). Twelve (60%) centers prescribe RT doses of 30 Gy in 10 fractions and 2 centers 20 Gy in 5 fractions. Eighteen centers (78%) have low dose rate (LDR) brachytherapy, and 9 (39%) centers have high dose rate (HDR) brachytherapy. One center only used HDR brachytherapy alone to a dose of 16 Gy in 2 fractions over 8 days. RT remains a major component of treatment of patients with esophageal cancers in African countries. Still, there is a great variety among centers in both indications for RT and its characteristics for a treatment indication.
Chang, Lynn
2014-01-01
Purpose To report outcomes on 5 patients treated with salvage partial low-dose-rate (LDR) 125-iodine (125I) permanent prostate seed brachytherapy (BT) for biopsy-proven locally persistent prostate cancer, following failure of dose-escalated external beam radiotherapy (EBRT). Material and methods A retrospective review of the Fox Chase Cancer Center prostate cancer database identified five patients treated with salvage partial LDR 125I seed implant for locally persistent disease following dose-escalated EBRT to 76-84 Gy in 2 Gy per fraction equivalent. All patients had post-EBRT biopsies confirming unilateral locally persistent prostate cancer. Pre-treatment, EBRT and BT details, as well as post-treatment characteristics were documented and assessed. Results The median follow-up post-implant was 41 months. All five patients exhibited low acute genitourinary and gastrointestinal toxicities. Increased erectile dysfunction was noted in three patients. There were no biochemical failures following salvage LDR 125I seed BT to date, with a median post-salvage PSA of 0.4 ng/mL. Conclusions In carefully selected patients with local persistence of disease, partial LDR 125I permanent prostate seed implant appears to be a feasible option for salvage local therapy with an acceptable toxicity profile. Further study is needed to determine long-term results of this approach. PMID:25337135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueegsegger, Michael B.; Bach Cuadra, Meritxell; Pica, Alessia
Purpose: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. Methods and Materials: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3Dmore » statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. Results: Cross-validation revealed a dice similarity of 95% {+-} 2% for the sclera and cornea and 91% {+-} 2% for the lens. Overall, mean segmentation error was found to be 0.3 {+-} 0.1 mm. Average segmentation time was 14 {+-} 2 s on a standard personal computer. Conclusions: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.« less
Truong, Pauline T; Gaul, Catherine A; McDonald, Rachel E; Petersen, Ross B; Jones, Stuart O; Alexander, Abraham S; Lim, Jan T W; Ludgate, Charles
2011-08-01
To evaluate tolerability and compliance to a walking exercise program and its effect on fatigue during and after radical external beam radiation therapy (EBRT) for prostate cancer. A total of 50 subjects with prostate cancer undergoing EBRT over 6 to 8 weeks were prospectively accrued to an exercise intervention group, matched for age and clinical characteristics to 30 subjects in a historical control group who underwent EBRT with no specific exercise intervention. Starting 1 week before EBRT, exercise participants performed moderate-intensity walking targeting 60% to 70% age-predicted maximum heart rate, at least 20 min/d, 3 d/wk over 12 weeks. The Brief Fatigue Inventory was administered at baseline, mid-EBRT (week 3-4), end-EBRT (week 6-8), and 6 months post-EBRT. Of 50, 42 (84%) of exercise participants completed the walking program. There were no cardiovascular complications, musculoskeletal injuries, or other adverse events. A total of 89% subjects reported "Good-Excellent" satisfaction during and up to 6 months post-EBRT. Fatigue in control subjects escalated from baseline to end-EBRT, remaining high at 6 months post-EBRT (P[r] = 0.03). In contrast, mean total fatigue scores in exercise subjects were stable from baseline up to 6 months post-EBRT (P = 0.52). Trends for higher fatigue interference with quality of life were observed in the control group as compared with the exercise group. Moderate-intensity walking exercise during radical EBRT is safe and feasible. The high convenience and satisfaction ratings, in conjunction with the observed fatigue trends, indicate that this activity has the potential to attenuate fatigue and improve quality of life for patients with localized prostate cancer undergoing curative therapy.
Husain, Zain; Benevenia, Joseph; Uglialoro, Anthony D; Beebe, Kathleen S; Patterson, Francis R; Hameed, Meera R; Cathcart, Charles S
2011-05-01
Surgical resection has had control rates of 53% to 77% in the treatment of extra-abdominal desmoid tumors. Surgical excision combined with external beam radiation therapy (EBRT) has had local control rates of up to 83% in some series. The purpose of this study was to evaluate the effectiveness of resection combined with radiotherapy (brachytherapy, EBRT, or both) in the treatment of extra-abdominal desmoid tumors. We retrospectively reviewed the charts of 24 consecutive patients (27 histologically confirmed extra-abdominal desmoid tumors). Patients were included in the study if they had a lesion that was potentially resectable with a wide margin, allowing for limb salvage, and if they did not have a contraindication to radiotherapy. Limb functioning was assessed with the Musculoskeletal Tumor Society (MSTS) scoring system. Seventeen patients (7 men, 10 women) with 19 tumors met the inclusion criteria. Mean age at diagnosis was 23.4 years. Follow-up (mean, 4.28 years) involved serial clinical examinations and magnetic resonance imaging of tumor sites. After surgery, the tumors were treated with brachytherapy (n = 6), EBRT (n = 10), or both (n = 3). Two of the 17 tumors in patients with negative margins of resection recurred locally (local control rate, 88.2%). Mean MSTS score was 29/30 (96.7%). The role of surgery, radiotherapy, chemotherapy, hormone therapy, and other treatments for extra-abdominal desmoid tumors is not well defined. When wide-margin resection and radiotherapy can be performed with limb preservation surgery, local control and complication rates compare favorably with those of other reported methods of treatment. Given the results and limitations of our study, we cannot make a definitive recommendation as to which modality--brachytherapy or EBRT--should be used in the treatment of extra-abdominal desmoid tumors.
Salem, A; Salem, A F; Al-Ibraheem, A; Lataifeh, I; Almousa, A; Jaradat, I
2011-01-01
In recent years, the role of positron emission tomography (PET) in the staging and management of gynecological cancers has been increasing. The aim of this study was to systematically review the role of PET in radiotherapy planning and brachytherapy treatment optimization in patients with cervical cancer. Systematic literature review. Systematic review of relevant literature addressing the utilization of PET and/or PET-computed tomography (CT) in external-beam radiotherapy planning and brachytherapy treatment optimization. We performed an extensive PubMed database search on 20 April 2011. Nineteen studies, including 759 patients, formed the basis of this systematic review. PET/ PET-CT is the most sensitive imaging modality for detecting nodal metastases in patients with cervical cancer and has been shown to impact external-beam radiotherapy planning by modifying the treatment field and customizing the radiation dose. This particularly applies to detection of previously uncovered para-aortic and inguinal nodal metastases. Furthermore, PET/ PET-CT guided intensity-modulated radiation therapy (IMRT) allows delivery of higher doses of radiation to the primary tumor, if brachytherapy is unsuitable, and to grossly involved nodal disease while minimizing treatment-related toxicity. PET/ PET-CT based brachytherapy optimization allows improved tumor-volume dose distribution and detailed 3D dosimetric evaluation of risk organs. Sequential PET/ PET-CT imaging performed during the course of brachytherapy form the basis of âadaptiveâ brachytherapy in cervical cancer. This review demonstrates the effectiveness of pretreatment PET/ PET-CT in cervical cancer patients treated by radiotherapy. Further prospective studies are required to define the group of patients who would benefit the most from this procedure.
Planas, J; Celma, A; Placer, J; Maldonado, X; Trilla, E; Salvador, C; Lorente, D; Regis, L; Cuadras, M; Carles, J; Morote, J
2016-11-01
To determine the influence of radical prostatectomy (RP) and external beam radiation therapy (EBRT) on the hypothalamic pituitary axis of 120 men with clinically localized prostate cancer treated with RP or EBRT exclusively. 120 patients with localized prostate cancer were enrolled. Ninety two patients underwent RP and 28 patients EBRT exclusively. We measured serum levels of luteinizing hormone, follicle stimulating hormone (FSH), total testosterone (T), free testosterone, and estradiol at baseline and at 3 and 12 months after treatment completion. Patients undergoing RP were younger and presented a higher prostate volume (64.3 vs. 71.1 years, p<0.0001 and 55.1 vs. 36.5 g, p<0.0001; respectively). No differences regarding serum hormonal levels were found at baseline. Luteinizing hormone and FSH levels were significantly higher in those patients treated with EBRT at three months (luteinizing hormone 8,54 vs. 4,76 U/l, FSH 22,96 vs. 8,18 U/l, p<0,0001) while T and free testosterone levels were significantly lower (T 360,3 vs. 414,83ng/dl, p 0,039; free testosterone 5,94 vs. 7,5pg/ml, p 0,018). At 12 months FSH levels remained significantly higher in patients treated with EBRT compared to patients treated with RP (21,01 vs. 8,51 U/l, p<0,001) while T levels remained significantly lower (339,89 vs. 402,39ng/dl, p 0,03). Prostate cancer treatment influences the hypothalamic pituitary axis. This influence seems to be more important when patients with prostate cancer are treated with EBRT rather than RP. More studies are needed to elucidate the role that prostate may play as an endocrine organ. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Kazuhiko, E-mail: kogawa@med.u-ryukyu.ac.jp; Nakamura, Katsumasa; Sasaki, Tomonari
2011-12-01
Purpose: To delineate changing trends in radical external beam radiotherapy (EBRT) for prostate cancer in Japan. Methods and Materials: Data from 841 patients with clinically localized prostate cancer treated with EBRT in the Japanese Patterns of Care Study (PCS) from 1996 to 2005 were analyzed. Results: Significant increases in the proportions of patients with stage T1 to T2 disease and decrease in prostate-specific antigen values were observed. Also, there were significant increases in the percentages of patients treated with radiotherapy by their own choice. Median radiation doses were 65.0 Gy and 68.4 Gy from 1996 to 1998 and from 1999more » to 2001, respectively, increasing to 70 Gy from 2003 to 2005. Moreover, conformal therapy was more frequently used from 2003 to 2005 (84.9%) than from 1996 to 1998 (49.1%) and from 1999 to 2001 (50.2%). On the other hand, the percentage of patients receiving hormone therapy from 2003 to 2005 (81.1%) was almost the same as that from 1996 to 1998 (86.3%) and from 1999 to 2001 (89.7%). Compared with the PCS in the United States, patient characteristics and patterns of treatments from 2003 to 2005 have become more similar to those in the United States than those from 1996 to 1998 and those from 1999 to 2001. Conclusions: This study indicates a trend toward increasing numbers of patients with early-stage disease and increasing proportions of patients treated with higher radiation doses with advanced equipment among Japanese prostate cancer patients treated with EBRT during 1996 to 2005 survey periods. Patterns of care for prostate cancer in Japan are becoming more similar to those in the United States.« less
Analysis of errors detected in external beam audit dosimetry program at Mexican radiotherapy centers
NASA Astrophysics Data System (ADS)
Álvarez-Romero, José T.; Tovar-Muñoz, Víctor M.
2012-10-01
Presented and analyzed are the causes of deviation observed in the pilot postal dosimetry audit program to verify the absorbed dose to water Dw in external beams of teletherapy 60Co and/or linear accelerators in Mexican radiotherapy centers, during the years 2007-2011.
Accelerated partial breast irradiation: Past, present, and future
Tann, Anne W; Hatch, Sandra S; Joyner, Melissa M; Wiederhold, Lee R; Swanson, Todd A
2016-01-01
Accelerated partial breast irradiation (APBI) focuses higher doses of radiation during a shorter interval to the lumpectomy cavity, in the setting of breast conserving therapy for early stage breast cancer. The utilization of APBI has increased in the past decade because of the shorter treatment schedule and a growing body of outcome data showing positive cosmetic outcomes and high local control rates in selected patients undergoing breast conserving therapy. Technological advances in various APBI modalities, including intracavitary and interstitial brachytherapy, intraoperative radiation therapy, and external beam radiation therapy, have made APBI more accessible in the community. Results of early APBI trials served as the basis for the current consensus guidelines, and multiple prospective randomized clinical trials are currently ongoing. The pending long term results of these trials will help us identify optimal candidates that can benefit from ABPI. Here we provide an overview of the clinical and cosmetic outcomes of various APBI techniques and review the current guidelines for selecting suitable breast cancer patients. We also discuss the impact of APBI on the economics of cancer care and patient reported quality of life. PMID:27777879
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, W; Hrycushko, B; Yan, Y
Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internalmore » markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Linda C., E-mail: Linda.watson@albertahealthservices.ca; Gies, Donna; Thompson, Emmanuel
Purpose: Standard skin care instructions regarding the use of antiperspirants during radiotherapy to the breast varies across North America. Women have articulated that when instructed to not use antiperspirant, the potential for body odor is distressing. Historical practices and individual opinions have often guided practice in this field. The present study had 2 purposes. To evaluate whether the use of aluminum-based antiperspirant while receiving external beam radiotherapy for stage 0, I, or II breast cancer will increase axilla skin toxicity and to evaluate whether the use of antiperspirant during external beam radiotherapy improves quality of life. Methods: A total ofmore » 198 participants were randomized to either the experimental group (antiperspirant) or control group (standard care-wash only). The skin reactions in both groups were measured weekly and 2 weeks after treatment using the National Cancer Institute Common Toxicity Criteria Adverse Events, version 3, toxicity grading criteria. Both groups completed the Functional Assessment for Chronic Illness Therapy's questionnaire for the breast population quality of life assessment tool, with additional questions evaluating the effect of underarm antiperspirant use on quality of life before treatment, immediately after treatment, and 2 weeks after treatment during the study. Results: The skin reaction data were analyzed using the generalized estimating equation. No statistically significant difference was seen in the skin reaction between the 2 groups over time. The quality of life data also revealed no statistically significant difference between the 2 groups over time. Conclusions: Data analysis indicates that using antiperspirant routinely during external beam radiotherapy for Stage 0, I, or II breast cancer does not affect the intensity of the skin reaction or the self-reported quality of life. This evidence supports that in this particular population, there is no purpose to restrict these women from using antiperspirants during their treatment, and the decision to use an antiperspirant or not in this setting should be left to the discretion of the patient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riaz, Nadeem; Afaq, Asim; Akin, Oguz
Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes.more » The median follow-up was 49 months (range, 1-13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.« less
NASA Astrophysics Data System (ADS)
Helmbrecht, S.; Baumann, M.; Enghardt, W.; Fiedler, F.; Krause, M.; Lühr, A.
2016-11-01
Purpose: particle therapy has the potential to improve radiooncology. With more and more facilities coming into operation, also the interest for research at proton beams increases. Though many centers provide beam at an experimental room, some of them do not feature a device for radiation field shaping, a so called nozzle. Therefore, a robust and cost-effective double-scattering system for horizontal proton beamlines has been designed and implemented. Materials and methods: the nozzle is based on the double scattering technique. Two lead scatterers, an aluminum ridge-filter and two brass collimators were optimized in a simulation study to form a laterally homogeneous 10 cm × 10 cm field with a spread-out Bragg-peak (SOBP). The parts were mainly manufactured using 3D printing techniques and the system was set up at OncoRay's experimental beamline. Measurement of the radiation field were carried out using a water phantom. Results: high levels of dose homogeneity were found in lateral (dose variation ΔD/D < ±2%) as well as in beam direction (ΔD/D < ± 3% in the SOBP). The system has already been used for radiobiology and physical experiments. Conclusion: the presented setup allows for creating clinically realistic extended radiation fields at fixed horizontal proton beamlines and is ready to use for internal and external users. The excellent performance combined with the simplistic design let it appear as a valuable option for proton therapy centers intending to foster their experimental portfolio.
Rhabdomyosarcoma of the trachea: first reported case treated with proton beam therapy.
Exley, R; Bernstein, J M; Brennan, B; Rothera, M P
2012-09-01
We report a case of rhabdomyosarcoma of the trachea in a 14-month-old child, and we present the first reported use of proton beam therapy for this tumour. A 14-month-old girl presented acutely with a seven-day history of biphasic stridor. Emergency endoscopic debulking of a posterior tracheal mass was undertaken. Histological examination revealed an embryonal rhabdomyosarcoma with anaplasia. Multimodality therapy with surgery and chemotherapy was administered in the UK, and proton beam therapy in the USA. Only three cases of rhabdomyosarcoma of the trachea have previously been reported in the world literature. This is the first reported case of treatment of this tumour with proton beam therapy. Compared with conventional radiotherapy, proton beam therapy may confer improved long-term outcome in children, with benefits including reduced irradiation of the spinal cord.
The Electrical Structure of Discharges Modified by Electron Beams
NASA Astrophysics Data System (ADS)
Haas, F. A.; Braithwaite, N. St. J.
1997-10-01
Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.
Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.
Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W
2014-02-01
The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.
Kishan, Amar U; Cook, Ryan R; Ciezki, Jay P; Ross, Ashley E; Pomerantz, Mark M; Nguyen, Paul L; Shaikh, Talha; Tran, Phuoc T; Sandler, Kiri A; Stock, Richard G; Merrick, Gregory S; Demanes, D Jeffrey; Spratt, Daniel E; Abu-Isa, Eyad I; Wedde, Trude B; Lilleby, Wolfgang; Krauss, Daniel J; Shaw, Grace K; Alam, Ridwan; Reddy, Chandana A; Stephenson, Andrew J; Klein, Eric A; Song, Daniel Y; Tosoian, Jeffrey J; Hegde, John V; Yoo, Sun Mi; Fiano, Ryan; D'Amico, Anthony V; Nickols, Nicholas G; Aronson, William J; Sadeghi, Ahmad; Greco, Stephen; Deville, Curtiland; McNutt, Todd; DeWeese, Theodore L; Reiter, Robert E; Said, Johnathan W; Steinberg, Michael L; Horwitz, Eric M; Kupelian, Patrick A; King, Christopher R
2018-03-06
The optimal treatment for Gleason score 9-10 prostate cancer is unknown. To compare clinical outcomes of patients with Gleason score 9-10 prostate cancer after definitive treatment. Retrospective cohort study in 12 tertiary centers (11 in the United States, 1 in Norway), with 1809 patients treated between 2000 and 2013. Radical prostatectomy (RP), external beam radiotherapy (EBRT) with androgen deprivation therapy, or EBRT plus brachytherapy boost (EBRT+BT) with androgen deprivation therapy. The primary outcome was prostate cancer-specific mortality; distant metastasis-free survival and overall survival were secondary outcomes. Of 1809 men, 639 underwent RP, 734 EBRT, and 436 EBRT+BT. Median ages were 61, 67.7, and 67.5 years; median follow-up was 4.2, 5.1, and 6.3 years, respectively. By 10 years, 91 RP, 186 EBRT, and 90 EBRT+BT patients had died. Adjusted 5-year prostate cancer-specific mortality rates were RP, 12% (95% CI, 8%-17%); EBRT, 13% (95% CI, 8%-19%); and EBRT+BT, 3% (95% CI, 1%-5%). EBRT+BT was associated with significantly lower prostate cancer-specific mortality than either RP or EBRT (cause-specific HRs of 0.38 [95% CI, 0.21-0.68] and 0.41 [95% CI, 0.24-0.71]). Adjusted 5-year incidence rates of distant metastasis were RP, 24% (95% CI, 19%-30%); EBRT, 24% (95% CI, 20%-28%); and EBRT+BT, 8% (95% CI, 5%-11%). EBRT+BT was associated with a significantly lower rate of distant metastasis (propensity-score-adjusted cause-specific HRs of 0.27 [95% CI, 0.17-0.43] for RP and 0.30 [95% CI, 0.19-0.47] for EBRT). Adjusted 7.5-year all-cause mortality rates were RP, 17% (95% CI, 11%-23%); EBRT, 18% (95% CI, 14%-24%); and EBRT+BT, 10% (95% CI, 7%-13%). Within the first 7.5 years of follow-up, EBRT+BT was associated with significantly lower all-cause mortality (cause-specific HRs of 0.66 [95% CI, 0.46-0.96] for RP and 0.61 [95% CI, 0.45-0.84] for EBRT). After the first 7.5 years, the corresponding HRs were 1.16 (95% CI, 0.70-1.92) and 0.87 (95% CI, 0.57-1.32). No significant differences in prostate cancer-specific mortality, distant metastasis, or all-cause mortality (≤7.5 and >7.5 years) were found between men treated with EBRT or RP (cause-specific HRs of 0.92 [95% CI, 0.67-1.26], 0.90 [95% CI, 0.70-1.14], 1.07 [95% CI, 0.80-1.44], and 1.34 [95% CI, 0.85-2.11]). Among patients with Gleason score 9-10 prostate cancer, treatment with EBRT+BT with androgen deprivation therapy was associated with significantly better prostate cancer-specific mortality and longer time to distant metastasis compared with EBRT with androgen deprivation therapy or with RP.
Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.
Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre
2010-12-01
The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as would be enabled by real-time imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.
The drift chamber array at the external target facility in HIRFL-CSR
NASA Astrophysics Data System (ADS)
Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.
2018-06-01
A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710 Section 892.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, N.M.
An observed clinical side effect of total skin surface electron beam therapy is the patient's inability to perspire. An evaluation of eccrine sweat gland function was performed, utilizing acetylcholine chloride and a silicone impression material. The patient's inability to sweat after therapy, and recovery within a three- to six-month period after therapy was demonstrated. This phenomenon should be appreciated by both the physician and the patient prior to electron beam therapy in order to avoid the potential complications of this condition.
System and method for delivery of neutron beams for medical therapy
Nigg, David W.; Wemple, Charles A.
1999-01-01
A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuanben; Fei, Zhaodong; Chen, Lisha
This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less
A feasibility study of the Tehran research reactor as a neutron source for BNCT.
Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi
2014-08-01
Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Future of medical physics: Real-time MRI-guided proton therapy.
Oborn, Bradley M; Dowdell, Stephen; Metcalfe, Peter E; Crozier, Stuart; Mohan, Radhe; Keall, Paul J
2017-08-01
With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites. © 2017 American Association of Physicists in Medicine.
Comparison of PDR brachytherapy and external beam radiation therapy in the case of breast cancer
NASA Astrophysics Data System (ADS)
Teymournia, L.; Berger, D.; Kauer-Dorner, D.; Poljanc, K.; Seitz, W.; Aiginger, H.; Kirisits, C.
2009-04-01
Pulsed dose rate brachytherapy (PDR) was compared to external beam radiation therapy (EBRT) in the case of breast cancer. The benefits were figured out by evaluation of dosimetric parameters and calculating the normal tissue complication probability (NTCP). PDR plans were set up for five randomly chosen left-sided breast cancer patients delivering a total dose of 50.4 Gy to the target (dose rate 0.8 Gy h-1). For EBRT five left-sided breast cancer patients were planned using 3D-conformal tangential photon beams with a prescribed total dose of 50 Gy (2 Gy/fraction) to the total breast volume. For plan ranking and NTCP calculation the physical dose was first converted into the biologically effective dose (BED) and then into the normalized total dose (NTD) using the linear quadratic model with an α/β ratio of 3 Gy. In PDR the relative effectiveness (RE) was calculated for each dose bin of the differential dose volume histogram to get the BED. NTCPs were calculated for the ipsilateral lung and the heart as contoured on CT slices based on the Lyman model and the Kutcher reduction scheme. Dosimetric parameters as Vth (percentage of the total volume exceeding a threshold dose) and Jackson's fdam (fraction of the organ damaged) were also used to figure out the benefits. The comparison of calculated NTCPs in PDR and EBRT showed no difference between these two modalities. All values were below 0.01%. fdam derived from EBRT was always higher (mean value 8.95% versus 1.21% for the lung). The mean V10 and V20 of the lung related to BED were 6.32% and 1.72% for PDR versus 11.72% and 9.59% for EBRT. When using dosimetric parameters as Vth and fdam, PDR was mostly superior to EBRT in respect of sparing normal tissues. NTCP calculation as a single method of modality ranking showed a lack of information, especially when normal tissue was exposed to low radiation doses.
Matloob, Samir A; Nasir, Haleema A; Choi, David
2016-08-01
Chordomas are rare tumours affecting the skull base. There is currently no clear consensus on the post-surgical radiation treatments that should be used after maximal tumour resection. However, high-dose proton beam therapy is an accepted option for post-operative radiotherapy to maximise local control, and in the UK, National Health Service approval for funding abroad is granted for specific patient criteria. To review the indications and efficacy of proton beam therapy in the management of skull base chordomas. The primary outcome measure for review was the efficacy of proton beam therapy in the prevention of local occurrence. A systematic review of English and non-English articles using MEDLINE (1946-present) and EMBASE (1974-present) databases was performed. Additional studies were reviewed when referenced in other studies and not available on these databases. Search terms included chordoma or chordomas. The PRISMA guidelines were followed for reporting our findings as a systematic review. A total of 76 articles met the inclusion and exclusion criteria for this review. Limitations included the lack of documentation of the extent of primary surgery, tumour size, and lack of standardised outcome measures. Level IIb/III evidence suggests proton beam therapy given post operatively for skull base chordomas results in better survival with less damage to surrounding tissue. Proton beam therapy is a grade B/C recommended treatment modality for post-operative radiation therapy to skull base chordomas. In comparison to other treatment modalities long-term local control and survival is probably improved with proton beam therapy. Further, studies are required to directly compare proton beam therapy to other treatment modalities in selected patients.
NASA Astrophysics Data System (ADS)
Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.
2017-12-01
When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badarin, A. A.; Kurkin, S. A.; Koronovskii, A. A.
The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner onmore » the magnitude of the external magnetic field.« less
Massie, Jonathan P; Bruckman, Karl; Rifkin, William J; Runyan, Christopher M; Shetye, Pradip R; Grayson, Barry; Flores, Roberto L
2018-04-01
To determine the effects of nasoalveolar molding (NAM) on nasal airway architecture. Retrospective case-control study of patients with unilateral cleft lip treated with NAM vs without NAM. Tertiary referral center specializing in cleft and craniofacial care. Patients, Participants, and Interventions: Thirty-six patients with complete unilateral cleft lip and alveolus: 19 with NAM therapy and 17 without NAM therapy. Cone beam computed tomography (CBCT) scans were compared in multiple coronal sections and were evaluated for linear and angular septal deviation, inferior turbinate hypertrophy, and linear and 2-dimensional airway area. There were no significant differences in linear or angular septal deviation, inferior turbinate area, linear stenosis, or airway area between NAM- and non-NAM-treated patients. NAM effectively molds the external nasal cartilage and structures but may have limited effects on internal nasal structures.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Hole-cyclotron instability in semiconductor quantum plasmas
NASA Astrophysics Data System (ADS)
Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.
2018-01-01
The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.
System and method for delivery of neutron beams for medical therapy
Nigg, D.W.; Wemple, C.A.
1999-07-06
A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.
Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy
NASA Astrophysics Data System (ADS)
Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.
2016-11-01
Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.
A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories
NASA Astrophysics Data System (ADS)
Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan
2015-07-01
Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans can help improve dose conformity, homogeneity, and organ sparing simultaneously using the same beam trajectory length and delivery time as a coplanar VMAT plan.
Metasurface external cavity laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S.
2015-11-30
A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.
Multidisciplinary therapy for patients with locally oligo-recurrent pelvic malignancies.
Sole, Claudio V; Calvo, Felipe A; de Sierra, Pedro Alvarez; Herranz, Rafael; Gonzalez-Bayon, Luis; García-Sabrido, Jose Luis
2014-07-01
To analyze prognostic factors and long-term outcomes in patients with locally recurrent pelvic cancer (LRPC) treated with a multidisciplinary approach. From January 1995 to December 2011, 81 patients [rectal (47 %); gynecologic (39 %); retroperitoneal sarcoma (14 %)] underwent extended surgery [multiorgan (58 %), bone (35 %), vascular (9 %), soft tissue (63 %)] and intraoperative electron beam radiation therapy (IOERT) to treat recurrent tumors in the pelvic region. Thirty-five patients (43 %) received external beam radiotherapy (EBRT). Survival was estimated using the Kaplan-Meier method, and risk factors were identified using univariate and multivariate analysis. Median follow-up was 39 months (6-189 months); the 1- 3- and 5-year rates of locoregional control (LRC) were 83, 53, and 41 %, respectively. Univariate Cox proportional hazard analysis revealed worse LRC in patients who did not receive integrated EBRT as rescue treatment of pelvic recurrence (p = 0.003) or underwent non-radical resection (p = 0.01). In the multivariate analysis EBRT, non-radical resection, and tumor fragmentation retained significance (p = 0.002, p = 0.004, and p = 0.05, respectively). Radical resection, absence of tumor fragmentation and addition of EBRT for rescue are associated with improved LRC in patients with LRPC. Our results suggest that this group can benefit from EBRT combined with extended surgical resection and IOERT.
Blanchard, P; Wong, AJ; Gunn, GB; Garden, AS; Mohamed, ASR; Rosenthal, DI; Crutison, J; Wu, R; Zhang, X; Zhu, XR; Mohan, R; Amin, MV; Fuller, CD; Frank, SJ
2017-01-01
Objective To externally validate head and neck cancer (HNC) photon-derived normal tissue complication probability (NTCP) models in patients treated with proton beam therapy (PBT). Methods This prospective cohort consisted of HNC patients treated with PBT at a single institution. NTCP models were selected based on the availability of data for validation and evaluated using the leave-one-out cross-validated area under the curve (AUC) for the receiver operating characteristics curve. Results 192 patients were included. The most prevalent tumor site was oropharynx (n=86, 45%), followed by sinonasal (n=28), nasopharyngeal (n=27) or parotid (n=27) tumors. Apart from the prediction of acute mucositis (reduction of AUC of 0.17), the models overall performed well. The validation (PBT) AUC and the published AUC were respectively 0.90 versus 0.88 for feeding tube 6 months post-PBT; 0.70 versus 0.80 for physician rated dysphagia 6 months post-PBT; 0.70 versus 0.80 for dry mouth 6 months post-PBT; and 0.73 versus 0.85 for hypothyroidism 12 months post-PBT. Conclusion While the drop in NTCP model performance was expected in PBT patients, the models showed robustness and remained valid. Further work is warranted, but these results support the validity of the model-based approach for treatment selection for HNC patients. PMID:27641784
Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV kV imaging
NASA Astrophysics Data System (ADS)
Liu, W.; Wiersma, R. D.; Mao, W.; Luxton, G.; Xing, L.
2008-12-01
To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from ~0.5 mm for the normal adult breathing pattern to ~1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real-time tracking of implanted markers using hybrid MV-kV imaging is achievable and the technique should be useful to improve the beam targeting accuracy of arc therapy.
Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging.
Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L
2008-12-21
To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from approximately 0.5 mm for the normal adult breathing pattern to approximately 1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real-time tracking of implanted markers using hybrid MV-kV imaging is achievable and the technique should be useful to improve the beam targeting accuracy of arc therapy.
Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams
NASA Astrophysics Data System (ADS)
Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.
2018-03-01
This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.
Generation of a pulsed low-energy electron beam using the channel spark device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.
2015-12-15
For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less
Patel, S.; Kostaras, X.; Parliament, M.; Olivotto, I.A.; Nordal, R.; Aronyk, K.; Hagen, N.
2014-01-01
Background Compared with photon therapy, proton-beam therapy (pbt) offers compelling advantages in physical dose distribution. Worldwide, gantry-based proton facilities are increasing in number, but no such facilities exist in Canada. To access pbt, Canadian patients must travel abroad for treatment at high cost. In the face of limited access, this report seeks to provide recommendations for the selection of patients most likely to benefit from pbt and suggests an out-of-country referral process. Methods The medline, embase, PubMed, and Cochrane databases were systematically searched for studies published between January 1990 and May 2014 that evaluated clinical outcomes after pbt. A draft report developed through a review of evidence was externally reviewed and then approved by the Alberta Health Services Cancer Care Proton Therapy Guidelines steering committee. Results Proton therapy is often used to treat tumours close to radiosensitive tissues and to treat children at risk of developing significant late effects of radiation therapy (rt). In uncontrolled and retrospective studies, local control rates with pbt appear similar to, or in some cases higher than, photon rt. Randomized trials comparing equivalent doses of pbt and photon rt are not available. Summary Referral for pbt is recommended for patients who are being treated with curative intent and with an expectation for long-term survival, and who are able and willing to travel abroad to a proton facility. Commonly accepted indications for referral include chordoma and chondrosarcoma, intraocular melanoma, and solid tumours in children and adolescents who have the greatest risk for long-term sequelae. Current data do not provide sufficient evidence to recommend routine referral of patients with most head-and-neck, breast, lung, gastrointestinal tract, and pelvic cancers, including prostate cancer. It is recommended that all referrals be considered by a multidisciplinary team to select appropriate cases. PMID:25302033
SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanikolaou, P; Watts, L; Kirby, N
2016-06-15
Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylicmore » phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.« less
Sentinel Lymph Node Biopsy: Quantification of Lymphedema Risk Reduction
2006-10-01
dimensional internal mammary lymphoscintigraphy: implications for radiation therapy treatment planning for breast carcinoma. Int J Radiat Oncol Biol Phys...techniques based on conventional photon beams, intensity modulated photon beams and proton beams for therapy of intact breast. Radiother Oncol. Feb...Harris JR. Three-dimensional internal mammary lymphoscintigraphy: implications for radiation therapy treatment planning for breast carcinoma. Int J
Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul
2017-01-01
Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approachmore » in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29{pi}-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72{pi} and 2.01{pi}-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34{pi} and 0.35{pi}-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.« less
Multi-frequency klystron designed for high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Aaron
A multi-frequency klystron has an electron gun which generates a beam, a circuit of bunch-align-collect (BAC) tuned cavities that bunch the beam and amplify an RF signal, a collector where the beam is collected and dumped, and a standard output cavity and waveguide coupled to a window to output RF power at a fundamental mode to an external load. In addition, the klystron has additional bunch-align-collect (BAC) cavities tuned to a higher harmonic frequency, and a harmonic output cavity and waveguide coupled via a window to an additional external load.
Tian, Guangwei; Li, Nan; Li, Guang
2013-05-01
The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT), the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001) and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001); The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT), V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001); The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Comparing to photon beam radiotherapy (3D-CRT and IMRT), proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.
Clinical results of proton beam therapy for twenty older patients with esophageal cancer
Ono, Takashi; Nakamura, Tatsuya; Azami, Yusuke; Yamaguchi, Hisashi; Hayashi, Yuichiro; Suzuki, Motohisa; Hatayama, Yoshiomi; Tsukiyama, Iwao; Hareyama, Masato; Kikuchi, Yasuhiro; Nemoto, Kenji
2015-01-01
Background In an aging society, increasing number of older patients are diagnosed with esophageal cancer. The purpose of this study was to assess the clinical efficacy and safety of proton beam therapy for older patients with esophageal cancer. Patients and methods. Older patients (age: ≥ 65 years) newly diagnosed with esophageal cancer between January 2009 and June 2013 were enrolled in this study. All patients underwent either proton beam therapy alone or proton beam therapy with initial X-ray irradiation. Toxicities were evaluated using the Common Terminology Criteria for Adverse Events version 4.0. Results Twenty patients were eligible for this study and all completed the treatment. The median age was 78 years (range: 65–89 years) and the median follow-up time was 26.5 months (range: 6–62 months). Seven patients had lymph node metastases and 10 had stage II/III cancer. The median dose of proton beam therapy was 72.6 Gy relative biological dose effectiveness (RBE) (range: 66–74.8 Gy [RBE]) for proton beam therapy alone and 33 Gy (RBE) (range: 30.8–39.6 Gy [RBE]; total dose range: 66.8–75.6 Gy [RBE]) for proton beam therapy with initial X-ray irradiation. The 2-year overall survival rate was 81.8% (95% confidence interval [CI]: 62.4%–100%), and the 2-year local control rate was 89.4% (95% CI: 75.5%–100%). Grade 2 or 3 toxicities occurred in some cases; however, no grade 4 or 5 toxicity was observed. Conclusions High-dose (66–75.6 Gy [RBE]) proton beam therapy without chemotherapy was an efficacious and safe treatment for older patients with esophageal cancer. PMID:26834524
Thomadsen, Bruce; Nath, Ravinder; Bateman, Fred B; Farr, Jonathan; Glisson, Cal; Islam, Mohammad K; LaFrance, Terry; Moore, Mary E; George Xu, X; Yudelev, Mark
2014-11-01
External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose. Some recent advances in radiotherapy technology require treatments using a higher number of monitor units and monitor-unit rates for the same delivered dose, and compared to the conventional treatment techniques and fractionation schemes, the activation dose to personnel can be substantially higher. Radiotherapy treatments with proton and neutron beams all result in activated materials in the treatment room. In this report, the authors review critically the published literature on radiation exposures from induced radioactivity in radiotherapy. They conclude that the additional exposure to the patient due to induced radioactivity is negligible compared to the overall radiation exposure as a part of the treatment. The additional exposure to the staff due to induced activity from photon beams is small at an estimated level of about 1 to 2 mSv y. This is well below the allowed occupational exposure limits. Therefore, the potential hazard to staff from induced radioactivity in the use of high-energy x-rays is considered to be low, and no specific actions are considered necessary or mandatory. However, in the spirit of the "As Low as Reasonably Achievable (ALARA)" program, some reasonable steps are recommended that can be taken to reduce this small exposure to an even lower level. The dose reduction strategies suggested should be followed only if these actions are considered reasonable and practical in the individual clinics. Therapists working with proton beam and neutron beam units handle treatment devices that do become radioactive, and they should wear extremity monitors and make handling apertures and boluses their last task upon entering the room following treatment. Personnel doses from neutron-beam units can approach regulatory limits depending on the number of patients and beams, and strategies to reduce doses should be followed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tward, Jonathan D., E-mail: Jonathan.Tward@hci.utah.edu; Jarosek, Stephanie; Chu, Haitao
Purpose: Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Methods and Materials: Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results–Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, andmore » the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Results: Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Conclusions: Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus EBRT) increases the risk of severe UAEs compared with HDR alone or LDR alone. The highest increased risk of urinary toxicity occurs within the 2 years after therapy and then declines to an approximately 1% increase in incidence per year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciezki, Jay P., E-mail: ciezkij@ccf.org; Weller, Michael; Reddy, Chandana A.
Purpose: We compare the efficacy and toxicity among the 3 major modalities available used to treat high-risk prostate cancer (HRCaP). Methods and Materials: From 1996 to 2012, 2557 HRCaP patients were treated: 734 received external beam radiation therapy (EBRT) with or without androgen deprivation therapy (ADT), 515 received low-dose-rate prostate brachytherapy (LDR) with or without ADT, and 1308 received radical prostatectomy (RP) with or without EBRT. Biochemical relapse-free survival (bRFS), clinical relapse-free survival (cRFS), and prostate cancer–specific mortality (PCSM) were assessed. Toxicity was assessed using the Common Terminology Criteria for Adverse Events, version 4.03. The log-rank test compared bRFS andmore » cRFS among the modalities, and Cox regression identified factors associated with bRFS and cRFS. Gray's test compared differences in late toxicity and PSCM among the modalities. Competing risk regression identified factors associated with PCSM. Results: The median follow-up time and age were 63.5 months and 65 years, respectively. The bRFS at 5 and 10 years, respectively, was 74% and 53% for EBRT, 74% and 52% for LDR, and 65% and 47% for RP (P=.0001). The cRFS at 5 and 10 years, respectively, was 85% and 73% for EBRT, 90% and 76% for LDR, and 89% and 75% for RP (P=.121). The PCSM at 5 and 10 years, respectively, was 5.3% and 11.2% for EBRT, 3.2% and 3.6% for LDR, and 2.8% and 6.8% for RP (P=.0004). The 10-year cumulative incidence of ≥grade 3 genitourinary toxicity was 8.1% for EBRT, 7.2% for LDR, and 16.4% for RP (P<.0001). The 10-year cumulative incidence of ≥grade 3 gastrointestinal toxicity was 4.6% for EBRT, 1.1% for LDR, and 1.0% for RP (P<.0001). Conclusion: HRCaP treated with EBRT, LDR, or RP yields efficacy showing better bRFS for LDR and EBRT relative to RP, equivalence for cRFS, and a PCSM advantage of LDR and RP over EBRT. The toxicity is lowest for LDR.« less
Ciezki, Jay P; Weller, Michael; Reddy, Chandana A; Kittel, Jeffrey; Singh, Harguneet; Tendulkar, Rahul; Stephans, Kevin L; Ulchaker, James; Angermeier, Kenneth; Stephenson, Andrew; Campbell, Steven; Haber, Georges-Pascal; Klein, Eric A
2017-04-01
We compare the efficacy and toxicity among the 3 major modalities available used to treat high-risk prostate cancer (HRCaP). From 1996 to 2012, 2557 HRCaP patients were treated: 734 received external beam radiation therapy (EBRT) with or without androgen deprivation therapy (ADT), 515 received low-dose-rate prostate brachytherapy (LDR) with or without ADT, and 1308 received radical prostatectomy (RP) with or without EBRT. Biochemical relapse-free survival (bRFS), clinical relapse-free survival (cRFS), and prostate cancer-specific mortality (PCSM) were assessed. Toxicity was assessed using the Common Terminology Criteria for Adverse Events, version 4.03. The log-rank test compared bRFS and cRFS among the modalities, and Cox regression identified factors associated with bRFS and cRFS. Gray's test compared differences in late toxicity and PSCM among the modalities. Competing risk regression identified factors associated with PCSM. The median follow-up time and age were 63.5 months and 65 years, respectively. The bRFS at 5 and 10 years, respectively, was 74% and 53% for EBRT, 74% and 52% for LDR, and 65% and 47% for RP (P=.0001). The cRFS at 5 and 10 years, respectively, was 85% and 73% for EBRT, 90% and 76% for LDR, and 89% and 75% for RP (P=.121). The PCSM at 5 and 10 years, respectively, was 5.3% and 11.2% for EBRT, 3.2% and 3.6% for LDR, and 2.8% and 6.8% for RP (P=.0004). The 10-year cumulative incidence of ≥grade 3 genitourinary toxicity was 8.1% for EBRT, 7.2% for LDR, and 16.4% for RP (P<.0001). The 10-year cumulative incidence of ≥grade 3 gastrointestinal toxicity was 4.6% for EBRT, 1.1% for LDR, and 1.0% for RP (P<.0001). HRCaP treated with EBRT, LDR, or RP yields efficacy showing better bRFS for LDR and EBRT relative to RP, equivalence for cRFS, and a PCSM advantage of LDR and RP over EBRT. The toxicity is lowest for LDR. Copyright © 2016 Elsevier Inc. All rights reserved.
Tward, Jonathan D; Jarosek, Stephanie; Chu, Haitao; Thorpe, Cameron; Shrieve, Dennis C; Elliott, Sean
2016-08-01
Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results-Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, and the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus EBRT) increases the risk of severe UAEs compared with HDR alone or LDR alone. The highest increased risk of urinary toxicity occurs within the 2 years after therapy and then declines to an approximately 1% increase in incidence per year. Copyright © 2016. Published by Elsevier Inc.
Kamran, Sophia C; Harshman, Lauren C; Bhagwat, Mandar S; Muralidhar, Vinayak; Nguyen, Paul L; Martin, Neil E; La Follette, Stephanie; Faso, Sarah; Viswanathan, Akila N; Efstathiou, Jason A; Beard, Clair J
2017-01-01
The use of large-field external beam reirradiation (re-RT) after pelvic radiation therapy (RT) for genitourinary (GU) cancers has not been reported. We report the results of such treatment in patients with either symptomatic GU second malignant neoplasms or locally recurrent pelvic tumors after initial RT for whom surgery or further systemic therapy was not an option. The records of 28 consecutive patients with advanced, bulky GU malignancies treated with high-dose, large-field re-RT with palliative intent between 2008 and 2014 were retrospectively reviewed. Descriptive outcome analyses focused on toxicities and symptom control, and responses were evaluated by 2 independent observers. Twenty-seven male patients (96%) were included. Median initial external beam RT dose was 64 Gy (range, 30-75.6 Gy). The median time between initial RT and re-RT was 9.5 years (range, 0.2-32 years). At the time of re-RT, there were 16 local recurrences and 12 second malignant neoplasms together comprising 16 bladder, 10 prostate, 1 ureteral, and 1 penile cancer. Indications for re-RT were pain and bleeding/hemorrhage. The median equivalent sphere diameter planning target volume for re-RT was 8.6 cm (range, 4.7-16.3 cm). Given the severity of the symptoms and the bulk of the disease at the time of re-RT, a higher dose of RT was administered. The median re-RT dose was 50 Gy (range, 27.5-66 Gy). For patients who received <60 Gy, hypofractionation of 250 cGy was used. The median cumulative dose was 113.9 Gy (range, 81.5-132.8 Gy). Re-RT was well tolerated with no Radiation Therapy Oncology Group grade 3-4 toxicities. Twenty-four patients (92%) had complete resolution of symptoms, and relief was durable in 67% of patients. The median overall survival was 5.8 months (range, 0.3-38.9 months). Of those patients who are still alive, 100% remain free of initial symptoms. This small series suggests that aggressive re-RT of inoperable and symptomatic GU malignancies that is undertaken with meticulous treatment planning is well tolerated and provides excellent, durable relief without undue short-term toxicity. Validation in a larger prospective cohort is required.
A Prospective Outcomes Study of Proton Therapy for Chordomas and Chondrosarcomas of the Spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org; Rotondo, Ronny L.; Begosh-Mayne, Dustin
Purpose: To evaluate the effectiveness of definitive or adjuvant external beam proton therapy on survival in patients with chordomas and chondrosarcomas of the spine. Methods and Materials: Between March 2007 and May 2013, 51 patients with a median age of 58 years (range, 22-83 years) with chordoma (n=34) or chondrosarcomas (n=17) of the sacrum (n=21), the cervical spine (n=20), and the thoracolumbar spine (n=10) were treated with external beam proton therapy to a median dose of 70.2 Gy(RBE) [range, 64.2-75.6 Gy(RBE)] at our institution. Distant metastases, overall survival, cause-specific survival, local control, and disease-free survival were calculated. Results: The mean follow-up time was 3.7 yearsmore » (range, 0.3-7.7 years). Across all time points, 25 patients experienced disease recurrence: 18 local recurrences, 6 local and distant recurrences, and 1 distant metastasis. The 4-year rates of overall survival and cause-specific survival were 72%; disease-free survival was 57%, local control was 58%, and freedom from distant metastases was 86%. The median time to local progression was 1.7 years (range, 0.2-6.0 years), and the median time to distant progression was 1.6 years (range, 0.2-6.0 years). The risk factors for local recurrence were age ≤58 years (62% vs 26%; P=.04) and recurrence after prior surgery (29% vs 81%; P=.01). Secondary cancers developed in 2 patients: B-cell lymphoma 5.5 years after treatment and bladder cancer 2 years after treatment. We observed the following toxicities: sacral soft tissue necrosis requiring surgery (n=2), T1 vertebral fracture requiring fusion surgery (n=1), chronic urinary tract infections (n=1), surgery for necrotic bone cyst (n=1), and grade 2 bilateral radiation nephritis (n=1). Conclusion: High-dose proton therapy controls more than half of spinal chordomas and chondrosarcomas and compares favorably with historic photon data. Local progression is the dominant mode of treatment failure and may be reduced by treating patients at the time of initial diagnosis. The impact of age is a novel finding of this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Shinichiro, E-mail: shinshin@nirs.go.jp; Karube, Masataka; Shirai, Toshiyuki
Purpose: Having implemented amplitude-based respiratory gating for scanned carbon-ion beam therapy, we sought to evaluate its effect on positional accuracy and throughput. Methods and Materials: A total of 10 patients with tumors of the lung and liver participated in the first clinical trials at our center. Treatment planning was conducted with 4-dimensional computed tomography (4DCT) under free-breathing conditions. The planning target volume (PTV) was calculated by adding a 2- to 3-mm setup margin outside the clinical target volume (CTV) within the gating window. The treatment beam was on when the CTV was within the PTV. Tumor position was detected inmore » real time with a markerless tumor tracking system using paired x-ray fluoroscopic imaging units. Results: The patient setup error (mean ± SD) was 1.1 ± 1.2 mm/0.6 ± 0.4°. The mean internal gating accuracy (95% confidence interval [CI]) was 0.5 mm. If external gating had been applied to this treatment, the mean gating accuracy (95% CI) would have been 4.1 mm. The fluoroscopic radiation doses (mean ± SD) were 23.7 ± 21.8 mGy per beam and less than 487.5 mGy total throughout the treatment course. The setup, preparation, and irradiation times (mean ± SD) were 8.9 ± 8.2 min, 9.5 ± 4.6 min, and 4.0 ± 2.4 min, respectively. The treatment room occupation time was 36.7 ± 67.5 min. Conclusions: Internal gating had a much higher accuracy than external gating. By the addition of a setup margin of 2 to 3 mm, internal gating positional error was less than 2.2 mm at 95% CI.« less
Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb
2016-01-01
Purpose To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. Material and methods This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Results Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. Conclusions The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation. PMID:27648083
Johansson, Silvia; Åström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela
2012-01-01
Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity. PMID:22848840
Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J
2013-03-15
Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khor, Richard; Duchesne, Gillian; Monash University, Melbourne
Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRTmore » was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against an increased risk of urethral toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, Janet K., E-mail: janet.horton@duke.edu; Blitzblau, Rachel C.; Yoo, Sua
Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative,more » estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should be tested in future clinical trials because it has the potential to challenge the current treatment paradigm and provide a path forward to identify radiation response biomarkers.« less
Stock, Richard G; Klein, Thomas J; Cesaretti, Jamie A; Stone, Nelson N
2009-07-01
To analyze the prognosis and outcomes of patients who remain free of biochemical failure during the first 5 years after treatment. Between 1991 and 2002, 742 patients with prostate cancer were treated with brachytherapy alone (n = 306), brachytherapy and hormonal therapy (n = 212), or combined implantation and external beam radiotherapy (with or without hormonal therapy; n = 224). These patients were free of biochemical failure (American Society for Therapeutic Radiology and Oncology [ASTRO] definition) during the first 5 post-treatment years and had a documented 5-year prostate-specific antigen (PSA) value. The median follow-up was 6.93 years. The actuarial 10-year freedom from PSA failure rate was 97% using the ASTRO definition and 95% using the Phoenix definition. The median 5-year PSA level was 0.03 ng/mL (range, 0-3.6). The 5-year PSA value was
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez, Núria, E-mail: nrodriguez@parcdesalutmar.cat; Universidad Pompeu Fabra, Barcelona; Sanz, Xavier
2013-12-01
Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy permore » fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with conventional WBI.« less
A journey into medical physics as viewed by a physicist
NASA Astrophysics Data System (ADS)
Gueye, Paul
2007-03-01
The world of physics is usually linked to a large variety of subjects spanning from astrophysics, nuclear/high energy physics, materials and optical sciences, plasma physics etc. Lesser is known about the exciting world of medical physics that includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. These physicists are typically based in hospital departments of radiation oncology or radiology, and provide technical support for patient diagnosis and treatment in a clinical environment. This talk will focus on providing a bridge between selected areas of physics and their medical applications. The journey will first start from our understanding of high energy beam production and transport beamlines for external beam treatment of diseases (e.g., electron, gamma, X-ray and proton machines) as they relate to accelerator physics. We will then embrace the world of nuclear/high energy physics where detectors development provide a unique tool for understanding low energy beam distribution emitted from radioactive sources used in Brachytherapy treatment modality. Because the ultimate goal of radiation based therapy is its killing power on tumor cells, the next topic will be microdosimetry where responses of biological systems can be studied via electromagnetic systems. Finally, the impact on the imaging world will be embraced using tools heavily used in plasma physics, fluid mechanics and Monte Carlo simulations. These various scientific areas provide unique opportunities for faculty and students at universities, as well as for staff from research centers and laboratories to contribute in this field. We will conclude with the educational training related to medical physics programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, M; Ahmad, S; Jin, H
Purpose: The out-of-beam dose is important for understanding the peripheral dose in radiation therapy. In proton radiotherapy, the study of out-of-beam dose is scarce and the treatment planning system (TPS) based on pencil beam algorithm cannot accurately predict the out-of-beam dose. This study investigates the out-of-beam dose for the single-room Mevion S250 double scattering proton therapy system using experimentally measured and treatment planning software generated data. The results are compared with those reported for conventional photon beam therapy. However, this study does not incorporate the neutron contribution in the scattered dose. Methods: A total of seven proton treatment plans weremore » generated using Varian Eclipse TPS for three different sites (brain, lung, and pelvis) in an anthropomorphic phantom. Three field sizes of 5×5, 10×10, and 20×20 cm{sup 2} (lung only) with typical clinical range (13.3–22.8 g/cm{sup 2}) and modulation widths (5.3–14.0 g/cm{sup 2}) were used. A single beam was employed in each treatment plan to deliver a dose of 181.8 cGy (200.0 cGy (RBE)) to the selected target. The out-of-beam dose was measured at 2.0, 5.0, 10.0, and 15.0 cm from the beam edge in the phantom using a thimble chamber (PTW TN31010). Results: The out-of-beam dose generally increased with field size, range, and volume irradiated. For all the plans, the scattered dose sharply fell off with distance. At 2.0 cm, the out-of-beam dose ranged from 0.35% to 2.16% of the delivered dose; however, the dose was clinically negligible (<0.3%) at a distance of 5.0 cm and greater. In photon therapy, the slightly greater out-of-beam dose was reported (TG36; 4%, 2%, and 1% for 2.0, 5.0, and 10.0 cm, respectively, using 6 MV beam). Conclusion: The measured out-of-beam dose in proton therapy excluding neutron contribution was observed higher than the TPS calculated dose and comparable to that of photon beam therapy.« less
Gantry for medical particle therapy facility
Trbojevic, Dejan
2013-04-23
A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of superconducting, variable field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of variable field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing variable field magnets.
Gantry for medical particle therapy facility
Trbojevic, Dejan [Wading River, NY
2012-05-08
A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of fixed field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of fixed field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing fixed field magnets.
Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy
NASA Astrophysics Data System (ADS)
Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Usui, Y.; Terachi, T.; Uchida, T.
2010-03-01
To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate® 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.
Weinstein, Jeff I; Payne, Sarah; Poulson, Jean M; Azuma, Chieko
2009-01-01
A standard of therapy for osteosarcoma includes amputation with or without adjuvant chemotherapy. There is a subset of dogs with osteosarcoma that are unsuitable for amputation. We evaluated kinetic variables in dogs with appendicular osteosarcoma treated with a single 8 Gy dose of radiation. Eighteen pet dogs with appendicular osteosarcoma received one 8 Gy fraction of palliative radiation on day 0. Force plate measurements and clinical assessments were made on days 0, 7, 14, and 21. Peak vertical forces (Fz) were recorded for each limb and a symmetric index (SI) was calculated. There were no significant changes in kinetic parameters after one 8 Gy dose of radiation therapy. Nine of these 18 dogs exhibited increased limb function at day 21 based on force plate analysis. Significant factors affecting Fz included gender and tumor location. There was a significant correlation between Fz and response to therapy based on SI at day 21. SI seems to be useful to objectively assess response in this mixed population of dogs. One 8 Gy fraction of radiation therapy alone did not reduce lameness associated with appendicular osteosarcoma, but a subset of dogs did have improved limb function after a single dose.
Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance
Western, Craig; Hristov, Dimitre
2015-01-01
External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704
Optical properties of monolayer polystyrene microspheres driven by a direct current
NASA Astrophysics Data System (ADS)
Jiao, Xinbing; Pan, Qian; Zhao, Xinwei; Hao, Ruirui; Bai, Xue
2018-04-01
Polystyrene microspheres (PSMs) with diameters of 5 μm and 10 μm are prepared on garnet by a self-assembly method. The pressure generated by quartz sheet/PSM/garnet/graphite is measured by a resistance strain sensor as a function of the external direct current (DC) voltage. The surface morphology of the PSMs are observed by optical microscopy. The polarization properties of the linearly and circularly polarized laser beams with a wavelength of 1550 nm reflected from the different PSMs are researched by a Thorlabs PAX 5710 IR3 Polarization Analyzing System as a function of the external DC voltage. The results show that the PSMs with different sizes can be damaged when the external pressure exceeds its critical value of 3.0 MPa, but the critical DC voltages are different. The optical polarization properties of the circularly polarized laser beam can be changed with the external DC voltage, whereas the linearly polarized laser beam cannot be changed.
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
NASA Astrophysics Data System (ADS)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-01
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-21
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
Misson-Yates, S; Gonzalez, R; McGovern, M; Greener, A
2015-05-01
This article describes the external audit measurements conducted in two UK centres implementing total skin electron beam therapy (TSEBT) and the results obtained. Measurements of output, energy, beam flatness and symmetry at a standard distance (95 or 100 cm SSD) were performed using a parallel plate chamber in solid water. Similarly, output and energy measurements were also performed at the treatment plane for single and dual fields. Clinical simulations were carried out using thermoluminescent dosemeters (TLDs) and Gafchromic® film (International Specialty Products, Wayne, NJ) on an anthropomorphic phantom. Extended distance measurements confirmed that local values for the beam dosimetry at Centres A and B were within 2% for outputs and 1-mm agreement of the expected depth at which the dose is 50% of the maximum for the depth-dose curve in water (R50,D) value. Clinical simulation using TLDs) showed an agreement of -1.6% and -6.7% compared with the expected mean trunk dose for each centre, respectively, and a variation within 10% (±1 standard deviation) across the trunk. The film results confirmed that the delivery of the treatment technique at each audited centre complies with the European Organisation for Research and Treatment of Cancer recommendations. This audit methodology has proven to be a successful way to confirm the agreement of dosimetric parameters for TSEBT treatments at both audited centres and could serve as the basis for an audit template to be used by other audit groups. TSEBT audits are not established in the UK owing to a limited number of centres carrying out the treatment technique. This article describes the audits performed at two UK centres prior to their clinical implementation.
Gonzalez, R; McGovern, M; Greener, A
2015-01-01
Objective: This article describes the external audit measurements conducted in two UK centres implementing total skin electron beam therapy (TSEBT) and the results obtained. Methods: Measurements of output, energy, beam flatness and symmetry at a standard distance (95 or 100 cm SSD) were performed using a parallel plate chamber in solid water. Similarly, output and energy measurements were also performed at the treatment plane for single and dual fields. Clinical simulations were carried out using thermoluminescent dosemeters (TLDs) and Gafchromic® film (International Specialty Products, Wayne, NJ) on an anthropomorphic phantom. Results: Extended distance measurements confirmed that local values for the beam dosimetry at Centres A and B were within 2% for outputs and 1-mm agreement of the expected depth at which the dose is 50% of the maximum for the depth–dose curve in water (R50,D) value. Clinical simulation using TLDs) showed an agreement of −1.6% and −6.7% compared with the expected mean trunk dose for each centre, respectively, and a variation within 10% (±1 standard deviation) across the trunk. The film results confirmed that the delivery of the treatment technique at each audited centre complies with the European Organisation for Research and Treatment of Cancer recommendations. Conclusion: This audit methodology has proven to be a successful way to confirm the agreement of dosimetric parameters for TSEBT treatments at both audited centres and could serve as the basis for an audit template to be used by other audit groups. Advances in knowledge: TSEBT audits are not established in the UK owing to a limited number of centres carrying out the treatment technique. This article describes the audits performed at two UK centres prior to their clinical implementation. PMID:25761213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rüegsegger, Michael B.; Steiner, Patrick; Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch
Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developedmore » for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.« less
Papadopoulou, Aikaterini; Froudarakis, Marios; Abatzoglou, Ioannis
2011-01-01
Primary tumors of the trachea are rare. Such cases are presented with acute respiratory distress demanding immediate therapeutic intervention. Herein, we present a case of an unresectable second primary tracheal cancer treated with intraluminal brachytherapy (8 Gy at 1 cm from catheter) followed by a short course of external beam hypofractionated radiotherapy (4.5 Gy × 4 fractions) and a final brachytherapy fraction (8 Gy), delivering a biological dose higher than 57.5 Gy (for α/β = 4 Gy) to the tumor within 4 weeks. Concurrent chemotherapy consisted of: fluoruracil (1000 mg/m2), leucovorin (100 mg/m2), oxaliplatin (80 mg/m2) and cetuximab (500 mg/m2), administered every two weeks for two consecutive cycles. Complete response was evident during the second brachytherapy fraction and the patient is alive with no evidence of disease, two years after therapy, without any late radiation sequel. PMID:27853478
NASA Astrophysics Data System (ADS)
Taddei, Phillip J.; Chell, Erik; Hansen, Steven; Gertner, Michael; Newhauser, Wayne D.
2010-12-01
Age-related macular degeneration (AMD), a leading cause of blindness in the United States, is a neovascular disease that may be controlled with radiation therapy. Early patient outcomes of external beam radiotherapy, however, have been mixed. Recently, a novel multimodality treatment was developed, comprising external beam radiotherapy and concomitant treatment with a vascular endothelial growth factor inhibitor. The radiotherapy arm is performed by stereotactic radiosurgery, delivering a 16 Gy dose in the macula (clinical target volume, CTV) using three external low-energy x-ray fields while adequately sparing normal tissues. The purpose of our study was to test the sensitivity of the delivery of the prescribed dose in the CTV using this technique and of the adequate sparing of normal tissues to all plausible variations in the position and gaze angle of the eye. Using Monte Carlo simulations of a 16 Gy treatment, we varied the gaze angle by ±5° in the polar and azimuthal directions, the linear displacement of the eye ±1 mm in all orthogonal directions, and observed the union of the three fields on the posterior wall of spheres concentric with the eye that had diameters between 20 and 28 mm. In all cases, the dose in the CTV fluctuated <6%, the maximum dose in the sclera was <20 Gy, the dose in the optic disc, optic nerve, lens and cornea were <0.7 Gy and the three-field junction was adequately preserved. The results of this study provide strong evidence that for plausible variations in the position of the eye during treatment, either by the setup error or intrafraction motion, the prescribed dose will be delivered to the CTV and the dose in structures at risk will be kept far below tolerance doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorbe, Bengt, E-mail: bengt.sorbe@orebroll.se; Horvath, Gyoergy; Andersson, Hakan
Purpose: To evaluate the value of adjuvant external beam pelvic radiotherapy as adjunct to vaginal brachytherapy (VBT) in medium-risk endometrial carcinoma, with regard to locoregional tumor control, recurrences, survival, and toxicity. Methods and Materials: Consecutive series of 527 evaluable patients were included in this randomized trial. Median follow-up for patients alive was 62 months. The primary study endpoints were locoregional recurrences and overall survival. Secondary endpoints were recurrence-free survival, recurrence-free interval, cancer-specific survival, and toxicity. Results: Five-year locoregional relapse rates were 1.5% after external beam radiotherapy (EBRT) plus VBT and 5% after vaginal irradiation alone (p = 0.013), and 5-yearmore » overall survival rates were 89% and 90%, respectively (p = 0.548). Endometrial cancer-related death rates were 3.8% after EBRT plus VBT and 6.8% after VBT (p = 0.118). Pelvic recurrences (exclusively vaginal recurrence) were reduced by 93% by the addition of EBRT to VBT. Deep myometrial infiltration was a significant prognostic factor in this medium-risk group of endometrioid carcinomas but not International Federation of Gynecology and Obstetrics grade or DNA ploidy. Combined radiotherapy was well tolerated, with serious (Grade 3) late side effects of less than 2%. However, there was a significant difference in favor of VBT alone. Conclusions: Despite a significant locoregional control benefit with combined radiotherapy, no survival improvement was recorded, but increased late toxicity was noted in the intestine, bladder, and vagina. Combined RT should probably be reserved for high-risk cases with two or more high-risk factors. VBT alone should be the adjuvant treatment option for purely medium-risk cases.« less
Valakh, Vladimir; Chan, Philip; D'Adamo, Karen; Micaily, Bizhan
2013-10-01
In the present article we review on the use of Volumetric Modulated Arc Therapy (VMAT) for a small lung nodule that was centrally located in close proximity to the mediastinal structures. An inoperable patient with central, clinical stage IA adenocarcinoma of the right lung was treated with external-beam radiation therapy of 52.5 Gy in 15 factions. A single 360° coplanar arc VMAT plan (360-VMAT) was used for treatment and compared to step-and-shoot Intensity Modulation Radiotherapy (IMRT) and a single 180° ipsilateral partial arc VMAT plan (180-VMAT). Planning Target Volume (PTV) coverage was not different, and 360-VMAT had the highest dose homogeneity. Both 360-VMAT and 180-VMAT reduced esophageal dose compared to IMRT. While IMRT had the lowest lung dose, all 3 plans achieved acceptable sparing of the lung. 180-VMAT had the highest dose conformity. Both 360-VMAT and 180-VMAT improved esophageal sparing compared to IMRT. Use of VMAT in early-stage, centrally located NSCLC is a promising treatment approach and merits additional investigation.
HIFU therapy for patients with high risk prostate cancer
NASA Astrophysics Data System (ADS)
Solovov, V. A.; Vozdvizhenskiy, M. O.; Matysh, Y. S.
2017-03-01
Objectives. Patients with high-risk prostate cancer undergoing radical prostatectomy, external beam radiation therapy (EBRT) combined with androgen deprivation therapy (ADT) or ADT alone. The widely accepted definition of high-risk prostate was first proposed by D'Amico based on a pretreatment Gleason score of ≥8, clinical stage T3, PSA level ≥20 ng/mL. There is no trial that compares traditional methods of treatment of such patients with HIFU therapy. Here we explored the effectiveness of the HIFU in multimodal treatment for patients with high risk prostate cancer. Materials & Methods. 701 patients with high risk prostate cancer were treated in our center between September 2007 and December 2013. Gleason score were 8-10, stage T3N0M0, age 69 (58-86) years, mean PSA before treatment 43.3 (22.1-92.9) ng/ml, mean prostate volume - 59.3 (38-123) cc. 248 patients were treated by HIFU. We compare this group of patients with patients who undertook EBRT: number 196, and ADT: number 257. Mean follow-up time 58 months (6-72). Results. The 5-year overall survival rates in patients after HIFU were 73.8 %, after EBRT - 63.0 % and after ADT - 18.1%. Conclusions. Our experience showed that HIFU therapy in combined treatment were successful for high risk prostate cancer.
Carcinoma of the urethra: radiation oncology.
Koontz, Bridget F; Lee, W Robert
2010-08-01
Urethral cancer is a rare but aggressive neoplasm. Early-stage distal lesions can be successfully treated with a single modality. Results for definitive radiotherapy using either or both external beam radiation therapy and brachytherapy have shown excellent cure rates in men and women. The primary advantage of radiotherapy is organ preservation. Advanced tumors, however, have poor outcomes with single modality treatment. Results have been improved using a combination of radiotherapy and chemotherapy, chiefly 5-fluorouracil and mitomycin C. Although literature is limited to case reports because of the rarity of the disease, the markedly improved results compared with older results of surgery with or without radiation warrant consideration. Copyright 2010 Elsevier Inc. All rights reserved.
Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih
2017-09-01
Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
WE-D-BRB-02: Proton Treatment Planning and Beam Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankuch, M.
2016-06-15
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
Zhu, X R; Jursinic, P A; Grimm, D F; Lopez, F; Rownd, J J; Gillin, M T
2002-08-01
A new type of radiographic film, Kodak EDR2 film, was evaluated for dose verification of intensity modulated radiation therapy (IMRT) delivered by a static multileaf collimator (SMLC). A sensitometric curve of EDR2 film irradiated by a 6 MV x-ray beam was compared with that of Kodak X-OMAT V (XV) film. The effects of field size, depth and dose rate on the sensitometric curve were also studied. It is found that EDR2 film is much less sensitive than XV film. In high-energy x-ray beams, the double hit process is the dominant mechanism that renders the grains on EDR2 films developable. As a result, in the dose range that is commonly used for film dosimetry for IMRT and conventional external beam therapy, the sensitometric curves of EDR2 films cannot be approximated as a linear function, OD = c * D. Within experimental uncertainty, the film sensitivity does not depend on the dose rate (50 vs 300 MU/min) or dose per pulse (from 1.0 x 10(-4) to 4.21 x 10(-4) Gy/pulse). Field sizes and depths (up to field size of 10 x 10 cm2 and depth = 10 cm) have little effect on the sensitometric curves. Percent depth doses (PDDs) for both 6 and 23 MV x rays were measured with both EDR2 and XV films and compared with ion chamber data. Film data are within 2.5% of the ion chamber results. Dose profiles measured with EDR2 film are consistent with those measured with an ion chamber. Examples of measured IMRT isodose distributions versus calculated isodoses are presented. We have used EDR2 films for verification of all IMRT patients treated by SMLC in our clinic. In most cases, with EDR2 film, actual clinical daily fraction doses can be used for verification of composite isodose distributions of SMLC-based IMRT.
Imaging and characterization of primary and secondary radiation in ion beam therapy
NASA Astrophysics Data System (ADS)
Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus
2016-07-01
Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.
Photovoltaic spatial solitons affected by a resistor in the external circuit
NASA Astrophysics Data System (ADS)
Wang, Xiao Sheng; She, Wei Long
2002-09-01
We have found that the FWHM of one-dimensional photovoltaic spatial soliton is modified by the space-charge field in the crystal, which can be controlled by a resistor in the external circuit. In this case, the photovoltaic contribution of a background beam is taken into account. In a crystal with a positive perturbation of refractive index, the FWHM of dark soliton decreases with the resistance of the resistor, while the FWHM of bright soliton increases with the resistance. Furthermore, when R (the ratio of the effective Glass constant of a signal beam over a background beam) is higher than 1, we can switch a dark soliton to a bright soliton by decreasing the resistance or vice versa. During such process, both the wavelengths and the intensities of the signal beam and the background beam are kept unchanged.
External audits of electron beams using mailed TLD dosimetry: preliminary results.
Gomola, I; Van Dam, J; Isern-Verdum, J; Verstraete, J; Reymen, R; Dutreix, A; Davis, B; Huyskens, D
2001-02-01
A feasibility study has been performed to investigate the possibility of using mailed thermoluminescence dosimetry (TLD) for external audits of clinical electron beams in Europe. In the frame of the EC Network Project for Quality Assurance in Radiotherapy, instruction sheets and mailing procedures have been defined for mailed TLD dosimetry using the dedicated holder developed by a panel of experts of the International Atomic Energy Agency (IAEA). Three hundred and thirty electron beam set-ups have been checked in the reference centres and some local centres of the EC Network Project and in addition through the centres participating to the EORTC Radiotherapy Group trial 22922. The mean ratio of measured dose to stated dose is 0.2% and the standard deviation of measured dose to stated dose is 3.2%. In seven beam set-ups, deviations greater than 10% were observed (max. 66%), showing the usefulness of these checks. The results of this feasibility study (instruction sheets, mailing procedures, holder) are presently endorsed by the EQUAL-ESTRO structure in order to offer in the future to all ESTRO members the possibility to request external audits of clinical electron beams.
Xue, Ya-jun; Dong, Yan; Han, Xi; Wei, Mei-yang; Ge, Jun-hui; Cai, Ru-jue; Hu, Guo-han; Luo, Chun; Zhu, Cheng; Lu, Yi-cheng
2006-09-05
To explore the protective effect of glial growth factor-2 (GGF2) on brain injury. Thirty-four SD rats underwent lateral fluid percussion to establish brain injury models and then were randomly divided into 4 groups: treatment group (n = 10, the plasmid pEGFP-N1-GGF2 mixed with liposome was injected into the brain tissue directly), vector control group (n = 10, the vector pEGFP-N1 mixed with liposome was injected into the brain tissue directly), liposome control group (n = 10, liposome was injected), and sham operation group (n = 4). Three assessment tasks were performed for neurobehavioral evaluation: Clivas Test, Beam Balance Test and Beam Walking Test. 10 days after brain injury, the rats were sacrificed and their brains were embedded in paraffin for HE staining, Nissle staining and immunohistochemical examination of MBP, NSE, and GFAP. The Clivas test score of the treatment group was 66.25 +/- 3.54, significantly higher than those of the vector control group and. liposome control group (58.31 +/- 3.72 and 57.21 +/- 3.93 respectively, both P < 0.05). The beam test score of the treatment group was 2.59 +/- 0.21, significantly lower than those the vector control group and liposome control group (3.41 +/- 0.25 and 3.24 +/- 0.22 respectively, both P < 0.05). The walking test score of the treatment group was 20.15 +/- 2.59, significantly lower than those of control group and liposome control group (27.00 +/- 3.47 and 27.80 +/- 3.00 respectively, both P < 0.05). The improvement in beam walking test was the greatest. The neuron number in the external granular layer and external pyramidal layer in cortex of the treatment group was 98 +/- 10, significantly more than those of the vector control group and liposome group (75 +/- 7 and 67 +/- 8, both P < 0.05). The neuron number in the internal pyramidal layer in cortex of the treatment group was 37 +/- 4, significantly more than those of the vector control group and liposome group (19 +/- 3 and 23 +/- 4 respectively, both P < 0.05). The neuron number in the CA1 region in hippocampus of the treatment group was 102 +/- 11, significantly more than those of the vector control group and liposome group (67 +/- 8 and 58 +/- 9 respectively, both P < 0.01). Higher level of immunoreactivity with MBP was also detected in the cortex in the rats of the treatment group. Cationic liposome-mediated GGF2 gene therapy effectively promotes the recovery of brain injury.
Effect of External Post-tensioning in Retrofitting of RC Beams
NASA Astrophysics Data System (ADS)
Manisekar, R.
2018-05-01
There are large number of existing concrete bridges in distressed condition in India and other countries, and they need retrofitting solutions. External post-tensioning is a prime technique for bridge retrofitting. It is being applied for retrofitting of bridges in India and other countries. Although the technique is becoming popular in retrofitting, various issues regarding performance of post-retrofitting behaviour need to be studied in detail. RC beam specimens of rectangular section were distressed by means of cracks to a certain limit, and were retrofitted by external post-tensioning. Retrofitted specimens were tested to fail to study the post-retrofitting behaviour. Retrofitting has increased the ultimate load carrying capacity by 81% with reference to the control beam, and recovered the deflection. This paper intends to report the results of the experimental investigations, and conclusions.
Experiment study on RC frame retrofitted by the external structure
NASA Astrophysics Data System (ADS)
Liu, Chunyang; Shi, Junji; Hiroshi, Kuramoto; Taguchi, Takashi; Kamiya, Takashi
2016-09-01
A new retrofitting method is proposed herein for reinforced concrete (RC) structures through attachment of an external structure. The external structure consists of a fiber concrete encased steel frame, connection slab and transverse beams. The external structure is connected to the existing structure through a connection slab and transverse beams. Pseudostatic experiments were carried out on one unretrofitted specimen and three retrofitted frame specimens. The characteristics, including failure mode, crack pattern, hysteresis loops behavior, relationship of strain and displacement of the concrete slab, are demonstrated. The results show that the load carrying capacity is obviously increased, and the extension length of the slab and the number of columns within the external frame are important influence factors on the working performance of the existing structure. In addition, the displacement difference between the existing structure and the outer structure was caused mainly by three factors: shear deformation of the slab, extraction of transverse beams, and drift of the conjunction part between the slab and the existing frame. Furthermore, the total deformation determined by the first two factors accounted for approximately 80% of the damage, therefore these factors should be carefully considered in engineering practice to enhance the effects of this new retrofitting method.
NASA Astrophysics Data System (ADS)
BOERTJENS, G. J.; VAN HORSSEN, W. T.
2000-08-01
In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.
Radiation therapy facilities in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballas, Leslie K.; Elkin, Elena B.; Schrag, Deborah
2006-11-15
Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA),more » as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care.« less
Radiation Therapy for Pilocytic Astrocytomas of Childhood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansur, David B., E-mail: mansur@radonc.wustl.ed; Rubin, Joshua B.; Kidd, Elizabeth A.
Purpose: Though radiation therapy is generally considered the most effective treatment for unresectable pilocytic astrocytomas in children, there are few data to support this claim. To examine the efficacy of radiation therapy for pediatric pilocytic astrocytomas, we retrospectively reviewed the experience at our institution. Methods and Materials: Thirty-five patients 18 years old or younger with unresectable tumors and without evidence of neurofibromatosis have been treated since 1982. Patients were treated with local radiation fields to a median dose of 54 Gy. Six patients were treated with radiosurgery to a median dose of 15.5 Gy. Five patients were treated with initialmore » chemotherapy and irradiated after progression. Results: All patients were alive after a median follow-up of 5.0 years. However, progression-free survival was 68.7%. None of 11 infratentorial tumors progressed compared with 6 of 20 supratentorial tumors. A trend toward improved progression-free survival was seen with radiosurgery (80%) compared with external beam alone (66%), but this difference did not reach statistical significance. Eight of the 9 patients progressing after therapy did so within the irradiated volume. Conclusions: Although the survival of these children is excellent, almost one third of patients have progressive disease after definitive radiotherapy. Improvements in tumor control are needed in this patient population, and the optimal therapy has not been fully defined. Prospective trials comparing initial chemotherapy to radiation therapy are warranted.« less
NASA Astrophysics Data System (ADS)
Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred
2015-09-01
Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV administration during external beam radiotherapy. For FDA approved concentrations of CNPs or CBNPs considered, this could allow for additional dose enhancement to tumors via photoelectric mechanism during concomitant chemoradiotherapy.
Study on shear strengthening of RC continuous T-beams using different layers of CFRP strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alferjani, M. B. S.; Samad, A. A. Abdul; Mohamad, Noridah
2015-05-15
Carbon fiber reinforced polymer (CFRP) laminates are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. However, this paper presents the results of an experimental investigation for enhancing the shear capacity of reinforced concrete (RC) continuous T- beams using different layers of CFRP wrapping schemes. A total of three concrete beams were tested and various sheet configurations and layouts were studied to determine their effects on ultimate shear strength and shear capacity of the beams. One beam was kept as control beams, while other beams were strengthened with externally bonded CFRP strips withmore » three side bonding and one or two layers of CFRP strips. From the test results, it was found that all schemes were found to be effective in enhancing the shear strength of RC beams. It was observed that the strength increases with the number of sheet layers provided the most effective strengthening for RC continuous T- beam. Beam strengthened using this scheme showed 23.21% increase in shear capacity as compared to the control beam. Two prediction models available in literature were used for computing the contribution of CFRP strips and compared with the experimental results.« less
NASA Astrophysics Data System (ADS)
Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui
2018-01-01
Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.
NASA Astrophysics Data System (ADS)
Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.
2017-08-01
The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.
Spratt, Daniel E; Zumsteg, Zach; Ghadjar, Pirus; Pangasa, Misha; Pei, Xin; Fine, Samson W; Yamada, Yoshiya; Kollmeier, Marisa; Zelefsky, Michael J
2013-04-01
To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT). From May 1989 to January 2011, 1190 Gleason 7 patients with localized prostate cancer were treated with EBRT at a single institution. Of these patients, 613 had a Gleason 7 with a minimum of a sextant biopsy with nonfragmented cores and full biopsy core details available, including number of cores of cancer involved, percentage individual core involvement, location of disease, bilaterality, and presence of perineural invasion. Median follow-up was 6 years (range, 1-16 years). The prognostic implication for the following outcomes was analyzed: biochemical recurrence-free survival (bRFS), distant metastasis-free survival (DMFS), and prostate cancer-specific mortality (PCSM). The 8-year bRFS rate for pG3 versus pG4 was 77.6% versus 61.3% (P<.0001), DMFS was 96.8% versus 84.3% (P<.0001), and PCSM was 3.7% versus 8.1% (P=.002). On multivariate analysis, pG4 predicted for significantly worse outcome in all parameters. Location of disease (apex, base, mid-gland), perineural involvement, maximum individual core involvement, and the number of Gleason 3+3, 3+4, or 4+3 cores did not predict for distant metastases. Primary Gleason grade 4 independently predicts for worse bRFS, DMFS, and PCSM among Gleason 7 patients. Using complete core information can allow clinicians to utilize pG grade as a prognostic factor, despite not having the full pathologic details from a prostatectomy specimen. Future staging and risk grouping should investigate the incorporation of primary Gleason grade when complete biopsy core information is used. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spratt, Daniel E.; Zumsteg, Zach; Ghadjar, Pirus
2013-04-01
Purpose: To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT). Methods and Materials: From May 1989 to January 2011, 1190 Gleason 7 patients with localized prostate cancer were treated with EBRT at a single institution. Of these patients, 613 had a Gleason 7 with a minimum of a sextant biopsy with nonfragmented cores and full biopsy core details available, including number of cores of cancer involved, percentage individual core involvement, location of disease, bilaterality, and presence of perineural invasion. Median follow-up was 6more » years (range, 1-16 years). The prognostic implication for the following outcomes was analyzed: biochemical recurrence-free survival (bRFS), distant metastasis-free survival (DMFS), and prostate cancer-specific mortality (PCSM). Results: The 8-year bRFS rate for pG3 versus pG4 was 77.6% versus 61.3% (P<.0001), DMFS was 96.8% versus 84.3% (P<.0001), and PCSM was 3.7% versus 8.1% (P=.002). On multivariate analysis, pG4 predicted for significantly worse outcome in all parameters. Location of disease (apex, base, mid-gland), perineural involvement, maximum individual core involvement, and the number of Gleason 3+3, 3+4, or 4+3 cores did not predict for distant metastases. Conclusions: Primary Gleason grade 4 independently predicts for worse bRFS, DMFS, and PCSM among Gleason 7 patients. Using complete core information can allow clinicians to utilize pG grade as a prognostic factor, despite not having the full pathologic details from a prostatectomy specimen. Future staging and risk grouping should investigate the incorporation of primary Gleason grade when complete biopsy core information is used.« less
Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.
Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank
2012-03-01
The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (
Elaimy, Ameer L; Mackay, Alexander R; Lamoreaux, Wayne T; Demakas, John J; Fairbanks, Robert K; Cooke, Barton S; Lamm, Andrew F; Lee, Christopher M
2013-12-01
Previously published randomized evidence did not report a survival advantage for patients diagnosed with grade IV glioma who were treated with stereotactic radiosurgery followed by external beam radiation therapy and chemotherapy when compared to patients treated with external beam radiation therapy and chemotherapy alone. In recent years, gamma knife radiosurgery has become increasingly popular as a salvage treatment modality for patients diagnosed with recurrent high-grade glioma. The purpose of this article is to review the efficacy of gamma knife radiosurgery for patients who suffer from this malignancy. Retrospective, prospective, and randomized clinical studies published between the years 2000 and 2012 analyzing gamma knife radiosurgery for patients with high-grade glioma were reviewed. After assessing patient age, Karnofsky performance status, tumor histology, and extent of resection, gamma knife radiosurgery is a viable, minimally invasive treatment option for patients diagnosed with recurrent high-grade glioma. The available prospective and retrospective evidence suggests that gamma knife radiosurgery provides patients with a high local tumor control rate and a median survival after tumor recurrence ranging from 13 to 26 months. Gamma knife radiosurgery followed by chemotherapy for recurrent high-grade glioma may provide select patients with increased levels of survival. However, further investigation into this matter is needed due to the limited number of published reports. Additional clinical research is also needed to analyze the efficacy and radiation-related toxicities of fractionated gamma knife radiosurgery due to its potential to limit treatment-associated morbidity. Gamma knife radiosurgery is a safe and effective treatment option for select patients diagnosed with recurrent high-grade glioma. Although treatment outcomes have improved, further evidence in the form of phase III randomized trials is needed to assess the durability of treating patients in specific clinical situations. Copyright © 2013 Elsevier Inc. All rights reserved.
Wilcox, Shea William; Aherne, Noel J; McLachlan, Craig Steven; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P
2015-02-01
We compare the results of modern external-beam radiotherapy (EBRT), using combined androgen deprivation and dose-escalated intensity-modulated radiotherapy with MRI-CT fusion and daily image guidance with fiducial markers (DE-IG-IMRT), with recently published Australian series of brachytherapy and surgery. Five-year actuarial biochemical disease-free survival (bDFS), metastasis-free survival (MFS) and prostate cancer-specific survival (PCaSS) were calculated for 675 patients treated with DE-IG-IMRT and androgen deprivation therapy (ADT). Patients had intermediate-risk (IR) and high-risk (HR) disease. A search was conducted identifying Australian reports from 2005 onwards of IR and HR patients treated with surgery or brachytherapy, reporting actuarial outcomes at 3 years or later. With a median follow-up of 59 months, our 5-year bDFS was 93.3% overall: 95.5% for IR and 91.3% for HR disease. MFS was 96.9% overall (99.0% IR, 94.9% HR), and PCaSS was 98.8% overall (100% IR, 97.7% HR). Prevalence of Grade 2 genitourinary and gastrointestinal toxicity at 5 years was 1.3% and 1.6%, with 0.3% Grade 3 genitourinary toxicity and no Grade 3 gastrointestinal toxicity. Eight reports of brachytherapy and surgery were identified. The HDR brachytherapy series' median 5-year bDFS was 82.5%, MFS 90.0% and PCaSS 97.9%. One surgical series reported 5-year bDFS of 65.5% for HR patients. One LDR series reported 5-year bDFS of 85% for IR patients. Modern EBRT is at least as effective as modern Australian surgical and brachytherapy techniques. All patients considering treatment for localised prostate cancer should be referred to a radiation oncologist to discuss EBRT as an equivalent option. © 2015 The Royal Australian and New Zealand College of Radiologists.
3-DIMENSIONAL EXTERNAL BEAM RADIOTHERAPY FOR PROSTATE CANCER INCREASES THE RISK OF HIP FRACTURE
Elliott, Sean P.; Jarosek, Stephanie L.; Alanee, Shaheen R.; Konety, Badrinath R.; Dusenbery, Kathryn E.; Virnig, Beth A.
2011-01-01
Background Hip fracture is associated with high morbidity and mortality. Pelvic external beam radiotherapy (EBRT) is known to increase the risk of hip fractures in women but the effect in men is unknown. Methods 45,662 men aged ≥66 years, diagnosed with prostate cancer in 1992–2004 were identified from the SEER-Medicare database. Using Kaplan-Meier methods and Cox proportional hazards models, the primary outcome of hip fracture risk was compared among men who received radical prostatectomy (RP), EBRT, EBRT+androgen suppression therapy (AST) or AST alone, controlling for age, osteoporosis, race and other comorbidities. A secondary outcome was distal forearm fractures as an indicator of fragility fracture risk outside the radiation field. Results After controlling for covariates, EBRT increased the risk of hip fractures by 76% (HR 1.76, 95% CI 1.38–2.40) without increasing the risk of distal forearm fractures (HR 0.80, 95% CI 0.56–1.14). Combination therapy with EBRT+AST increased the risk of hip fracture 145% relative to RP (HR 2.45, 95% CI 1.88–3.19) and by 40% relative to EBRT (HR 1.40, 95% CI 1.17–1.68). EBRT+AST increased the risk of distal forearm fracture by 43% relative to RP (HR 1.43, 95% CI 0.97–2.10). The number needed to treat to result in 1 hip fracture through 10 years was 51 (95% CI 31–103). Conclusion In men with prostate cancer, pelvic 3-D conformal EBRT is associated with a 76% increased risk of hip fracture. This risk is slightly increased further by the addition of short-course AST to EBRT. This risk associated with EBRT is site-specific as there is no increase in the risk of fall-related fractures outside the radiation field. PMID:21412999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, J.; Moteabbed, M.; Paganetti, H., E-mail: hpaganetti@mgh.harvard.edu
2015-01-15
Purpose: Theoretical dose–response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. Methods: A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagationmore » was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. Results: Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. Conclusions: The uncertainty in the dose–response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio of absolute risks between two modalities is less sensitive to the uncertainties in the risk model and can provide statistically significant estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.
Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involvedmore » lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.« less
Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy
NASA Astrophysics Data System (ADS)
Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido
2015-02-01
The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Akash, E-mail: ananda@partners.or; Chen, M.-H.; Moran, Brian J.
2010-05-01
Purpose: To identify clinical factors associated with prostate cancer-specific mortality (PCSM), adjusting for comorbidity, in elderly men with intermediate-risk prostate cancer treated with brachytherapy alone or in conjunction with external beam radiation therapy. Methods and Materials: The study cohort comprised 1,978 men of median age 71 (interquartile range, 66-75) years with intermediate-risk disease (Gleason score 7, prostate-specific antigen (PSA) 20 ng/mL or less, tumor category T2c or less). Fine and Gray's multivariable competing risks regression was used to assess whether prevalent cardiovascular disease (CVD), age, treatment, year of brachytherapy, PSA level, or tumor category was associated with the risk ofmore » PCSM. Results: After a median follow-up of 3.2 (interquartile range, 1.7-5.4) years, the presence of CVD was significantly associated with a decreased risk of PCSM (adjusted hazard ratio, 0.20; 95% CI 0.04-0.99; p = 0.05), whereas an increasing PSA level was significantly associated with an increased risk of PCSM (adjusted hazard ratio 1.14; 95% CI 1.02-1.27; p = 0.02). In the absence of CVD, cumulative incidence estimates of PCSM were higher (p = 0.03) in men with PSA levels above as compared with the median PSA level (7.3 ng/mL) or less; however, in the setting of CVD there was no difference (p = 0.27) in these estimates stratified by the median PSA level (6.9 ng/mL). Conclusions: In elderly men with intermediate-risk prostate cancer, CVD status is a negative predictor of PCSM and affects the prognostic capacity of pretreatment PSA level. These observations support the potential utility of prerandomization stratification by comorbidity to more accurately assess prognostic factors and treatment effects within this population.« less
Kaltenborn, Alexander; Carl, Ulrich Martin; Hinsche, Tanja; Nitsche, Mirko; Hermann, Robert Michael
2017-04-01
Low-dose external beam radiotherapy (ED-EBRT) is frequently used in the therapy of refractory greater trochanteric pain syndrome (GTPS). As studies reporting treatment results are scarce, we retrospectively analyzed our own patient collectives. In all, 60 patients (74 hips) received LD-EBRT (6 × 0.5 Gy in 29 hips, 6 × 1 Gy in 45). The endpoint was the patient's reported subjective response to treatment. The influence of different patient and treatment characteristics on treatment outcome was investigated. At the end of LD-EBRT, 69% reported partial remission, 4% complete remission, no change 28%. A total of 3 months later (n = 52 hips), the results were 37, 33, and 30% and 18 months after LD-EBRT (n = 47) 21, 51, and 28%. In univariate analysis "inclusion of the total femoral head into the PTV" and "night pain before LD-EBRT" were correlated with symptom remission at the end of LD-EBRT, while "initial increase in pain during LD-EBRT" was significantly associated with treatment failure. In multivariable modeling "initial increase in pain" was identified as a risk factor for treatment failure (p = 0.007; odds ratio [OR] 0.209; 95% confidence interval [CI] 0.048-0.957), while "night pain" was an independent factor for remission (p = 0.038; OR 3.484; 95% CI 1.004-12.6). Three months after LD-EBRT "night pain" and "inclusion of the complete femoral neck circumference into the PTV" were predictive for remission. LD-EBRT represents a useful treatment option for patients suffering from GTPS. Three months after therapy two-thirds of the patients reported a partial or complete symptom remission. Especially patients who suffered from nocturnal pain seemed to benefit. Treatment appeared to be more effective when the entire circumference of the femoral neck was encompassed.
Patel, Nita; Souhami, Luis; Mansure, Jose João; Duclos, Marie; Aprikian, Armen; Faria, Sergio; David, Marc; Cury, Fabio L
2014-01-01
To report the frequency, timing, and magnitude of prostate-specific antigen (PSA) bounce (PB) in patients who received high-dose-rate (HDR) brachytherapy (HDRB) plus hypofractionated external beam radiation therapy (HypoRT) and to assess a possible correlation between PB and biochemical failure (BF). Patients with intermediate-risk prostate cancer received 10Gy single-fraction (192)Ir HDRB followed by 50Gy in 20 daily fractions of HypoRT without androgen deprivation therapy. All patients had a minimum 2-year followup. The PB was defined as PSA elevation higher than 0.2ng/mL from previous measurement with subsequent drop to pre-bounce level. The BF was defined as PSA nadir+2ng/mL. A total of 114 patients treated between 2001 and 2009 were eligible for analysis. At a median followup of 66 months, the PB was found in 45 (39%) patients with a median time to bounce of 16 months (range, 3-76 months). The median time to PSA normalization after a PB was 9 months (range, 2-40 months). The median magnitude of PB was 0.45ng/mL (range, 0.2-6.62). The BF occurred in 12 (10.5%) patients of whom three had a PB. Median time to BF was 52.5 months. Four patients (3.5%) in the PB group fit the criteria for BF. The PB is common after HDRB and HypoRT and can occur up to 76 months after treatment. It can rarely fit the criteria for BF. The time to PB is shorter than the time to BF. There is a lower incidence of BF in patients with a PB. An acknowledgment of this phenomenon should be made when interpreting PSA results during followup to prevent unnecessary interventions. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Marnix G.E.H.; Department of Radiology and Nuclear Medicine, University Medical Center Utrecht; Abdelmaksoud, Mohamed H.K.
2013-10-01
Purpose: Previous external beam radiation therapy (EBRT) is theoretically contraindicated for yttrium-90 ({sup 90}Y) radioembolization (RE) because the liver has a lifetime tolerance to radiation before becoming vulnerable to radiation-induced liver disease. We analyzed the safety of RE as salvage treatment in patients who had previously undergone EBRT. Methods and Materials: Between June 2004 and December 2010, a total of 31 patients who had previously undergone EBRT were treated with RE. Three-dimensional treatment planning with dose–volume histogram (DVH) analysis of the liver was used to calculate the EBRT liver dose. Liver-related toxicities including RE-induced liver disease (REILD) were reviewed andmore » classified according to Common Terminology Criteria for Adverse Events version 4.02. Results: The mean EBRT and RE liver doses were 4.40 Gy (range, 0-23.13 Gy) and 57.9 Gy (range, 27.0-125.9 Gy), respectively. Patients who experienced hepatotoxicity (≥grade2; n=12) had higher EBRT mean liver doses (7.96 ± 8.55 Gy vs 1.62 ± 3.39 Gy; P=.037), the only independent predictor in multivariate analysis. DVH analysis showed that the fraction of liver exposed to ≥30 Gy (V30) was the strongest predictor of hepatotoxicity (10.14% ± 12.75% vs 0.84% ± 3.24%; P=.006). All patients with V30 >13% experienced hepatotoxicity. Fatal REILD (n=2) occurred at the 2 highest EBRT mean liver doses (20.9 Gy and 23.1 Gy) but also at the highest cumulative liver doses (91.8 Gy and 149 Gy). Conclusions: Prior exposure of the liver to EBRT may lead to increased liver toxicity after RE treatment, depending on fractional liver exposure and dose level. The V30 was the strongest predictor of toxicity. RE appears to be safe for the treatment of hepatic malignancies only in patients who have had limited hepatic exposure to prior EBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, Elizabeth L., E-mail: EBossart@med.miami.edu; Stoyanova, Radka; Sandler, Kiri
2016-06-01
Purpose: To compare dosimetric characteristics with multiparametric magnetic resonance imaging–identified imaging tumor volume (gross tumor volume, GTV), prostate clinical target volume and planning target volume, and organs at risk (OARs) for 2 treatment techniques representing 2 arms of an institutional phase 3 randomized trial of hypofractionated external beam image guided highly targeted radiation therapy. Methods and Materials: Group 1 (n=20) patients were treated before the trial inception with the standard dose prescription. Each patient had an additional treatment plan generated per the experimental arm. A total of 40 treatment plans were compared (20 plans for each technique). Group 2 (n=15)more » consists of patients currently accrued to the hypofractionated external beam image guided highly targeted radiation therapy trial. Plans were created as per the treatment arm, with additional plans for 5 of the group 2 experimental arm with a 3-mm expansion in the imaging GTV. Results: For all plans in both patient groups, planning target volume coverage ranged from 95% to 100%; GTV coverage of 89.3 Gy for the experimental treatment plans ranged from 95.2% to 99.8%. For both groups 1 and 2, the percent volumes of rectum/anus and bladder receiving 40 Gy, 65 Gy, and 80 Gy were smaller in the experimental plans than in the standard plans. The percent volume at 1 Gy per fraction and 1.625 Gy per fraction were compared between the standard and the experimental arms, and these were found to be equivalent. Conclusions: The dose per fraction to the OARs can be made equal even when giving a large simultaneous integrated boost to the GTV. The data suggest that a GTV margin may be added without significant dose effects on the OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Shen, C; Tian, Z
Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy,more » and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with satisfactory accuracy.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The changing role of accelerators in radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, W.F.
Conventional low energy x-rays have been used in radiation therapy since the turn of the century. Van de Graaff and Betatron accelerators changed the complexion of radiation therapy in the mid 1940's by providing significantly deeper penetrating photon beams and also providing therapeutic quality electron beams. The development of Cobalt-60 teletherapy in the mid 1950's suppressed the role of accelerators in radiation therapy for nearly 20 years. However, with the development of reliable isocentric rotating linear accelerators, accelerators are rapidly becoming the most popular conventional therapy devices. Following unfavorable clinical results with fast neutron therapy in the late 1930's andmore » early 1940's, the role of cyclotron produced fast neutrons is presently experiencing a renewal in radiation therapy. Several facilities are also experimenting with heavy charged particle beams for therapy.« less
The external scanning proton microprobe of Firenze: A comprehensive description
NASA Astrophysics Data System (ADS)
Giuntini, L.; Massi, M.; Calusi, S.
2007-06-01
An external proton scanning microbeam setup is installed on the -30° line of the new 3 MV tandem accelerator in Firenze; the most relevant features of the line, such as detection setup for IBA measurements, target viewing system, beam diagnostic and transport are described here. With our facility we can work with a beam spot on sample better than 10 μm full-width half-maximum (FWHM) and an intensity of some nanoamperes. Standard beam exit windows are silicon nitride (Si 3N 4) TEM membranes, 100 nm thick and 0.5×0.5 mm 2 wide; we also successfully performed measurements using membranes 1×1 mm 2 wide, 100 nm thick, and 2×2 mm 2 wide, 200 and 500 nm thick. Exploiting the yield of Si X-rays produced by the beam in the exit window as an indirect measurement of the charge, a beam charge monitor system was implemented. The analytical capabilities of the microbeam have been extended by integrating a two-detector PIXE setup with BS and PIGE detectors; the external scanning proton microprobe in Firenze is thus a powerful instrument to fully characterize samples by ion beam analysis, through the simultaneous collection of PIXE, PIGE and BS elemental maps. Its characteristics can make it often competitive with traditional in vacuum microbeam for measurements of thick targets.
Outcomes in a series of 103 retroperitoneal sarcomas.
Pierie, J-P E N; Betensky, R A; Choudry, U; Willett, C G; Souba, W W; Ott, M J
2006-12-01
To report the effect on outcome of selection in patients receiving intra-operative electron beam radiation (IOERT) and external beam radiation therapy (EBRT). One hundred and three patients treated for primary RS were studied. Median follow-up was 27 months. Clinical presentation, tumor characteristics, and treatment methods were analyzed to determine impact on survival and recurrence and if selection was occurring. Mean age was 55+/-17 years. Mean tumor size was 15+/-6cm and 88 were high-grade. Complete gross tumor resection (CR) occurred in 62 patients and improved survival vs. both debulking (p=0.0005) and biopsy (p<0.0001). The 5- and 10-year survival rates were 62% and 52% for those with CR vs. 29% and 20% after incomplete resection. Among the 62 CR patients, there was selection to receive additional EBRT+/-IOERT in patients with high-grade tumors (p=0.005) and/or microscopically positive margins (p=0.011). In these high-risk patients there was a trend for IOERT to further augment survival vs. EBRT alone and to increase the time to both local and distant recurrences (p=0.036). Complete gross resection is the primary form of curative treatment for retroperitoneal sarcomas. Selection led to patients with high-risk tumors receiving additional radiation therapy. There appears to be a beneficial effect of IOERT plus EBRT in these high-risk patients after complete tumor resection.
21 CFR 1050.10 - Ultrasonic therapy products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...
21 CFR 1050.10 - Ultrasonic therapy products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...
21 CFR 1050.10 - Ultrasonic therapy products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...
21 CFR 1050.10 - Ultrasonic therapy products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...
21 CFR 1050.10 - Ultrasonic therapy products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal, M. J., E-mail: mattiti@gmail.com; University of Cape Town, Rondebosch, Cape Town 7700; Bark, R. A.
An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.
NASA Astrophysics Data System (ADS)
Aiello, M. A.; Valente, L.; Rizzo, A.
2007-09-01
The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.
Catching errors with patient-specific pretreatment machine log file analysis.
Rangaraj, Dharanipathy; Zhu, Mingyao; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar H; Brame, Scott; Mutic, Sasa
2013-01-01
A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian. Using an in-house developed computer program called "Dynalog QA," we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams. Since clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein. It has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
A range of tasks focused on a baseline system concept is discussed. A beam builder concept developed to produce a triangular beam is discussed. Beam elements used laminated graphite and glass composite strip material with external surface coatings are described.
Dosimetry in nuclear medicine therapy: radiobiology application and results.
Strigari, L; Benassi, M; Chiesa, C; Cremonesi, M; Bodei, L; D'Andrea, M
2011-04-01
The linear quadratic model (LQM) has largely been used to assess the radiobiological damage to tissue by external beam fractionated radiotherapy and more recently has been extended to encompass a general continuous time varying dose rate protocol such as targeted radionuclide therapy (TRT). In this review, we provide the basic aspects of radiobiology, from a theoretical point of view, starting from the "four Rs" of radiobiology and introducing the biologically effective doses, which may be used to quantify the impact of a treatment on both tumors and normal tissues. We also present the main parameters required in the LQM, and illustrate the main models of tumor control probability and normal tissue complication probability and summarize the main dose-effect responses, reported in literature, which demonstrate the tentative link between targeted radiotherapy doses and those used in conventional radiotherapy. A better understanding of the radiobiology and mechanisms of action of TRT could contribute to describe the clinical data and guide the development of future compounds and the designing of prospective clinical trials.
Combined laser and photodynamic treatment in extensive purulent wounds
NASA Astrophysics Data System (ADS)
Solovieva, A. B.; Tolstih, P. I.; Melik-Nubarov, N. S.; Zhientaev, T. M.; Kuleshov, I. G.; Glagolev, N. N.; Ivanov, A. V.; Karahanov, G. I.; Tolstih, M. P.; Timashev, P. S.
2010-05-01
Recently, photodynamic therapy (PDT) has been used for the treatment of festering wounds and trophic ulcers. An important advantage of PDT is its ability to affect bacterial cultures that are resistant to antibiotics. However the use of PDT alone does not usually guarantee a stable antiseptic effect and cannot prevent an external infection of wounds and burns. In this work attention is focused on the healing of the extensive soft tissues wounds with combined laser therapy (LT) and PDT treatment. At the first stage of this process festering tissues (for example spacious purulent wounds with area more than 100 cm2) were illuminated with high-energy laser beam (with power 20 W) in continues routine. The second stage involves “softer” PDT affect, which along with the completion stages of destruction pathological cells, stimulating the process of wound granulation and epithelization. Also, according to our previous results, photosensitizer (photoditazin) is introduced inside the wound with different amphiphilic polymers for increasing the PDT efficacy.
Potential proton beam therapy for recurrent endometrial cancer in the vagina.
Yanazume, Shintaro; Arimura, Takeshi; Kobayashi, Hiroaki; Douchi, Tsutomu
2015-05-01
Proton beam radiotherapy mainly has been used in the gynecological field in patients with cervical cancer. The efficacy of proton beam therapy in patients with recurrent endometrial cancer has not yet been determined. A 77-year-old endometrial cancer patient presented with recurrence in the vagina without distant metastasis following hysterectomy. A hard mass measuring 6 cm originated from the apex of the vagina, surrounded the vaginal cavity, and infiltrated the proximal and distal vagina. The patient received proton beam radiotherapy using a less invasive particle treatment system while minimizing the dose to the surrounding normal tissues. The dose to the planning target volume was 74 Gy (relative biological effectiveness) with 37 fractions. The patient was treated with 150-210-MeV proton beams for 53 days. Proton beam therapy led to the disappearance of tumors without any complications except for grade 1 cystitis although evidence of further complications is not available past our 6-month follow-up period. Proton beam therapy may become a useful treatment modality for recurrent endometrial cancer as well as cervical uterine cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romesser, Paul B.; Cahlon, Oren; ProCure Proton Therapy Center, Somerset, New Jersey
Purpose: Reirradiation therapy (re-RT) is the only potentially curative treatment option for patients with locally recurrent head and neck cancer (HNC). Given the significant morbidity with head and neck re-RT, interest in proton beam radiation therapy (PBRT) has increased. We report the first multi-institutional clinical experience using curative-intent PBRT for re-RT in recurrent HNC. Methods and Materials: A retrospective analysis of ongoing prospective data registries from 2 hybrid community practice and academic proton centers was conducted. Patients with recurrent HNC who underwent at least 1 prior course of definitive-intent external beam radiation therapy (RT) were included. Acute and late toxicitiesmore » were assessed with the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0 and the Radiation Therapy Oncology Group late radiation morbidity scoring system, respectively. The cumulative incidence of locoregional failure was calculated with death as a competing risk. The actuarial 12-month freedom–from–distant metastasis and overall survival rates were calculated with the Kaplan-Meier method. Results: Ninety-two consecutive patients were treated with curative-intent re-RT with PBRT between 2011 and 2014. Median follow-up among surviving patients was 13.3 months and among all patients was 10.4 months. The median time between last RT and PBRT was 34.4 months. There were 76 patients with 1 prior RT course and 16 with 2 or more courses. The median PBRT dose was 60.6 Gy (relative biological effectiveness, [RBE]). Eighty-five percent of patients underwent prior HNC RT for an oropharynx primary, and 39% underwent salvage surgery before re-RT. The cumulative incidence of locoregional failure at 12 months, with death as a competing risk, was 25.1%. The actuarial 12-month freedom–from–distant metastasis and overall survival rates were 84.0% and 65.2%, respectively. Acute toxicities of grade 3 or greater included mucositis (9.9%), dysphagia (9.1%), esophagitis (9.1%), and dermatitis (3.3%). There was 1 death during PBRT due to disease progression. Grade 3 or greater late skin and dysphagia toxicities were noted in 6 patients (8.7%) and 4 patients (7.1%), respectively. Two patients had grade 5 toxicity due to treatment-related bleeding. Conclusions: Proton beam re-RT of the head and neck can provide effective tumor control with acceptable acute and late toxicity profiles likely because of the decreased dose to the surrounding normal, albeit previously irradiated, tissue, although longer follow-up is needed to confirm these findings.« less
Method for energy recovery of spent ERL beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marhauser, Frank; Hannon, Fay; Rimmer, Robert
A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.
Prefabricated Roof Beams for Hardened Shelters
1993-08-01
beam with a composite concrete slab. Based on the results of the concept evaluation, a test program was designed and conducted to validate the steel...ultimaw, strength. The results of these tests showed that the design procedure accurately predicts the response of the ste,-confined concrete composite...BENDING OF EXTERNALLY REINFORCED CONCRETE BEAMS ........ 67 TABLE 9. SINGLE POINT LOAD BEAM TEST RESULTS
Perspectives of the Pixel Detector Timepix for Needs of Ion Beam Therapy
NASA Astrophysics Data System (ADS)
Martišíková, M.; Hartmann, B.; Jäkel, O.; Granja, C.; Jakubek, J.
2012-08-01
Radiation therapy with ion beams is a highly precise kind of cancer treatment. In ion beam therapy the finite range of the ion beams in tissue and the increase of ionization density at the end of their path, the Bragg-peak, are exploited. Ions heavier than protons offer in addition increased biological effectiveness and decreased scattering. In this contribution we discuss the potential of a quantum counting and position sensitive semiconductor detector Timepix for its applications in ion beam therapy measurements. It provides high sensitivity and high spatial resolution (pixel pitch 55 μm). The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). An integrated USB-based readout interface together with the Pixelman software enable registering single particles online with 2D-track visualization. The experiments were performed at the Heidelberg Ion Beam Therapy Center (HIT), which is a modern ion beam therapy facility. Patient treatments are performed with proton and carbon ions, which are accelerated by a synchrotron. For dose delivery to the patient an active technique is used: narrow pencil-like beams are scanned over the target volume. The possibility to use the detector for two different applications was investigated: ion spectroscopy and beam delivery monitoring by measurement of secondary charged particles around the patient. During carbon ion therapy, a variety of ion species is created by nuclear fragmentation processes of the primary beam. Since they differ in their biological effectiveness, it is of large interest to measure the ion spectra created under different conditions and to visualize their spatial distribution. The possibility of measurements of ion energy loss in silicon makes Timepix a promising detector for ion-spectroscopic studies in patient-like phantoms. Unpredictable changes in the patient can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. In order to overcome the limitations of the currently used PET technique, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. It was demonstrated that the Timepix detector is able to resolve and visualize this emerging radiation. The investigated dependence of the signal on the beam energy between 89 and 430 MeV/u shows that for all the investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal was moreover correlated with that of the incoming beam. This shows that we register products of prompt processes, which are less likely to be influenced by biological washout processes than the signal registered by the PET techniques coming from decays of beam-induced radioactive nuclei. The studies discussed in this contribution demonstrate that the Timepix detector provides measurements attractive for needs of ion beam therapy. To fully exploit its capabilities further research is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentefour, El H; Lu, H
Purpose: We conducted a retrospective study of the useful clinical proton beam energy based on the beam range data of patients treated over the last 10 years at Massachusetts General Hospital Proton Therapy Center. Methods: Treatment field information were collected for all patients treated over the last 10 years (2005–2015) in the two gantry treatment rooms at MGH. The beam ranges for these fields were retrieved and categorized per treatment site. The 10 prostate patients that required the highest beam range (lateral fields) were selected. For these patients, anterior oblique beams (30–40 degrees) were simulated in a planning system tomore » obtain the required beam ranges including the margins for potential range uncertainties. Results: There were a total of 4033 patients, treated with combined total of 23603 fields. All treatment indications were considered with the exception of ocular tumors generally treated in a fixed beam room. For all non-prostate treatments (21811 fields), only 5 fields for 4 patients (1-pancreas, 1-lumbar chordoma, 2-spine mets) required beam range greater than 25 cm. There were 446 prostate patients (1792 fields), with the required beam range from 22.3 to 29.0 cm; 386 of them had at least one of their lateral beam range greater than 25 cm. For the 10 prostate patients with highest lateral beam ranges (26 to 29 cm), their treatment with anterior oblique beams would drop the beam ranges below 25 cm (17.3 to 18.5 cm). Conclusion: if prostate patients are treated with anterior fields only, the useful maximum beam range is reduced to 25 cm. Thus a proton therapy system with maximum beam energy of 196 MeV is sufficient to treat all tumors sites with very rare exceptions (<0.1%). Designing such PT system would reduce the cost of proton therapy for hospitals and patients and increase the accessibility to the treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Masaharu; Miyanaga, Naoto; Tokuuye, Koichi
Purpose: To present outcomes of bladder-preserving therapy with proton beam irradiation in patients with invasive bladder cancer. Methods and Materials: Twenty-five patients with transitional cell carcinoma of the urinary bladder, cT2-3N0M0, underwent transurethral resection of bladder tumor(s), followed by pelvic X-ray irradiation combined with intra-arterial chemotherapy with methotrexate and cisplatin. Upon completion of these treatments, patients were evaluated by transurethral resection biopsy. Patients with no residual tumor received proton irradiation boost to the primary sites, whereas patients demonstrating residual tumors underwent radical cystectomy. Results: Of 25 patients, 23 (92%) were free of residual tumor at the time of re-evaluation; consequently,more » proton beam therapy was applied. The remaining 2 patients presenting with residual tumors underwent radical cystectomy. Of the 23 patients treated with proton beam therapy, 9 experienced recurrence at the median follow-up time of 4.8 years: local recurrences and distant metastases in 6 and 2 patients, respectively, and both situations in 1. The 5-year overall, disease-free, and cause-specific survival rates were 60%, 50%, and 80%, respectively. The 5-year local control and bladder-preservation rates were 73% and 96%, respectively, in the patients treated with proton beam therapy. Therapy-related toxicities of Grade 3-4 were observed in 9 patients: hematologic toxicities in 6, pulmonary thrombosis in 1, and hemorrhagic cystitis in 2. Conclusions: The present bladder-preserving regimen for invasive bladder cancer was feasible and effective. Proton beam therapy might improve local control and facilitate bladder preservation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G; Muir, B; Culberson, W
Purpose: The working group on the review and extension of the TG-51 protocol (WGTG51) collected data from American Association of Physicists in Medicine (AAPM) members with respect to their current TG-51 and associated addendum usage in the interest of considering future protocol addenda and guidance on reference dosimetry best practices. This study reports an overview of this survey on dosimetry of external beams. Methods: Fourteen survey questions were developed by WGTG51 and released in November 2015. The questions collected information on reference dosimetry, beam quality specification, and ancillary calibration equipment. Results: Of the 190 submissions completed worldwide (U.S. 70%), 83%more » were AAPM members. Of the respondents, 33.5% implemented the TG-51 addendum, with the maximum calibration difference for any photon beam, with respect to the original TG-51 protocol, being <1% for 97.4% of responses. One major finding is that 81.8% of respondents used the same cylindrical ionization chamber for photon and electron dosimetry, implying that many clinics are foregoing the use of parallel-plate chambers. Other evidence suggests equivalent dosimetric results can be obtained with both cylindrical and parallel-plate chambers in electron beams. This, combined with users comfort with cylindrical chambers for electrons will likely impact recommendations put forward in an upcoming electron beam addendum to the TG-51 protocol. Data collected on ancillary equipment showed 58.2% (45.0%) of the thermometers (barometers) in use for beam calibration had NIST traceable calibration certificates, but 48.4% (42.7%) were never recalibrated. Conclusion: This survey provides a snapshot of TG-51 external beam reference dosimetry practice in radiotherapy centers. Findings demonstrate the rapid take-up of the TG-51 photon beam addendum and raise issues for the WGTG51 to focus on going forward, including guidelines on ancillary equipment and the choice of chamber for electron beam dosimetry.« less
Neoadjuvant radiotherapeutic strategies in pancreatic cancer
Roeder, Falk
2016-01-01
This review summarizes the current status of neoadjuvant radiation approaches in the treatment of pancreatic cancer, including a description of modern radiation techniques, and an overview on the literature regarding neoadjuvant radio- or radiochemotherapeutic strategies both for resectable and irresectable pancreatic cancer. Neoadjuvant chemoradiation for locally-advanced, primarily non- or borderline resectable pancreas cancer results in secondary resectability in a substantial proportion of patients with consecutively markedly improved overall prognosis and should be considered as possible alternative in pretreatment multidisciplinary evaluations. In resectable pancreatic cancer, outstanding results in terms of response, local control and overall survival have been observed with neoadjuvant radio- or radiochemotherapy in several phase I/II trials, which justify further evaluation of this strategy. Further investigation of neoadjuvant chemoradiation strategies should be performed preferentially in randomized trials in order to improve comparability of the current results with other treatment modalities. This should include the evaluation of optimal sequencing with newer and more potent systemic induction therapy approaches. Advances in patient selection based on new molecular markers might be of crucial interest in this context. Finally modern external beam radiation techniques (intensity-modulated radiation therapy, image-guided radiation therapy and stereotactic body radiation therapy), new radiation qualities (protons, heavy ions) or combinations with alternative boosting techniques widen the therapeutic window and contribute to the reduction of toxicity. PMID:26909133
Zhu, Z; Zhang, J; Liu, Y; Chen, M; Guo, P; Li, K
2014-01-01
Background: Many radiation regimens for treating prostate cancer have been used over the years, but which regimen is optimal for localised or locally advanced prostate cancer lacks consensus. We performed a network meta-analysis to identify the optimal radiation regimen. Methods: We systematically reviewed data from 27 randomised controlled trials and could group seven radiation regimens as follows: low- and high-dose radiation therapy (LDRT and HDRT), LDRT+ short- or long-term androgen deprivation therapy (LDRT+SADT and LDRT+LADT), HDRT+SADT, hypofractionated radiotherapy (HFRT), and HFRT+SADT. The main outcomes were overall mortality (OM), prostate-specific antigen (PSA) failure, cancer-specific mortality, and adverse events. Results: For the network meta-analysis of 27 trials, LDRT+LADT and LDRT+SADT were associated with decreased risk of OM as compared with LDRT alone as was LDRT+LADT compared with HDRT. Apart from HFRT, all other treatments were associated with decreased risk of PSA failure as compared with LDRT. HFRT+SADT was associated with decreased risk of cancer-specific mortality as compared with HFRT, LDRT+SADT, HDRT, and LDRT. Conclusions: HFRT+SADT therapy might be the most efficacious treatment but with worst toxicity for localised or locally advanced prostate cancer, and HDRT showed excellent efficacy but more adverse events. PMID:24736585
Methods for implementing microbeam radiation therapy
Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.
2007-03-20
A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho
Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less
Beyond Gaussians: a study of single spot modeling for scanning proton dose calculation
Li, Yupeng; Zhu, Ronald X.; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong
2013-01-01
Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field-size effects on dose output. In the present study, we developed a pencil-beam algorithm for scanning-proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil-beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field-size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy. PMID:22297324
NASA Astrophysics Data System (ADS)
Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.
2016-05-01
Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Shingo, E-mail: s_kato@saitama-med.ac.jp; National Institute of Radiological Sciences of Japan, Chiba; Ohno, Tatsuya
2013-09-01
Purpose: To report the long-term survival and toxicity of a multi-institutional phase 2 study of concurrent chemoradiation therapy (CCRT) for locally advanced cervical cancer in east and southeast Asia. Methods and Materials: Ten institutions from 8 Asian countries participated in the study. Between April 2003 and March 2006, 120 patients (60 with bulky stage IIB and 60 with stage IIIB) were treated with CCRT. Radiation therapy consisted of pelvic external beam radiation therapy and either high-dose-rate or low-dose-rate intracavitary brachytherapy. Five cycles of weekly cisplatin (40 mg/m{sup 2}) were administered during the course of radiation therapy. Treatment results were evaluatedmore » by the rates of local control, overall survival, and late toxicities. Results: Median follow-up was 63.7 months, and the follow-up rate at 5 years was 98%. The 5-year local control and overall survival rates for all patients were 76.8% and 55.1%, respectively. The 5-year rates of major late toxicities of the rectum and bladder were 7.9% and 0%, respectively. Conclusions: The long-term results have suggested that CCRT is safe and effective for patients with locally advanced cervical cancer in east and southeast Asia. However, further efforts are needed to improve overall survival.« less
Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy
NASA Astrophysics Data System (ADS)
Bednarz, Bryan; Besemer, Abigail
2017-09-01
The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.
Urethroplasty After Radiation Therapy for Prostate Cancer
Glass, Allison S.; McAninch, Jack W.; Zaid, Uwais B.; Cinman, Nadya M.; Breyer, Benjamin N.
2013-01-01
OBJECTIVE To report urethroplasty outcomes in men who developed urethral stricture after undergoing radiation therapy for prostate cancer. METHODS Our urethroplasty database was reviewed for cases of urethral stricture after radiation therapy for prostate cancer between June 2004 and May 2010. Patient demographics, prostate cancer therapy type, stricture length and location, and type of urethroplasty were obtained. All patients received clinical evaluation, including imaging studies post procedure. Treatment success was defined as no need for repeat surgical intervention. RESULTS Twenty-nine patients underwent urethroplasty for radiation-induced stricture. Previous radiation therapy included external beam radiotherapy (EBRT), radical prostatectomy (RP)/EBRT, EBRT/brachytherapy (BT) and BT alone in 11 (38%), 7 (24%), 7 (24%), and 4 (14%) patients, respectively. Mean age was 69 (±6.9) years. Mean stricture length was 2.6 (±1.6) cm. Anastomotic urethroplasty was performed in 76% patients, buccal mucosal graft in 17%, and perineal flap repair in 7%. Stricture was localized to bulbar urethra in 12 (41%), membranous in 12 (41%), vesicourethra in 3 (10%), and pan-urethral in 2 (7%) patients. Overall success rate was 90%. Median follow-up was 40 months (range 12-83). Time to recurrence ranged from 6-16 months. CONCLUSION Multiple forms of urethroplasty appear to be viable options in treating radiation-induced urethral stricture. Future studies are needed to examine the durability of repairs. PMID:22521189
WE-D-BRB-00: Basics of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth
2018-05-10
The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Design concept for improved photo-scan tube
NASA Technical Reports Server (NTRS)
Malling, L. R.
1967-01-01
Conceptual photo-scan tube avoids complexity of internal beam scanning and beam-current adjustment by optical scan readout. It differs from a conventional image orthicon in its use of an external oscilloscope tube.
Dynamic assessment of reinforced concrete beams repaired with externally bonded FRP sheets
NASA Astrophysics Data System (ADS)
Bonfiglioli, B.; Pascale, G.
2006-01-01
This research deals with RC beams strengthened with FRP. An experimental research is presented which is aimed at evaluating the capability of an experimental modal analysis to assess the stiffness decrease due to damage, as well as the stiffness recovery due to strengthening. Ten beams were tested. All of them were subjected to loading cycles with increasing load levels in order to induce cracking of different severity in them. The beams were then retrofitted by externally bonded FRP sheets. Three types of composites were used. The number of layers was varied, too. Modal tests were carried out after each loading-unloading cycle. The modal frequencies and damping ratios were determined for the first four vibration modes. The results obtained indicate that an experimental modal analysis can give useful information on the severity of damage and the effectiveness of strengthening.
Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter
2010-06-21
Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.
Truong, Pauline T; Berthelet, Eric; Lee, Junella C; Petersen, Ross; Lim, Jan T W; Gaul, Catherine A; Pai, Howard; Blood, Paul; Ludgate, Charles M
2006-06-01
To prospectively evaluate the prevalence and severity of fatigue and its impact on quality of life (QOL) during and after radical external beam radiotherapy (RT) for prostate cancer. Twenty-eight men with prostate cancer undergoing RT over 6-8 consecutive weeks were prospectively accrued. The Brief Fatigue Inventory (BFI), a validated fatigue assessment tool, was administered at five time points: baseline (week 1), middle of RT (week 3-4), end of RT (last week of RT), and follow-up (median 6.5 weeks after RT). The BFI contained nine questions, each using 0-10 ratings to quantify fatigue severity and interference with six QOL domains. The prevalence of moderate-severe fatigue was plotted as a function of time. Mean sum and subscale scores at each time point were compared to baseline scores using Wilcoxon tests. Linear regression analyses were performed to assess associations between fatigue scores and age, tumor and treatment characteristics. The median age was 69 years (range 57-84), Gleason score 7 (range 6-10), and presenting PSA 9.0 ng/mL (range 2.5 ng/mL-103.0 ng/mL). Patients were treated once daily to a median dose of 74 Gy (range 60 Gy-78 Gy) over a median of 37 fractions (range 30-39). Hormone therapy was used in all patients (median duration 12.2 months). The prevalence of moderate-severe present fatigue increased from 7% at baseline to 8% at mid-RT and 32% at RT completion. Compared to baseline (mean score 11.5), fatigue increased significantly mid-RT (mean score 14.6, p = 0.03) and peaked at the end of RT (mean score 23.5, p = 0.001). Fatigue significantly interfered with walking ability, normal work, daily chores, and enjoyment of life only at the end of RT. After RT completion, fatigue improved but remained higher compared to baseline at 6.5 weeks of follow-up (mean score 15.0, p = 0.02). On linear regression analysis, age, Gleason score, PSA, T-stage, hormone therapy duration, RT dose and fractions were not significantly associated with mean fatigue scores. Patients undergoing 6-8 weeks of RT experienced significant fatigue adversely affecting QOL persisting after therapy completion. Since walking ability was not affected until the end of RT, a walking exercise intervention to combat fatigue is likely feasible and is being investigated.
Di Franco, Rossella; Calvanese, MariaGrazia; Murino, Paola; Manzo, Roberto; Guida, Cesare; Di Gennaro, Davide; Anania, Caterina; Ravo, Vincenzo
2012-01-30
This is an observational study and the aim is to evaluate the effect of dietary supplements based on Resveratrol, Lycopene, Vitamin C and Anthocyanins (Ixor®) in reducing skin toxicity due to external beam radiotherapy in patients affected by breast cancer. 71 patients were enrolled and they were divided in two different groups: a control group (CG) of 41 patients treated with prophylactic topical therapy based on hyaluronic acid and topical steroid therapy in case of occurrence of radiodermatitis, and a Ixor-Group (IG) of 30 patients treated also with an oral therapy based on Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor®) at a dose of 2 tablets/day, starting from 10 days before the radiation treatment until 10 days after the end of treatment. Skin toxicity has been related to PTV, to breast volume that received a radiation dose equal or lower than 107%, included between 107% and 110%, or greater than 110% of the prescribed dose. Moreover it's been studied the relationship between skin toxicity and the chemotherapy schedule used before treatment. We calculated in both groups the percentage of patients who had a skin toxicity of grade 2 or 3 (according to RTOG scale). Absolute risk reduction (ARR), relative risk (RR) and odds ratio (OR) have been calculated for each relationship. Control Group (CG) patients with a PTV > 500 ml presented skin toxicity G2 + G3 in 30% of cases, versus 25% of Ixor-Group (IG) [OR 0.77]. In patients with a PTV < 500 ml G2 + G3 toxicity was 0% in the IG compared to 18% in CG (OR 0.23). When Dmax was less than or equal to 107% of the prescribed dose skin toxicity was G2 + G3 in 12.5% in CG, versus 0% in IG (OR 0.73), instead when Dmax was included between 107 and 110% of the prescribed dose, G2 + G3 skin toxicity was 35% in CG and 21% in IG (OR 0.50). In patients undergoing chemotherapy with anthracyclines and taxanes, G2 + G3 toxicity was 27% in CG, against 20% in IG (OR 0.68). The protective effect of Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor®) is more detected in patients with PTV < 500 ml, when Dmax reaches values lower or equal to 107%, but not exceeding 110% of the prescribed dose, and in patients undergoing adjuvant chemotherapy with anthracyclines and taxanes.
Feng, Li Rebekah; Wolff, Brian S.; Lukkahatai, Nada; Espina, Alexandra; Saligan, Leorey N.
2016-01-01
Background Fatigue is one of the most debilitating side effects of cancer therapy. Identifying biomarkers early during cancer therapy may help us understand the biologic underpinnings of the persistence of fatigue following therapy. Objective We aimed to identify early biomarkers of fatigue by examining correlations of levels of cytokines during external beam radiation therapy (EBRT) with persistence of fatigue one year following treatment completion in men with non-metastatic prostate cancer (NM-PC). Methods A sample of 34 men with NM-PC scheduled to receive EBRT were followed at baseline (T1), midpoint of EBRT (T2), and one year following EBRT (T3). Demographic and clinical data were obtained by chart review. The Functional Assessment of Cancer Therapy-Fatigue (FACT-F) was administered to measure fatigue levels. Plasma cytokine levels were determined at T1 and T2 using the Bio-Rad Bio-Plex Cytokine Assay Kits. Results Significant correlations were observed between levels of IL-3, IL-8, IL-9, IL-10, IL-16, IP10, IFNα2, IFNγ, and SDF1α at T2 with worsening of fatigue from T1 to T3. Conclusions Immunological changes prior to chronic fatigue development may reflect the long term response to radiation therapy-induced damage. Implications for Practice Early biomarkers for chronic fatigue related to cancer therapy will help advance our understanding of the etiology of this distressing symptom and will help nurses identify patients at risk for developing chronic fatigue after cancer treatment. This information will also aide in patient education, as well as symptom management. PMID:27105468
A 32-channel front-end ASIC for GEM detectors used in beam monitoring applications
NASA Astrophysics Data System (ADS)
Ciciriello, F.; Altieri, P. R.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Lorusso, L.; Marzocca, C.; Matarrese, G.; Ranieri, A.; Stamerra, A.
2017-11-01
A multichannel, mixed-signal, front-end ASIC for GEM detectors, intended for beam monitoring in hadron therapy applications, has been designed and prototyped in a standard 0.35 μm CMOS technology. The analog channels are based on the classic CSA + shaper processing chain, followed by a peak detector which can work as an analog memory, to simplifiy the analog-to-digital conversion of the peak voltage of the output pulse, proportional to the energy of the detected event. The available hardware resources include an 8-bit A/D converter and a standard-cell digital part, which manages the read-out procedure, in sparse or serial mode. The ASIC is self-triggered and transfers energy and address data to the external DAQ via a fast 100 MHz LVDS link. Preliminary characterization results show that the non-linearity error is limited to 5% for a maximum input charge of about 70 fC, the measured ENC is about 1400e- and the time jitter of the trigger signal generated in response to an injected charge of 60 fC is close to 200 ps.
Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications.
Torres-Xirau, I; Olaciregui-Ruiz, I; Baldvinsson, G; Mijnheer, B J; van der Heide, U A; Mans, A
2018-01-09
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.
Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications
NASA Astrophysics Data System (ADS)
Torres-Xirau, I.; Olaciregui-Ruiz, I.; Baldvinsson, G.; Mijnheer, B. J.; van der Heide, U. A.; Mans, A.
2018-01-01
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.
Interactive X-ray and proton therapy training and simulation.
Hamza-Lup, Felix G; Farrar, Shane; Leon, Erik
2015-10-01
External beam X-ray therapy (XRT) and proton therapy (PT) are effective and widely accepted forms of treatment for many types of cancer. However, the procedures require extensive computerized planning. Current planning systems for both XRT and PT have insufficient visual aid to combine real patient data with the treatment device geometry to account for unforeseen collisions among system components and the patient. The 3D surface representation (S-rep) is a widely used scheme to create 3D models of physical objects. 3D S-reps have been successfully used in CAD/CAM and, in conjunction with texture mapping, in the modern gaming industry to customize avatars and improve the gaming realism and sense of presence. We are proposing a cost-effective method to extract patient-specific S-reps in real time and combine them with the treatment system geometry to provide a comprehensive simulation of the XRT/PT treatment room. The X3D standard is used to implement and deploy the simulator on the web, enabling its use not only for remote specialists' collaboration, simulation, and training, but also for patient education. An objective assessment of the accuracy of the S-reps obtained proves the potential of the simulator for clinical use.
The role of external beam radiotherapy in the treatment of hepatocellular cancer.
Chino, Fumiko; Stephens, Sarah Jo; Choi, Steve S; Marin, Daniele; Kim, Charles Y; Morse, Michael A; Godfrey, Devon J; Czito, Brian G; Willett, Christopher G; Palta, Manisha
2018-04-12
Hepatocellular carcinoma (HCC) is increasing in incidence and mortality. Although the prognosis remains poor, long-term survival has improved from 3% in 1970 to an 18% 5-year survival rate today. This is likely because of the introduction of well tolerated, oral antiviral therapies for hepatitis C. Curative options for patients with HCC are often limited by underlying liver dysfunction/cirrhosis and medical comorbidities. Less than one-third of patients are candidates for surgery, which is the current gold standard for cure. Nonsurgical treatments include embolotherapies, percutaneous ablation, and ablative radiation. Technological advances in radiation delivery in the past several decades now allow for safe and effective ablative doses to the liver. Conformal techniques allow for both dose escalation to target volumes and normal tissue sparing. Multiple retrospective and prospective studies have demonstrated that hypofractionated image-guided radiation therapy, used as monotherapy or in combination with other liver-directed therapies, can provide excellent local control that is cost effective. Therefore, as the HCC treatment paradigm continues to evolve, ablative radiation treatment has moved from a palliative treatment to both a "bridge to transplant" and a definitive treatment. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
Inflammatory bowel diseases activity in patients undergoing pelvic radiation therapy.
Annede, Pierre; Seisen, Thomas; Klotz, Caroline; Mazeron, Renaud; Maroun, Pierre; Petit, Claire; Deutsch, Eric; Bossi, Alberto; Haie-Meder, Christine; Chargari, Cyrus; Blanchard, Pierre
2017-02-01
Few studies with contradictory results have been published on the safety of pelvic radiation therapy (RT) in patients with inflammatory bowel disease (IBD). From 1989 to 2015, a single center retrospective analysis was performed including all IBD patients who received pelvic external beam radiation therapy (EBRT) or brachytherapy (BT) for a pelvic malignancy. Treatment characteristics, IBD activity and gastrointestinal (GI) toxicity were examined. Overall, 28 patients with Crohn's disease (CD) (n=13) or ulcerative colitis (n=15) were included in the present study. Median follow-up time after irradiation was 5.9 years. Regarding IBD activity, only one and two patients experienced a severe episode within and after 6 months of follow-up, respectively. Grade 3/4 acute GI toxicity occurred in 3 (11%) patients, whereas one (3.6%) patient experienced late grade 3/4 GI toxicity. Only patients with rectal IBD location (P=0.016) or low body mass index (BMI) (P=0.012) experienced more severe IBD activity within or after 6 months following RT, respectively. We report an acceptable tolerance of RT in IBD patients with pelvic malignancies. Specifically, a low risk of uncontrolled flare-up was observed.
Garcia, P A; Pancotto, T; Rossmeisl, J H; Henao-Guerrero, N; Gustafson, N R; Daniel, G B; Robertson, J L; Ellis, T L; Davalos, R V
2011-02-01
Non-thermal irreversible electroporation (N-TIRE) has shown promise as an ablative therapy for a variety of soft-tissue neoplasms. Here we describe the therapeutic planning aspects and first clinical application of N-TIRE for the treatment of an inoperable, spontaneous malignant intracranial glioma in a canine patient. The N-TIRE ablation was performed safely, effectively reduced the tumor volume and associated intracranial hypertension, and provided sufficient improvement in neurological function of the patient to safely undergo adjunctive fractionated radiotherapy (RT) according to current standards of care. Complete remission was achieved based on serial magnetic resonance imaging examinations of the brain, although progressive radiation encephalopathy resulted in the death of the dog 149 days after N-TIRE therapy. The length of survival of this patient was comparable to dogs with intracranial tumors treated via standard excisional surgery and adjunctive fractionated external beam RT. Our results illustrate the potential benefits of N-TIRE for in vivo ablation of undesirable brain tissue, especially when traditional methods of cytoreductive surgery are not possible or ideal, and highlight the potential radiosensitizing effects of N-TIRE on the brain.
Garcia, P. A.; Pancotto, T.; Rossmeisl, J. H.; Henao-Guerrero, N.; Gustafson, N. R.; Daniel, G. B.; Robertson, J. L.; Ellis, T. L.; Davalos, R. V.
2011-01-01
Non-thermal irreversible electroporation (N-TIRE) has shown promise as an ablative therapy for a variety of soft-tissue neoplasms. Here we describe the therapeutic planning aspects and first clinical application of N-TIRE for the treatment of an inoperable, spontaneous malignant intracranial glioma in a canine patient. The N-TIRE ablation was performed safely, effectively reduced the tumor volume and associated intracranial hypertension, and provided sufficient improvement in neurological function of the patient to safely undergo adjunctive fractionated radiotherapy (RT) according to current standards of care. Complete remission was achieved based on serial magnetic resonance imaging examinations of the brain, although progressive radiation encephalopathy resulted in the death of the dog 149 days after N-TIRE therapy. The length of survival of this patient was comparable to dogs with intracranial tumors treated via standard excisional surgery and adjunctive fractionated external beam RT. Our results illustrate the potential benefits of N-TIRE for in vivo ablation of undesirable brain tissue, especially when traditional methods of cytoreductive surgery are not possible or ideal, and highlight the potential radiosensitizing effects of N-TIRE on the brain. PMID:21214290
State of the art of palliative therapy.
Seregni, E; Padovano, B; Coliva, A; Zecca, E; Bombardieri, E
2011-08-01
Bone pain in advanced stages of cancer significantly decreases the patient's quality of life having a great impact on physical, physiological and social functioning. About 65% of patients with prostate or breast cancer will experience symptomatic skeletal metastases. Bone pain sustained by osseous metastases represents the most frequent kind of pain and its clinical presentation and characteristics differ from other type of neoplastic pain (i.e., neuropathic or visceral ones). Pathophysiology of bone pain is not yet completely understood but a general mechanism including infiltration of bone tissue associated with osteolysis and release of biological active molecules able to stimulate peripheral nervous terminals, seems to be principally involved. In oncological practice, painful skeletal metastases are managed by different multidisciplinary modalities which include the use of systemic analgesics (i.e., bisphosphonates), antineoplastic agents (i.e., hormones and chemotherapeutics), external beam radiotherapy, interventional radiology and radiopharmaceuticals. In this review we will discuss the state of the art of palliative therapy of bone pain with particular emphasis to the current approved radiopharmaceuticals, focusing on indications, patient selection, efficacy and toxicity. Some remarks on new or under developing strategies in systemic metabolic radiopharmaceutical therapy will be reported.
2014-10-01
Long Bone Fracture: Influence of Method of Repair and External Beam Irradiation on the Pathway and Efficacy of Fracture Healing 5a. CONTRACT NUMBER...in the fifth quarter of the award. 15. SUBJECT TERMS Fracture healing , bone healing , endochondral ossification, intramembranous ossification...of radiation on the two pathways of bone healing and propose an optimal method of surgical fracture repair for managing malignant osteoporotic
NASA Astrophysics Data System (ADS)
Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.
2017-07-01
Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.
High Contrast Internal and External Coronagraph Masks Produced by Various Techniques
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatha; Wilson, Daniel; White, Victor; Muller, Richard; Dickie, Matthew; Yee, Karl; Ruiz, Ronald; Shaklan, Stuart; Cady, Eric; Kern, Brian;
2013-01-01
Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on different architectures to suppress star light. Various fabrication technologies are required to address a wide range of needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further development is in progress to produce circular masks of various kinds for obscured aperture telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akou, H., E-mail: h.akou@nit.ac.ir; Hamedi, M.
2015-10-15
In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy throughmore » keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.« less
Gantries and dose delivery systems
NASA Astrophysics Data System (ADS)
Meer, David; Psoroulas, Serena
2015-06-01
Particle therapy is a field in remarkable development, with the goal of increasing the number of indications which could benefit from such treatments and the access to the therapy. The therapeutic usage of a particle beam defines the technical requirements of all the elements of the therapy chain: we summarize the main characteristics of accelerators, the beam line, the treatment room, the integrated therapy and imaging systems used in particle therapy. Aiming at a higher flexibility in the choice of treatments, an increasing number of centers around the world have chosen to equip their treatment rooms with gantries, rotating beam line structures that allow a complete flexibility in the choice of the treatment angle. We review the current designs. A particle therapy gantry though is a quite expensive structure, and future development will increasingly consider reducing the cost and the footprint. Increasing the number of indications also means development in the delivery techniques and solving some of the issues which traditionally affected particle therapy, for example the precision of the delivery in presence of motion and the large penumbras for low depths. We show the current strategies in these fields, focusing on pencil beam scanning (PBS), and give some hints about future developments.
Archer, James; Li, Enbang; Petasecca, Marco; Stevenson, Andrew; Livingstone, Jayde; Dipuglia, Andrew; Davis, Jeremy; Rosenfeld, Anatoly; Lerch, Michael
2018-05-01
Cancer is one of the leading causes of death worldwide. External beam radiation therapy is one of the most important modalities for the treatment of cancers. Synchrotron microbeam radiation therapy (MRT) is a novel pre-clinical therapy that uses highly spatially fractionated X-ray beams to target tumours, allowing doses much higher than conventional radiotherapies to be delivered. A dosimeter with a high spatial resolution is required to provide the appropriate quality assurance for MRT. This work presents a plastic scintillator fibre optic dosimeter with a one-dimensional spatial resolution of 20 µm, an improvement on the dosimeter with a resolution of 50 µm that was demonstrated in previous work. The ability of this probe to resolve microbeams of width 50 µm has been demonstrated. The major limitations of this method were identified, most notably the low-light signal resulting from the small sensitive volume, which made valley dose measurements very challenging. A titanium-based reflective paint was used as a coating on the probe to improve the light collection, but a possible effect of the high-Z material on the probes water-equivalence has been identified. The effect of the reflective paint was a 28.5 ± 4.6% increase in the total light collected; it did not affect the shape of the depth-dose profile, nor did it explain an over-response observed when used to probe at low depths, when compared with an ionization chamber. With improvements to the data acquisition, this probe design has the potential to provide a water-equivalent, inexpensive dosimetry tool for MRT.
Nano-scale processes behind ion-beam cancer therapy
NASA Astrophysics Data System (ADS)
Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.
2016-04-01
This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.
el-Akkad, S; Schultz, H P; Ahmad, K; Clubb, B; McArthur, P; Dobson, H; DeVol, E
1992-01-01
The King Faisal Specialist Hospital and Research Centre is the only center in the Middle East that incorporates a neutron therapy facility. The neutron beam is produced by a cyclotron, which produces a beam by either a (d(15)+Be) or (p(26)+Be) reaction. The beam from the proton reaction is selected for therapy because of its superior physical characteristics. These were verified by an intercomparison conducted by the European Organization for Research on Treatment of Cancer (EORTC) Heavy Particle Therapy Group. Full beam data are presented. The first study in the neutron therapy Program is on the treatment of squamous cancers of the head and neck. This consists of two parts. Part I is a dose searching phase and Part II is a comparison of our current photon treatment versus neutrons using the neutron dose selected by Part I of the study. Results of the dose searching phase (Part I) are presented.
Lifton, Joseph J; Malcolm, Andrew A; McBride, John W
2015-01-01
X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.
Shilkrut, Mark; Merrick, Gregory S; McLaughlin, P William; Stenmark, Matthew H; Abu-Isa, Eyad; Vance, Sean M; Sandler, Howard M; Feng, Felix Y; Hamstra, Daniel A
2013-02-01
The objective of this study was to determine whether the addition of low-dose-rate brachytherapy or androgen-deprivation therapy (ADT) improves clinical outcome in patients with high-risk prostate cancer (HiRPCa) who received dose-escalated radiotherapy (RT). Between 1995 and 2010, 958 patients with HiRPCa were treated at Schiffler Cancer Center (n = 484) or at the University of Michigan (n = 474) by receiving either dose-escalated external-beam RT (EBRT) (n = 510; minimum prescription dose, 75 grays [Gy]; median dose, 78 Gy) or combined-modality RT (CMRT) consisting of (103) Pd implants (n = 369) or (125) I implants (n = 79) both with pelvic irradiation (median prescription dose, 45 Gy). The cumulative incidences of biochemical failure (BF) and prostate cancer-specific mortality (PCSM) were estimated by using the Kaplan-Meier method and Fine and Gray regression analysis. The median follow-up was 63.2 months (interquartile range, 35.4-99.0 months), and 250 patients were followed for >8 years. Compared with CMRT, patients who received EBRT had higher prostate-specific antigen levels, higher tumor classification, lower Gleason sum, and more frequent receipt of ADT for a longer duration. The 8-year incidence BF and PCSM among patients who received EBRT was 40% (standard error, 38%-44%) and 13% (standard error, 11%-15%) compared with 14% (standard error, 12%-16%; P < .0001) and 7% (standard error 6%-9%; P = .003) among patients who received CMRT. On multivariate analysis, the hazard ratios (HRs) for BF and PCSM were 0.35 (95% confidence interval [CI], 0.23-0.52; P < .0001) and 0.41 (95% CI, 0.23-0.75; P < .003), favoring CMRT. Increasing duration of ADT predicted decreased BF (P = .04) and PCSM (P = .001), which was greatest with long-term ADT (BF: HR, 0.33; P < .0001; 95% CI, 0.21-0.52; PCSM: HR, 0.30; P = .001; 95% CI, 0.15-0.6) even in the subgroup that received CMRT. In this retrospective comparison, both low-dose-rate brachytherapy boost and ADT were associated with decreased risks of BF and PCSM compared with EBRT. Copyright © 2012 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, W. James, E-mail: jmorris@bccancer.bc.ca; BC Cancer Agency–Vancouver Centre, Vancouver, British Columbia; Tyldesley, Scott
Purpose: To report the primary endpoint of biochemical progression-free survival (b-PFS) and secondary survival endpoints from ASCENDE-RT, a randomized trial comparing 2 methods of dose escalation for intermediate- and high-risk prostate cancer. Methods and Materials: ASCENDE-RT enrolled 398 men, with a median age of 68 years; 69% (n=276) had high-risk disease. After stratification by risk group, the subjects were randomized to a standard arm with 12 months of androgen deprivation therapy, pelvic irradiation to 46 Gy, followed by a dose-escalated external beam radiation therapy (DE-EBRT) boost to 78 Gy, or an experimental arm that substituted a low-dose-rate prostate brachytherapy (LDR-PB) boost. Of the 398more » trial subjects, 200 were assigned to DE-EBRT boost and 198 to LDR-PB boost. The median follow-up was 6.5 years. Results: In an intent-to-treat analysis, men randomized to DE-EBRT were twice as likely to experience biochemical failure (multivariable analysis [MVA] hazard ratio [HR] 2.04; P=.004). The 5-, 7-, and 9-year Kaplan-Meier b-PFS estimates were 89%, 86%, and 83% for the LDR-PB boost versus 84%, 75%, and 62% for the DE-EBRT boost (log-rank P<.001). The LDR-PB boost benefited both intermediate- and high-risk patients. Because the b-PFS curves for the treatment arms diverge sharply after 4 years, the relative advantage of the LDR-PB should increase with longer follow-up. On MVA, the only variables correlated with reduced overall survival were age (MVA HR 1.06/y; P=.004) and biochemical failure (MVA HR 6.30; P<.001). Although biochemical failure was associated with increased mortality and randomization to DE-EBRT doubled the rate of biochemical failure, no significant overall survival difference was observed between the treatment arms (MVA HR 1.13; P=.62). Conclusions: Compared with 78 Gy EBRT, men randomized to the LDR-PB boost were twice as likely to be free of biochemical failure at a median follow-up of 6.5 years.« less
Warner, Andrew; Pickles, Tom; Crook, Juanita; Martin, Andre-Guy; Souhami, Luis; Catton, Charles; Lukka, Himu
2015-01-01
Purpose: Although several clinical nomograms predictive of biochemical failure-free survival (BFFS) for localized prostate cancer exist in the medical literature, making valid comparisons can be challenging due to variable definitions of biochemical failure, the disparate distribution of prognostic factors, and received treatments in patient populations. The aim of this investigation was to develop and validate clinically-based nomograms for 5-year BFFS using the ASTRO II “Phoenix” definition for two patient cohorts receiving low-dose rate (LDR) brachytherapy or conventionally fractionated external beam radiation therapy (EBRT) from a large Canadian multi-institutional database. Methods and Materials: Patients were selected from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk Stratification (ProCaRS) database if they received (1) LDR brachytherapy ≥ 144 Gy (n=4208) or (2) EBRT ≥ 70 Gy (n=822). Multivariable Cox regression analysis for BFFS was performed separately for each cohort and used to generate clinical nomograms predictive of 5-year BFFS. Nomograms were validated using calibration plots of nomogram predicted probability versus observed probability via Kaplan-Meier estimates. Results: Patients receiving LDR brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving EBRT had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10. Nomograms for 5-year BFFS included age, use and duration of androgen deprivation therapy (ADT), baseline PSA, T stage, and Gleason score for LDR brachytherapy and an ADT (months), baseline PSA, Gleason score, and biological effective dose (Gy) for EBRT. Conclusions: Clinical nomograms examining 5-year BFFS were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and may assist clinicians in predicting an outcome. Future work should be directed at examining the role of additional prognostic factors, comorbidities, and toxicity in predicting survival outcomes. PMID:26180700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodda, Sree; Tyldesley, Scott; Department of Surgery, University of British Columbia, Vancouver, British Columbia
Purpose: To report the genitourinary (GU) and gastrointestinal (GI) morbidity and erectile dysfunction in a randomized trial comparing 2 methods of dose escalation for high- and intermediate-risk prostate cancer. Methods and Materials: ASCENDE-RT (Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy) enrolled 398 men, median age 68 years, who were then randomized to either a standard arm that included 12 months of androgen deprivation therapy and pelvic irradiation to 46 Gy followed by a dose-escalated external beam radiation therapy (DE-EBRT) boost to 78 Gy, or an experimental arm that substituted a low-dose-rate prostate brachytherapy (LDR-PB) boost. At clinic visits, investigators recorded GUmore » and GI morbidity and information on urinary continence, catheter use, and erectile function. Exclusion of 15 who received nonprotocol treatment and correction of 14 crossover events left 195 men who actually received a DE-EBRT boost and 188, an LDR-PB boost. Median follow-up was 6.5 years. Results: The LDR-PB boost increased the risk of needing temporary catheterization and/or requiring incontinence pads. At 5 years the cumulative incidence of grade 3 GU events was 18.4% for LDR-PB, versus 5.2% for DE-EBRT (P<.001). Compared with the cumulative incidence, the 5-year prevalence of grade 3 GU morbidity was substantially lower for both arms (8.6% vs 2.2%, P=.058). The 5-year cumulative incidence of grade 3 GI events was 8.1% for LDR-PB, versus 3.2% for DE-EBRT (P=.124). The 5-year prevalence of grade 3 GI toxicity was lower than the cumulative incidence for both arms (1.0% vs 2.2%, respectively). Among men reporting adequate baseline erections, 45% of LDR-PB patients reported similar erectile function at 5 years, versus 37% after DE-EBRT (P=.30). Conclusions: The incidence of acute and late GU morbidity was higher after LDR-PB boost, and there was a nonsignificant trend for worse GI morbidity. No differences in the frequency of erectile dysfunction were observed.« less
Ecke, Thorsten H; Huang-Tiel, Hui-Juan; Golka, Klaus; Selinski, Silvia; Geis, Berit Christine; Koswig, Stephan; Bathe, Katrin; Hallmann, Steffen; Gerullis, Holger
2016-11-10
High-dose-rate brachytherapy (HDR-BT) with external beam radiation therapy (EBRT) is a common treatment option for locally advanced prostate cancer (PCa). Seventy-nine male patients (median age 71 years, range 50 to 79) with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval) with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA) value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index), Gleason score, D'Amico risk classification for PCa, digital rectal examination (DRE), PSA value after one/three/five year(s) follow-up (FU), time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis ( p = 0.009), PSA on date of first HDR-BT ( p = 0.033), and PSA on date of first follow-up after one year ( p = 0.025) have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov; Wong, Jeannette; Kleinerman, Ruth
Purpose: Radiation therapy (RT) techniques for prostate cancer are evolving rapidly, but the impact of these changes on risk of second cancers, which are an uncommon but serious consequence of RT, are uncertain. We conducted a comprehensive assessment of risks of second cancer according to RT technique (>10 MV vs ≤10 MV and 3-dimensional [3D] vs 2D RT) and modality (external beam RT, brachytherapy, and combined modes) in a large cohort of prostate cancer patients. Methods and Materials: The cohort was constructed using the Surveillance Epidemiology and End Results-Medicare database. We included cases of prostate cancer diagnosed in patients 66 to 84 yearsmore » of age from 1992 to 2004 and followed through 2009. We used Poisson regression analysis to compare rates of second cancer across RT groups with adjustment for age, follow-up, chemotherapy, hormone therapy, and comorbidities. Analyses of second solid cancers were based on the number of 5-year survivors (n=38,733), and analyses of leukemia were based on number of 2-year survivors (n=52,515) to account for the minimum latency period for radiation-related cancer. Results: During an average of 4.4 years' follow-up among 5-year prostate cancer survivors (2DRT = 5.5 years; 3DRT = 3.9 years; and brachytherapy = 2.7 years), 2933 second solid cancers were diagnosed. There were no significant differences in second solid cancer rates overall between 3DRT and 2DRT patients (relative risk [RR] = 1.00, 95% confidence interval [CI]: 0.91-1.09), but second rectal cancer rates were significantly lower after 3DRT (RR = 0.59, 95% CI: 0.40-0.88). Rates of second solid cancers for higher- and lower-energy RT were similar overall (RR = 0.97, 95% CI: 0.89-1.06), as were rates for site-specific cancers. There were significant reductions in colon cancer and leukemia rates in the first decade after brachytherapy compared to those after external beam RT. Conclusions: Advanced treatment planning may have reduced rectal cancer risks in prostate cancer survivors by approximately 3 cases per 1000 after 15 years. Despite concerns about the neutron doses, we did not find evidence that higher energy therapy was associated with increased second cancer risks.« less
Transmission calculation and intensity suppression for a proton therapy system
NASA Astrophysics Data System (ADS)
Chen, Wei; Yang, Jun; Qin, Bin; Liang, ZhiKai; Chen, Qushan; Liu, Kaifeng; Li, Dong; Fan, Mingwu
2018-02-01
A proton therapy project HUST-PTF (HUST Proton Therapy Facility) based on a 250 MeV isochronous superconducting cyclotron is under development in Huazhong University of Science and Technology (HUST). In this paper we report the main design features of the beam line in HUST-PTF project. The energy selection system (ESS) for energy modulation is discussed in detail, including the collimators, momentum slit and transmission calculation. Due to significant difference among the transmissions of ESS for different energies, the intensity suppression scheme by defocusing beam at high energies on collimators in the beam line is proposed and discussed. Finally, the ratios of beam intensities between low and high energies are expected to be controlled within 10 to meet the clinical requirement, and the beam optics of each energy step after intensity suppression is studied respectively.
A stochastic framework for spot-scanning particle therapy.
Robini, Marc; Yuemin Zhu; Wanyu Liu; Magnin, Isabelle
2016-08-01
In spot-scanning particle therapy, inverse treatment planning is usually limited to finding the optimal beam fluences given the beam trajectories and energies. We address the much more challenging problem of jointly optimizing the beam fluences, trajectories and energies. For this purpose, we design a simulated annealing algorithm with an exploration mechanism that balances the conflicting demands of a small mixing time at high temperatures and a reasonable acceptance rate at low temperatures. Numerical experiments substantiate the relevance of our approach and open new horizons to spot-scanning particle therapy.
Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.
Tinschert, K; Iannucci, R; Lang, R
2008-02-01
The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.
Gunst, V; Mavridou, A; Huybrechts, B; Van Gorp, G; Bergmans, L; Lambrechts, P
2013-09-01
To provide a three-dimensional representation of external cervical resorption (ECR) with microscopy, stereo microscopy, cone beam computed tomography (CT), microfocus CT and scanning electron microscopy (SEM). External cervical resorption is an aggressive form of root resorption, leading to a loss of dental hard tissues. This is due to clastic action, activated by a damage of the covering cementum and stimulated probably by infection. Clinically, it is a challenging situation as it is characterized by a late symptomatology. This is due to the pericanalar protection from a resorption-resistant sheet, composed of pre-dentine and surrounding dentine. The clastic activity is often associated with an attempt to repair, seen by the formation of osteoid tissue. Cone beam CT is extremely useful in the diagnoses and treatment planning of ECR. SEM analyses provide a better insight into the activity of osteoclasts. The root canal is surrounded by a layer of dentine that is resistant to resorption. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Chalasani, Venu; Martinez, Carlos H.; Williams, Andrew K.; Kwan, Kevin; Chin, Joseph L.
2010-01-01
The histological changes (both macroscopic and microscopic) in the prostate following the combination of external beam radiotherapy and salvage high intensity focused ultrasound (HIFU) have not been previously described. This article describes the case of a 65-year-old male who presented with recurrent localized prostate cancer after undergoing external beam radiotherapy for low-risk prostate cancer. He was treated with salvage HIFU, and 4 weeks later presented with symptoms and signs consistent with a prostatorectal fistula. During a period of conservative management, his serum prostate-specific antigen levels started rising after having reached a nadir. A radical cystoprostatectomy and repair of fistula were performed after conservative management failed. Histological changes of dense fibrosis were noted in the region where the prostate should have been located. A literature review of the histological findings in the prostate after HIFU is discussed in this article, as well as the available evidence for the management of patients with local failure after the combination of external beam radiotherapy and salvage HIFU. PMID:20694085
Malicki, Julian; Bly, Ritva; Bulot, Mireille; Godet, Jean-Luc; Jahnen, Andreas; Krengli, Marco; Maingon, Philippe; Prieto Martin, Carlos; Skrobala, Agnieszka; Valero, Marc; Jarvinen, Hannu
2018-05-02
The ACCIRAD project, commissioned by the European Commission (EC) to develop guidelines for risk analysis of accidental and unintended exposures in external beam radiotherapy (EBRT), was completed in the year 2014. In 2015, the "General guidelines on risk management in external beam radiotherapy" were published as EC report Radiation Protection (RP)-181. The present document is the third and final report of the findings from the ACCIRAD project. The main aim of this paper is to describe the key features of the risk management process and to provide general guidelines for radiotherapy departments and national authorities on risk assessment and analysis of adverse error-events and near misses. The recommendations provided here and in EC report RP-181 are aimed at promoting the harmonisation of risk management systems across Europe, improving patient safety, and enabling more reliable inter-country comparisons. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillwagon, G.B.; Order, S.E.; Klein, J.L.
Thirty-seven patients with primary nonresectable intrahepatic cholangiocarcinoma (57% with prior treatment and/or metastasis) were prospectively treated with external radiation, chemotherapy, and /sup 131/I labelled anti-CEA. Therapy began in all trials with whole liver irradiation (21.0 Gy, 3.0 Gy/Fx, 4 days/week, 10 MV photons) with alternate treatment day chemotherapy (Adriamycin, 15 mg + 5-FU, 500 mg). One month after external beam therapy, chemotherapy was given (Adriamycin, 15 mg + 5-FU, 500 mg) followed the next day by the first administration of /sup 131/I anti-CEA. The treatment schedule used was 20 mCi day 0; 10 mCi day 5 as an outpatient. Thismore » schedule was derived from tumor dose estimates which indicated that 20 mCi (8-10 mCi/mg IgG) was sufficient to achieve tumor saturation with a tumor effective half-life of 3 to 5 days, depending upon the species of animal from which the antibody was obtained. The median tumor dose for the 20 mCi + 10 mCi regimen was 6.2 Gy. Antibody therapy was delivered in 2-month cycles using antibody generated in different species of animals; rabbit, pig, monkey, and bovine. Toxicity was limited to hematologic toxicity and was manifested as thrombocytopenia and leukocytopenia (3.2% Grade IV for each according to RTOG toxicity criteria). Tumor remission evaluated by CT scan digitized tumor volume analysis indicated a 26.6% partial response (PR). Tumor remission by physical examination indicated a 33.3% remission rate (25.9% PR and 7.4% complete remission (CR). The median survival for patients who responded was 15.2 months. The actuarial median survival for the entire group of patients (metastases and previous treatment) was 6.5 months. The longest partial remission is presently more than 4 years.« less
Compact accelerator for medical therapy
Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.
2010-05-04
A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.
WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Paganetti, H; Schuemann, J
2014-06-15
Purpose: The aim of this work is to investigate the gold nanoparticle (GNP) induced vasculature damage in a proton beam. We compared the results using a clinical proton beam, 6MV photon beam and two kilovoltage photon beams. Methods: Monte Carlo simulations were carried out using TOPAS (TOol for PArticle Simulation) to obtain the spatial dose distribution in close proximity to GNPs up to 20μm distance. The spatial dose distribution was used as an input to calculate the additional dose deposited to the blood vessels. For this study, GNP induced vasculature damage is evaluated for three particle sources (proton beam, MVmore » photon beam and kV photon beam), various treatment depths for each particle source, various GNP uptakes and three different vessel diameters (8μm, 14μm and 20μm). Results: The result shows that for kV photon, GNPs induce more dose in the vessel wall for 150kVp photon source than 250kVp. For proton therapy, GNPs cause more dose in the vessel wall at shallower treatment depths. For 6MV photons, GNPs induce more dose in the vessel wall at deeper treatment depths. For the same GNP concentration and prescribed dose, the additional dose at the inner vessel wall is 30% more than the prescribed dose for the kVp photon source, 15% more for the proton source and only 2% more for the 6MV photon source. In addition, the dose from GNPs deceases sharper for proton therapy than kVp photon therapy as the distance from the vessel inner wall increases. Conclusion: We show in this study that GNPs can potentially be used to enhance radiation therapy by causing vasculature damage using clinical proton beams. The GNP induced damage for proton therapy is less than for the kVp photon source but significantly larger than for the clinical MV photon source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chafe, Susan, E-mail: susan.chafe@albertahealthservices.ca; Moughan, Jennifer; McCormick, Beryl
2013-08-01
Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adversemore » Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.« less
Chafe, Susan; Moughan, Jennifer; McCormick, Beryl; Wong, John; Pass, Helen; Rabinovitch, Rachel; Arthur, Douglas W; Petersen, Ivy; White, Julia; Vicini, Frank A
2013-08-01
Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again. Copyright © 2013. Published by Elsevier Inc.
Howell, Rebecca M; Burgett, E A
2014-09-01
Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.
Howell, Rebecca M.; Burgett, E. A.
2014-01-01
Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature. PMID:25186404
Cervix regression and motion during the course of external beam chemoradiation for cervical cancer.
Beadle, Beth M; Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Iyer, Revathy B; Eifel, Patricia J
2009-01-01
To evaluate the magnitude of cervix regression and motion during external beam chemoradiation for cervical cancer. Sixteen patients with cervical cancer underwent computed tomography scanning before, weekly during, and after conventional chemoradiation. Cervix volumes were calculated to determine the extent of cervix regression. Changes in the center of mass and perimeter of the cervix between scans were used to determine the magnitude of cervix motion. Maximum cervix position changes were calculated for each patient, and mean maximum changes were calculated for the group. Mean cervical volumes before and after 45 Gy of external beam irradiation were 97.0 and 31.9 cc, respectively; mean volume reduction was 62.3%. Mean maximum changes in the center of mass of the cervix were 2.1, 1.6, and 0.82 cm in the superior-inferior, anterior-posterior, and right-left lateral dimensions, respectively. Mean maximum changes in the perimeter of the cervix were 2.3 and 1.3 cm in the superior and inferior, 1.7 and 1.8 cm in the anterior and posterior, and 0.76 and 0.94 cm in the right and left lateral directions, respectively. Cervix regression and internal organ motion contribute to marked interfraction variations in the intrapelvic position of the cervical target in patients receiving chemoradiation for cervical cancer. Failure to take these variations into account during the application of highly conformal external beam radiation techniques poses a theoretical risk of underdosing the target or overdosing adjacent critical structures.
NASA Astrophysics Data System (ADS)
Pellegrino, C.; Modena, C.
2008-05-01
This paper deals with the shear strengthening of Reinforced Concrete (RC) flexural members with externally bonded Fiber-Reinforced Polymers (FRPs). The interaction between an external FRP and an internal transverse steel reinforcement is not considered in actual code recommendations, but it strongly influences the efficiency of the shear strengthening rehabilitation technique and, as a consequence, the computation of interacting contributions to the nominal shear strength of beams. This circumstance is also discussed on the basis of the results of an experimental investigation of rectangular RC beams strengthened in shear with "U-jacketed" carbon FRP sheets. Based on experimental results of the present and other investigations, a new analytical model for describing the shear capacity of RC beams strengthened according to the most common schemes (side-bonded and "U-jacketed"), taking into account the interaction between steel and FRP shear strength contributions, is proposed.
SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M; Jiang, S; Shao, Y
2016-06-15
Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range uncertainty issues in particle therapy.« less
WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, C.
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
WE-D-BRB-04: Clinical Applications of CBCT for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, B.
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
WE-D-BRB-01: Basic Physics of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arjomandy, B.
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
ERIC Educational Resources Information Center
Pane, Heather T.; White, Rachel S.; Nadorff, Michael R.; Grills-Taquechel, Amie; Stanley, Melinda A.
2013-01-01
Multisystemic therapy (MST) is effective for decreasing or preventing delinquency and other externalizing behaviors and increasing prosocial or adaptive behaviors. The purpose of this project was to review the literature examining the efficacy of MST for other child psychological and health problems reflecting non-externalizing behaviors,…
Winkelmann, Tim; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen
2014-02-01
The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.
Green high-power tunable external-cavity GaN diode laser at 515 nm.
Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael
2016-09-15
A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.
Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo
2016-08-10
To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, Habib; Meigooni, A S.; University of Nevada Las Vegas
Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed usingmore » MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.« less
Activation of hip prostheses in high energy radiotherapy and resultant dose to nearby tissue.
Keehan, Stephanie; Smith, Ryan L; Millar, Jeremy; Esser, Max; Taylor, Michael L; Lonski, Peta; Kron, Tomas; Franich, Rick D
2017-03-01
High energy radiotherapy can produce contaminant neutrons through the photonuclear effect. Patients receiving external beam radiation therapy to the pelvis may have high-density hip prostheses. Metallic materials such as those in hip prostheses, often have high cross-sections for neutron interaction. In this study, Thackray (UK) prosthetic hips have been irradiated by 18 MV radiotherapy beams to evaluate the additional dose to patients from the activation products. Hips were irradiated in- and out-of field at various distances from the beam isocenter to assess activation caused in-field by photo-activation, and neutron activation which occurs both in and out-of-field. NaI(Tl) scintillator detectors were used to measure the subsequent gamma-ray emissions and their half-lives. High sensitivity Mg, Cu, P doped LiF thermoluminescence dosimeter chips (TLD-100H) were used to measure the subsequent dose at the surface of a prosthesis over the 12 h following an in-field irradiation of 10,000 MU to a hip prosthesis located at the beam isocenter in a water phantom. 53 Fe, 56 Mn, and 52 V were identified within the hip following irradiation by radiotherapy beams. The dose measured at the surface of a prosthesis following irradiation in a water phantom was 0.20 mGy over 12 h. The dose at the surface of prostheses irradiated to 200 MU was below the limit of detection (0.05 mGy) of the TLD100H. Prosthetic hips are activated by incident photons and neutrons in high energy radiotherapy, however, the dose resulting from activation is very small. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Holt, Robert W.; Zhang, Rongxiao; Esipova, Tatiana V.; Vinogradov, Sergei A.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.
2014-09-01
Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.
Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W
2014-09-21
Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunes, R. P.; Rizzato, F. B.
This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.
Fan-beam intensity modulated proton therapy.
Hill, Patrick; Westerly, David; Mackie, Thomas
2013-11-01
This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems. Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.