Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
NASA Astrophysics Data System (ADS)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-01
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-21
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less
NASA Astrophysics Data System (ADS)
Rubio, Rafael M.; Salamanca, Juan J.
2018-07-01
The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.
Spin-oscillator model for the unzipping of biomolecules by mechanical force.
Prados, A; Carpio, A; Bonilla, L L
2012-08-01
A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and a coupling constant proportional to the oscillator position. At a critical value F(c) of an applied external force F, the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase transition. When the external force is cycled at different rates, the extension given by the oscillator position exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and metastable oscillator rest position is proportional to F-F(c) as in an Arrhenius law.
NASA Astrophysics Data System (ADS)
Huveneers, François
2018-04-01
We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Kinetics of molecular transitions with dynamic disorder in single-molecule pulling experiments
NASA Astrophysics Data System (ADS)
Zheng, Yue; Li, Ping; Zhao, Nanrong; Hou, Zhonghuai
2013-05-01
Macromolecular transitions are subject to large fluctuations of rate constant, termed as dynamic disorder. The individual or intrinsic transition rates and activation free energies can be extracted from single-molecule pulling experiments. Here we present a theoretical framework based on a generalized Langevin equation with fractional Gaussian noise and power-law memory kernel to study the kinetics of macromolecular transitions to address the effects of dynamic disorder on barrier-crossing kinetics under external pulling force. By using the Kramers' rate theory, we have calculated the fluctuating rate constant of molecular transition, as well as the experimentally accessible quantities such as the force-dependent mean lifetime, the rupture force distribution, and the speed-dependent mean rupture force. Particular attention is paid to the discrepancies between the kinetics with and without dynamic disorder. We demonstrate that these discrepancies show strong and nontrivial dependence on the external force or the pulling speed, as well as the barrier height of the potential of mean force. Our results suggest that dynamic disorder is an important factor that should be taken into account properly in accurate interpretations of single-molecule pulling experiments.
ERIC Educational Resources Information Center
Hester, Brooke; Burris, Jennifer
2012-01-01
Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
ERIC Educational Resources Information Center
Kondratuk, Tammy B.; Hausdorf, Peter A.; Korabik, Karen; Rosin, Hazel M.
2004-01-01
Today's organizations are undergoing constant and substantial change due to many internal and external forces. These changes are impacting on the inter- and intra-organizational career mobility of managers and employees. This research assessed the relationship between career mobility history and a recent internal or external job change on…
On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces
NASA Astrophysics Data System (ADS)
Goldobin, D. S.
2017-12-01
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
Force characteristics in continuous path controlled crankpin grinding
NASA Astrophysics Data System (ADS)
Zhang, Manchao; Yao, Zhenqiang
2015-03-01
Recent research on the grinding force involved in cylindrical plunge grinding has focused mainly on steady-state conditions. Unlike in conventional external cylindrical plunge grinding, the conditions between the grinding wheel and the crankpin change periodically in path controlled grinding because of the eccentricity of the crankpin and the constant rotational speed of the crankshaft. The objective of this study is to investigate the effects of various grinding conditions on the characteristics of the grinding force during continuous path controlled grinding. Path controlled plunge grinding is conducted at a constant rotational speed using a cubic boron nitride (CBN) wheel. The grinding force is determined by measuring the torque. The experimental results show that the force and torque vary sinusoidally during dry grinding and load grinding. The variations in the results reveal that the resultant grinding force and torque decrease with higher grinding speeds and increase with higher peripheral speeds of the pin and higher grinding depths. In path controlled grinding, unlike in conventional external cylindrical plunge grinding, the axial grinding force cannot be disregarded. The speeds and speed ratios of the workpiece and wheel are also analyzed, and the analysis results show that up-grinding and down-grinding occur during the grinding process. This paper proposes a method for describing the force behavior under varied process conditions during continuous path controlled grinding, which provides a beneficial reference for describing the material removal mechanism and for optimizing continuous controlled crankpin grinding.
The equation of motion for a radiating charged particle without self-interaction term
NASA Astrophysics Data System (ADS)
Herrera, L.
1990-03-01
The motion of a radiating charged particle is studied from the point of view of relativistic classical mechanics. Thus, the resulting equation of motion emerges from equating the total rate of change of momentum to the external force, without the introduction of a “self-force” term. Doing so, one is forced to abandon either one, or both, of the following restrictions: (a) the external force is non-dissipative, (b) the proper mass of the particle is constant. By abandoning (a) we obtain the Mo and Papas equation of motion, whereas allowing variations in the proper mass one is led, uniquely, to the Bonnor equation. A new equation of motion is proposed by abandoning both (a) and (b).
Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2013-03-01
To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p < 0.01). Push time was reduced while push angle increased. The method to impose power only showed slight differences in the timing variables, however not in the force variables. Researchers and clinicians must be aware of testing and evaluation conditions that may differently affect propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.
Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong
2017-09-01
The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.
Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly
NASA Astrophysics Data System (ADS)
Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong
2017-09-01
The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U (x ,z ) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ , revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.
Dynamical properties of magnetized two-dimensional one-component plasma
NASA Astrophysics Data System (ADS)
Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios
2018-05-01
Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.
NASA Astrophysics Data System (ADS)
Lunt, D. J.; Farnsworth, A.; Bragg, F.
2016-12-01
The climate of the Earth is ultimately controlled by tectonic and solar forcings, with the occasional meteorite thrown in for good measure. A third forcing of greenhouse gases can also be considered if the carbon cycle is considered as external to the system. In this case, the tectonic forcing reduces to a paleogeographic forcing (through changes in atmospheric and ocean circulation related to changes in mountain height/position and gateway/bathymetry changes). There is no reason to expect any link between this paleogeographic forcing and the solar forcing. However, as we show here, a suite of climate model simulations through the last 300 million years show remarkably constant global mean temperature under constant greenhouse gas forcing, despite a varying solar luminosity. We attribute this to a fortuitous balancing of the solar forcing with paleogeographic forcing, related to the continental breakup of Pangea. This provides an alternative hypothesis to the existing paradigm in which solar luminosity is balanced by greenhouse gas forcing through weathering-related feedbacks.
1991-12-01
gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130
Solitary waves in the nonlinear Dirac equation in the presence of external driving forces
Mertens, Franz G.; Cooper, Fred; Quintero, Niurka R.; ...
2016-01-05
In this paper, we consider the nonlinear Dirac (NLD) equation in (1 + 1) dimensions with scalar–scalar self interaction g 2/κ + 1 (Ψ¯Ψ) κ + 1 in the presence of external forces as well as damping of the form f(x) - iμγ 0Ψ, where both f and Ψ are two-component spinors. We develop an approximate variational approach using collective coordinates (CC) for studying the time dependent response of the solitary waves to these external forces. This approach predicts intrinsic oscillations of the solitary waves, i.e. the amplitude, width and phase all oscillate with the same frequency. The translational motionmore » is also affected, because the soliton position oscillates around a mean trajectory. For κ = 1 we solve explicitly the CC equations of the variational approximation for slow moving solitary waves in a constant external force without damping and find reasonable agreement with solving numerically the CC equations. Finally, we then compare the results of the variational approximation with no damping with numerical simulations of the NLD equation for κ = 1, when the components of the external force are of the form f j = r j exp(–iΚx) and again find agreement if we take into account a certain linear excitation with specific wavenumber that is excited together with the intrinsic oscillations such that the momentum in a transformed NLD equation is conserved.« less
A New Method of Comparing Forcing Agents in Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.
We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approachmore » for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.« less
Calculation of the external work done during walking in very young children.
Schepens, Benedicte; Detrembleur, Christine
2009-10-01
During walking, muscles must perform positive work to replace the energy lost from the body at each step, even if the average speed is constant and the terrain level. Young children have immature and irregular walk, but little is known about the effect of this walking pattern on the muscular external work done. Our objective was to measure using force platforms and the method of Cavagna (J Appl Physiol 39:174-179, 1975) the amount of muscular external work done by 1-year-old-, 4-year-old children and adults during walking. We were interested to quantify the approximation made by measuring only the positive external work done and assuming it reflects the external work done. After having confirmed that young children were not able to walk at a constant average speed over a complete number of steps, we showed the effect of the selection of trials by measuring the external work done assuming the amount of positive work done is equal to the negative work done (supposing there is no acceleration or deceleration over a complete number of steps). We observed that even if young subjects were not able to walk at a constant lateral speed over a complete number of steps, the amount of work done to maintain the center of mass movements in the transversal plane is not more than 10% of the external positive work done. This observational study points out that the measurement of external work, a good summary indicator for the gait mechanics, may be interpreted precociously when the population studied walked irregularly.
Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard
2016-05-03
Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Emergence of Personality: Dynamic Foundations of Individual Variation
ERIC Educational Resources Information Center
Nowak, Aandrzej; Vallacher, Robin R.; Zochowski, Michal
2005-01-01
We conceptualize personality and individual variation from the perspective of dynamical systems. People's thoughts, feelings, and predispositions for action are inherently dynamic, displaying constant change due to internal mechanisms and external forces, but over time the flow of thought and action converges on a narrow range of states--a…
Martin, J.R.; Budgeon, M.K.; Zatsiorsky, V.M.; Latash, M.L.
2010-01-01
When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n =10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results show that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360
Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G
2006-11-01
For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T
2012-04-01
No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Astumian, R. Dean
2015-01-01
A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition—the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine—is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678
Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition
2016-04-14
the first place. It then becomes clear that specific enthalpy provides a viable alternative to account for the effects of composi- tional changes on...forces. It is also assumed that external forces acting on a molecule are proportional to its mass, mi , as is the case with the gravity or Coriolis ...relative humidity and is introduced into Equation (11) to account for the effects of water vapour on the gas constant R and, consequently, on the
Parameter identification of a rotor supported in a pressurized bearing lubricated with water
NASA Technical Reports Server (NTRS)
Grant, John W.; Muszynska, Agnes; Bently, Donald E.
1994-01-01
A rig for testing an externally pressurized (hydrostatic), water-lubricated bearing was developed. Applying a nonsynchronous sweep frequency, rotating perturbation force with a constant amplitude as an input, rotor vibration response data was acquired in Bode and Dynamic Stiffness formats. Using this data, the parameters of the rotor/bearing system were identified. The rotor/bearing model was represented by the generalized (modal) parameters of the first lateral mode, with the rotational character of the fluid force taken into account.
Power, muscular work, and external forces in cycling.
de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J
1994-01-01
Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)
The Stark Effect in Linear Potentials
ERIC Educational Resources Information Center
Robinett, R. W.
2010-01-01
We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…
NASA Astrophysics Data System (ADS)
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications
NASA Technical Reports Server (NTRS)
Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.
1961-01-01
For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.
River self-organisation inhibits discharge control on waterfall migration.
Baynes, Edwin R C; Lague, Dimitri; Attal, Mikaël; Gangloff, Aurélien; Kirstein, Linda A; Dugmore, Andrew J
2018-02-05
The action of rivers within valleys is fundamentally important in controlling landscape morphology, and how it responds to tectonic or climate change. The response of landscapes to external forcing usually results in sequential changes to river long profiles and the upstream migration of waterfalls. Currently, models of this response assume a relationship between waterfall retreat rate and drainage area at the location of the waterfall. Using an experimental study, we show that this assumption has limited application. Due to a self-regulatory response of channel geometry to higher discharge through increasing channel width, the bed shear stress at the lip of the experimental waterfall remains almost constant, so there was no observed change in the upstream retreat rate despite an order of magnitude increase in discharge. Crucially, however, the strength of the bedrock material exhibits a clear control on the magnitude of the mean retreat rate, highlighting the importance of lithology in setting the rate at which landscapes respond to external forcing. As a result existing numerical models of landscape evolution that simulate the retreat of waterfalls as a function of drainage area with a fixed erodibility constant should be re-evaluated to consider spatial heterogeneity in erodibility and channel self-organisation.
Spring operated accelerator and constant force spring mechanism therefor
NASA Technical Reports Server (NTRS)
Shillinger, G. L., Jr. (Inventor)
1977-01-01
A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.
Macroscopic model of scanning force microscope
Guerra-Vela, Claudio; Zypman, Fredy R.
2004-10-05
A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.
Memory effects for a stochastic fractional oscillator in a magnetic field
NASA Astrophysics Data System (ADS)
Mankin, Romi; Laas, Katrin; Laas, Tõnu; Paekivi, Sander
2018-01-01
The problem of random motion of harmonically trapped charged particles in a constant external magnetic field is studied. A generalized three-dimensional Langevin equation with a power-law memory kernel is used to model the interaction of Brownian particles with the complex structure of viscoelastic media (e.g., dusty plasmas). The influence of a fluctuating environment is modeled by an additive fractional Gaussian noise. In the long-time limit the exact expressions of the first-order and second-order moments of the fluctuating position for the Brownian particle subjected to an external periodic force in the plane perpendicular to the magnetic field have been calculated. Also, the particle's angular momentum is found. It is shown that an interplay of external periodic forcing, memory, and colored noise can generate a variety of cooperation effects, such as memory-induced sign reversals of the angular momentum, multiresonance versus Larmor frequency, and memory-induced particle confinement in the absence of an external trapping field. Particularly in the case without external trapping, if the memory exponent is lower than a critical value, we find a resonancelike behavior of the anisotropy in the particle position distribution versus the driving frequency, implying that it can be efficiently excited by an oscillating electric field. Similarities and differences between the behaviors of the models with internal and external noises are also discussed.
Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
Yekutieli, Yoram; Sagiv-Zohar, Roni; Aharonov, Ranit; Engel, Yaakov; Hochner, Binyamin; Flash, Tamar
2005-08-01
The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.
Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Rizzi, Giorgio; Ferrigno, Giancarlo; Nardocci, Nardo
2012-07-23
Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment.The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns.
2012-01-01
Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns. PMID:22824547
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Kadowaki, Shuntaro
2017-07-01
We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.
Selective Effects of Training Against Weight and Inertia on Muscle Mechanical Properties.
Djuric, Sasa; Cuk, Ivan; Sreckovic, Sreten; Mirkov, Dragan; Nedeljkovic, Aleksandar; Jaric, Slobodan
2016-10-01
To explore the effects of training against mechanically different types of loads on muscle force (F), velocity (V), and power (P) outputs. Subjects practiced maximum bench throws over 8 wk against a bar predominantly loaded by approximately constant external force (weight), weight plates (weight plus inertia), or weight plates whose weight was compensated by a constant external force pulling upward (inertia). Instead of a typically applied single trial performed against a selected load, the pretest and posttest consisted of the same task performed against 8 different loads ranging from 30% to 79% of the subject's maximum strength applied by adding weight plates to the bar. That provided a range of F and V data for subsequent modeling by linear F-V regression revealing the maximum F (F-intercept), V (V-intercept), and P (P = FV/4). Although all 3 training conditions resulted in increased P, the inertia type of the training load could be somewhat more effective than weight. An even more important finding was that the P increase could be almost exclusively based on a gain in F, V, or both when weight, inertia, or weight-plus-inertia training load were applied, respectively. The inertia training load is more effective than weight in increasing P and weight and inertia may be applied for selective gains in F and V, respectively, whereas the linear F-V model obtained from loaded trials could be used for discerning among muscle F, V, and P.
A new algorithm for modeling friction in dynamic mechanical systems
NASA Technical Reports Server (NTRS)
Hill, R. E.
1988-01-01
A method of modeling friction forces that impede the motion of parts of dynamic mechanical systems is described. Conventional methods in which the friction effect is assumed a constant force, or torque, in a direction opposite to the relative motion, are applicable only to those cases where applied forces are large in comparison to the friction, and where there is little interest in system behavior close to the times of transitions through zero velocity. An algorithm is described that provides accurate determination of friction forces over a wide range of applied force and velocity conditions. The method avoids the simulation errors resulting from a finite integration interval used in connection with a conventional friction model, as is the case in many digital computer-based simulations. The algorithm incorporates a predictive calculation based on initial conditions of motion, externally applied forces, inertia, and integration step size. The predictive calculation in connection with an external integration process provides an accurate determination of both static and Coulomb friction forces and resulting motions in dynamic simulations. Accuracy of the results is improved over that obtained with conventional methods and a relatively large integration step size is permitted. A function block for incorporation in a specific simulation program is described. The general form of the algorithm facilitates implementation with various programming languages such as FORTRAN or C, as well as with other simulation programs.
Current and efficiency optimization under oscillating forces in entropic barriers
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydıner, Ekrem
2016-09-01
The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).
The impact of rotator cuff tendinopathy on proprioception, measuring force sensation.
Maenhout, Annelies G; Palmans, Tanneke; De Muynck, Martine; De Wilde, Lieven F; Cools, Ann M
2012-08-01
The impact of rotator cuff tendinopathy and related impingement on proprioception is not well understood. Numerous quantitative and qualitative changes in shoulder muscles have been shown in patients with rotator cuff tendinopathy. These findings suggest that control of force might be affected. This investigation wants to evaluate force sensation, a submodality of proprioception, in patients with rotator cuff tendinopathy. Thirty-six patients with rotator cuff tendinopathy and 30 matched healthy subjects performed force reproduction tests to isometric external and internal rotation to investigate how accurately they could reproduce a fixed target (50% MVC). Relative error, constant error, and force steadiness were calculated to evaluate respectively magnitude of error made during the test, direction of this error (overshoot or undershoot), and fluctuations of produced forces. Patients significantly overshoot the target (mean, 6.04% of target) while healthy subjects underestimate the target (mean, -5.76% of target). Relative error and force steadiness are similar in patients with rotator cuff tendinopathy and healthy subjects. Force reproduction tests, as executed in this study, were found to be highly reliable (ICC 0.849 and 0.909). Errors were significantly larger during external rotation tests, compared to internal rotation. Patients overestimate the target during force reproduction tests. This should be taken into account in the rehabilitation of patients with rotator cuff tendinopathy; however, precision of force sensation and steadiness of force exertion remains unaltered. This might indicate that control of muscle force is preserved. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Non-exponential kinetics of unfolding under a constant force.
Bell, Samuel; Terentjev, Eugene M
2016-11-14
We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.
Non-exponential kinetics of unfolding under a constant force
NASA Astrophysics Data System (ADS)
Bell, Samuel; Terentjev, Eugene M.
2016-11-01
We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.
Specific sine-Gordon soliton dynamics in the presence of external driving forces
NASA Astrophysics Data System (ADS)
Reinisch, Gilbert; Fernandez, Jean Claude
1981-07-01
We consider the acceleration of a single sine-Gordon (SG) soliton kink wave by an external time-dependent force χ(t), first without any dissipation, and then in the presence of a weak damping effect. We use the method of Fogel, Trullinger, Bishop, and Krumhansl [FTBK,
NASA Astrophysics Data System (ADS)
Hofmeister, Anne M.; Criss, Robert E.; Criss, Everett M.
2018-03-01
Forces external to the oblate spheroid shape, observed from planetary to galactic scales, are demonstrably non-central, which has important ramifications for planetary science. We simplify historic formulae and derive new analytical solutions for the gravitational potential and force outside a constant density oblate. Numerical calculations that sum point mass contributions in a >109 element mesh confirm our equations. We show that contours of constant force and potential about oblate bodies are closely approximated by two confocal families whose foci (f) respectively are (9/10)½ae and (3/5)½ae for a body with f = ae. This leads to useful approximations that address internal density variations. We demonstrate that the force on a general point is not directed towards the oblate's center, nor are forces simply proportional to the inverse square of that distance, despite forces in the equatorial and axial directions pointing towards the center. Our results explain complex dynamics of galactic systems. Because most planets and stars have an aspect ratio >0.9, the spherical approximation is reasonable except for orbits within ∼2 body radii. We show that applying the "generalized" potential, which assumes central forces, yields J2 values half those expected for oblate bodies, and probably underestimates masses of Uranus and Neptune by ∼0.2%. We show that the inner Saturnian moons are subject to non-central forces, which may affect calculations of their orbital precession. Our new series should improve interpretation of flyby data.
Force-Induced Unravelling of DNA Origami.
Engel, Megan C; Smith, David M; Jobst, Markus A; Sajfutdinow, Martin; Liedl, Tim; Romano, Flavio; Rovigatti, Lorenzo; Louis, Ard A; Doye, Jonathan P K
2018-05-31
The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently-proposed origami biosensor, whose function takes advantage of origami behaviour under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inwards for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces; and what design principles can be applied to enhance stability.
Raghu Prasad, M S; Manivannan, M; Chandramohan, S M
2015-07-01
In laparoscopic surgery, no external feedback on the magnitude of the force exerted is available. Hence, surgeons and residents tend to exert excessive force, which leads to tissue trauma. Ability of surgeons and residents to perceive their own force output without external feedback is a critical factor in laparoscopic force-skills training. Additionally, existing methods of laparoscopic training do not effectively train residents and novices on force-skills. Hence, there is growing need for the development of force-based training curriculum. As a first step towards force-based laparoscopic skills training, this study analysed force perception difference between laparoscopic instrument and finger in contralateral bimanual passive probing task. The study compared the isometric force matching performance of novices, residents and surgeons with finger and laparoscopic instrument. Contralateral force matching paradigm was employed to analyse the force perception capability in terms of relative (accuracy), and constant errors in force matching. Force perception of experts was found to be better than novices and residents. Interestingly, laparoscopic instrument was more accurate in discriminating the forces than finger. The dominant hand attempted to match the forces accurately, whereas non-dominant hand (NH) overestimated the forces. Further, the NH of experts was found to be most accurate. Furthermore, excessive forces were applied at lower force levels and at very high force levels. Due to misperception of force, novices and residents applied excessive forces. However, experts had good control over force with both dominant and NHs. These findings suggest that force-based training curricula should not only have proprioception tasks, but should also include bimanual force-skills training exercises in order to improve force perception ability and hand skills of novices and residents. The results can be used as a performance metric in both box and virtual reality based force-skills training.
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
α-Helix Unwinding as Force Buffer in Spectrins.
Takahashi, Hirohide; Rico, Felix; Chipot, Christophe; Scheuring, Simon
2018-03-27
Spectrins are cytoskeletal proteins located at the inner face of the plasma membrane, making connections between membrane anchors and the actin cortex, and between actin filaments. Spectrins share a common structure forming a bundle of 3 α-helices and play a major role during cell deformation. Here, we used high-speed force spectroscopy and steered molecular dynamics simulations to understand the mechanical stability of spectrin, revealing a molecular force buffering function. We find that spectrin acts as a soft spring at short extensions (70-100 Å). Under continuous external stretching, its α-helices unwind, leading to a viscous mechanical response over larger extensions (100-300 Å), represented by a constant-force plateau in force/extension curves. This viscous force buffering emerges from a quasi-equilibrium competition between disruption and re-formation of α-helical hydrogen bonds. Our results suggest that, in contrast to β-sheet proteins, which unfold in a catastrophic event, α-helical spectrins dominantly unwind, providing a viscous force buffer over extensions about 5 times their folded length.
Hot vacuum creep forming of scale shuttle external tank dome caps
NASA Technical Reports Server (NTRS)
Thomas, A. O.
1974-01-01
The feasibility of forming shuttle external tank dome caps by hot vacuum creep was investigated for a sub-scale configuration. Aluminum 2219-T37 at an elevated temperature equivalent to the artificial aging time and temperature was used to produce the T87 condition while achieving MIL-HBK -5 properties of 2219-T87 aluminum alloy material. A feasibility analysis was conducted in two phases: the design and build of a sub-scale hot vacuum creep forming (HVCF) die and the forming evaluation of various cap configurations. The contour was constant in all evaluations. This configuration was found to be too severe for the limited forming force available by HVCF.
Casimir force phase transitions in the graphene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less
Casimir force phase transitions in the graphene family
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; ...
2017-03-15
The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less
Erdemir, Ahmet; Piazza, Stephen J
2002-06-01
The lever arm of the ground reaction force (GRF) about the talocrural joint axis is a functionally important indicator of the nature of foot loading. Walking initiation experiments (ten subjects; age, 23-29 years) were completed to demonstrate that rotational foot placement is a possible strategy to specify the lever arm. Externally-rotated foot placement resulted in larger lever arms during push-off. A computer simulation of push-off revealed that a decreased lever arm reduces the plantarflexion moment necessary to maintain a constant forward velocity, while increasing the required plantarflexion velocity. Shortening of the foot thus diminishes the muscular force demand but also requires high muscle fiber shortening velocities that may limit the force generating capacity of plantar flexors. Decreased plantar flexion moment and slow walking previously noted in partial-foot amputees may result from shortened lever arms in this manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.
2013-11-07
Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors inmore » equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.« less
Quest for absolute zero in the presence of external noise.
Torrontegui, E; Kosloff, R
2013-09-01
A reciprocating quantum refrigerator is analyzed with the intention to study the limitations imposed by external noise. In particular we focus on the behavior of the refrigerator when it approaches the absolute zero. The cooling cycle is based on the Otto cycle with a working medium constituted by an ensemble of noninteracting harmonic oscillators. The compression and expansion segments are generated by changing an external parameter in the Hamiltonian. In this case the force constant of the harmonic oscillators mω^{2} is modified from an initial to a final value. As a result, the kinetic and potential energy of the system do not commute causing frictional losses. By proper choice of scheduling function ω(t) frictionless solutions can be obtained in the noiseless case. We examine the performance of a refrigerator subject to noise. By expanding from the adiabatic limit we find that the external noise, Gaussian phase, and amplitude noises reduce the amount of heat that can be extracted but nevertheless the zero temperature can be approached.
Unfolding of globular polymers by external force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Samuel; Terentjev, Eugene M., E-mail: emt1000@cam.ac.uk
2015-11-14
We examine the problem of a polymer chain, folded into a globule in poor solvent, subjected to a constant tensile force. Such a situation represents a Gibbs thermodynamic ensemble and is useful for analysing force-clamp atomic force microscopy measurements, now very common in molecular biophysics. Using a basic Flory mean-field theory, we account for surface interactions of monomers with solvent. Under an increasing tensile force, a first-order phase transition occurs from a compact globule to a fully extended chain, in an “all-or-nothing” unfolding event. This contrasts with the regime of imposed extension, first studied by Halperin and Zhulina [Europhys. Lett.more » 15, 417 (1991)], where there is a regime of coexistence of a partial globule with an extended chain segment. We relate the transition forces in this problem to the solvent quality and degree of polymerisation, and also find analytical expressions for the energy barriers present in the problem. Using these expressions, we analyse the kinetic problem of a force-ramp experiment and show that the force at which a globule ruptures depends on the rate of loading.« less
Transition to a Source with Modified Physical Parameters by Energy Supply or Using an External Force
NASA Astrophysics Data System (ADS)
Kucherov, A. N.
2017-11-01
A study has been made of the possibility for the physical parameters of a source/sink, i.e., for the enthalpy, temperature, total pressure, maximum velocity, and minimum dimension, at a constant radial Mach number to be changed by energy or force action on the gas in a bounded zone. It has been shown that the parameters can be controlled at a subsonic, supersonic, and transonic (sonic in the limit) radial Mach number. In the updated source/sink, all versions of a vortex-source combination can be implemented: into a vacuum, out of a vacuum, into a submerged space, and out of a submerged space, partially or fully.
MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module
Pandya, H. J.; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P.
2014-01-01
In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400–1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen. PMID:24855449
MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.
Pandya, H J; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P
2014-03-01
In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400-1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen.
Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism
NASA Astrophysics Data System (ADS)
Dong, Lu; Zhou, Tianjun; Wu, Bo
2014-01-01
The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.
Strange nonchaotic self-oscillator
NASA Astrophysics Data System (ADS)
Jalnine, Alexey Yu.; Kuznetsov, Sergey P.
2016-08-01
An example of strange nonchaotic attractor (SNA) is discussed in a dissipative system of mechanical nature driven by a constant torque applied to one of the elements of the construction. So the external force is not oscillatory, and the system is autonomous. Components of the motion with incommensurable frequencies emerge due to the irrational ratio of the sizes of the involved rotating elements. We regard the phenomenon as strange nonchaotic self-oscillations, and its existence sheds new light on the question of feasibility of SNA in autonomous systems.
Li, Jing-hui; Łuczka, Jerzy
2010-10-01
Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.
Definitions of climate and climate change under varying external conditions
NASA Astrophysics Data System (ADS)
Werndl, C.
2014-06-01
Commonly, definitions of climate are endorsed where the external conditions are held constant. This paper argues that these definitions risk being empirically void because in reality the external conditions vary. As a consequence, analogous definitions for varying external conditions are explored with help of the recently developed theory of non-autonomous dynamical systems, and the similarities and differences between the cases of constant and varying external conditions are discussed. It is argued that there are analogous definitions for varying external conditions which are preferable to the definitions where the external conditions are held constant. In this context, a novel definition is proposed (namely, climate as the distribution over time under a regime of varying external conditions), which is argued to be promising.
Outbreak statistics and scaling laws for externally driven epidemics.
Singh, Sarabjeet; Myers, Christopher R
2014-04-01
Power-law scalings are ubiquitous to physical phenomena undergoing a continuous phase transition. The classic susceptible-infectious-recovered (SIR) model of epidemics is one such example where the scaling behavior near a critical point has been studied extensively. In this system the distribution of outbreak sizes scales as P(n)∼n-3/2 at the critical point as the system size N becomes infinite. The finite-size scaling laws for the outbreak size and duration are also well understood and characterized. In this work, we report scaling laws for a model with SIR structure coupled with a constant force of infection per susceptible, akin to a "reservoir forcing". We find that the statistics of outbreaks in this system fundamentally differ from those in a simple SIR model. Instead of fixed exponents, all scaling laws exhibit tunable exponents parameterized by the dimensionless rate of external forcing. As the external driving rate approaches a critical value, the scale of the average outbreak size converges to that of the maximal size, and above the critical point, the scaling laws bifurcate into two regimes. Whereas a simple SIR process can only exhibit outbreaks of size O(N1/3) and O(N) depending on whether the system is at or above the epidemic threshold, a driven SIR process can exhibit a richer spectrum of outbreak sizes that scale as O(Nξ), where ξ∈(0,1]∖{2/3} and O((N/lnN)2/3) at the multicritical point.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Cost and Precision of Brownian Clocks
NASA Astrophysics Data System (ADS)
Barato, Andre C.; Seifert, Udo
2016-10-01
Brownian clocks are biomolecular networks that can count time. A paradigmatic example are proteins that go through a cycle, thus regulating some oscillatory behavior in a living system. Typically, such a cycle requires free energy often provided by ATP hydrolysis. We investigate the relation between the precision of such a clock and its thermodynamic costs. For clocks driven by a constant thermodynamic force, a given precision requires a minimal cost that diverges as the uncertainty of the clock vanishes. In marked contrast, we show that a clock driven by a periodic variation of an external protocol can achieve arbitrary precision at arbitrarily low cost. This result constitutes a fundamental difference between processes driven by a fixed thermodynamic force and those driven periodically. As a main technical tool, we map a periodically driven system with a deterministic protocol to one subject to an external protocol that changes in stochastic time intervals, which simplifies calculations significantly. In the nonequilibrium steady state of the resulting bipartite Markov process, the uncertainty of the clock can be deduced from the calculable dispersion of a corresponding current.
Steady-state distributions of probability fluxes on complex networks
NASA Astrophysics Data System (ADS)
Chełminiak, Przemysław; Kurzyński, Michał
2017-02-01
We consider a simple model of the Markovian stochastic dynamics on complex networks to examine the statistical properties of the probability fluxes. The additional transition, called hereafter a gate, powered by the external constant force breaks a detailed balance in the network. We argue, using a theoretical approach and numerical simulations, that the stationary distributions of the probability fluxes emergent under such conditions converge to the Gaussian distribution. By virtue of the stationary fluctuation theorem, its standard deviation depends directly on the square root of the mean flux. In turn, the nonlinear relation between the mean flux and the external force, which provides the key result of the present study, allows us to calculate the two parameters that entirely characterize the Gaussian distribution of the probability fluxes both close to as well as far from the equilibrium state. Also, the other effects that modify these parameters, such as the addition of shortcuts to the tree-like network, the extension and configuration of the gate and a change in the network size studied by means of computer simulations are widely discussed in terms of the rigorous theoretical predictions.
New force replica exchange method and protein folding pathways probed by force-clamp technique.
Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan
2008-01-28
We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as have been observed in recent experiments.
Rigidity of a Vibrated Amorphous Bi-Dimensional Packing of Grains
NASA Astrophysics Data System (ADS)
Coulais, C.; Dauchot, O.
The Jamming transition can be seen as a general phenomenon occurring whenever a dense assembly of ``things'' gets stuck and resists to an externally applied shear stress. The mechanical response of a vibrated amorphous bi-dimensional packing of grains close to the Jamming transition is investigated. Stress is applied to the media through a constant torque rheometer while surface fraction is tuned around the jamming transition. The rheometer turns, no matter how low is the applied torque. However, its motion is strongly intermittent and displays scale invariance, the fluctuations being maximal at the Jamming transition, where dynamical correlation length had been found to be divergent. We compare our results to previous ones obtained while dragging an intruder at constant force in the same experimental set-up.
Multilevel Sequential Monte Carlo Samplers for Normalizing Constants
Moral, Pierre Del; Jasra, Ajay; Law, Kody J. H.; ...
2017-08-24
This article considers the sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard estimators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for two Bayesian inverse problems arising from elliptic partial differential equations (PDEs). The examples involve the inversion of observations of themore » solution of (i) a 1-dimensional Poisson equation to infer the diffusion coefficient, and (ii) a 2-dimensional Poisson equation to infer the external forcing.« less
Radiative-photochemical response of the mesosphere to dynamical forcing
NASA Technical Reports Server (NTRS)
Frederick, J. E.
1981-01-01
Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.
The exclusion problem in seasonally forced epidemiological systems.
Greenman, J V; Adams, B
2015-02-21
The pathogen exclusion problem is the problem of finding control measures that will exclude a pathogen from an ecological system or, if the system is already disease-free, maintain it in that state. To solve this problem we work within a holistic control theory framework which is consistent with conventional theory for simple systems (where there is no external forcing and constant controls) and seamlessly generalises to complex systems that are subject to multiple component seasonal forcing and targeted variable controls. We develop, customise and integrate a range of numerical and algebraic procedures that provide a coherent methodology powerful enough to solve the exclusion problem in the general case. An important aspect of our solution procedure is its two-stage structure which reveals the epidemiological consequences of the controls used for exclusion. This information augments technical and economic considerations in the design of an acceptable exclusion strategy. Our methodology is used in two examples to show how time-varying controls can exploit the interference and reinforcement created by the external and internal lag structure and encourage the system to 'take over' some of the exclusion effort. On-off control switching, resonant amplification, optimality and controllability are important issues that emerge in the discussion. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S., E-mail: sabuj.ghosh@saha.ac.in; Kumar Shaw, Pankaj; Sekar Iyengar, A. N.
Intermittent chaos was observed in a glow discharge plasma as the system evolved from regular type of relaxation oscillations (of larger amplitude) to an irregular type of oscillations (of smaller amplitude) as the discharge voltage was increased. Floating potential fluctuations were analyzed by different statistical and spectral methods. Features like a gradual change in the normal variance of the interpeak time intervals, a dip in the skewness, and a hump in the kurtosis with variation in the control parameter have been seen, which are strongly indicative of intermittent behavior in the system. Detailed analysis also suggests that the intrinsic noisemore » level in the experiment increases with the increasing discharge voltage. An attempt has been made to model the experimental observations by a second order nonlinear ordinary differential equation derived from the fluid equations for an unmagnetized plasma. Though the experiment had no external forcing, it was conjectured that the intrinsic noise in the experiment could be playing a vital role in the dynamics of the system. Hence, a constant bias and noise as forcing terms were included in the model. Results from the theoretical model are in close qualitative agreement with the experimental results.« less
Persistent agents in Axelrod's social dynamics model
NASA Astrophysics Data System (ADS)
Reia, Sandro M.; Neves, Ubiraci P. C.
2016-01-01
Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the (p,Q) -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.
Transport properties of elastically coupled fractional Brownian motors
NASA Astrophysics Data System (ADS)
Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan
2015-11-01
Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
Consistency of peak and mean concentric and eccentric force using a novel squat testing device.
Stock, Matt S; Luera, Micheal J
2014-04-01
The ability to examine force curves from multiple-joint assessments combines many of the benefits of dynamic constant external resistance exercise and isokinetic dynamometry. The purpose of this investigation was to examine test-retest reliability statistics for peak and mean force using the Exerbotics eSQ during maximal concentric and eccentric squats. Seventeen resistance-trained men (mean±SD age=21±2 years) visited the laboratory on two occasions. For each trial, the subjects performed two maximal concentric and eccentric squats, and the muscle actions with the highest force values were analyzed. There were no mean differences between the trials (P>.05), and the effect sizes were <0.12. When the entire force curve was examined, the intraclass correlation coefficients (model 2,1) and standard errors of measurement, respectively, were concentric peak force=0.743 (8.8%); concentric mean force=0.804 (6.0%); eccentric peak force=0.696 (10.6%); eccentric mean force=0.736 (9.6%). These findings indicated moderate-to-high reliability for the peak and mean force values obtained from the Exerbotics eSQ during maximal squat testing. The analysis of force curves from multiple-joint testing provides researchers and practitioners with a reliable means of assessing performance, especially during concentric muscle actions.
On the force-velocity relationship of a bundle of rigid bio-filaments
NASA Astrophysics Data System (ADS)
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2018-03-01
In various cellular processes, bio-filaments like F-actin and F-tubulin are able to exploit chemical energy associated with polymerization to perform mechanical work against an obstacle loaded with an external force. The force-velocity relationship quantitatively summarizes the nature of this process. By a stochastic dynamical model, we give, together with the evolution of a staggered bundle of Nf rigid living filaments facing a loaded wall, the corresponding force-velocity relationship. We compute the evolution of the model in the infinite wall diffusion limit and in supercritical conditions (monomer density reduced by critical density ρ^ 1>1 ), and we show that this solution remains valid for moderate non-zero values of the ratio between the wall diffusion and the chemical time scales. We consider two classical protocols: the bundle is opposed either to a constant load or to an optical trap setup, characterized by a harmonic restoring force. The constant load case leads, for each F value, to a stationary velocity Vs t a t(F ;Nf,ρ^ 1 ) after a relaxation with characteristic time τmicro(F). When the bundle (initially taken as an assembly of filament seeds) is subjected to a harmonic restoring force (optical trap load), the bundle elongates and the load increases up to stalling over a characteristic time τOT. Extracted from this single experiment, the force-velocity VO T(F ;Nf,ρ^ 1 ) curve is found to coincide with Vs t a t(F ;Nf,ρ^ 1 ) , except at low loads. We show that this result follows from the adiabatic separation between τmicro and τOT, i.e., τmicro ≪ τOT.
Dynamical turbulent flow on the Galton board with friction.
Chepelianskii, A D; Shepelyansky, D L
2001-07-16
We study numerically and analytically the dynamics of charged particles on the Galton board, a regular lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime the average velocity and direction of particle flow can be effectively affected by electric and magnetic fields. We discuss the applications of these results to the charge transport in antidot superlattices and the stream of suspended particles in a viscous flow through scatters.
The mechanics of running in children
Schepens, B; Willems, P A; Cavagna, G A
1998-01-01
The effect of age and body size on the bouncing mechanism of running was studied in children aged 2-16 years.The natural frequency of the bouncing system (fs) and the external work required to move the centre of mass of the body were measured using a force platform.At all ages, during running below ≈11 km h−1, the freely chosen step frequency (f) is about equal to fs (symmetric rebound), independent of speed, although it decreases with age from 4 Hz at 2 years to 2.5 Hz above 12 years.The decrease of step frequency with age is associated with a decrease in the mass-specific vertical stiffness of the bouncing system (k/m) due to an increase of the body mass (m) with a constant stiffness (k). Above 12 years, k/m and f remain approximately constant due to a parallel increase in both k and m with age.Above the critical speed of ≈11 km h−1, independent of age, the rebound becomes asymmetric, i.e. f < fs.The maximum running speed (V¯f,max) increases with age while the step frequency at remains constant (≈4 Hz), independent of age.At a given speed, the higher step frequency in preteens results in a mass-specific power against gravity less than that in adults. The external power required to move the centre of mass of the body is correspondingly reduced. PMID:9596810
The effect of muscle stiffness and damping on simulated impact force peaks during running.
Nigg, B M; Liu, W
1999-08-01
It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.
Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.
Balbinot, G
2017-05-01
Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (W ext ) and internal mechanical work (W int ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W + ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W - ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W - ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.
De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L
2014-04-01
Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.
Ferromagnetic resonance of a YIG film in the low frequency regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seongjae; Grudichak, Scott; Sklenar, Joseph
2016-07-21
An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the ferromagnetic resonance (FMR) spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR is observed turns out to be quite sensitive to anisotropy constants (by more than a factor ten) in the low frequency (<2 GHz) regime, and when the orientation of the magnetic field is nearly normal to the sample plane; the restoring force onmore » the magnetization arising from the magnetocrystalline anisotropy fields is then comparable to that from the external field, thereby allowing the anisotropy constants to be determined with greater accuracy. In this region, unusual dynamical behaviors are observed such as multiple resonances and a switching of FMR resonance with only a 1° change in field orientation at 0.7 GHz.« less
NASA Astrophysics Data System (ADS)
Udalov, O. G.; Beloborodov, I. S.
2018-05-01
We study magneto-electric effect in two systems: i) multiferroic tunnel junction (MFTJ) - magnetic tunnel junction with ferroelectric barrier and ii) granular multiferroic (GMF) in which ferromagnetic (FM) metallic grains embedded into ferroelectric matrix. We show that the Coulomb interaction influences the magnetic state of the system in several ways: i) through the spin-dependent part of the Coulomb interaction; ii) due to the Coulomb blockade effect suppressing electron hopping and therefore reducing magnetic coupling; and iii) through image forces and polarization screening that modify the barrier for electrons in MFTJ and GMF. We show that in the absence of spin-orbit or strain-mediated coupling magneto-electric effect appears in GMF and MFTJ. The Coulomb interaction depends on the dielectric properties of the system. For GMF it depends on the dielectric constant of FE matrix and for MFTJ on the dielectric constant of the FE barrier. Applying external electric field one can tune the dielectric constant and the Coulomb interaction. Thus, one can control magnetic state with electric field.
Force application during handcycling and handrim wheelchair propulsion: an initial comparison.
Arnet, Ursina; van Drongelen, Stefan; Veeger, D H; van der Woude L, H V
2013-12-01
The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P < .001) and 4% (P < .001) and significantly lower peak forces were applied at all inclines (1%: P = .014, 2.5% and 4%: P < .001). At the 2.5% incline, where power output was the same for both devices, total forces (mean over trial) of 22.8 N and 27.5 N and peak forces of 40.1 N and 106.9 N were measured for handbike and wheelchair propulsion. The force effectiveness did not differ between the devices (P = .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P < .001). These results confirm the assumption that handcycling is physically less straining.
Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula
2010-12-15
Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P < 0.05-0.001) when compared to static cultures. An increased expression of tenascin-c, indicating tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound. © 2010 Wiley Periodicals, Inc.
Hyperelastic modelling of the crystalline lens: Accommodation and presbyopia
Lanchares, Elena; Navarro, Rafael; Calvo, Begoña
2012-01-01
Purpose The modification of the mechanical properties of the human crystalline lens with age can be a major cause of presbyopia. Since these properties cannot be measured in vivo, numerical simulation can be used to estimate them. We propose an inverse method to determine age-dependent change in the material properties of the tissues composing the human crystalline lens. Methods A finite element model of a 30-year-old lens in the accommodated state was developed. The force necessary to achieve full accommodation in a 30-year-old lens of known external geometry was computed using this model. Two additional numerical models of the lens corresponding to the ages of 40 and 50 years were then built. Assuming that the accommodative force applied to the lens remains constant with age, the material properties of nucleus and cortex were estimated by inverse analysis. Results The zonular force necessary to reshape the model of a 30-year-old lens from the accommodated to the unaccommodated geometry was 0.078 newton (N). Both nucleus and cortex became stiffer with age. The stiffness of the nucleus increased with age at a higher rate than the cortex. Conclusions In agreement with the classical theory of Helmholtz, on which we based our model, our results indicate that a major cause of presbyopia is that both nucleus and cortex become stiffer with age; therefore, a constant value of the zonular forces with aging does not achieve full accommodation, that is, the accommodation capability decreases.
Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing.
Hartzell, Samantha; Bartlett, Mark S; Virgin, Lawrence; Porporato, Amilcare
2015-03-07
Crassulacean acid metabolism (CAM) photosynthesis functions as an endogenous circadian rhythm coupled to external environmental forcings of energy and water availability. This paper explores the nonlinear dynamics of a new CAM photosynthesis model (Bartlett et al., 2014) and investigates the responses of CAM plant carbon assimilation to different combinations of environmental conditions. The CAM model (Bartlett et al., 2014) consists of a Calvin cycle typical of C3 plants coupled to an oscillator of the type employed in the Van der Pol and FitzHugh-Nagumo systems. This coupled system is a function of environmental variables including leaf temperature, leaf moisture potential, and irradiance. Here, we explore the qualitative response of the system and the expected carbon assimilation under constant and periodically forced environmental conditions. The model results show how the diurnal evolution of these variables entrains the CAM cycle with prevailing environmental conditions. While constant environmental conditions generate either steady-state or periodically oscillating responses in malic acid uptake and release, forcing the CAM system with periodic daily fluctuations in light exposure and leaf temperature results in quasi-periodicity and possible chaos for certain ranges of these variables. This analysis is a first step in quantifying changes in CAM plant productivity with variables such as the mean temperature, daily temperature range, irradiance, and leaf moisture potential. Results may also be used to inform model parametrization based on the observed fluctuating regime. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effects of forcing on a single stream shear layer and its parent boundary layer
NASA Technical Reports Server (NTRS)
Haw, Richard C.; Foss, John F.
1990-01-01
Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.
Effect of External Loading on Force and Power Production During Plyometric Push-ups.
Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi
2018-04-01
Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.
Daniels, M; Noble, M I; ter Keurs, H E; Wohlfart, B
1984-10-01
The relation between force and velocity was determined in sixteen trabeculae of rat right ventricle as a function of time during a twitch, of sarcomere length and of external Ca2+ concentration, [Ca2+]o. The trabeculae were studied in modified Krebs-Henseleit solution at 25 degrees C. Force was measured with a semiconductor strain gauge. Sarcomere length was measured with a laser diffraction system. A servomotor system was used in which control could be switched between sarcomere length, muscle length and force. Force-velocity relations were derived from load clamps and from contractions in which sarcomere length was initially held constant followed by a quick release and slower release of the sarcomeres at controlled velocity. Force-velocity relations were fitted by Hill's equation (Hill, 1938), (Po-P) b = (P+a) V, where P = force, V = velocity, Po = isometric force in mN/mm2 and a and b are constants. For [Ca2+]o = 2.5 mM, with both interventions the values (mean +/- S.D.) were: b = 1.00 +/- 0.45 micron/s; a = 9.52 +/- 5.60 mN/mm2; Vo measured = 13.6 +/- 3.0 micron/s; Vo calculated = 13.4 +/- 3.4 micron/s; Po measured = 96.5 +/- 25.0 mN/mm2; Po calculated = 119.3 +/- 34.5 mN/mm2. Vo rose with [Ca2+]o to a maximum at [Ca2+]o = 1.2 mM when Po was about 50% of maximum, while Po rose with [Ca2+]o to a maximum at above 2.5 mM. Vo rose with time during the twitch to a maximum at 25 ms following onset of contraction; Po was then about 50% of the maximum that was obtained at 120 ms. Vo increased with sarcomere length from zero at a sarcomere length of 1.6 micron to a maximum at 1.85 micron. Between 1.85 micron and 2.3 micron, Vo was constant. At 1.85 micron, Po was about 60% of maximum Po. These results are compatible with the hypothesis that Vo is more sensitive than Po to the amount of Ca2+ bound to the contractile proteins, and that Vo reaches a maximal value with an amount of Ca2+ bound to the contractile proteins at which Po has obtained only about 50% of its maximal value.
Slow approach to steady motion of a concave body in a free-molecular gas
NASA Astrophysics Data System (ADS)
Tsuji, Tetsuro; Arai, Junichi; Kawano, Satoyuki
2015-07-01
A body in a free-molecular gas accelerated by a constant external force is considered on the basis of kinetic theory. The body is an infinitely long rectangular hollow column with one face removed, and thus it has a squarish U -shaped cross section. The concave part of the body points toward the direction of motion, and thus the gas molecules may be trapped in the concavity. Gas molecules undergo diffuse reflection on a base part, whereas specular reflection on two lateral parts. It is numerically shown that the velocity of the body approaches a terminal velocity, for which a drag force exerted by the gas counterbalances the external force, in such a way that their difference decreases in proportion to the inverse square of time for a large time. This rate of approach is slower than the known rate proportional to the inverse cube of time in the case of a body without concavity [Aoki et al., Phys. Rev. E 80, 016309 (2009), 10.1103/PhysRevE.80.016309]. Based on the detailed investigation on the velocity distribution function of gas molecules impinging on the body, it is clarified that the concavity prevents some molecules from escaping to infinity. This trapping enhances the effect of recollision between the body and the gas molecules, which is the cause of the inverse power laws, and thus leads to the slower approach.
Revenue Prediction of a Local Event Using the Mathematical Model of Hit Phenomena
NASA Astrophysics Data System (ADS)
Ishii, A.; Matsumoto, T.; Miki, S.
We propose a theoretical approach to investigate human-humaninteraction in the society, which uses a many-body theory that incorporates human-human interaction. We treat advertisement as an external force, and include the word of mouth (WOM) effect as a two-body interaction between humans and the rumor effect as a three-body interaction among humans. The parameters to define the strength of human interactions are assumed to be constant values. The calculated result explained well the two local events ``Mizuki-Shigeru Road in Sakaiminato" and ``the sculpture festival at Tottori" in Japan.
Generalized method calculating the effective diffusion coefficient in periodic channels.
Kalinay, Pavol
2015-01-07
The method calculating the effective diffusion coefficient in an arbitrary periodic two-dimensional channel, presented in our previous paper [P. Kalinay, J. Chem. Phys. 141, 144101 (2014)], is generalized to 3D channels of cylindrical symmetry, as well as to 2D or 3D channels with particles driven by a constant longitudinal external driving force. The next possible extensions are also indicated. The former calculation was based on calculus in the complex plane, suitable for the stationary diffusion in 2D domains. The method is reformulated here using standard tools of functional analysis, enabling the generalization.
Depletion of proton motive force by nisin in Listeria monocytogenes cells.
Bruno, M E; Kaiser, A; Montville, T J
1992-07-01
The basal proton motive force (PMF) levels and the influence of the bacteriocin nisin on the PMF were determined in Listeria monocytogenes Scott A. In the absence of nisin, the interconversion of the pH gradient (Z delta pH) and the membrane potential (delta psi) led to the maintenance of a fairly constant PMF at -160 mV over the external pH range 5.5 to 7.0. The addition of nisin at concentrations of greater than or equal to 5 micrograms/ml completely dissipated PMF in cells at external pH values of 5.5 and 7.0. With 1 microgram of nisin per ml, delta pH was completely dissipated but delta psi decreased only slightly. The action of nisin on PMF in L. monocytogenes Scott A was both time and concentration dependent. Valinomycin depleted only delta pH, whereas nigericin and carbonyl cyanide m-chlorophenylhydrazone depleted only delta psi, under conditions in which nisin depleted both. Four other L. monocytogenes strains had basal PMF parameters similar to those of strain Scott A. Nisin (2.5 micrograms/ml) also completely dissipated PMF in these strains.
Kornuta, Jeffrey A.; Dixon, J. Brandon
2015-01-01
In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex-vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, ΔP, which governs fluid shear stress; and average transmural pressure, Pavg, which governs circumferential stress. Hence, the authors describe a novel ex-vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying ΔP with a constant Pavg, time-varying ΔP and Pavg, and a constant ΔP with a time-varying Pavg. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 sec) time windows is also described. PMID:24809724
Runners do not push off the ground but fall forwards via a gravitational torque.
Romanov, Nicholas; Fletcher, Graham
2007-09-01
The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
High Reynolds number turbulence model of rotating shear flows
NASA Astrophysics Data System (ADS)
Masuda, S.; Ariga, I.; Koyama, H. S.
1983-09-01
A Reynolds stress closure model for rotating turbulent shear flows is developed. Special attention is paid to keeping the model constants independent of rotation. First, general forms of the model of a Reynolds stress equation and a dissipation rate equation are derived, the only restrictions of which are high Reynolds number and incompressibility. The model equations are then applied to two-dimensional equilibrium boundary layers and the effects of Coriolis acceleration on turbulence structures are discussed. Comparisons with the experimental data and with previous results in other external force fields show that there exists a very close analogy between centrifugal, buoyancy and Coriolis force fields. Finally, the model is applied to predict the two-dimensional boundary layers on rotating plane walls. Comparisons with existing data confirmed its capability of predicting mean and turbulent quantities without employing any empirical relations in rotating fields.
NASA Technical Reports Server (NTRS)
Wingett, Paul (Inventor)
2001-01-01
A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.
An apparatus for altering the mechanical load of the respiratory system.
Younes, M; Bilan, D; Jung, D; Kroker, H
1987-06-01
We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.
Task-specific stability in muscle activation space during unintentional movements.
Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L
2014-11-01
We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy.
Impact of external forcing on simulated hydroclimate from interannual to multicentennial timescales
NASA Astrophysics Data System (ADS)
Roldán, Pedro; Fidel González-Rouco, Jesús; Melo-Aguilar, Camilo
2017-04-01
During the last millennium, external forcing experienced important changes in different timescales. It has been demostrated that these changes had an impact on climate. In particular, changes in solar activity, volcanic eruptions and emissions of greenhouse gases are related to short-term and long-term changes in global temperatures, with situations of higher total external forcing generally related with higher global and hemispherical temperatures, and conversely with situations of lower forcing. This connection is clearly observed in climate simulations from different models and in proxy-based reconstructions. The changes in external forcing can also explain certain changes in atmospheric dynamics and hydroclimate, although in this case it is in general more difficult to trace causality arguments. Analyses based on simulations from two different models (ECHO-G and CESM-LME) have been performed, to assess the impact of external forcing on climate in timescales ranging from interannual to multicentennial. Various climatic variables have been analysed, including temperature, sea level pressure, surface wind, precipitation and soil moisture. For interannual timescales, composites have been defined with the years before and after the main volcanic eruptions of the last millennium as well as the minima of solar activity during this period. For longer timescales, a Principal Component analysis has been performed, to try to separate the signal of external forcing from that of internal variability. This has been done for the whole millennium and for the pre-industrial period, to assess the difference between natural and anthropogenic forcing. For multicentennial timescales, composites for the Medieval Climate Anomaly (MCA; ca. 950-1250), the Little Ice Age (LIA; ca. 1450-1850) and the 20th Century have been compared. These three periods were respectively characterised by higher, lower and higher forcing. This allows to assess the contribution of external forcing to the evolution of climate over longer time intervals. These analyses have shown that external forcing is an important factor in the evolution of the simulated hydroclimate of the last millennium. In the short-term, it has been observed that volcanic eruptions and other situations of extreme forcing significantly alter the global precipitation in the subsequent years. In the long-term, variations of external forcing can be related to changes in atmospheric dynamics and in hydroclimate. However, this impact is not homogeneously distributed. There are areas where hydroclimate is mainly influenced by the external forcing and other areas more influenced by internal variability, with spatial decorrelation being higher in precipitation or drought related variables than in temperature. The regional sensitivity to external forcing of hydroclimate is model and, to a lesser degree, simulation dependent.
Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.
2017-01-01
In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin
2011-11-15
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less
Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness
NASA Astrophysics Data System (ADS)
Jaschonek, Stefan; Diezemann, Gregor
2017-03-01
We present a detailed study of the parameter dependence of force probe molecular dynamics (FPMD) simulations. Using a well studied calix[4]arene catenane dimer as a model system, we systematically vary the pulling velocity and the stiffness of the applied external potential. This allows us to investigate how the results of pulling simulations operating in the constant velocity mode (force-ramp mode) depend on the details of the simulation setup. The system studied has the further advantage of showing reversible rebinding meaning that we can monitor the opening and the rebinding transition. Many models designed to extract kinetic information from rupture force distributions work in the limit of soft springs and all quantities are found to depend solely on the so-called loading rate, the product of spring stiffness and pulling velocity. This approximation is known to break down when stiff springs are used, a situation often encountered in molecular simulations. We find that while some quantities only depend on the loading rate, others show an explicit dependence on the spring constant used in the FPMD simulation. In particular, the force versus extension curves show an almost stiffness independent rupture force but the force jump after the rupture transition does depend roughly linearly on the value of the stiffness. The kinetic rates determined from the rupture force distributions show a dependence on the stiffness that can be understood in terms of the corresponding dependence of the characteristic forces alone. These dependencies can be understood qualitatively in terms of a harmonic model for the molecular free energy landscape. It appears that the pulling velocities employed are so large that the crossover from activated dynamics to diffusive dynamics takes place on the time scale of our simulations. We determine the effective distance of the free energy minima of the closed and the open configurations of the system from the barrier via an analysis of the hydrogen-bond network with results in accord with earlier simulations. We find that the system is quite brittle in the force regime monitored in the sense that the barrier is located near to the closed state.
Patterning in systems driven by nonlocal external forces.
Luneville, L; Mallick, K; Pontikis, V; Simeone, D
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Patterning in systems driven by nonlocal external forces
NASA Astrophysics Data System (ADS)
Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Suresh, E-mail: ajay-phy@rediffmail.com; Tiwari, R. K.; Gupta, D. C.
In this paper, we present the expressions relating the inter atomic force constants like as bond-stretching force constant (α in N/m) and bond-bending force constant (β in N/m) for the binary (zinc blende structure) and ternary (chalcopyrite structure) semiconductors with the product of ionic charges (PIC) and crystal ionicity (f{sub i}). Interatomic force constants of these compounds exhibit a linear relationship; when plot a graph between Interatomic force constants and the nearest neighbor distance d (Å) with crystal ionicity (f{sub i}), but fall on different straight lines according to the product of ionic charges of these compounds. A fairly goodmore » agreement has been found between the observed and calculated values of the α and β for binary and ternary tetrahedral semiconductors.« less
Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Joyce, G.; Montgomery, D.
1977-01-01
Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wavenumbers simultaneously with a cascade of mean square vector potential to lower wavenumbers, leading to an omni-directional magnetic energy spectrum.
Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Seifert, Udo
2018-05-01
Heat engines should ideally have large power output, operate close to Carnot efficiency and show constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a constant temperature difference between the two heat baths, we prove that out of these three requirements only two are compatible. Constancy enters quantitatively the conventional trade-off between power and efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian gyrator delivering mechanical work against an external force.
NASA Astrophysics Data System (ADS)
Yoon, Seokjin; Kasai, Akihide
2017-11-01
The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.
The effect of external forces on discrete motion within holographic optical tweezers.
Eriksson, E; Keen, S; Leach, J; Goksör, M; Padgett, M J
2007-12-24
Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers.
Towards the computation of time-periodic inertial range dynamics
NASA Astrophysics Data System (ADS)
van Veen, L.; Vela-Martín, A.; Kawahara, G.
2018-04-01
We explore the possibility of computing simple invariant solutions, like travelling waves or periodic orbits, in Large Eddy Simulation (LES) on a periodic domain with constant external forcing. The absence of material boundaries and the simple forcing mechanism make this system a comparatively simple target for the study of turbulent dynamics through invariant solutions. We show, that in spite of the application of eddy viscosity the computations are still rather challenging and must be performed on GPU cards rather than conventional coupled CPUs. We investigate the onset of turbulence in this system by means of bifurcation analysis, and present a long-period, large-amplitude unstable periodic orbit that is filtered from a turbulent time series. Although this orbit is computed on a coarse grid, with only a small separation between the integral scale and the LES filter length, the periodic dynamics seem to capture a regeneration process of the large-scale vortices.
Quantized transport for a skyrmion moving on a two-dimensional periodic substrate
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-03-01
We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular (
Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey
2007-08-01
To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the overall amount of observed tibial external rotation during the dial test. The anterior force reduced the posterior tibial subluxation associated with PCL injury, which is analogous to what is observed when the dial test is performed with the patient in the prone position. Reducing the tibia with either an anterior force when the patient is supine or performing the dial test with the patient in the prone position increases the ability of an examiner to detect a concomitant PLC injury in the setting of a PCL-deficient knee.
Non-invasive determination of external forces in vortex-pair-cylinder interactions
NASA Astrophysics Data System (ADS)
Hartmann, D.; Schröder, W.; Shashikanth, B. N.
2012-06-01
Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Frustration in protein elastic network models
NASA Astrophysics Data System (ADS)
Lezon, Timothy; Bahar, Ivet
2010-03-01
Elastic network models (ENMs) are widely used for studying the equilibrium dynamics of proteins. The most common approach in ENM analysis is to adopt a uniform force constant or a non-specific distance dependent function to represent the force constant strength. Here we discuss the influence of sequence and structure in determining the effective force constants between residues in ENMs. Using a novel method based on entropy maximization, we optimize the force constants such that they exactly reporduce a subset of experimentally determined pair covariances for a set of proteins. We analyze the optimized force constants in terms of amino acid types, distances, contact order and secondary structure, and we demonstrate that including frustrated interactions in the ENM is essential for accurately reproducing the global modes in the middle of the frequency spectrum.
Carrier, David R; Deban, Stephen M; Fischbein, Timna
2008-01-01
The limbs of running mammals are thought to function as inverted struts. When mammals run at constant speed, the ground reaction force vector appears to be directed near the point of rotation of the limb on the body such that there is little or no moment at the joint. If this is true, little or no external work is done at the proximal joints during constant-speed running. This possibility has important implications to the energetics of running and to the coupling of lung ventilation to the locomotor cycle. To test if the forelimb functions as an inverted strut at the shoulder during constant-speed running and to characterize the locomotor function of extrinsic muscles of the forelimb, we monitored changes in the recruitment of six muscles that span the shoulder (the m. pectoralis superficialis descendens, m. pectoralis profundus, m. latissimus dorsi, m. omotransversarius, m. cleidobrachialis and m. trapezius) to controlled manipulations of locomotor forces and moments in trotting dogs (Canis lupus familiaris Linnaeus 1753). Muscle activity was monitored while the dogs trotted at moderate speed (approximately 2 m s(-1)) on a motorized treadmill. Locomotor forces were modified by (1) adding mass to the trunk, (2) inclining the treadmill so that the dogs ran up- and downhill (3) adding mass to the wrists or (4) applying horizontally directed force to the trunk through a leash. When the dogs trotted at constant speed on a level treadmill, the primary protractor muscles of the forelimb exhibited activity during the last part of the ipsilateral support phase and the beginning of swing phase, a pattern that is consistent with the initiation of swing phase but not with active protraction of the limb during the beginning of support phase. Results of the force manipulations were also consistent with the protractor muscles initiating swing phase and contributing to active braking via production of a protractor moment on the forelimb when the dogs decelerate. A similar situation appears to be true for the major retractor muscles of the forelimb. The m. pectoralis profundus and the m. latissimus dorsi were completely silent during the support phase of the ipsilateral limb when the dogs ran unencumbered and exhibited little or no increase in activity when the dogs carried added mass on their backs to increase any retraction torque during the support phase of constant-speed running. The most likely explanation for these observations is that the ground force reaction vector is oriented very close to the fulcrum of the forelimb such that the forelimb functions as a compliant strut at the shoulder when dogs trot at constant speed on level surfaces. Because the moments at the fulcrum of the pectoral girdle appear to be small during the support phase of a trotting step, a case can be made that it is the activity of the extrinsic appendicular muscles that produce the swing phase of the forelimb that explain the coupled phase relationship between ventilatory airflow and the locomotor cycle in trotting dogs.
Niman, Cassandra S; Zuckermann, Martin J; Balaz, Martina; Tegenfeldt, Jonas O; Curmi, Paul M G; Forde, Nancy R; Linke, Heiner
2014-12-21
Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated with ligand-gated binding of the DNA's ends to the functionalized nanochannel surface. Brownian dynamics simulations predict that Inchworm's stall force is determined by its entropic spring constant and is ∼ 0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the DNA inside a nanochannel, while keeping constant the hydrodynamic load force on the DNA. We present a two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-nm-wide slit to a microfluidic system used for in situ buffer exchanges, either diffusionally (zero flow) or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we demonstrate the device's key performance features and experimentally establish achievable Inchworm stepping times of the order of seconds or faster.
NASA Astrophysics Data System (ADS)
Mink, J.; Gal, M.; Goggin, P. L.; Spencer, J. L.
1986-03-01
Skeletal modes of [M(C 2H 4) 3] (where M=Ni(O) or Pt(O)), and [Pt(C 2H 4Cl 3][NBu 4] have been measured and assigned. A new model for the normal coordinate treament of π-complexes has been adopted to calculate metal—ligand force constants. The Pt-ehtylene stretching force constants were 1.66, and 2.54 Ncm -1, and the Pt-ehtylene tilting force constants were 2.04, and 2.84 Ncm -1 for [Pt(C 2H 4) 3], and [Pt(C 2H 4)Cl 3] -1 respectively. These force constants suggest that the π-bonding dominates for tris(ethylene)platinum but that σ- and π-bonding are of almost equal importance for the Zeise's salt analogue. The CC valence force constants of chemisorbed ehtylene suggest that C is rehybridised nearly to sp 3 on Ni(lll) and Pt(lll) surfaces but not on Pd(lll). The surface-ehtylene stretching force constants indicate that the bond strengths are in the order Pt>Ni>>Pd.
Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang
2014-08-01
This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
Validity and reliability of a controlled pneumatic resistance exercise device.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2008-01-01
During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.
Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper
2014-01-01
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400–1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO. PMID:24567051
Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper
2014-02-25
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400-1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO.
The nature of the laning transition in two dimensions
NASA Astrophysics Data System (ADS)
Glanz, T.; Löwen, H.
2012-11-01
If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.
Markolf, Keith L; Jackson, Steven; McAllister, David R
2012-09-01
Syndesmosis (high ankle) sprains produce disruption of the distal tibiofibular ligaments. Forces on the distal fibula that produce these injuries are unknown. Twenty-seven fresh-frozen lower extremities were used for this study. A load cell recorded forces acting on the distal fibula from forced ankle dorsiflexion and applied external foot torque; medial-lateral and anterior-posterior displacements of the distal fibula were recorded. Fibular forces and axial displacements were also recorded with applied axial force. During forced ankle dorsiflexion and external foot torque tests, the distal fibula always displaced posteriorly with respect to the tibia with no measurable medial-lateral displacement. With 10 Nm dorsiflexion moment, cutting the tibiofibular ligaments approximately doubled fibular force and displacement values. Cutting the tibiofibular ligaments significantly increased fibular displacement from applied external foot torque. Fibular forces and axial displacements from applied axial weight-bearing force were highest with the foot dorsiflexed. The highest mean fibular force in the study (271.9 N) occurred with 10 Nm external foot torque applied to a dorsiflexed foot under 1000 N axial force. Two important modes of loading that could produce high ankle sprains were identified: forced ankle dorsiflexion and external foot torque applied to a dorsiflexed ankle loaded with axial force. The distal tibiofibular ligaments restrained fibular displacement during these tests. Residual mortise widening observed at surgery may be the result of tibiofibular ligament injuries caused by posterior displacement of the fibula. Therefore, a syndesmosis screw used to fix the fibula would be subjected to posterior bending forces from these loading modes. Ankle bracing to prevent extreme ankle dorsiflexion during rehabilitation may be advisable to prevent excessive fibular motions that could affect syndesmosis healing.
Hermann, Stefanie; Wessig, Martin; Kollofrath, Dennis; Gerigk, Melanie; Hagedorn, Kay; Odendal, James A; Hagner, Matthias; Drechsler, Markus; Erler, Philipp; Fonin, Mikhail; Maret, Georg; Polarz, Sebastian
2017-05-08
Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017-05-25
operate independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...interventions both successful and unsuccessful, that an external country must craft a custom approach to develop local security forces based on the
Hydrophobic interactions between dissimilar surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.
1997-01-15
An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less
NASA Technical Reports Server (NTRS)
Hannan, Mike R.; Jurenko, Robert J.; Bush, Jason; Ottander, John
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes a hybrid approach for determining physical displacements by augmenting the original quadratically constrained least squares (LSQI) algorithm with Direct Shape Mapping (DSM) and modifying the energy constraints. The approach presented is applicable to simulation of the elastic behavior of launch vehicles and other structures that utilize discrete LTI finite element model (FEM) derived mode sets (eigenvalues and eigenvectors) that are propagated throughout time. The time invariant nature of the elastic data presents a problem of how to properly transition elastic states from the prior to the new model while preserving motion across the transition and ensuring there is no truncation or excitation of the system. A previous approach utilizes a LSQI algorithm with an energy constraint to effect smooth transitions between eigenvector sets with no requirement that the models be of similar dimension or have any correlation. This approach assumes energy is conserved across the transition, which results in significant non-physical transients due to changing quasi-steady state energy between mode sets, a phenomenon seen when utilizing a truncated mode set. The computational burden of simulating a full mode set is significant so a subset of modes is often selected to reduce run time. As a result of this truncation, energy between mode sets may not be constant and solutions across transitions could produce non-physical transients. In an effort to abate these transients an improved methodology was developed based on the aforementioned approach, but this new approach can handle significant changes in energy across mode set transitions. It is proposed that physical velocities due to elastic behavior be solved for using the LSQI algorithm, but solve for displacements using a two-step process that independently addresses the quasi-steady-state and non-steady-state contributions to the elastic displacement. For structures subject to large external forces, such as thrust or atmospheric drag, it is imperative to capture these forces when solving for elastic displacement. To simplify the mathematical formulation, assumptions are made regarding mass matrix normalization, constant external forcing, and constant viscous damping. These simplifications allow for direct solutions to the quasi-steady-state displacements through a process titled Direct Shape Mapping. DSM solves for the displacements using the eigenvalues of the elastic modes and the external forcing and returns a set of elastic displacements dictated by the eigenvectors of the post-transition mode set. For the non-steady-state contributions to displacement we formulate a LSQI problem that is constrained by energy of the non-steady state terms. The contributions from the quasi-steady-state and non-steady state solutions are then combined to obtain the physical displacements associated with the new set of eigenvectors. Results for the LSQI-DSM approach show significant reduction/complete removal of transients across mode set transitions while maintaining elastic motion from the prior state. For time propagation applications employing discrete elastic models that need to be transitioned in time and where running with full a full mode set is not feasible, the method developed offers a practical solution to simulating vehicle elasticity.
Controlled Viscosity in Dense Granular Materials
NASA Astrophysics Data System (ADS)
Gnoli, A.; de Arcangelis, L.; Giacco, F.; Lippiello, E.; Ciamarra, M. Pica; Puglisi, A.; Sarracino, A.
2018-03-01
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency, we observe a reentrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.
NASA Astrophysics Data System (ADS)
Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.
1987-04-01
An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.
NASA Astrophysics Data System (ADS)
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* < 0 can be kept for any value of B a when the rate db a /dt is greater than a certain value. There is an extreme value for any curve of maximum stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, Raul; Schatz, George
2014-03-01
The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.
Do, Ton Duc; Ul Amin, Faiz; Noh, Yeongil; Kim, Myeong Ok; Yoon, Jungwon
2016-03-01
The "impermeability" of the blood-brain barrier (BBB) has hindered effective treatment of central nervous system (CNS) disorders such as Alzheimer's disease (AD), which is one of the most common neurodegenerative disorders. A drug can be delivered to a targeted disease site effectively by applying a strong electromagnetic force to the conjugate of a drug and magnetic nanocontainers. This study developed a novel nanotechnology-based strategy to deliver therapeutic agents to the brain via the BBB as a possible therapeutic approach for AD. First, a novel approach for an electromagnetic actuator for guiding nanocontainers is introduced. Then, we analyzed the in vivo uptake in mice experimentally to evaluate the capacity of the nanocontainers. In the mouse model, we demonstrated that magnetic particles can cross the normal BBB when subjected to external electromagnetic fields of 28 mT (0.43 T/m) and 79.8 mT (1.39 T/m). Our study also assessed the differential effects of pulsed (0.25, 0.5, and 1 Hz) and constant magnetic fields on the transport of particles across the BBB in mice injected with magnetic nanoparticles (MNPs) via a tail vein. The applied magnetic field was either kept constant or pulsed on and off. Relative to a constant magnetic field, the rate of MNP uptake and transport across the BBB was enhanced significantly by a pulsed magnetic field. Localization inside the brain was established using fluorescent MNPs. These results using 770-nm fluorescent carboxyl magnetic nanocontainers demonstrated the feasibility of the proposed electromagnetic targeted drug delivery actuator. These results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external electromagnetic field. This might be a valuable targeting system for AD diagnosis and therapy.
Effects of load on ground reaction force and lower limb kinematics during concentric squats.
Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos
2005-10-01
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.
Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.
Soo, Heino; Dean, David S; Krüger, Matthias
2017-01-01
We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.
Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition
NASA Astrophysics Data System (ADS)
Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander
2017-04-01
An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to external factors, e.g. forecast their change in 21 century under different CO2 emission scenarios, are discussed. [1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510 [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. http://doi.org/10.1063/1.4968852
Tanaka, Shinobu; Hayashi, Shigeki; Fukushima, Satoshi; Yasuki, Tsuyoshi
2013-01-01
This article describes the chest injury risk reduction effect of shoulder restraints using finite element (FE) models of the worldwide harmonized side impact dummy (WorldSID) and Total Human Model for Safety (THUMS) in an FE model 32 km/h oblique pole side impact. This research used an FE model of a mid-sized vehicle equipped with various combinations of curtain shield air bags, torso air bags, and shoulder restraint air bags. As occupant models, AM50 WorldSID and THUMS AM50 Version 4 were used for comparison. The research investigated the effect of shoulder restraint air bag on chest injury by comparing cases with and without a shoulder side air bag. The maximum external force to the chest was reduced by shoulder restraint air bag in both WorldSID and THUMS, reducing chest injury risk as measured by the amount of rib deflection, number of the rib fractures, and rib deflection ratio. However, it was also determined that the external force to shoulder should be limited to the chest injury threshold because the external shoulder force transmits to the chest via the arm in the case of WorldSID and via the scapula in the case of THUMS. Because these results show the shoulder restraint air bag effect on chest injury risk, the vent hole size of the shoulder restraint air bag was changed for varying reaction forces to investigate the relationship between the external force to the shoulder and the risk of chest injury. In the case of THUMS, an external shoulder force of 1.8 kN and more force from the shoulder restraint air bag was necessary to help prevent rib fracture. Increasing external force applied to shoulder up to 6.2 kN (the maximum force used in this study) did not induce any rib or clavicle fractures in the THUMS. When the shoulder restraint air bag generated external force to the shoulder from 1.8 to 6.2 kN in THUMS, which were applied to the WorldSID, the shoulder deflection ranged from 35 to 68 mm, and the shoulder force ranged from 1.8 to 2.3 kN. In the test configuration used, a shoulder restraint using the air bag helps reduce chest injury risk by lowering the maximum magnitude of external force to the shoulder and chest. To help reduce rib fracture risk in the THUMS, the shoulder restraint air bag was expected to generate a force of 3.7 kN with a minimum rib deflection ratio. This corresponds to a shoulder rib deflection of 60 mm and a shoulder load of 2.2 kN in WorldSID. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta
2018-04-01
Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.
The Comfortable Roller Coaster--on the Shape of Tracks with a Constant Normal Force
ERIC Educational Resources Information Center
Nordmark, Arne B.; Essen, Hanno
2010-01-01
A particle that moves along a smooth track in a vertical plane is influenced by two forces: gravity and normal force. The force experienced by roller coaster riders is the normal force, so a natural question to ask is, what shape of the track gives a normal force of constant magnitude? Here we solve this problem. It turns out that the solution is…
A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.
Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang
2011-07-01
A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.
Phonons in random alloys: The itinerant coherent-potential approximation
NASA Astrophysics Data System (ADS)
Ghosh, Subhradip; Leath, P. L.; Cohen, Morrel H.
2002-12-01
We present the itinerant coherent-potential approximation (ICPA), an analytic, translationally invariant, and tractable form of augmented-space-based multiple-scattering theory18 in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni55Pd45 and Ni50Pt50 alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation (CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.
The effects of rigid motions on elastic network model force constants
Lezon, Timothy R.
2012-01-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model’s single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here we investigate the differences between calculated values of force constants _t to data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. PMID:22228562
NASA Astrophysics Data System (ADS)
Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.
1996-12-01
A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.
A parabolic mirror x-ray collimator
NASA Astrophysics Data System (ADS)
Franks, A.; Jackson, K.; Yacoot, A.
2000-05-01
A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.
Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J
2012-02-01
Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.
NASA Astrophysics Data System (ADS)
Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao
2018-04-01
This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.
Effect of upper airway CO2 pattern on ventilatory frequency in tegu lizards.
Ballam, G O; Coates, E L
1989-07-01
Nasal CO2-sensitive receptors are reported to depress ventilatory frequency in several reptilian species in response to constant low levels of inspired CO2. The purpose of this study was to determine the influence of phasic patterns of CO2 in the upper airways on ventilation. Awake lizards (Tupinambis nigropunctatus) breathed through an endotracheal tube from an isolated gas source. A second gas mixture was forced at constant flow into the external nares. A concentration of 4% CO2 was intermittently pulsed through the nares in a square-wave pattern with a frequency of 60, 12, 6, 4.2, 1.8, and 0.6 cycles/min. Concentrations of 2, 3, 4, and 6% CO2 were also pulsed through the nares at 12 cycles/min and compared with sustained levels of 1, 1.5, 2, and 3%. Additionally, 0 or 3% CO2 was forced through the upper airways with a servo system designed to mimic normal ventilatory flow and gas concentrations. No changes in breathing pattern were noted during any of the pulsing protocols, although a significant breathing frequency depression was present with sustained levels of CO2 of comparable mean concentrations. We conclude that ventilatory control is selectively responsive to sustained levels of environmental CO2 but not to phasic changes in upper airway CO2 concentration.
Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.
Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M
2017-11-01
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.
External Forces Affecting Higher Education. NACUBO Professional File. Vol. 7, No. 5.
ERIC Educational Resources Information Center
Bailey, Stephen K.
Out of the many external forces that influence college campuses, there are four that have had (or are likely to have) a major impact on the fortunes of higher education. The ways in which college and university officials and friends react to these forces can make an enormous difference to the future of higher education. The forces are: (1) Federal…
NASA Astrophysics Data System (ADS)
Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan
2018-05-01
The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.
Defining and Testing the Influence of Servo System Response on Machine Tool Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, D J
2004-03-24
Compliance can be defined as the measurement of displacement per unit of force applied e.g. nano-meters per Newton (m/N). Compliance is the reciprocal of stiffness. High stiffness means low compliance and visa versa. It is an important factor in machine tool characteristics because it reflects the ability of the machine axis to maintain a desired position as it encounters a force or torque. Static compliance is a measurement made with a constant force applied e.g. the average depth of cut. Dynamic compliance is a measurement made as a function of frequency, e.g. a fast too servo (FTS) that applies amore » varying cutting force or load, interrupted cuts and external disturbances such as ground vibrations or air conditioning induced forces on the machine. Compliance can be defined for both a linear and rotary axis of a machine tool. However, to properly define compliance for a rotary axis, the axis must allow a commanded angular position. Note that this excludes velocity only axes. In this paper, several factors are discussed that affect compliance but emphasis is placed on how the machine servo system plays a key role in compliance at low to mid frequency regions. The paper discusses several techniques for measuring compliance and provides examples of results from these measurements.« less
Kawakami, M; Smith, D A
2008-12-10
We have developed a new force ramp modification of the atomic force microscope (AFM) which can control multiple unfolding events of a multi-modular protein using software-based digital force feedback control. With this feedback the force loading rate can be kept constant regardless the length of soft elastic linkage or number of unfolded polypeptide domains. An unfolding event is detected as a sudden drop in force, immediately after which the feedback control reduces the applied force to a low value of a few pN by lowering the force set point. Hence the remaining folded domains can relax and the subsequent force ramp is applied to relaxed protein domains identically in each case. We have applied this technique to determine the kinetic parameters x(u), which is the distance between the native state and transition state, and α(0), which is the unfolding rate constant at zero force, for the mechanical unfolding of a pentamer of I27 domains of titin. In each force ramp the unfolding probability depends on the number of folded domains remaining in the system and we had to take account of this effect in the analysis of unfolding force data. We obtained values of x(u) and α(0) to be 0.28 nm and 1.02 × 10(-3) s(-1), which are in good agreement with those obtained from conventional constant velocity experiments. This method reveals unfolding data at low forces that are not seen in constant velocity experiments and corrects for the change in stiffness that occurs with most mechanical systems throughout the unfolding process to allow constant force ramp experiments to be carried out. In addition, a mechanically weak structure was detected, which formed from the fully extended polypeptide chain during a force quench. This indicates that the new technique will allow studies of the folding kinetics of previously hidden, mechanically weak species.
NASA Astrophysics Data System (ADS)
Bai, Zhan-Wu; Zhang, Wei
2018-01-01
The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.
Alta, Tjarco D W; Veeger, DirkJan H E J; de Toledo, Joelly M; Janssen, Thomas W J; Willems, W Jaap
2014-11-01
Range of motion after total shoulder arthroplasty is better than after reverse shoulder arthroplasty, however with similar clinical outcome. It is unclear if this difference can only be found in the different range of motion or also in the force generating capacity. (1) are isokinetically produced joint torques of reverse shoulder arthroplasty comparable to those of total shoulder arthroplasty? (2) Does this force-generating capacity correlate with functional outcome? Eighteen reverse shoulder arthroplasty patients (71years (SD 9years)) (21 shoulders, follow-up of 21months (SD 10months)) were recruited, 12 total shoulder arthroplasty patients (69years (SD 9years)) (14 shoulders, follow-up of 35months (SD 11months)). Pre- and post-operative Constant-Murley scores were obtained; two isokinetic protocols (ab-/adduction and ex-/internal rotations) at 60°/s were performed. Twelve of 18 reverse shoulder arthroplasty patients generated enough speed to perform the test (13 shoulders). Mean ab-/adduction torques are 16.3Nm (SD 5.6Nm) and 20.4Nm (SD 11.8Nm). All total shoulder arthroplasty patients generated enough speed (14 shoulders). Mean ab-/adduction torques are 32.1Nm (SD 13.3Nm) and 43.1Nm (SD 21.5Nm). Only 8 reverse shoulder arthroplasty patients (9 shoulders) could perform ex-/internal rotation tasks and all total shoulder arthroplasty patients. Mean ex-/internal rotation torques are 9.3Nm (SD 4.7Nm) and 9.2Nm (SD 2.1Nm) for reverse shoulder arthroplasty, and 17.9Nm (SD 7.7Nm) and 23.5Nm (SD 10.6Nm) for total shoulder arthroplasty. Significant correlations between sub-scores: activity, mobility and strength and external rotation torques for reverse shoulder arthroplasty. Moderate to strong correlation for sub-scores: strength in relation to abduction, adduction and internal rotation torques for total shoulder arthroplasty. Shoulders with a total shoulder arthroplasty are stronger. This can be explained by the absence of rotator cuff muscles and (probably) medialized center of rotation in reverse shoulder arthroplasty. The strong correlation between external rotation torques and post-operative Constant-Murley sub-scores demonstrates that external rotation is essential for good clinical functioning in reverse shoulder arthroplasty. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergincan, O., E-mail: orcunergincan@gmail.com; Palasantzas, G.; Kooi, B. J.
2014-02-15
The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.
Kamo, Mifuyu
2002-03-01
To elucidate the strategy of the activity of motor units (MUs) to maintain a constant-force isometric contraction, I examined the behavior of MUs in knee extensor muscles [(vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF)] during a sustained contraction at 5% of maximal voluntary contraction for 5 min. In all cases, the spike interval exhibited an elongating trend, and two discharge patterns were observed, continuous discharge and decruitment. In continuous-discharge MUs, the trend slope was steep immediately after the onset of constant force (steep phase), and then became gentle (gentle phase). Decruitments were observed frequently during each phase, and additional MU recruitment was observed throughout the contraction. The mean value of recruitment threshold force did not differ among the extensors. The mean spike interval at the onset of constant-force isometric contractions was shorter in RF than in VL. However, there were no differences in the duration and extent of the elongating trend, decruitment time and recruitment time among the extensors. The electromyogram of the antagonist biceps femoris muscle revealed no compensatory change for extensor activity. These results indicated that at a low force level, the strategy employed by the central nervous system to maintain constant force appears to involve cooperation among elongating trends in the spike interval, decruitment following elongation, and additional MU recruitment in synergistic muscles.
Radiation reaction on a classical charged particle: a modified form of the equation of motion.
Alcaine, Guillermo García; Llanes-Estrada, Felipe J
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Radiation reaction on a classical charged particle: A modified form of the equation of motion
NASA Astrophysics Data System (ADS)
Alcaine, Guillermo García; Llanes-Estrada, Felipe J.
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Practical Considerations for Using Constant Force Springs in Space-Based Mechanisms
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Fisher, Charles D.; Gallon, John C.
2013-01-01
Mechanical springs are a common element in mechanism from all walks of life; cars, watches, appliances, and many others. These springs generally exhibit a linear relationship between force and deflection. In small mechanisms, deflections are small so the variation in spring force between one position and another are generally small and do not influence the design or functionality of the device. However, as the spacecraft industry drives towards larger, deployable satellites, the distances a spring or springs must function over can become considerable so much so that the structural integrity of the device may be impacted. As such, an increasingly common mechanism element is the constant force spring- one that provides a constant force regardless of deflection. These elements are commonly in the conceptual design phase to deal with system-level large deflections, but in the detailed design or integration test phase they can pose significant implementation issues. This article addresses some of the detailed issues in order for these constant force springs to be properly designed into space systems.
Diffusional falsification of kinetic constants on Lineweaver-Burk plots.
Ghim, Y S; Chang, H N
1983-11-07
The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.
Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-01-01
External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.
Image discrimination models predict detection in fixed but not random noise
NASA Technical Reports Server (NTRS)
Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)
1997-01-01
By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.
Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object.
Jordan, Stephen P; Crespi, Vincent H
2004-12-17
Graphene cones have two degenerate configurations: their original shape and its inverse. When the apex is depressed by an external probe, the simulated mechanical response is highly nonlinear, with a broad constant-force mode appearing after a short initial Hooke's law regime. For chiral cones, the final state is an atomically exact chiral invert of the original system. If the local reflection symmetry of the graphene sheet is broken by the chemisorption of just five hydrogen atoms to the apex, then the maximal yield strength of the cone increases by approximately 40%. The high symmetry of the conical geometry can concentrate micron-scale mechanical work with atomic precision, providing a way to activate specific chemical bonds.
Parabolic flight - Loss of sense of orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1979-01-01
On the earth, or in level flight, a blindfolded subject being rotated at constant velocity about his recumbent long body axis experiences illusory orbital motion of his body in the opposite direction. By contrast, during comparable rotation in the free-fall phase of parabolic flight, no body motion is perceived and all sense of external orientation may be lost; when touch and pressure stimulation is applied to the body surface, a sense of orientation is reestablished immediately. The increased gravitoinertial force period of a parabola produces an exaggeration of the orbital motion experienced in level flight. These observations reveal an important influence of touch, pressure, and kinesthetic information on spatial orientation and provide a basis for understanding many of the postural illusions reported by astronauts in space flight.
Chaos and the (un)predictability of evolution in a changing environment
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-01-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104
Spatially Synchronous Extinction of Species under External Forcing
NASA Astrophysics Data System (ADS)
Amritkar, R. E.; Rangarajan, Govindan
2006-06-01
More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.
The effects of rigid motions on elastic network model force constants.
Lezon, Timothy R
2012-04-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. Copyright © 2011 Wiley Periodicals, Inc.
Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt
2012-03-01
The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.
Effect of attentional focus strategies on peak force and performance in the standing long jump.
Wu, Will F W; Porter, Jared M; Brown, Lee E
2012-05-01
Significant benefits in standing long jump performance have been demonstrated when subjects were provided verbal instructions that promoted an external focus of attention compared with an internal focus of attention, suggesting differences in ground reaction forces. The purpose of the present study was to evaluate peak force and jump performance between internal and external focus of attention strategies. Untrained subjects were assigned to both experimental conditions in which verbal instructions were provided to promote either an external or internal focus of attention. All subjects completed a total number of 5 standing long jumps. The results of the study demonstrated that the external focus of attention condition elicited significantly greater jump distance (153.6 ± 38.6 cm) than the internal focus of attention condition (139.5 ± 46.7 cm). There were no significant differences observed between conditions in peak force (1429.8 ± 289.1 N and 1453.7 ± 299.7 N, respectively). The results add to the growing body of literature describing the training and learning benefits of an external focus of attention. Practitioners should create standardized verbal instructions using an external focus of attention to maximize standing long jump performance.
Proprioception Is Robust under External Forces
Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.
2013-01-01
Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959
Examining the Impact of External Influences on Police Use of Deadly Force over Time.
ERIC Educational Resources Information Center
White, Michael D.
2002-01-01
Used interrupted time-series analysis (ARIMA) to study the impact of legislation and judicial intervention on the use of deadly force by police officers in Philadelphia, Pennsylvania. Findings generally suggest that dynamic changes in the internal working environment can outweigh the influence of external mechanisms on deadly force use. Findings…
Changes in Muscle and Joint Coordination in Learning to Direct Forces
Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.
2008-01-01
While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988
Changes in muscle and joint coordination in learning to direct forces.
Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A
2008-08-01
While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.
Force sharing and other collaborative strategies in a dyadic force perception task
Tatti, Fabio
2018-01-01
When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433
NASA Astrophysics Data System (ADS)
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing
2018-02-01
The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.
Force encoding in muscle spindles during stretch of passive muscle
Blum, Kyle P.; Zytnicki, Daniel
2017-01-01
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position. PMID:28945740
Force encoding in muscle spindles during stretch of passive muscle.
Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H
2017-09-01
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.
Foraging at the Edge of Chaos: Internal Clock versus External Forcing
NASA Astrophysics Data System (ADS)
Nicolis, S. C.; Fernández, J.; Pérez-Penichet, C.; Noda, C.; Tejera, F.; Ramos, O.; Sumpter, D. J. T.; Altshuler, E.
2013-06-01
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso
2017-07-10
Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.
Reliable and accurate extraction of Hamaker constants from surface force measurements.
Miklavcic, S J
2018-08-15
A simple and accurate closed-form expression for the Hamaker constant that best represents experimental surface force data is presented. Numerical comparisons are made with the current standard least squares approach, which falsely assumes error-free separation measurements, and a nonlinear version assuming independent measurements of force and separation are subject to error. The comparisons demonstrate that not only is the proposed formula easily implemented it is also considerably more accurate. This option is appropriate for any value of Hamaker constant, high or low, and certainly for any interacting system exhibiting an inverse square distance dependent van der Waals force. Copyright © 2018 Elsevier Inc. All rights reserved.
Murphy, Ryan J.; Liu, Hao; Iordachita, Iulian I.; Armand, Mehran
2017-01-01
Dexterous continuum manipulators (DCMs) have been widely adopted for minimally- and less-invasive surgery. During the operation, these DCMs interact with surrounding anatomy actively or passively. The interaction force will inevitably affect the tip position and shape of DCMs, leading to potentially inaccurate control near critical anatomy. In this paper, we demonstrated a 2D mechanical model for a tendon actuated, notched DCM with compliant joints. The model predicted deformation of the DCM accurately in the presence of tendon force, friction force, and external force. A partition approach was proposed to describe the DCM as a series of interconnected rigid and flexible links. Beam mechanics, taking into consideration tendon interaction and external force on the tip and the body, was applied to obtain the deformation of each flexible link of the DCM. The model results were compared with experiments for free bending as well as bending in the presence of external forces acting at either the tip or body of the DCM. The overall mean error of tip position between model predictions and all of the experimental results was 0.62±0.41mm. The results suggest that the proposed model can effectively predict the shape of the DCM. PMID:28989273
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2017-05-01
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
Solar and atmospheric forcing on mountain lakes.
Luoto, Tomi P; Nevalainen, Liisa
2016-10-01
We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
NASA Astrophysics Data System (ADS)
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
NASA Astrophysics Data System (ADS)
van Eijck, L.; Merzel, F.; Rols, S.; Ollivier, J.; Forsyth, V. T.; Johnson, M. R.
2011-08-01
Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.
Dynamic force signal processing system of a robot manipulator
NASA Technical Reports Server (NTRS)
Uchiyama, M.; Kitagaki, K.; Hakomori, K.
1987-01-01
If dynamic noises such as those caused by the inertia forces of the hand can be eliminated from the signal of the force sensor installed on the wrist of the robot manipulator and if the necessary information of the external force can be detected with high sensitivity and high accuracy, a fine force feedback control for robots used in high speed and various fields will be possible. As the dynamic force sensing system, an external force estimate method with the extended Kalman filter is suggested and simulations and tests for a one axis force were performed. Later a dynamic signal processing system of six axes was composed and tested. The results are presented.
Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng
1999-01-01
We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.
The lift force on a drop in unbounded plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Wohl, P. R.
1976-01-01
The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.
Constant-Pressure Hydraulic Pump
NASA Technical Reports Server (NTRS)
Galloway, C. W.
1982-01-01
Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.
Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety
Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich
2018-01-01
External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918
NASA Astrophysics Data System (ADS)
Ruiz-Cabello, F. Javier Montes; Maroni, Plinio; Borkovec, Michal
2013-06-01
Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.
Montes Ruiz-Cabello, F Javier; Maroni, Plinio; Borkovec, Michal
2013-06-21
Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.
Infinity and Newton's Three Laws of Motion
NASA Astrophysics Data System (ADS)
Lee, Chunghyoung
2011-12-01
It is shown that the following three common understandings of Newton's laws of motion do not hold for systems of infinitely many components. First, Newton's third law, or the law of action and reaction, is universally believed to imply that the total sum of internal forces in a system is always zero. Several examples are presented to show that this belief fails to hold for infinite systems. Second, two of these examples are of an infinitely divisible continuous body with finite mass and volume such that the sum of all the internal forces in the body is not zero and the body accelerates due to this non-null net internal force. So the two examples also demonstrate the breakdown of the common understanding that according to Newton's laws a body under no external force does not accelerate. Finally, these examples also make it clear that the expression `impressed force' in Newton's formulations of his first and second laws should be understood not as `external force' but as `exerted force' which is the sum of all the internal and external forces acting on a given body, if the body is infinitely divisible.
Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory
NASA Astrophysics Data System (ADS)
Gazuz, I.; Fuchs, M.
2013-03-01
A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation for N bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external force Fex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.248302 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.
Mechanics of deformations in terms of scalar variables
NASA Astrophysics Data System (ADS)
Ryabov, Valeriy A.
2017-05-01
Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.
Carbon Nanotubes in Water: MD Simulations of Internal and External Flow, Self Organization
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.; Halicioglu, Timur; Werder, Thomas; Walther, Jens; Koumoutsakos, Petros; Arnold, James (Technical Monitor)
2001-01-01
We have developed computational tools, based on particle codes, for molecular dynamics (MD) simulation of carbon nanotubes (CNT) in aqueous environments. The interaction of CNTs with water is envisioned as a prototype for the design of engineering nano-devices, such as artificial sterocillia and molecular biosensors. Large scale simulations involving thousands of water molecules are possible due to our efficient parallel MD code that takes long range electrostatic interactions into account. Since CNTs can be considered as rolled up sheets of graphite, we expect the CNT-water interaction to be similar to the interaction of graphite with water. However, there are fundamental differences between considering graphite and CNTs, since the curvature of CNTs affects their chemical activity and also since capillary effects play an important role for both dynamic and static behaviour of materials inside CNTs. In recent studies Gordillo and Marti described the hydrogen bond structure as well as time dependent properties of water confined in CNTs. We are presenting results from the development of force fields describing the interaction of CNTs and water based on ab-initio quantum mechanical calculations. Furthermore, our results include both water flows external to CNTs and the behaviour of water nanodroplets inside heated CNTs. In the first case (external flows) the hydrophobic behaviour of CNTs is quantified and we analyze structural properties of water in the vicinity of CNTs with diagnostics such as hydrogen bond distribution, water dipole orientation and radial distribution functions. The presence of water leads to attractive forces between CNTs as a result of their hydrophobicity. Through extensive simulations we quantify these attractive forces in terms of the number and separation of the CNT. Results of our simulations involving arrays of CNTs indicate that these exhibit a hydrophobic behaviour that leads to self-organising structures capable of trapping water clusters. In the second case (internal flows) we study the behaviour of water droplets confined inside CNTs. Constant temperature simulations allow us to capture structural properties such as the contact angles and density profiles of the equilibrated drops. By heating and subsequently cooling of the CNT, we are able to measure the evaporation and the condensation rate of the entrapped water.
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
Vacuum-Assisted, Constant-Force Exercise Device
NASA Technical Reports Server (NTRS)
Hansen, Christopher P.; Jensen, Scott
2006-01-01
The vacuum-assisted, constant-force exercise device (VAC-FED) has been proposed to fill a need for a safe, reliable exercise machine that would provide constant loads that could range from 20 to 250 lb (0.09 to 1.12 kN) with strokes that could range from 6 to 36 in. (0.15 to 0.91 m). The VAC-FED was originally intended to enable astronauts in microgravity to simulate the lifting of free weights, but it could just as well be used on Earth for simulated weight lifting and other constant-force exercises. Because the VAC-FED would utilize atmospheric/vacuum differential pressure instead of weights to generate force, it could weigh considerably less than either a set of free weights or a typical conventional exercise machine based on weights. Also, the use of atmospheric/ vacuum differential pressure to generate force would render the VAC-FED inherently safer, relative to free weights and to conventional exercise machines that utilize springs to generate forces. The overall function of the VAC-FED would be to generate a constant tensile force in an output cable, which would be attached to a bar, handle, or other exercise interface. The primary force generator in the VAC-FED would be a piston in a cylinder. The piston would separate a volume vented to atmosphere at one end of the cylinder from an evacuated volume at the other end of the cylinder (see figure). Hence, neglecting friction at the piston seals, the force generated would be nearly constant equal to the area of the piston multiplied by the atmospheric/vacuum differential pressure. In the vented volume in the cylinder, a direct-force cable would be looped around a pulley on the piston, doubling the stroke and halving the tension. One end of the direct-force cable would be anchored to a cylinder cap; the other end of the direct-force cable would be wrapped around a variable-ratio pulley that would couple tension to the output cable. As its name suggests, the variable-ratio pulley would contain a mechanism that could be used to vary the ratio between the tension in the direct-force cable and the tension in the output cable. This mechanism could contain gears, pulleys, and/or levers, for example.
Wünschel, Markus; Wülker, Nikolaus; Müller, Otto
2013-11-01
Females have a higher risk in terms of anterior cruciate ligament injuries during sports than males. Reasons for this fact may be different anatomy and muscle recruitment patterns leading to less protection for the cruciate- and collateral-ligaments. This in vitro study aims to evaluate gender differences in knee joint kinematics and muscle force during weight-bearing knee flexions. Thirty-four human knee specimens (17 females/17 males) were mounted on a dynamic knee simulator. Weight-bearing single-leg knee flexions were performed with different amounts of simulated body weight (BW). Gender-specific kinematics was measured with an ultrasonic motion capture system and different loading conditions were examined. Knee joint kinematics did not show significant differences regarding anteroposterior and medial-lateral movement as well as tibial varus-valgus and internal-external rotation. This applied to all simulated amounts of BW. Simulating 100 N BW in contrast to AF50 led to a significant higher quadriceps overall force in female knees from 45° to 85° of flexion in contrast to BW 50 N. In these female specimens, the quadriceps overall force was about 20 % higher than in male knees being constant in higher flexion angles. It is indicated by our results that in a squatting movement females compared with males produce higher muscle forces, suggesting an increased demand for muscular stabilization, whereas tibio-femoral kinematics was similar for both genders.
Smith, Cory M; Housh, Terry J; Hill, Ethan C; Johnson, Glen O; Schmidt, Richard J
2017-04-01
This study used a combined electromyographic, mechanomyographic, and force approach to identify electromechanical delay (EMD) from the onsets of the electromyographic to force signals (EMD E-F ), onsets of the electromyographic to mechanomyogrpahic signals (EMD E-M ), and onsets of mechanomyographic to force signals (EMD M-F ). The purposes of the current study were to examine: (1) the differences in EMD E-F , EMD E-M , and EMD M-F from the vastus lateralis during maximal, voluntary dynamic (1 repetition maximum [1-RM]) and isometric (maximal voluntary isometric contraction [MVIC]) muscle actions; and (2) the effects of fatigue on EMD E-F , EMD M-F , and EMD E-M . Ten men performed pretest and posttest 1-RM and MVIC leg extension muscle actions. The fatiguing workbout consisted of 70% 1-RM dynamic constant external resistance leg extension muscle actions to failure. The results indicated that there were no significant differences between 1-RM and MVIC EMD E-F , EMD E-M , or EMD M-F. There were, however, significant fatigue-induced increases in EMD E-F (94% and 63%), EMD E-M (107%), and EMD M-F (63%) for both the 1-RM and MVIC measurements. Therefore, these findings demonstrated the effects of fatigue on EMD measures and supported comparisons among studies which examined dynamic or isometric EMD measures from the vastus lateralis using a combined electromyographic, mechanomyographic, and force approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brownian motion on random dynamical landscapes
NASA Astrophysics Data System (ADS)
Suñé Simon, Marc; Sancho, José María; Lindenberg, Katja
2016-03-01
We present a study of overdamped Brownian particles moving on a random landscape of dynamic and deformable obstacles (spatio-temporal disorder). The obstacles move randomly, assemble, and dissociate following their own dynamics. This landscape may account for a soft matter or liquid environment in which large obstacles, such as macromolecules and organelles in the cytoplasm of a living cell, or colloids or polymers in a liquid, move slowly leading to crowding effects. This representation also constitutes a novel approach to the macroscopic dynamics exhibited by active matter media. We present numerical results on the transport and diffusion properties of Brownian particles under this disorder biased by a constant external force. The landscape dynamics are characterized by a Gaussian spatio-temporal correlation, with fixed time and spatial scales, and controlled obstacle concentrations.
Lead magnesium niobate actuator for micropositioning
Swift, Charles D.; Bergum, John W.
1994-01-01
An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
Chaos, Chaos Control and Synchronization of a Gyrostat System
NASA Astrophysics Data System (ADS)
GE, Z.-M.; LIN, T.-N.
2002-03-01
The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.
Ligands of low electronegativity in the vsepr model: molecular pseudohalides
NASA Astrophysics Data System (ADS)
Glidewell, Christopher; Holden, H. Diane
Equilibrium structures and force constants at linearity, for the skeletal bending mode δ(RNX) have been calculated in the MNDO approximation for 67 isocyanates, isothio-cyanates and azides, RNXY (XY = CO, CS or N 2) and the corresponding structures and force constants, δ(RCN), for 12 fulminates RCNO. Fulminates all have linear skeletons, but for RNXY the molecular skeleton is linear at atom X only if it is linear at N also ; otherwise the skeleton RNXY has a trans planar structure. Bending force constants are large and negative for all azides studied, negative for methyl and substituted methyl isocyanates and isothiocyanates and very small and positive for silyl and substituted silyl isothiocyanates: for silyl and substituted silyl isocyanales, the force constant is small and positive when the R group has effective C2v symmetry, but small and negative when the R group has only effective Cs symmetry.
Midsole material-related force control during heel-toe running.
Kersting, Uwe G; Brüggemann, Gert-Peter
2006-01-01
The impact maximum and rearfoot eversion have been used as indicators of load on internal structures in running. The midsole hardness of a typical running shoe was varied systematically to determine the relationship between external ground reaction force (GRF), in-shoe force, and kinematic variables. Eight subjects were tested during overground running at 4 m/s. Rearfoot movement as well as in-shoe forces and external GRF varied nonsystematically with midsole hardness. Kinematic parameters such as knee flexion and foot velocity at touchdown (TD), also varied nonsystematically with altered midsole hardness. Results demonstrate that considerable variations of in-shoe loading occur that were not depicted by external GRF measurements alone. Individuals apparently use different strategies of mechanical and neuromuscular adaptation in response to footwear modifications. In conclusion, shoe design effects on impact forces or other factors relating to injuries depend on the individual and therefore cannot be generalized.
Self-similar solutions of stationary Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Shi, Zuoshunhua
2018-02-01
In this paper, we mainly study the existence of self-similar solutions of stationary Navier-Stokes equations for dimension n = 3 , 4. For n = 3, if the external force is axisymmetric, scaling invariant, C 1 , α continuous away from the origin and small enough on the sphere S2, we shall prove that there exists a family of axisymmetric self-similar solutions which can be arbitrarily large in the class Cloc3 , α (R3 0). Moreover, for axisymmetric external forces without swirl, corresponding to this family, the momentum flux of the flow along the symmetry axis can take any real number. However, there are no regular (U ∈ Cloc3 , α (R3 0)) axisymmetric self-similar solutions provided that the external force is a large multiple of some scaling invariant axisymmetric F which cannot be driven by a potential. In the case of dimension 4, there always exists at least one self-similar solution to the stationary Navier-Stokes equations with any scaling invariant external force in L 4 / 3 , ∞ (R4).
Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger
2014-09-01
There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
A better way of fitting clips? A comparative study with respect to physical workload.
Gaudez, Clarisse; Wild, Pascal; Aublet-Cuvelier, Agnès
2015-11-01
The clip fitting task is a frequently encountered assembly operation in the car industry. It can cause upper limb pain. During task laboratory simulations, upper limb muscular activity and external force were compared for 4 clip fitting methods: with the bare hand, with an unpowered tool commonly used at a company and with unpowered and powered prototype tools. None of the 4 fitting methods studied induced a lower overall workload than the other three. Muscle activity was lower at the dominant limb when using the unpowered tools and at the non-dominant limb with the bare hand or with the powered tool. Fitting clips with the bare hand required a higher external force than fitting with the three tools. Evaluation of physical workload was different depending on whether external force or muscle activity results were considered. Measuring external force only, as recommended in several standards, is insufficient for evaluating physical workload. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Digital force-feedback for protein unfolding experiments using atomic force microscopy
NASA Astrophysics Data System (ADS)
Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.
2007-01-01
Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.
Unintentional Changes in the Apparent Stiffness of the Multi-Joint Limb
Zhou, Tao; Zatsiorsky, Vladimir M.; Latash, Mark L.
2015-01-01
We explored the phenomenon of unintentional changes in the apparent stiffness of the human arm produced by transient changes in the external force. The subjects performed a positional task against a constant baseline force and were instructed not to react to changes in the force. A HapticMaster robot produced a smooth force increase (a perturbation) leading to a hand movement, followed by a dwell time. No visible hand drift was observed during the dwell time. After the robot force dropped to its initial baseline value, the hand moved towards the initial position but stopped short of it. Small perturbations were applied at different time intervals along different directions during the dwell time. Arm apparent stiffness distribution in a horizontal plane was approximated with an ellipse. The apparent stiffness magnitude along the main axis of the ellipse showed a non-monotonic increase with dwell time while the apparent stiffness along the minor axis did not change significantly. We interpreted the early part of the changes in the apparent stiffness as due to peripheral muscle properties. The later part is interpreted as caused by a combination of two processes, a drift in the referent hand coordinate due to the hypothesized back-coupling between the referent and actual hand coordinates and an implicit instruction to keep the hand steady when no changes in robot-generated force took place. The data provide support for the idea of back-coupling between the referent and actual body configurations, which may be an important contributor to stability of motor actions. PMID:26169103
Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.
Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T
2016-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.
Driessen, A J; Hellingwerf, K J; Konings, W N
1987-09-15
The energetics of neutral and branched chain amino acid transport by membrane vesicles from Streptococcus cremoris have been studied with a novel model system in which beef heart mitochondrial cytochrome c oxidase functions as a proton-motive force (delta p) generating system. In the presence of reduced cytochrome c, a large delta p was generated with a maximum value at pH 6.0. Apparent H+/amino acid stoichiometries (napp) have been determined at external pH values between 5.5 and 8.0 from the steady state levels of accumulation and the delta p. For L-leucine napp (0.8) was nearly independent of the pH. For L-alanine and L-serine napp decreased from 0.9-1.0 at pH 5.5 to 0-0.2 at pH 8.0. The napp for the different amino acids decreased with increasing external amino acid concentration. At pH 6.0, first order rate constants for amino acid exit (kex) under steady state conditions for L-leucine, L-alanine, and L-serine were 1.1-1.3, 0.084, and 0.053 min-1, respectively. From the pH dependence of kex it is concluded that amino acid exit in steady state is the sum of two processes, pH-dependent carrier-mediated amino acid exit and pH-independent passive diffusion (external leak). The first order rate constant for passive diffusion increased with increasing hydrophobicity of the side chain of the amino acids. As a result of these processes the kinetic steady state attained is less than the amino acid accumulation ratio predicted by thermodynamic equilibrium. The napp determined from the steady state accumulation represents, therefore, a lower limit. It is concluded that the mechanistic stoichiometry (n) for L-leucine, L-alanine, and L-serine transport most likely equals 1.
NASA Technical Reports Server (NTRS)
Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)
1993-01-01
A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.
NASA Astrophysics Data System (ADS)
Eichhorn, R.; Reimann, P.
2004-04-01
We consider a Brownian particle whose motion is confined to a ``meandering'' pathway and which is driven away from thermal equilibrium by an alternating external force. This system exhibits absolute negative mobility, i.e. when an external static force is applied the particle moves in the direction opposite to that force. We reveal the physical mechanism behind this ``donkey-like'' behavior, and derive analytical approximations that are in excellent agreement with numerical results.
Tibiofemoral contact forces during walking, running and sidestepping.
Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G
2016-09-01
We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20
Optical quantification of forces at play during stem cell differentiation
NASA Astrophysics Data System (ADS)
Ritter, Christine M.; Brickman, Joshua M.; Oddershede, Lene B.
2016-03-01
A cell is in constant interaction with its environment, it responds to external mechanical, chemical and biological signals. The response to these signals can be of various nature, for instance intra-cellular mechanical re-arrangements, cell-cell interactions, or cellular reinforcements. Optical methods are quite attractive for investigating the mechanics inside living cells as, e.g., optical traps are amongst the only nanotools that can reach and manipulate, measure forces, inside a living cell. In the recent years it has become increasingly evident that not only biochemical and biomolecular cues, but also that mechanical ones, play an important roles in stem cell differentiation. The first evidence for the importance of mechanical cues emerged from studies showing that substrate stiffness had an impact on stem cell differentiation. Recently, techniques such as optical tweezers and stretchers have been applied to stem cells, producing new insights into the role of mechanics in regulating renewal and differentiation. Here, we describe how optical tweezers and optical stretchers can be applied as a tool to investigate stem cell mechanics and some of the recent results to come out of this work.
Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.
2016-01-01
Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Burks, Robert T; Tashjian, Robert Z
2012-09-01
Lateral offset center of rotation (COR) reduces the incidence of scapular notching and potentially increases external rotation range of motion (ROM) after reverse total shoulder arthroplasty (rTSA). The purpose of this study was to determine the biomechanical effects of changing COR on abduction and external rotation ROM, deltoid abduction force, and joint stability. A biomechanical shoulder simulator tested cadaveric shoulders before and after rTSA. Spacers shifted the COR laterally from baseline rTSA by 5, 10, and 15 mm. Outcome measures of resting abduction and external rotation ROM, and abduction and dislocation (lateral and anterior) forces were recorded. Resting abduction increased 20° vs native shoulders and was unaffected by COR lateralization. External rotation decreased after rTSA and was unaffected by COR lateralization. The deltoid force required for abduction significantly decreased 25% from native to baseline rTSA. COR lateralization progressively eliminated this mechanical advantage. Lateral dislocation required significantly less force than anterior dislocation after rTSA, and both dislocation forces increased with lateralization of the COR. COR lateralization had no influence on ROM (adduction or external rotation) but significantly increased abduction and dislocation forces. This suggests the lower incidence of scapular notching may not be related to the amount of adduction deficit after lateral offset rTSA but may arise from limited impingement of the humeral component on the lateral scapula due to a change in joint geometry. Lateralization provides the benefit of increased joint stability, but at the cost of increasing deltoid abduction forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Microscopic suspension feeders near boundaries: Effects of external water flow
NASA Astrophysics Data System (ADS)
Pepper, Rachel; Koehl, M. A. R.
2015-11-01
Microscopic sessile suspension feeders are an important part of aquatic ecosystems and form a vital link in the transfer of carbon in aquatic food webs. These suspension feeders live attached to boundaries, consume bacteria and small detritus, and are in turn eaten by larger organisms. Many create a feeding current that draws fluid towards them, and from which they filter their food. In still water, the feeding current consists of recirculating eddies which form as a result of fluid forcing near a boundary. These recirculating eddies can be depleted of food and significantly decrease nutrient uptake; a variety of strategies have been proposed for how attached feeders increase their access to undepleted water. We investigate the interaction of the flow produced by a microscopic suspension feeder with external environmental flow, such as the current in a stream or ocean. We show through calculations that even very slow flow (on the order of microns per second) is sufficient to provide a constant supply of undepleted water to suspension feeders when the feeders are modeled with perfect nutrient capture efficiency and in the absence of diffusion. We also discuss which natural flow environments exceed the threshold to supply undepleted water and which do not, and we examine how characteristics of the suspension feeders themselves, such as stalk length and feeding disk size, influence feeding currents and their interactions with external flows.
Compartmentalized storage tank for electrochemical cell system
NASA Technical Reports Server (NTRS)
Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)
2010-01-01
A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.
Vibrational properties of TaW alloy using modified embedded atom method potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh
2016-05-06
Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.
Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces
NASA Astrophysics Data System (ADS)
Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi
2013-04-01
Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.
Students’ understanding of forces: Force diagrams on horizontal and inclined plane
NASA Astrophysics Data System (ADS)
Sirait, J.; Hamdani; Mursyid, S.
2018-03-01
This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.
Chaos and the (un)predictability of evolution in a changing environment.
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-02-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Field-Assisted Contact Line Motion in Thin Films.
Ghosh, Udita Uday; DasGupta, Sunando
2018-04-25
The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.
TALEs from a spring--superelasticity of Tal effector protein structures.
Flechsig, Holger
2014-01-01
Transcription activator-like effectors (TALEs) are DNA-related proteins that recognise and bind specific target sequences to manipulate gene expression. Recently determined crystal structures show that their common architecture reveals a superhelical overall structure that may undergo drastic conformational changes. To establish a link between structure and dynamics in TALE proteins we have employed coarse-grained elastic-network modelling of currently available structural data and implemented a force-probe setup that allowed us to investigate their mechanical behaviour in computer experiments. Based on the measured force-extension curves we conclude that TALEs exhibit superelastic dynamical properties allowing for large-scale global conformational changes along their helical axis, which represents the soft direction in such proteins. For moderate external forcing the TALE models behave like linear springs, obeying Hooke's law, and the investigated structures can be characterised and compared by a corresponding spring constant. We show that conformational flexibility underlying the large-scale motions is not homogeneously distributed over the TALE structure, but instead soft spot residues around which strain is accumulated and which turn out to represent key agents in the transmission of conformational motions are identified. They correspond to the RVD loop residues that have been experimentally determined to play an eminent role in the binding process of target DNA.
TALEs from a Spring – Superelasticity of Tal Effector Protein Structures
Flechsig, Holger
2014-01-01
Transcription activator-like effectors (TALEs) are DNA-related proteins that recognise and bind specific target sequences to manipulate gene expression. Recently determined crystal structures show that their common architecture reveals a superhelical overall structure that may undergo drastic conformational changes. To establish a link between structure and dynamics in TALE proteins we have employed coarse-grained elastic-network modelling of currently available structural data and implemented a force-probe setup that allowed us to investigate their mechanical behaviour in computer experiments. Based on the measured force-extension curves we conclude that TALEs exhibit superelastic dynamical properties allowing for large-scale global conformational changes along their helical axis, which represents the soft direction in such proteins. For moderate external forcing the TALE models behave like linear springs, obeying Hooke's law, and the investigated structures can be characterised and compared by a corresponding spring constant. We show that conformational flexibility underlying the large-scale motions is not homogeneously distributed over the TALE structure, but instead soft spot residues around which strain is accumulated and which turn out to represent key agents in the transmission of conformational motions are identified. They correspond to the RVD loop residues that have been experimentally determined to play an eminent role in the binding process of target DNA. PMID:25313859
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Measurement of external forces and torques on a large pointing system
NASA Technical Reports Server (NTRS)
Morenus, R. C.
1980-01-01
Methods of measuring external forces and torques are discussed, in general and as applied to the Large Pointing System wind tunnel tests. The LPS tests were in two phases. The first test was a preliminary test of three models representing coelostat, heliostat, and on-gimbal telescope configurations. The second test explored the coelostat configuration in more detail. The second test used a different setup for measuring external loads. Some results are given from both tests.
Sleep, John; Irving, Malcolm; Burton, Kevin
2005-03-15
The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.
Functional Brace in ACL Surgery: Force Quantification in an In Vivo Study
LaPrade, Robert F.; Venderley, Melanie B.; Dahl, Kimi D.; Dornan, Grant J.; Turnbull, Travis Lee
2017-01-01
Background: A need exists for a functional anterior cruciate ligament (ACL) brace that dynamically supports the knee joint to match the angle-dependent forces of a native ACL, especially in the early postoperative period. Purpose/Hypothesis: The purpose of this study was to quantify the posteriorly directed external forces applied to the anterior proximal tibia by both a static and a dynamic force ACL brace. The proximal strap forces applied by the static force brace were hypothesized to remain relatively constant regardless of knee flexion angle compared with those of the dynamic force brace. Study Design: Controlled laboratory study. Methods: Seven healthy adult males (mean age, 27.4 ± 3.4 years; mean height, 1.8 ± 0.1 m; mean body mass, 84.1 ± 11.3 kg) were fitted with both a static and a dynamic force ACL brace. Participants completed 3 functional activities: unloaded extension, sit-to-stand, and stair ascent. Kinematic data were collected using traditional motion-capture techniques while posteriorly directed forces applied to the anterior aspect of both the proximal and distal tibia were simultaneously collected using a customized pressure-mapping technique. Results: The mean posteriorly directed forces applied to the proximal tibia at 30° of flexion by the dynamic force brace during unloaded extension (80.2 N), sit-to-stand (57.5 N), and stair ascent (56.3 N) activities were significantly larger, regardless of force setting, than those applied by the static force brace (10.1 N, 9.5 N, and 11.9 N, respectively; P < .001). Conclusion: The dynamic force ACL brace, compared with the static force brace, applied significantly larger posteriorly directed forces to the anterior proximal tibia in extension, where the ACL is known to experience larger in vivo forces. Further studies are required to determine whether the physiological behavior of the brace will reduce anterior knee laxity and improve long-term patient outcomes. Clinical Relevance: ACL braces that dynamically restrain the proximal tibia in a manner similar to physiological ACL function may improve pre- and postoperative treatment. PMID:28748195
Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1996-01-01
The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.
Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.
Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David
2014-08-01
In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.
Coupled loads analysis for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Eldridge, J.
1992-01-01
Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.
NASA Technical Reports Server (NTRS)
Pendergrass, J. R.; Walsh, R. L.
1975-01-01
An examination of the factors which modify the simulation of a constraint in the motion of the aft attach points of the orbiter and external tank during separation has been made. The factors considered were both internal (spring and damper constants) and external (friction coefficient and dynamic pressure). The results show that an acceptable choice of spring/damper constant combinations exist over the expected range of the external factors and that the choice is consistent with a practical integration interval. The constraint model is shown to produce about a 10 percent increase in the relative body pitch angles over the unconstrained case whereas the MDC-STL constraint model is shown to produce about a 38 percent increase.
Structural model of dioxouranium(VI) with hydrazono ligands.
Mubarak, Ahmed T
2005-04-01
Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of OUO groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the UO bond distances were calculated. The bond distances of these complexes were also investigated.
Structural model of dioxouranium(VI) with hydrazono ligands
NASA Astrophysics Data System (ADS)
Mubarak, Ahmed T.
2005-04-01
Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of O sbnd U sbnd O groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the U sbnd O bond distances were calculated. The bond distances of these complexes were also investigated.
Contact position sensor using constant contact force control system
NASA Technical Reports Server (NTRS)
Sturdevant, Jay (Inventor)
1995-01-01
A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).
Malaria vaccine development and how external forces shape it: an overview.
Lorenz, Veronique; Karanis, Gabriele; Karanis, Panagiotis
2014-06-30
The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Tanja; Engel, Dieter; Ehresmann, Arno
2008-12-15
A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.
Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures
NASA Technical Reports Server (NTRS)
Svehla, Roger A.
1962-01-01
Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.
Gomila, G; Esteban-Ferrer, D; Fumagalli, L
2013-12-20
We analyze by means of finite-element numerical calculations the polarization force between a sharp conducting tip and a non-spherical uncharged dielectric nanoparticle with the objective of quantifying its dielectric constant from electrostatic force microscopy (EFM) measurements. We show that for an oblate spheroid nanoparticle of given height the strength of the polarization force acting on the tip depends linearly on the eccentricity, e, of the nanoparticle in the small eccentricity and low dielectric constant regimes (1 < e < 2 and 1 < ε(r) < 10), while for higher eccentricities (e > 2) the dependence is sub-linear and finally becomes independent of e for very large eccentricities (e > 30). These results imply that a precise account of the nanoparticle shape is required to quantify EFM data and obtain the dielectric constants of non-spherical dielectric nanoparticles. Experimental results obtained on polystyrene, silicon dioxide and aluminum oxide nanoparticles and on single viruses are used to illustrate the main findings.
Prototype Development and Dynamic Characterization of Deployable CubeSat Booms
2010-03-01
constant force of gravity and the constant force of photons impinging on the reflective Mylar surface of the craft. This could, in effect, provide a much...reflected photons of light for spacecraft propulsion. As acceleration is inversely proportional to the mass for a constant thrust, this method of...of the satellite. Additionally, with so much boom essentially stuffed within a small cavity, binding and entanglement issues are a near certainty
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Frederiksen, Jorgen S.; Sisson, Janice M.; Osbrough, Stacey L.
2017-05-01
Changes in the characteristics of Southern Hemisphere (SH) storms, in all seasons, during the second half of the twentieth century, have been related to changes in the annual cycle of SH baroclinic instability. In particular, significant negative trends in baroclinic instability, as measured by the Phillips Criterion, have been found in the region of the climatological storm tracks; a zonal band of significant positive trends occur further poleward. Corresponding to this decrease/increase in baroclinic instability there is a decrease/increase in the growth rate of storm formation at these latitudes over this period, and in some cases a preference for storm formation further poleward than normal. Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that these trends are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land-use change. The MME is used in an analysis of variance method to separate the internal (natural) variability in the Phillips Criterion from influences associated with anomalous external radiative forcing. In all seasons, the leading externally forced mode has a significant trend and a loading pattern highly correlated with the pattern of trends in the Phillips Criterion. The covariance between the externally forced component of SH rainfall and the leading external mode strongly resembles the MME pattern of SH rainfall trends. A comparison between similar analyses of MME simulations using the second half of the twenty-first century of the Representative Concentration Pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in the Phillips Criterion and rainfall are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations.
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-03-10
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.
NASA Astrophysics Data System (ADS)
Liu, Ye; Song, Chonglin; Lv, Gang; Chen, Nan; Zhou, Hua; Jing, Xiaojun
2018-03-01
Atomic force microscopy (AFM) was used to characterize the attractive force, adhesive force and adhesion energy between an AFM probe tip and nanometric soot particle generated by a premixed methane/oxygen flame. Different attractive force distributions were found when increasing the height above burner (HAB), with forces ranging from 1.1-3.5 nN. As the HAB was increased, the average attractive force initially increased, briefly decreased, and then underwent a gradual increase, with a maximum of 2.54 nN observed at HAB = 25 mm. The mean adhesive force was 6.5-7.5 times greater than the mean attractive force at the same HAB, and values were in the range of 13.5-24.5 nN. The adhesion energy was in the range of 2.0-5.6 × 10-17 J. The variations observed in the average adhesion energy with increasing HAB were different from those of the average adhesion force, implying that the stretched length of soot particles is an important factor affecting the average adhesion energy. The Hamaker constants of the soot particles generated at different HABs were determined from AFM force-separation curves. The average Hamaker constant exhibited a clear correlation with the graphitization degree of soot particles as obtained from Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Chan, F. K.
1973-01-01
For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.
Lead magnesium niobate actuator for micropositioning
Swift, C.D.; Bergum, J.W.
1994-10-25
An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.
Aerodynamic static stability and control effectiveness of a parametric shuttle launch configuration
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1972-01-01
Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel on a 0.004-scale model of the NR ATP baseline Shuttle launch configuration. The test model consisted of the NR ATP baseline orbiter, external tank, and SRB's with nozzles. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 deg to 10 deg at zero degrees sideslip and angle of sideslip range of minus 10 deg to 10 deg at zero angle of attack for a Mach range of 0.6 to 4.96. Rudder flare was constant at 10 deg during the entire test. The purpose of the test was to define the performance, stability, and control characteristics of the launch configuration as well as to investigate the buildup effect of two geometrical parameters.
Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration
Ogawa, Rei; Hsu, Chao-Kai
2013-01-01
During growth and development, the skin expands to cover the growing skeleton and soft tissues by constantly responding to the intrinsic forces of underlying skeletal growth as well as to the extrinsic mechanical forces from body movements and external supports. Mechanical forces can be perceived by two types of skin receptors: (1) cellular mechanoreceptors/mechanosensors, such as the cytoskeleton, cell adhesion molecules and mechanosensitive (MS) ion channels, and (2) sensory nerve fibres that produce the somatic sensation of mechanical force. Skin disorders in which there is an abnormality of collagen [e.g. Ehlers–Danlos syndrome (EDS)] or elastic (e.g. cutis laxa) fibres or a malfunction of cutaneous nerve fibres (e.g. neurofibroma, leprosy and diabetes mellitus) are also characterized to some extent by deficiencies in mechanobiological processes. Recent studies have shown that mechanotransduction is crucial for skin development, especially hemidesmosome maturation, which implies that the pathogenesis of skin disorders such as bullous pemphigoid is related to skin mechanobiology. Similarly, autoimmune diseases, including scleroderma and mixed connective tissue disease, and pathological scarring in the form of keloids and hypertrophic scars would seem to be clearly associated with the mechanobiological dysfunction of the skin. Finally, skin ageing can also be considered as a degenerative process associated with mechanobiological dysfunction. Clinically, a therapeutic strategy involving mechanoreceptors or MS nociceptor inhibition or acceleration together with a reduction or augmentation in the relevant mechanical forces is likely to be successful. The development of novel approaches such as these will allow the treatment of a broad range of cutaneous diseases. PMID:23672502
Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H
1990-01-01
To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007
Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H
1990-10-01
To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables.
Asymmetric adaptation in human walking using the Tethered Pelvic Assist Device (TPAD).
Vashista, Vineet; Reisman, Darcy S; Agrawal, Sunil K
2013-06-01
Human nervous system is capable of modifying motor commands in response to alterations in walking conditions. Previous research has shown that external perturbations that induce gait asymmetry can lead to adaptation in gait parameters. Such strategies have also been shown to temporarily restore gait symmetry in subjects with post stroke hemiparesis. This work aims to develop an experimental paradigm to induce gait asymmetry in human subjects by applying external asymmetric forces on the pelvis through the Tethered Pelvic Assist Device (TPAD). These external forces on the pelvis have the potential to influence the swing and the stance phases of both legs. Eight healthy subjects participated in the experiment where a higher resistive force was applied on the pelvis during the swing phase of the left leg as compared to the right leg. We hypothesized that such asymmetrically applied forces on the pelvis will lead to asymmetric adaptation in the human walking.
Surface effects on friction-induced fluid heating in nanochannel flows.
Li, Zhigang
2009-02-01
We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.
NASA Astrophysics Data System (ADS)
Golding, Madeleine J.; Huppert, Herbert E.; Neufeld, Jerome A.
2013-03-01
The effects of capillary forces on the propagation of two-phase, constant-flux gravity currents in a porous medium are studied analytically and numerically in an axisymmetric geometry. The fluid within a two-phase current generally only partially saturates the pore space it invades. For long, thin currents, the saturation distribution is set by the vertical balance between gravitational and capillary forces. The capillary pressure and relative permeability of the fluid in the current depend on this saturation. The action of capillary forces reduces the average saturation, thereby decreasing the relative permeability throughout the current. This results in a thicker current, which provides a steeper gradient to drive flow, and a more blunt-nose profile. The relative strength of gravity and capillary forces remains constant within a two-phase gravity current fed by a constant flux and spreading radially, due to mass conservation. For this reason, we use an axisymmetric representation of the framework developed by Golding et al. ["Two-phase gravity currents in porous media," J. Fluid Mech. 678, 248-270 (2011)], 10.1017/jfm.2011.110, to investigate the effect on propagation of varying the magnitude of capillary forces and the pore-size distribution. Scaling analysis indicates that axisymmetric two-phase gravity currents fed by a constant flux propagate like t1/2, similar to their single-phase counterparts [S. Lyle, H. E. Huppert, M. Hallworth, M. Bickle, and A. Chadwick, "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)], 10.1017/S0022112005006713, with the effects of capillary forces encapsulated in the constant of proportionality. As a practical application of our new concepts and quantitative evaluations, we discuss the implications of our results for the process of carbon dioxide (CO2) sequestration, during which gravity currents consisting of supercritical CO2 propagate in rock saturated with aqueous brine. We apply our two-phase model including capillary forces to quantitatively assess seismic images of CO2 spreading at Sleipner underneath the North Sea.
Analysis on Characteristics of a C-Shaped Constant-Force Spring with a Guide
NASA Astrophysics Data System (ADS)
Ohtsuki, Atsumi; Ohshima, Shigemichi; Itoh, Daisuke
A C-shaped constant-force spring is made of pre-stressed material in various sizes that offer the advantage of a constant tensile load, suitable for a variety of applications (for example, extension spring, motor-brush holder, power feed, retracting and restoring mechanism). Essentially, this spring consists of a coil of flat spring material and when unstressed it takes the form of a tightly wound spiral. This spiral is placed on a drum. When a tensile load is applied, the spiral uncoils. The load is practically independent of the amount of deformation. In this report, the extension mechanism of constant-force spring and the state of deformation are analyzed by using a large deformation theory. Moreover, experiments are carried out to confirm the applicability of the proposed theory. The experimental results agree well with the theoretical estimations.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-29
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-10-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-09-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS
SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...
Radii effect on the translation spring constant of force transducer beams
NASA Technical Reports Server (NTRS)
Scott, C. E.
1992-01-01
Multi-component strain-gage force transducer design requires the designer to determine the spring constant of the numerous beams or flexures incorporated in the transducer. The classical beam deflection formulae that are used in calculating these spring constants typically assume that the beam has a uniform moment of inertia along the entire beam length. In practice all beams have a radius at the end where the beam interfaces with the shoulder of the transducer, and on short beams in particular this increases the beam spring constant considerably. A Basic computer program utilizing numerical integration is presented to determine this effect.
On the autonomous motion of active drops or bubbles.
Ryazantsev, Yuri S; Velarde, Manuel G; Guzman, Eduardo; Rubio, Ramón G; Ortega, Francisco; Montoya, Juan-Jose
2018-05-19
Thermo-capillary stresses on the surface of a drop can be the result of a non-isothermal surface chemical conversion of a reactant dissolved in the host fluid. The strength of heat production (with e.g. absorption) on the surface is ruled by the diffusion of the reactant and depends on the state of motion of the drop. Such thermo-capillary stresses can provoke the motion of the drop or its motionless state in the presence of an external body force. If in the balance of forces, including indeed viscous drag, the net resultant force vanishes there is the possibility of autonomous motion with constant velocity of the drop. Focusing on drops with radii in the millimeter range provided here is a quantitative study of the possibility of such autonomous motion when the drop, considered as active unit, is seat of endo- or exo-thermic reactive processes that dominate its motion. The framework is restricted to Stokes flows in the hydrodynamics, negligible heat Peclet number while the solute Peclet number is considered very high. A boundary layer approximation is used in the description of reactant diffusion. Those processes eventually end up in the action being expressed by surface tension gradients and the Marangoni effect. Explicit expressions of the force acting on the drop and the velocity fields inside and outside the drop are provided. Some significant particular cases are discussed to illustrate the usefulness of the theory. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
The impact of constant light on the estrous cycle of the rat.
Campbell, C S; Schwartz, N B
1980-04-01
The initial effects of constant bright light on the events of the rat estrous cycle were monitored in order to examine the interdependence of the hormonal and behavioral rhythms which comprise the cycle. Females exposed to constant bright light for only one cycle either failed to ovulate or showed a delay in the hormonal and behavioral events of the cycle as well as in ovulation. Females exposed to constant light for two cycles 1) failed to ovulate, 2) showed an advancement, or 3) showed a delay in the hormonal events of the estrous cycle and ovulation. Vaginal cytology and the onset of locomotor activity did not maintain their normal temporal relationships with the other events of the estrous cycle in constant light. In spite of the absence of an external timing signal, the majority of hormonal rhythms maintained their normal phase relationships and showed little sign of internal desynchrony. Ovaries in many animals showed high rates of follicular atresia early in the cycle, suggesting that the effects of bright constant light are far more complex than can be attributed to a simple absence of an external timing signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.
Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less
The effect of solid interaction forces on pneumatic handling of sorbent powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.J.; Fan, L.S.
1993-06-01
This study shows that a comparison of powder characteristics--particle morphologies, particle size distributions, and static dielectric and Hamaker constants--can be used to interpret differences in dispersion and transport behavior between powders. These differences are attributed to the relative values of the solid-solid interaction forces experience by each powder in the process. The static dielectric constants of the powders are used as the material properties related to the relative magnitudes of the electrostatic forces. Similarly, the Hamaker constants are the material properties used to indicate the relative magnitudes of the van der Waals forces. The effects of differences in particle morphologiesmore » and size distributions are used to evaluate the dispersibility and efficiency of transport of four calcium-based powder materials used as sorbents in flue-gas desulfurization.« less
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu
2018-04-01
Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.
Motor adaptation to prosthetic cycling in people with trans-tibial amputation
Childers, W. Lee; Prilutsky, Boris I.; Gregor, Robert J.
2014-01-01
The neuromusculoskeletal system interacts with the external environment via end-segments, e.g. feet. A person with trans-tibial amputation (TTAmp) has lost a foot and ankle; hence the residuum with prosthesis becomes the new end-segment. We investigated changes in kinetics and muscle activity in TTAmps during cycling with this altered interface with the environment. Nine unilateral TTAmps and nine subjects without amputation (NoAmp) pedaled at a constant torque of 15Nm and a constant cadence of 90rpm (~150watts). Pedal forces and limb kinematics were used to calculate resultant joint moments. Electromyographic activity was recorded to determine its magnitude and timing. Biomechanical and EMG variables of the amputated limb were compared to those of the TTAmp sound limb and to the dominant limb in the NoAmp group using a one-way ANOVA. Results showed maximum angular displacement between the residuum and prosthesis was 4.8 ± 1.8deg. The amputated limb compared to sound limb and NoAmp group produced lower extensor moments averaged over the cycle about the ankle (13 ± 2.3, 20 ± 5.7, and 19 ± 5.3Nm, respectfully) and knee (8.4 ± 5.0, 15 ± 4.5, and 12.7 ± 5.9Nm, respectfully) (p<0.05). Gastrocnemius and rectus femoris peak activity in the TTAmps shifted to later in the crank cycle (by 36° and 75°, respectfully; p<0.05). These data suggest gastrocnemius was utilized as a one-joint knee flexor in combination with rectus femoris for prosthetic socket control and highlight prosthetic control as an interaction between the residuum, prosthesis and external environment. PMID:24818794
Krischak, Gert; Gebhard, Florian; Reichel, Heiko; Friemert, Benedikt; Schneider, Florian; Fisser, Christoph; Kaluscha, Rainer; Kraus, Michael
2013-09-01
This pilot study evaluates the outcome after occupational therapy, compared to home-based exercises in the conservative treatment of patients with full thickness rotator cuff tears. Forty-three adult subjects (range, 18-75 years), who had a full thickness rupture of the rotator cuff which was verified by magnetic imaging tomography, with clinical signs of a chronic rotator cuff impingement, and who were available for follow-up, were randomized to occupational therapy or to independent home-based exercises using a booklet. After drop-out, 38 patients were available for full examination at follow-up. Before therapy and after 2 months of conservative treatment, pain intensity, the Constant-Murley score, isokinetic strength testing in abduction and external rotation, functional limitation, clinical shoulder tests and health-related quality of life (EQ-5D) were evaluated. Two-thirds of the patients improved in clinical shoulder tests, regardless of the therapy group. There were no significant differences between the groups with reference to pain, range of motion, maximum peak force (abduction, external rotation), the Constant-Murley score, and the EQ-5D index. The only significant difference observed was the improvement in the self-assessed health- related quality of life (EQ-5D VAS) favoring home-based exercises. Home-based exercise, on the basis of an illustrated booklet with exercises twice a day, supplies comparable results to formal occupational therapy in the conservative treatment of rotator cuff tears. The results of this pilot study suggest some potential advantages related to psychological benefits using home-based treatment. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Orientational ordering of colloidal dispersions by application of time-dependent external forces.
Moths, Brian; Witten, T A
2013-08-01
We discuss a method of organizing incoherent motion of a colloidal suspension to produce synchronized, coherent motion, extending the discussion of our recent Letter [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)]. The method does not require interaction between the objects. Instead, the effect is controlled by the "twist matrix" which gives the angular velocity of an asymmetric object in a fluid resulting from a weak external force. We analyze the two types of forcing considered in the Letter: a force alternating between two directions and a continuously rotating force. For the alternating force, we justify the claim of the Letter that under appropriate forcing conditions, the orientational entropy of the objects decreases indefinitely with time, on average. We provide a bound on that rate in terms of the twist matrix. For the case of rotating force, we derive conditions for phased-locked motion of the objects to the force and prove that there is only one stable phase-locked orientation under these conditions. We find numerically that the fastest alignment typically occurs for tilt angles of order unity. We discuss how the alignment effect scales with the object size for external forcing caused by gravity or an electric field. Under practical forcing conditions we estimate that the alignment should persist despite rotational diffusion for objects larger than about 10 microns. Potential misalignment owing to hydrodynamic interaction of the objects is estimated to be negligible at volume fractions smaller than about 10(-4.5) (10(-3)) when the forcing is gravitational (electrophoretic).
External Influences on Modeled and Observed Cloud Trends
NASA Technical Reports Server (NTRS)
Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.
2015-01-01
Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.
1995-01-01
A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.
A thermostatted kinetic theory model for event-driven pedestrian dynamics
NASA Astrophysics Data System (ADS)
Bianca, Carlo; Mogno, Caterina
2018-06-01
This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.
Deformation Response of Conformally Coated Carbon Nanotube Forests
2013-11-05
forces between bare CNTs compared to coated CNTs that keep them together when bent. The vdW forces are proportional to the Hamaker constant [49...Chemistry 3rd edn (New York: Dekker) p 650 [50] Lefèvre G and Jolivet A 2009 Calculation of Hamaker constants applied to the deposition of metallic oxide
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Regularity in an environment produces an internal torque pattern for biped balance control.
Ito, Satoshi; Kawasaki, Haruhisa
2005-04-01
In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.
Investigation of ciliary propulsion of Tetrahymena Pyriformis in viscous solution
NASA Astrophysics Data System (ADS)
Jung, Ilyong; Lyubich, Eva; Valles, James
2014-03-01
Recent experiments by our group showed that the ciliated protist Paramecium Caudatumswims with a constant propulsive force in solutions with viscosities 1 < η/ ηw<7 where ηw is the viscosity of water. Measurements of the geometry of its helical swimming trajectory combined with high speed video of the ciliary motion provided insight into this behavior. Using a phenomenological model we found that the body cilia beating frequency decreases while the beating angle remains roughly constant to produce the constant propulsive force dependence on viscosity. In this talk, we present studies of another ciliated protozoa, Tetrahymena Pyriformis to determine whether the behavior of Paramecium is general. Preliminary results indicate that Tetrahymena Pyriformis also swims with a nearly constant propulsive force with increasing viscosity. Investigations similar to those performed on Paramecium are underway and the latest results will be presented. This work was supported by NSF PHY0750360 and at the NHMFL by NSF DMR-0084173
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarząbek, D. M., E-mail: djarz@ippt.pan.pl
2015-01-15
A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal tomore » approximately 1%. Furthermore, a simple method for calibration of the photodetector’s lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.« less
Propagation of the state change induced by external forces in local interactions
NASA Astrophysics Data System (ADS)
Lu, Jianjun; Tokinaga, Shozo
2016-10-01
This paper analyses the propagation of the state changes of agents that are induced by external forces applied to a plane. In addition, we propose two models for the behavior of the agents placed on a lattice plane, both of which are affected by local interactions. We first assume that agents are allowed to move to another site to maximise their satisfaction. Second, we utilise a model in which the agents choose activities on each site. The results show that the migration (activity) patterns of agents in both models achieve stability without any external forces. However, when we apply an impulsive external force to the state of the agents, we then observe the propagation of the changes in the agents' states. Using simulation studies, we show the conditions for the propagation of the state changes of the agents. We also show the propagation of the state changes of the agents allocated in scale-free networks and discuss the estimation of the agents' decisions in real state changes. Finally, we discuss the estimation of the agents' decisions in real state temporal changes using economic and social data from Japan and the United States.
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-01-01
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650
Paramecia Swim with a constant propulsion in Solutions of Varying Viscosity
NASA Astrophysics Data System (ADS)
Valles, James M., Jr.; Jung, Ilyong; Mickalide, Harry; Park, Hojin; Powers, Thomas
2012-02-01
Paramecia swim through the coordinated beating of the 1000's of cilia covering their body. We have measured the swimming speed of populations of Paramecium Caudatam in solutions of different viscosity, η, to see how their propulsion changes with increased drag. We have found the average instantaneous speed, V to decrease monotonically with increasing η. The product ηv is roughly constant over a factor of 7 change in viscosity suggesting that paramecia swim at constant propulsion force. The distribution of swimming speeds is Gaussian. The width appears proportional to the average speed implying that both fast and slow swimmers exert a constant propulsion. We discuss the possibility that this behavior implies that the body cilia beat at constant force with varying viscosity.
Anharmonic Potential Constants and Their Dependence Upon Bond Length
DOE R&D Accomplishments Database
Herschbach, D. R.; Laurie, V. W.
1961-01-01
Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)
Cochlear transducer operating point adaptation.
Zou, Yuan; Zheng, Jiefu; Ren, Tianying; Nuttall, Alfred
2006-04-01
The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74 dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of -0.1 Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18 kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the scala vestibuli (SV) direction. During an application of the constant force, the second harmonic of the CM partially recovered toward the initial level, which could be described by two time constants. Removing the force induced recovery of the second harmonic to its normal level described by a single time constant. The force applied over the SV caused an opposite result. These data indicate an active mechanism for OHC transduction OP.
Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.
Berman, Yonatan; Ben-Jacob, Eshel; Zhang, Xin; Shapira, Yoash
2016-01-01
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.
Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces
Berman, Yonatan; Zhang, Xin; Shapira, Yoash
2016-01-01
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress. PMID:27031230
The onset of chaos in orbital pilot-wave dynamics.
Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M
2016-10-01
We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.
Nonstationary time series prediction combined with slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, G.; Chen, X.
2015-01-01
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.
Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.
2017-05-01
The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.
Alexe-Ionescu, A L; Barbero, G; Lelidis, I
2014-08-28
We consider the influence of the spatial dependence of the ions distribution on the effective dielectric constant of an electrolytic solution. We show that in the linear version of the Poisson-Nernst-Planck model, the effective dielectric constant of the solution has to be considered independent of any ionic distribution induced by the external field. This result follows from the fact that, in the linear approximation of the Poisson-Nernst-Planck model, the redistribution of the ions in the solvent due to the external field gives rise to a variation of the dielectric constant that is of the first order in the effective potential, and therefore it has to be neglected in the Poisson's equation that relates the actual electric potential across the electrolytic cell to the bulk density of ions. The analysis is performed in the case where the electrodes are perfectly blocking and the adsorption at the electrodes is negligible, and in the absence of any ion dissociation-recombination effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroonblawd, Matthew P.; Sewell, Thomas D., E-mail: sewellt@missouri.edu; Maillet, Jean-Bernard, E-mail: jean-bernard.maillet@cea.fr
2016-02-14
In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linearmore » and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.« less
Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces
NASA Astrophysics Data System (ADS)
Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica
2017-06-01
Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.
Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David
2012-01-10
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.
2011-01-01
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields. PMID:22241968
Human influence on Canadian temperatures
NASA Astrophysics Data System (ADS)
Wan, Hui; Zhang, Xuebin; Zwiers, Francis
2018-02-01
Canada has experienced some of the most rapid warming on Earth over the past few decades with a warming rate about twice that of the global mean temperature since 1948. Long-term warming is observed in Canada's annual, winter and summer mean temperatures, and in the annual coldest and hottest daytime and nighttime temperatures. The causes of these changes are assessed by comparing observed changes with climate model simulated responses to anthropogenic and natural (solar and volcanic) external forcings. Most of the observed warming of 1.7 °C increase in annual mean temperature during 1948-2012 [90% confidence interval (1.1°, 2.2 °C)] can only be explained by external forcing on the climate system, with anthropogenic influence being the dominant factor. It is estimated that anthropogenic forcing has contributed 1.0 °C (0.6°, 1.5 °C) and natural external forcing has contributed 0.2 °C (0.1°, 0.3 °C) to the observed warming. Up to 0.5 °C of the observed warming trend may be associated with low frequency variability of the climate such as that represented by the Pacific decadal oscillation (PDO) and North Atlantic oscillation (NAO). Overall, the influence of both anthropogenic and natural external forcing is clearly evident in Canada-wide mean and extreme temperatures, and can also be detected regionally over much of the country.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Xie, Xi-Yang; Chai, Han-Peng
2016-12-01
Investigation is given to a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon. Applying the double-logarithmic and rational transformations, respectively, under certain variable-coefficient constraints, we get two different types of bilinear forms: (a) Based on the first type, the bilinear Bäcklund transformation (BT) is derived, the N-soliton solutions in the Wronskian form are constructed, and the (N - 1)- and N-soliton solutions are proved to satisfy the bilinear BT; (b) Based on the second type, via the Hirota method, the one- and two-soliton solutions are obtained. Those two types of solutions are different. Graphic analysis on the two types shows that the soliton velocity depends on d(t), h(t), f(t) and R(t), the soliton amplitude is merely related to f(t), and the background depends on R(t) and f(t), where d(t), h(t), q(t) and f(t) are the dissipative, dispersive, nonuniform and line-damping coefficients, respectively, and R(t) is the external-force term. We present some types of interactions between the two solitons, including the head-on and overtaking interactions, interactions between the velocity- and amplitude-unvarying two solitons, between the velocity-varying while amplitude-unvarying two solitons and between the velocity- and amplitude-varying two solitons, as well as the interactions occurring on the constant and varying backgrounds.
Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri
Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less
Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons
Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri
2017-05-11
Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less
Stability diagram for the forced Kuramoto model.
Childs, Lauren M; Strogatz, Steven H
2008-12-01
We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.
Force approach to radiation reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx
The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less
Live cell and immuno-labeling techniques to study gravitational effects on single plant cells.
Chebli, Youssef; Geitmann, Anja
2015-01-01
The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.
Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers
DiPolo, R.
1972-01-01
Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810
Determination of thermodynamics and kinetics of RNA reactions by force
Tinoco, Ignacio; Li, Pan T. X.; Bustamante, Carlos
2008-01-01
Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force. PMID:17040613
Automated force controller for amplitude modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less
Internal Forced Convection to Low Prandtl Number Gas Mixtures.
1984-07-15
heating; v iV 0" ..- . --- NCX~ENCLATURE (continued) Greek Symbols -/K Force constant in Lennard - Jones potential ; y Ratio of specific heats, c p/cV...Absolute viscosity; V Kinematic viscosity; P Density; C Force constant in Lennard - Jones potential ; Nondimensional Parameters 2 f Friction factor, g P DAp...Reynolds and Perkins, 1968] id= c = (T - Tref)and (9) C VyRT= v(5/3)RT The Lennard - Jones (6-12) potential can be employed in the Chapman- Enskog kinetic
Lauf, P K; Adragna, N C
1996-10-01
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K-Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato-2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.
1996-01-01
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K- Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato- 2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl. PMID:8894982
External front instabilities induced by a shocked particle ring.
Rodriguez, V; Saurel, R; Jourdan, G; Houas, L
2014-10-01
The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.
Safety evaluation of large external fixation clamps and frames in a magnetic resonance environment.
Luechinger, Roger; Boesiger, Peter; Disegi, John A
2007-07-01
Large orthopedic external fixation clamps and related components were evaluated for force, torque, and heating response when subjected to the strong electromagnetic fields of magnetic-resonance (MR) imaging devices. Forces induced by a 3-Tesla (T) MR scanner were compiled for newly designed nonmagnetic clamps and older clamps that contained ferromagnetic components. Heating trials were performed in a 1.5 and in a 3 T MR scanner with two assembled external fixation frames. Forces of the newly designed clamps were more than a factor 2 lower as the gravitational force on the device whereas, magnetic forces on the older devices showed over 10 times the force induced by earth acceleration of gravity. No torque effects could be found for the newly designed clamps. Temperature measurements at the tips of Schanz screws in the 1.5 T MR scanner showed a rise of 0.7 degrees C for a pelvic frame and of 2.1 degrees C for a diamond knee bridge frame when normalized to a specific absorption rate (SAR) of 2 W/kg. The normalized temperature increases in the 3 T MR scanner were 0.9 degrees C for the pelvic frame and 1.1 degrees C for the knee bridge frame. Large external fixation frames assembled with the newly designed clamps (390 Series Clamps), carbon fiber reinforced rods, and implant quality 316L stainless steel Schanz screws met prevailing force and torque limits when tested in a 3-T field, and demonstrated temperature increase that met IEC-60601 guidelines for extremities. The influence of frame-induced eddy currents on the risk of peripheral nerve stimulation was not investigated. Copyright 2006 Wiley Periodicals, Inc.
Multiphoton amplitude in a constant background field
NASA Astrophysics Data System (ADS)
Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian
2018-01-01
In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.
Adhesion of Particulate Materials to Mesostructured Polypyrrole
NASA Astrophysics Data System (ADS)
Hoss, Darby; Knepper, Robert; Hotchkiss, Peter; Tappan, Alexander; Boudouris, Bryan; Beaudoin, Stephen
Interactions based on van der Waals (vdW) forces will influence the performance and reliability of mesostructured polypyrrole swabs used for the collection and detection of trace particles. The vdW adhesion force between materials is described by the Hamaker constant, and these constants are measured via optical and dielectric properties (i.e., according to Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. Here, contact angle measurements were performed on films of several common materials and used to estimate Hamaker constants. This, in turn, will allow for the tuning of the design properties associated with the polypyrrole swabs. A comparison of these results to Hamaker constants estimated using Lifshitz Theory and IGC reveals the fundamental behavior of the materials. The Hamaker constants were then used in a new computational vdW adhesion model. The idealized model describes particle adhesion to an array of mesostrucures. This model elucidates the importance of where the particle makes contact with the mesostructure and the independence of vdW forces generated by each mesostructure. These results will facilitate the rational design of polypyrrole swabs optimized for harvesting microscale particles of trace materials.
Bittner, Dror M; Walker, Nicholas R; Legon, Anthony C
2016-02-21
A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ (e) or ΔJ (e), the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ (e) or ΔJ (e) for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ (0) or ΔJ (0) for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ∼ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.
NASA Astrophysics Data System (ADS)
Bittner, Dror M.; Walker, Nicholas R.; Legon, Anthony C.
2016-02-01
A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ e or ΔJ e , the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ e or ΔJ e for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ 0 or ΔJ 0 for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ˜ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.
ERIC Educational Resources Information Center
Dion, Kenneth L.; Dion, Karen K.
1973-01-01
Relationships between internal-external control and romantic love were hypothesized on the basis of a social influence interpretation and the view that romantic love is culturally stereotyped as an external force. Consistent with these perspectives, proportionally fewer internals than externals reported having been romantically attached. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Weimin; Niu, Haitao; Lin, Tong
2014-01-28
The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less
Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol
NASA Astrophysics Data System (ADS)
Pust, Ladislav; Pesek, Ludek
This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.
Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C
2011-01-01
Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.
Force, Torque and Stiffness: Interactions in Perceptual Discrimination
Wu, Bing; Klatzky, Roberta L.; Hollis, Ralph L.
2011-01-01
Three experiments investigated whether force and torque cues interact in haptic discrimination of force, torque and stiffness, and if so, how. The statistical relation between force and torque was manipulated across four experimental conditions: Either one type of cue varied while the other was constant, or both varied so as to be positively correlated, negatively correlated, or uncorrelated. Experiment 1 showed that the subjects’ ability to discriminate force was improved by positively correlated torque but impaired with uncorrelated torque, as compared to the constant torque condition. Corresponding effects were found in Experiment 2 for the influence of force on torque discrimination. These findings indicate that force and torque are integrated in perception, rather than being processed as separate dimensions. A further experiment demonstrated facilitation of stiffness discrimination by correlated force and torque, whether the correlation was positive or negative. The findings suggest new means of augmenting haptic feedback to facilitate perception of the properties of soft objects. PMID:21359137
Thrust Force Analysis of Tripod Constant Velocity Joint Using Multibody Model
NASA Astrophysics Data System (ADS)
Sugiura, Hideki; Matsunaga, Tsugiharu; Mizutani, Yoshiteru; Ando, Yosei; Kashiwagi, Isashi
A tripod constant velocity joint is used in the driveshaft of front wheel drive vehicles. Thrust force generated by this joint causes lateral vibration in these vehicles. To analyze the thrust force, a detailed model is constructed based on a multibody dynamics approach. This model includes all principal parts of the joint defined as rigid bodies and all force elements of contact and friction acting among these parts. This model utilizes a new contact modeling method of needle roller bearings for more precise and faster computation. By comparing computational and experimental results, the appropriateness of this model is verified and the principal factors inducing the second and third rotating order components of the thrust force are clarified. This paper also describes the influence of skewed needle rollers on the thrust force and evaluates the contribution of friction forces at each contact region to the thrust force.
A Local-Realistic Model of Quantum Mechanics Based on a Discrete Spacetime
NASA Astrophysics Data System (ADS)
Sciarretta, Antonio
2018-01-01
This paper presents a realistic, stochastic, and local model that reproduces nonrelativistic quantum mechanics (QM) results without using its mathematical formulation. The proposed model only uses integer-valued quantities and operations on probabilities, in particular assuming a discrete spacetime under the form of a Euclidean lattice. Individual (spinless) particle trajectories are described as random walks. Transition probabilities are simple functions of a few quantities that are either randomly associated to the particles during their preparation, or stored in the lattice nodes they visit during the walk. QM predictions are retrieved as probability distributions of similarly-prepared ensembles of particles. The scenarios considered to assess the model comprise of free particle, constant external force, harmonic oscillator, particle in a box, the Delta potential, particle on a ring, particle on a sphere and include quantization of energy levels and angular momentum, as well as momentum entanglement.
Illicit crops and armed conflict as constraints on biodiversity conservation in the Andes region.
Fjeldså, Jon; Alvarez, María D; Lazcano, Juan Mario; León, Blanca
2005-05-01
Coca, once grown for local consumption in the Andes, is now produced for external markets, often in areas with armed conflict. Internationally financed eradication campaigns force traffickers and growers to constantly relocate, making drug-related activities a principal cause of forest loss. The impact on biodiversity is known only in general terms, and this article presents the first regional analysis to identify areas of special concern, using bird data as proxy. The aim of conserving all species may be significantly constrained in the Santa Marta and Perijá mountains, Darién, some parts of the Central Andes in Colombia, and between the middle Marañón and middle Huallaga valleys in Peru. Solutions to the problem must address the root causes: international drug markets, long-lasting armed conflict, and lack of alternative income for the rural poor.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1994-05-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1995-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1995-08-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1994-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Modes and emergent time scales of embayed beach dynamics
NASA Astrophysics Data System (ADS)
Ratliff, Katherine M.; Murray, A. Brad
2014-10-01
In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Joyce, G.; Montgomery, D.
1976-01-01
Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wave numbers simultaneously with a cascade of mean square vector potential to lower wave numbers, leading to an omni-directional magnetic energy spectrum which varies as 1/k 3 at lower wave numbers, simultaneously with a buildup of magnetic excitation at the lowest wave number of the system. Equipartition of kinetic and magnetic energies is expected at the highest wave numbers in the system.
Internal Wave Spectrum of Lake Baikal
NASA Astrophysics Data System (ADS)
Tsimitri, C.; Schmid, M.; Wuest, A.
2013-05-01
Lake Baikal is the most voluminous and deepest (over 1.6 Km) fresh water body on earth holding 80% of the world's fresh water supplies. The lake supports a remarkable biodiversity with a major deep-water fauna composed almost entirely of endemic species. Due to the lake's great depth only the top 250 m are experiencing the direct effects of the wind. The deeper part of the lake is barely stratified and has a constant temperature all year round. A distinct peak is observed in the temperature Fourier spectrum around the inertial frequency almost at all times and at all depths. Here we investigate the particularities of the internal wave spectrum using the wavelet transform. We focus on the inertial frequency band and study the propagation through time and depth. Our goal is to evaluate the importance of the internal oscillations to the mixing and to correlate them to external forcing.
NASA Astrophysics Data System (ADS)
Lan, Ganhui
2015-09-01
We present here the analytical relation between the gain of eukaryotic gradient sensing network and the associated thermodynamic cost. By analyzing a general incoherent type-1 feed-forward loop, we derive the gain function (G ) through the reaction network and explicitly show that G depends on the nonequilibrium factor (0 ≤γ ≤1 with γ =0 and 1 representing irreversible and equilibrium reaction systems, respectively), the Michaelis constant (KM), and the turnover ratio (rcat) of the participating enzymes. We further find the maximum possible gain is intrinsically determined by KM/Gmax=(1 /KM+2 ) /4 . Our model also indicates that the dissipated energy (measured by -lnγ ), from the intracellular energy-bearing bioparticles (e.g., ATP), is used to generate a force field Fγ∝(1 -√{γ }) that reshapes and disables the effective potential around the zero gain region, which leads to the ultrasensitive response to external chemical gradients.
Static Prehension of a Horizontally Oriented Object in Three Dimensions
Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2011-01-01
We studied static prehension of a horizontally oriented object. Specific hypotheses were explored addressing such issues as the sharing patterns of the total moment of force across the digits, presence of mechanically unnecessary digit forces, and trade-off between multi-digit synergies at the two levels of the assumed control hierarchy. Within the assumed hierarchy, at the upper level, the task is shared between the thumb and virtual finger (an imagined finger producing a wrench equal to the sum of the wrenches of individual fingers). At the lower level, action of the virtual finger is shared among the four actual fingers. The subjects held statically a horizontally oriented handle instrumented with six-component force/torque sensors with different loads and torques acting about the long axis of the handle. The thumb acted from above while the four fingers supported the weight of the object. When the external torque was zero, the thumb produced mechanically unnecessary force of about 2.8 N, which did not depend on the external load magnitude. When the external torque was not zero, tangential forces produced over 80% of the total moment of force. The normal forces by the middle and ring fingers produced consistent moments against the external torque, while the normal forces of the index and little fingers did not. Force and moment variables at both hierarchical levels were stabilized by co-varied across trials adjustments of forces/moments produced by individual digits with the exception of the normal force analyzed at the lower level of the hierarchy. There was a trade-off between synergy indices computed at the two levels of the hierarchy for the three components of the total force vector, but not for the moment of force components. Overall, the results have shown that task mechanics are only one factor that defines forces produced by individual digits. Other factors, such as loading sensory receptors may lead to mechanically unnecessary forces. There seems to be no single rule (for example, ensuring similar safety margin values) that would describe sharing of the normal and tangential forces and be valid across tasks. Fingers that are traditionally viewed as less accurate (e.g., the ring finger) may perform more consistently in certain tasks. The observations of the trade-off between the synergy indices computed at two levels for the force variables but not for the moment of force variables suggest that the degree of redundancy (the number of excessive elemental variables) at the higher level is an important factor. PMID:22071684
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2010-01-01
The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.
Nonstationary time series prediction combined with slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, G.; Chen, X.
2015-07-01
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.
Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis.
Stauch, Tim; Dreuw, Andreas
2016-11-23
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2010-03-01
Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.
Unbinding Transition of Probes in Single-File Systems
NASA Astrophysics Data System (ADS)
Bénichou, Olivier; Démery, Vincent; Poncet, Alexis
2018-02-01
Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In these systems, the motion of several probes submitted to different external forces, although relevant to mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how several probes respond to external forces. We rely on a hydrodynamic description of the symmetric exclusion process to obtain exact analytical results at long times. We show that the probes can either move as a whole, or separate into two groups moving away from each other. In between the two regimes, they separate with a different dynamical exponent, as t1 /4. This unbinding transition also occurs in several continuous single-file systems and is expected to be observable.
Internal phase transition induced by external forces in Finsler geometric model for membranes
NASA Astrophysics Data System (ADS)
Koibuchi, Hiroshi; Shobukhov, Andrey
2016-10-01
In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.
NASA Astrophysics Data System (ADS)
Chen, Naichao; Chen, Yingchao; Ai, Jun; Li, Cheng; He, Ping; Ren, Jianxing; Zhu, Quanjun
2018-03-01
Peeling is regarded as a main technique barrier for the application of coating. Many factors affects the peeling of coating. Among them, the interfacial properties between coating and substrate plays a vital role. In this work, the β-Si3N4/diamond interface is conducted as the sample to study the changes in atomic structure and potential energy in the process of detachment by the first-principles calculations. The β-Si3N4/diamond (2 × 2) crystal unit is used as the calculated model. The detachment is simulated by moving up β-Si3N4 far from diamond by the 0.1 Å of each step. The results show that in the beginning of detachment, the bonds in the interface keep a constant length, rather than extension like spring. When the distance between β-Si3N4 and diamond reaches a certain distance, the interfacial bonds would suddenly break, and the elongated β-Si3N4 resumes its original statues indicating that the interface between two surfaces may exist a threshold value to control the peeling. When the external force is less than this threshold value, the peeling of coating would not occur. However, once the external force is greater than this one, the peeling would immediately present. The interface presents the brittle failure in the process of detachment, which is in good agreement with the experimental observation. Meanwhile, the different physical properties between van der Waals and quantum effects lead to the transient status in the process of detachment, where although the interfacial bonds are broken, the adhesive strength is still strong due to its low negative adsorption energy.
Rodriguez, Raul D; Lacaze, Emmanuelle; Jupille, Jacques
2012-10-01
A method to determine the van der Waals forces from phase-distance curves recorded by atomic force microscopy (AFM) in tapping mode is presented. The relationship between the phase shift and the tip-sample distance is expressed as a function of the product of the Hamaker constant by tip radius. Silica-covered silicon tips are used to probe silica-covered silicon substrate in dry conditions to avoid capillary effects. Tips being assumed spherical, radii are determined in situ by averaging profiles recorded in different directions on hematite nanocrystals acting as nanotemplates, thus accounting for tip anisotropy. Through a series of reproducible measurements performed with tips of various radii (including the in-situ characterization of a damaged tip), a value of (6.3±0.4)×10(-20) J is found for the Hamaker constant of interacting silica surfaces in air, in good agreement with tabulated data. The results demonstrate that the onset of the tip-surface interaction is dominated by the van der Waals forces and that the total force can be modeled in the framework of the harmonic approximation. Based on the tip radius and the Hamaker constant associated to the tip-substrate system, the model is quite flexible. Once the Hamaker constant is known, a direct estimate of the tip size can be achieved whereas when the tip size is known, a quantitative evaluation of the van der Waals force becomes possible on different substrates with a spatial resolution at the nanoscale. Copyright © 2012 Elsevier B.V. All rights reserved.
Wijeratne, Sithara S; Martinez, Jerahme R; Grindel, Brian J; Frey, Eric W; Li, Jingqiang; Wang, Liyun; Farach-Carson, Mary C; Kiang, Ching-Hwa
2016-03-01
Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models.
Plüss, Michael; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2018-01-01
Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.
Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models
Plüss, Michael; Schellenberg, Florian
2018-01-01
Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations. PMID:29796082
Fornés, José A
2010-01-15
We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.
Effect of flow oscillations on cavity drag and a technique for their control
NASA Technical Reports Server (NTRS)
Gharib, M.; Roshko, A.; Sarohia, V.
1985-01-01
Experiments to relate the state of the shear layer to cavity drag have been performed in a water channel using a 4" axisymmetric cavity model. Detailed flow measurements in various cavity flow oscillation phases, amplitude amplification along the flow direction, distribution of shear stress, and other momentum flux obtained by laser Doppler velocimeter are presented. Measurements show exponential dependence of cavity drag on the length of the cavity. A jump in the cavity drag coefficient is observed as the cavity flow shows a bluff body wake type behavior. Natural and forced oscillations are introduced by a sinusoidally heated thin-film strip which excites the Tollmein-Schlichting waves in the boundary layer upstream of the gap. For a large gap, self-sustained periodic oscillations are observed, while for smaller gaps, which do not oscillate naturally, periodical oscillations can be obtained by external forcing through the strip heater. The drag of the cavity can be increased by one order of magnitude in the non-oscillating case through external forcing. Also, it is possible to completely eliminate mode switching by external forcing. For the first time, it is demonstrated that amplitude of cavity flow Kelvin-Helmholtz wave is dampened or cancelled by introduction of external perturbation of natural flow frequency but different phase.
Permeability of continental crust influenced by internal and external forcing
Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.
2008-01-01
The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.
Volumetric flow rate in simulations of microfluidic devices+
NASA Astrophysics Data System (ADS)
Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta
2018-06-01
In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.
Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction
NASA Astrophysics Data System (ADS)
Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.
2017-11-01
The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.
Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi
2017-01-01
We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).
Dissipative, forced turbulence in two-dimensional magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.; Joyce, G.
1976-01-01
The equations of motion for turbulent two-dimensional magnetohydrodynamic flows are solved in the presence of finite viscosity and resistivity, for the case in which external forces (mechanical and/or magnetic) act on the fluid. The goal is to verify the existence of a magnetohydrodynamic dynamo effect which is represented mathematically by a substantial back-transfer of mean square vector potential to the longest allowed Fourier wavelengths. External forces consisting of a random part plus a fraction of the value at the previous time step are employed, after the manner of Lilly for the Navier-Stokes case. The regime explored is that for which the mechanical and magnetic Reynolds numbers are in the region of 100 to 1000. The conclusions are that mechanical forcing terms alone cannot lead to dynamo action, but that dynamo action can result from either magnetic forcing terms or from both mechanical and magnetic forcing terms simultaneously.
Cui, Shari; Bledsoe, J G; Israel, Heidi; Watson, J T; Cannada, Lisa K
2014-02-01
Locked plates provide greater stiffness, possibly at the expense of fracture healing. The purpose of this study is to evaluate construct stiffness of distal femur plates as a function of unlocked screw position in cadaveric distal femur fractures. Osteoporotic cadaveric femurs were used. Four diaphyseal bridge plate constructs were created using 13-hole distal femur locking plates, all with identical condylar fixation. Constructs included all locked (AL), all unlocked (AUL), proximal unlocked (PUL), and distally unlocked (DUL) groups. Constructs underwent cyclic axial loading with increasing force per interval. Data were gathered on axial stiffness, torsional stiffness, maximum torque required for 5-degree external rotation, and axial force to failure. Twenty-one specimens were divided into AL, AUL, PUL, and DUL groups. Axial stiffness was not significantly different between the constructs. AL and PUL demonstrated greater torsional stiffness, maximum torque, and force to failure than AUL and AL showed greater final torsional stiffness and failure force than DUL (P < 0.05). AL and PUL had similar axial, torsion, and failure measures, as did AUL and DUL constructs. All but 2 specimens fractured before medial gap closure during failure tests. Drop-offs on load-displacement curves confirmed all failures. Only the screw nearest the gap had significant effect on torsional and failure stiffness but not axial stiffness. Construct mechanics depended on the type of screw placed in this position. This screw nearest the fracture dictates working length stiffness when the working length itself is constant and in turn determines overall construct stiffness in osteoporotic bone.
NASA Astrophysics Data System (ADS)
Wang, J. H.
2017-10-01
In order to avoid the highly concentrated electric field induced beneath the sharp tip, the technique using a top coating electrode in the piezoresponse force microscopy (PFM) has been developed to detect the piezoelectric coefficients. Reliable theory should be erected to explain the broadly reported top electrode size effects and relate the responses with material constants. In this paper, the surface displacement, electric potential inside the film, electric charge and effective piezoelectric coefficient are expressed as a set of integral equations. Analytical solutions are obtained for two limiting cases, i.e., half space (HS) and infinitely thin film (IT). The effective piezoelectric coefficient of the HS case is proved to be the same as that from the PFM of a piezoelectric half plane without a top coating. For the IT case, it is identical to the well-known piezoelectric coefficient result of piezoelectric thin film clamped between flat rigid electrodes subject to homogeneous external electric field. For PZT4 thin layer, numerical results reveal that the surface displacement obviously decreases and the electric potential distributions inside the film become more and more homogeneous as the electrode radius to film thickness ratio (a/t) enlarges. The electric charge dramatically increases while the effective piezoelectric coefficient evidently decreases and they both transfer from the HS solutions to the IT results when a/t varies from 0.001 to 20. The transition occurs at about a/t = 1 in agreement with the experimental observations. A critical top electrode size, i.e., a/t > 10, is obtained and applicable to other piezoelectric materials. Under such circumstances, one can readily gain the piezoelectric coefficients e 33, d 33 and the dielectric coefficient {\\in }33 if other mechanical coefficients and one piezoelectric constant are known a prior.
Castelain, Mickaël; Koutris, Efstratios; Andersson, Magnus; Wiklund, Krister; Björnham, Oscar; Schedin, Staffan; Axner, Ove
2009-07-13
Bacterial adhesion organelles, known as fimbria or pili, are expressed by gram-positive as well as gram-negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by gram-positive Streptococcus pneumoniae with respect to their biomechanical properties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by gram-negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble, whereas open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached by distributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins which presumably detach sequentially.
Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states
NASA Astrophysics Data System (ADS)
Toan, Ngo Minh; Thirumalai, D.
2018-03-01
Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the rupture kinetics in CACs.
Bursting Regimes in a Reaction-Diffusion System with Action Potential-Dependent Equilibrium
Meier, Stephen R.; Lancaster, Jarrett L.; Starobin, Joseph M.
2015-01-01
The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018
Stock, Matt S; Beck, Travis W; Defreitas, Jason M; Dillon, Michael A
2010-10-01
The purpose of this study was to examine the relationships among mechanomyographic (MMG) amplitude, power output, and bar velocity during the free-weight bench press exercise. Twenty-one resistance-trained men [one-repetition maximum (1-RM) bench press = 125.4+18.4 kg] performed bench press muscle actions as explosively as possible from 10% to 90% of the 1-RM while peak power output and peak bar velocity were assessed with a TENDO Weightlifting Analyzer. During each muscle action, surface MMG signals were detected from the right and left pectoralis major and triceps brachii, and the concentric portion of the range of motion was selected for analysis. Results indicated that power output increased from 10% to 50% 1-RM, followed by decreases from 50% to 90% 1-RM, but MMG amplitude for each of the muscles increased from 10 to 80% 1-RM. The results of this study indicate that during the free-weight bench press exercise, MMG amplitude was not related to power output, but was inversely related to bar velocity and directly related to the external load being lifted. In future research, coaches and sport scientists may be able to estimate force/torque production from individual muscles during multi-joint, dynamic constant external resistance muscle actions.
Noskov, Sergey; Scherer, Christian; Maskos, Michael
2013-01-25
Interaction forces between all objects are either of repulsive or attractive nature. Concerning attractive interactions, the determination of dispersion forces are of special interest since they appear in all colloidal systems and have a crucial influence on the properties and processes in these systems. One possibility to link theory and experiment is the description of the London-Van der Waals forces in terms of the Hamaker constant, which leads to the challenging problem of calculating the van der Waals interaction energies between colloidal particles. Hence, the determination of a Hamaker constant for a given material is needed when interfacial phenomena such as adhesion are discussed in terms of the total potential energy between particles and substrates. In this work, the asymmetrical flow field-flow fractionation (AF-FFF) in combination with a Newton algorithm based iteration process was used for the determination of Hamaker constants of different nanoparticles in toluene. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
Mechanics and applications of pressure adaptive honeycomb
NASA Astrophysics Data System (ADS)
Vos, Roelof
A novel adaptive aerostructure is presented that relies on certified aerospace materials and can therefore be applied in conventional passenger aircraft. This structure consists of a honeycomb material which' cells extend over a significant length perpendicular to the plane of the cells. Each of the cells contains an inelastic pouch (or bladder) that forms a circular tube when the cell forms a perfect hexagon. By changing the cell differential pressure (CDP) the stiffness of the honeycomb can be altered. Using an external force or the elastic force within the honeycomb material, the honeycomb can be deformed such that the cells deviate from their perfect-hexagonal shape. It can be shown that by increasing the CDP, the structure eventually returns to a perfect hexagon. By doing so, a fully embedded pneumatic actuator is created that can perform work and substitute conventional low-bandwidth flight control actuators. It is shown that two approaches can be taken to regulate the stiffness of this embedded actuator: (1) The first approach relies on the pouches having a fixed amount of air in them and stiffness is altered by a change in ambient pressure. Coupled to the ambient pressure-altitude cycle that aircraft encounter during each flight, this approach yields a true adaptive aerostructure that operates independently of pilot input and is controlled solely by the altitude the aircraft is flying at. (2) The second approach relies on a controlled constant CDP. This CDP could be supplied from one of the compressor stages of the engine as a form of bleed air. Because of the air-tight pouches there would essentially be no mass flow, meaning engine efficiency would not be significantly affected due to this application. By means of a valve system the pilot could have direct control over the pressure and, consequently, the stiffness of the structure. This allows for much higher CDPs (on the order of 1MPa) than could physically be achieved by relying on the ambient pressure decrease with altitude. This option does require more infrastructure like tubing, valves, and supporting electronics from the cockpit. Applications of pressure adaptive honeycomb are tailored primarily towards low-bandwidth applications like secondary flight control. The most profound application is the morphing of an entire wing section, from leading to trailing edge, due to the adaptive honeycomb. On a smaller scale, other examples include a solid state pressure adaptive flap, a pressure adaptive droop nose, a pressure adaptive Gurney flap and a pressure adaptive engine inlet. Each of these applications is based on the same principle of stiffness alteration with pressure and can be used with either actuation option (constant mass or constant pressure). A model that relates the volumetric change of the honeycomb cells to the external blocked stress was shown to correlate well to experiments that were carried out on several test articles. Based on this model it was estimated that pressure adaptive honeycomb has a maximum mass-specific energy density of 12.4J/g, for the case of an externally applied CDP of 0.9MPa (can be supplied from a high-pressure compressor stage of a gas turbine). In addition, it was shown that a maximum strain of 76% can be achieved and that the maximum blocked stress amounts to 0.82MPa. In the case of a 40kPa drop in atmospheric pressure and constant mass of air in the pouches, the maximum mass specific energy amounts to 1.1J/g and a maximum blocked force of 70kPa can be attained. Pressure adaptive honeycomb was embedded into a 25%c adaptive flap on a NACA2412 wing section with a chord of 1.08m. Wind tunnel tests at Reynolds number of 1 million demonstrated a shift in the cl -- alpha curve upwards by an average of 0.3, thereby increasing the maximum lift coefficient from 1.27 to 1.52. This successfully demonstrated the application of pressure adaptive honeycomb embedded in a morphing aircraft structure.
Observations reveal external driver for Arctic sea-ice retreat
NASA Astrophysics Data System (ADS)
Notz, Dirk; Marotzke, Jochem
2012-04-01
The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.
Force and Stress along Simulated Dissociation Pathways of Cucurbituril-Guest Systems.
Velez-Vega, Camilo; Gilson, Michael K
2012-03-13
The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.
Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.
Guilhem, G; Cornu, C; Guével, A
2010-06-01
To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
NASA Astrophysics Data System (ADS)
Zieliński, P.; More, M.; Cochon, E.; Lefebvre, J.
1996-03-01
The molecule of benzil (diphenylethanedione, C14H10O2) has been approximated by a system of rigid segments to model the lowest-frequency part of its vibrational spectrum. The interactions of internal degrees of freedom have been described with the use of phenomenological force constants. The structure of the trigonal (P3121) phase has then been modelled by means of a temperature-dependent atom-atom potential based on thermal motions of atoms. The potential gives the correct account of the softening of an E-symmetry, zone-center mode which underlies the phase transition to the low-temperature monoclinic phase (P21). The low-frequency modes at the zone center, supposed until now to be difference overtones, have been shown to result from a coupling between internal and external degrees of freedom. A low-frequency soft mode at the point M of the zone border has been found, which explains the behavior of observed peaks in diffuse x-ray scattering experiments. The values and the temperature evolution of the effective elastic constants calculated within the model are in a very good agreement with the results of ultrasonic and Brillouin scattering data. The model has been shown insufficient in the description of dielectric and piezoelectric properties of benzil.
Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing
NASA Astrophysics Data System (ADS)
Singh, Aman K.; Yadava, R. D. S.
2018-05-01
The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.
Inducing and destruction of chimeras and chimera-like states by an external harmonic force
NASA Astrophysics Data System (ADS)
Shepelev, I. A.; Vadivasova, T. E.
2018-03-01
We study the phenomena of chimera destruction and inducing of chimera-like states in an ensemble of nonlocally coupled chaotic Rössler oscillators under an external harmonic force. The localized harmonic influence can lead to both destruction and changing of the spatial topology of chimeras. At the same time this influence can cause the emergence of stable chimera-like states (induced chimeras) for the regime of partial coherent chaos. Induced chimeras are also observed for the global influence. We show the possibility of controlling the chimera-like state topology by varying the parameters of localized external harmonic influence.
Stokes, Ian A. F.; Laible, Jeffrey P.; Gardner-Morse, Mack G.; Costi, John J.; Iatridis, James C.
2011-01-01
Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force–time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754
Mechanical regulation of T-cell functions
Chen, Wei; Zhu, Cheng
2013-01-01
Summary T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycles, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force but display variable substrate rigidities, to the blood and lymphatic circulation systems where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they response and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions. PMID:24117820
Burton, Kevin; Simmons, Robert M; Sleep, John; Smith, David A
2006-01-01
Redevelopment of isometric force following shortening of skeletal muscle is thought to result from a redistribution of cross-bridge states. We varied the initial force and cross-bridge distribution by applying various length-change protocols to active skinned single fibres from rabbit psoas muscle, and observed the effect on the slowest phase of recovery (‘late recovery’) that follows transient changes. In response to step releases that reduced force to near zero (∼8 nm (half sarcomere)−1) or prolonged shortening at high velocity, late recovery was well described by two exponentials of approximately equal amplitude and rate constants of ∼2 s−1 and ∼9 s−1 at 5°C. When a large restretch was applied at the end of rapid shortening, recovery was accelerated by (1) the introduction of a slow falling component that truncated the rise in force, and (2) a relative increase in the contribution of the fast exponential component. The rate of the slow fall was similar to that observed after a small isometric step stretch, with a rate of 0.4–0.8 s−1, and its effects could be reversed by reducing force to near zero immediately after the stretch. Force at the start of late recovery was varied in a series of shortening steps or ramps in order to probe the effect of cross-bridge strain on force redevelopment. The rate constants of the two components fell by 40–50% as initial force was raised to 75–80% of steady isometric force. As initial force increased, the relative contribution of the fast component decreased, and this was associated with a length constant of about 2 nm. The results are consistent with a two-state strain-dependent cross-bridge model. In the model there is a continuous distribution of recovery rate constants, but two-exponential fits show that the fast component results from cross-bridges initially at moderate positive strain and the slow component from cross-bridges at high positive strain. PMID:16497718
The Veterans Administration library program.
Gartland, H J
1968-01-01
The Veterans Administration Library Service is continuously responsive to the information requirements of the agency's policies which provide for the improved care and treatment of veterans through research, education, and clinical programs. At the same time, it participates in the planning of the federal government as a whole in providing library support for health care for the American people. There are both internal and external forces influencing VA hospitals and their libraries. Retirements and consequent recruitment of new people will necessitate a rethinking of the VA library program at the same time as external forces will be affecting the program. These external forces include the application of machines to library services through the development of in-house capabilities coupled with joint-use participation and P.L. 89-785 which provides for the exchange of medical information, sharing of facilities, and cooperative training programs. A conceptual rearrangement of information resources will facilitate attainment of our goals.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; McCarley, Justin; Hinkle, Jason; Shaw, Susan; Ampuero, Jean-Paul; Lamb, Michael P.
2018-05-01
Landslides reactivate due to external environmental forcing or internal mass redistribution, but the process is rarely documented quantitatively. We capture the three-dimensional, 1-m resolution surface deformation field of a transiently reactivated landslide with image correlation of repeat airborne lidar. Undrained loading by two debris flows in the landslide's head, rather than external forcing, triggered reactivation. After that loading, the lower 2 km of the landslide advanced by up to 14 m in 2 years before completely stopping. The displacement field over those 2 years implies that the slip surface gained 1 kPa of shear strength, which was likely accomplished by a negative dilatancy-pore pressure feedback as material deformed around basal roughness elements. Thus, landslide motion can be decoupled from external environmental forcing in cases, motivating the need to better understand internal perturbations to the stress field to predict hazards and sediment fluxes as landscapes evolve.
Quantization and instability of the damped harmonic oscillator subject to a time-dependent force
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2011-12-01
We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity ( -γẋ) and a time-dependent external force ( K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: ℒ=mẋẏ-U(x+{1}/{2}y)+U(x-{1}/{2}y)+{γ}/{2}(xẏ-yẋ)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x±y/2)={1}/{2}k( specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian ℋ. The Heisenberg equations of motion utilizing the quantized Hamiltonian ℋ̂ surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force.
Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2016-11-01
To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.
Empirical model of TEC response to geomagnetic and solar forcing over Balkan Peninsula
NASA Astrophysics Data System (ADS)
Mukhtarov, P.; Andonov, B.; Pancheva, D.
2018-01-01
An empirical total electron content (TEC) model response to external forcing over Balkan Peninsula (35°N-50°N; 15°E-30°E) is built by using the Center for Orbit Determination of Europe (CODE) TEC data for full 17 years, January 1999 - December 2015. The external forcing includes geomagnetic activity described by the Kp-index and solar activity described by the solar radio flux F10.7. The model describes the most probable spatial distribution and temporal variability of the externally forced TEC anomalies assuming that they depend mainly on latitude, Kp-index, F10.7 and LT. The anomalies are expressed by the relative deviation of the TEC from its 15-day mean, rTEC, as the mean value is calculated from the 15 preceding days. The approach for building this regional model is similar to that of the global TEC model reported by Mukhtarov et al. (2013a) however it includes two important improvements related to short-term variability of the solar activity and amended geomagnetic forcing by using a "modified" Kp index. The quality assessment of the new constructing model procedure in terms of modeling error calculated for the period of 1999-2015 indicates significant improvement in accordance with the global TEC model (Mukhtarov et al., 2013a). The short-term prediction capabilities of the model based on the error calculations for 2016 are improved as well. In order to demonstrate how the model is able to reproduce the rTEC response to external forcing three geomagnetic storms, accompanied also with short-term solar activity variations, which occur at different seasons and solar activity conditions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackler, H.D.; Chiang, Y.M.; French, R.H.
1996-05-10
Van der Waals dispersive forces produce attractive interactions between bodies, playing an important role in many material systems influencing colloidal and emulsion stability, wetting behavior, and intergranular forces in glass-ceramic systems. It is of technological importance to accurately quantify these interactions, conveniently represented by the Hamaker constant, A. To set the current level of accuracy for determining A, they were calculated from Lifshitz theory using full spectral data for muscovite mica, Al{sub 2}O{sub 3}, SiO{sub 2}, Si{sub 3}N{sub 4}, and rutile TiO{sub 2}, separated by vacuum or water. These were compared to Hamaker constants calculated from physical properties using themore » Tabor-Winterton approximation, a single oscillator model, a multiple oscillator model, and A`s calculated using force vs separation data from surface force apparatus and atomic force microscope studies. For materials with refractive indices between 1.4 and 1.8 separated by vacuum, all methods produce similar values, but for indices larger than 1.8 separated by vacuum, and any of these materials separated by water, results span a broader range. The present level of accuracy for the determination of Hamaker constants, here taken to be represented by the level of agreement between various methods, ranges from about 10% for the case of SiO{sub 2}/vacuum/SiO{sub 2} and TiO{sub 2}/water/TiO{sub 2} to a factor of approximately 7 for mica/water/mica.« less
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Accounting for elite indoor 200 m sprint results.
Usherwood, James R; Wilson, Alan M
2006-03-22
Times for indoor 200 m sprint races are notably worse than those for outdoor races. In addition, there is a considerable bias against competitors drawn in inside lanes (with smaller bend radii). Centripetal acceleration requirements increase average forces during sprinting around bends. These increased forces can be modulated by changes in duty factor (the proportion of stride the limb is in contact with the ground). If duty factor is increased to keep limb forces constant, and protraction time and distance travelled during stance are unchanging, bend-running speeds are reduced. Here, we use results from the 2004 Olympics and World Indoor Championships to show quantitatively that the decreased performances in indoor competition, and the bias by lane number, are consistent with this 'constant limb force' hypothesis. Even elite athletes appear constrained by limb forces.
Observed and Projected Changes to the Precipitation Annual Cycle
Marvel, Kate; Biasutti, Michela; Bonfils, Celine; ...
2017-06-08
Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less
Dynamics of molecular motors with finite processivity on heterogeneous tracks.
Kafri, Yariv; Lubensky, David K; Nelson, David R
2005-04-01
The dynamics of molecular motors which occasionally detach from a heterogeneous track like DNA or RNA is considered. Motivated by recent single-molecule experiments, we study a simple model for a motor moving along a disordered track using chemical energy while an external force opposes its motion. The motors also have finite processivity, i.e., they can leave the track with a position-dependent rate. We show that the response of the system to disorder in the hopping-off rate depends on the value of the external force. For most values of the external force, strong disorder causes the motors which survive for long times on the track to be localized at preferred positions. However, near the stall force, localization occurs for any amount of disorder. To obtain these results, we study the complex eigenvalue spectrum of the time evolution operator. Existence of localized states near the top of the band implies a stretched exponential contribution to the decay of the survival probability. A similar spectral analysis also provides a very efficient method for studying the dynamics of motors with infinite processivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marvel, Kate; Biasutti, Michela; Bonfils, Celine
Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less
Effective Forces Between Colloidal Particles
NASA Technical Reports Server (NTRS)
Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel
1999-01-01
Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two- and three-body forces in the bulk as well as study the influence of soft walls. We qualitatively explain the effects of the walls on the forces and demonstrate that many-body effects are negligible in our system. With adjustments in the parameters, the DLVO pair-potential can describe the results quantitatively. Besides electrostatic interactions, entropic depletion effects that arise from (hard-core) exclusion play an important role in determining the behavior of multi-component colloidal suspensions. A standard theory for depletion forces is due to Asakura and Oosawa and is based on the ideal gas approximation. To go beyond this approximation, we have studied entropic forces in molecular dynamics simulations of systems of hard spheres (the effects of the solvent have been ignored). The effective depletion forces for these systems can be found either from equilibrium distribution functions or from direct momentum transfer calculations. Our results obtained by either method show qualitative differences from the Asakura-Oosawa forces, indicating a longer range, higher value at contact and most importantly a more complicated structure, comprising of several maxima and minima. Our calculations include the determination of effective forces between two spheres, a hard sphere and a wall, and the behavior of a hard sphere near a step-edge and a corner. We also demonstrate that such entropic forces do not necessarily satisfy pairwise additivity.
Compressive Force Spectroscopy: From Living Cells to Single Proteins.
Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark
2018-03-23
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Effect of phase advance on the brushless dc motor torque speed respond
NASA Astrophysics Data System (ADS)
Mohd, M. S.; Karsiti, M. N.; Mohd, M. S.
2015-12-01
Brushless direct current (BLDC) motor is widely used in small and medium sized electric vehicles as it exhibit highest specific power and thermal efficiency as compared to the induction motor. Permanent magnets BLDC rotor create a constant magnetic flux, which limit the motor top speed. As the back electromotive force (EMF) voltage increases proportionally with motor rotational speed and it approaches the amplitude of the input voltage, the phase current amplitude will reach zero. By advancing the phase current, it is possible to extend the maximum speed of the BLDC motor beyond the rated top speed. This will allow smaller BLDC motor to be used in small electric vehicles (EV) and in larger applications will allow the use of BLDC motor without the use of multispeed transmission unit for high speed operation. However, increasing the speed of BLDC will affect the torque speed response. The torque output will decrease as speed increases. Adjusting the phase angle will affect the speed of the motor as each coil is energized earlier than the corresponding rise in the back emf of the coil. This paper discusses the phase advance strategy of Brushless DC motor by phase angle manipulation approaches using external hall sensors. Tests have been performed at different phase advance angles in advance and retard positions for different voltage levels applied. The objective is to create the external hall sensor system to commutate the BLDC motor, to establish the phase advance of the BLDC by varying the phase angle through external hall sensor manipulation, observe the respond of the motor while applying the phase advance by hall sensor adjustment.
External stimulation strength controls actin response dynamics in Dictyostelium cells
NASA Astrophysics Data System (ADS)
Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Zykov, Vladimir; Bodenschatz, Eberhard; Beta, Carsten
2015-03-01
Self-sustained oscillation and the resonance frequency of the cytoskeletal actin polymerization/depolymerization have recently been observed in Dictyostelium, a model system for studying chemotaxis. Here we report that the resonance frequency is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and depolymerization time at different levels of external stimulation. We found that polymerization time is independent of external stimuli but the depolymerization time is prolonged as the stimulation increases. These observations can be successfully reproduced in the frame work of our time delayed differential equation model.
Bond-strength inversion in (In,Ga)As semiconductor alloys
NASA Astrophysics Data System (ADS)
Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.
2018-05-01
The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.
Noise effects on the health status in a dynamic failure model for living organisms
NASA Astrophysics Data System (ADS)
Kang, H.; Jo, J.; Choi, M. Y.; Choi, J.; Yoon, B.-G.
2007-03-01
We study internal and external noise effects on the healthy-unhealthy transition and related phenomena in a dynamic failure model for living organisms. It is found that internal noise makes the system weaker, leading to breakdown under smaller stress. The discontinuous healthy-unhealthy transition in a system with global load sharing below a critical point is naturally explained in terms of the bistability for the health status. External noise present in constant stress gives similar results; further, it induces resonance in response to periodic stress, regardless of load transfer. In the case of local load sharing, such periodic stress is revealed more hazardous than the constant stress.
Dynamic mechanical control of local vacancies in NiO thin films
NASA Astrophysics Data System (ADS)
Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok
2018-07-01
The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.
Dynamic mechanical control of local vacancies in NiO thin films.
Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok
2018-07-06
The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.
Effect of coating on properties of esthetic orthodontic nickel-titanium wires.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru
2012-03-01
To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n = 10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.
A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.
Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao
2012-01-17
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society
Ballistic Impact Resistance of Multi-Layer Textile Fabrics
1981-10-01
REBOT (NNOLA, NVAR). the first array contains the vector of forces externally applied to the ’ top surface of the layer under consideration, while the...array REBOT (NNOLA, NVAR) contains the forces externally applied to the lower surface of the array. Initially all the elements of each of the two arrays...Qodes in a layer, the contents of array REBOT are now replaced with those of array RETOP in preparation for the repetition of the same calculations for
EEO External Relevant Labor Force Analysis
1980-09-01
N 04 .- . / Washington. D.C. 20350 If. CONTROLLING OFFICE NAME AND ADDRESS Navy Personnel Research and Development Center,/, Sentber 1 8 Code 303 N-i...8217Mn. RESEARCH REPORT NO. 37 EEO EXTERNAL RELEVANT LABOR FORCE ANALYSIS D.M. ATWATER R. J. NIEHAUS’ N BY J. A. SHERIDAN ii OFFICE OF THE ASSISTANT...San Diego. CA 92152 86 I4. MONITORING AGENCY NAME & AOORESS(I diflerent ham Controlling ONce.) IS. SECURITY CLASS. (of Ihis report) oA SN (/#/F
NASA Astrophysics Data System (ADS)
Webster, S.; Hardi, J.; Oschwald, M.
2015-03-01
The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.
Equilibrium muscle cross-bridge behavior. Theoretical considerations.
Schoenberg, M
1985-01-01
We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539
Regionally dependent summer heat wave response to increased surface temperature in the US
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.
2017-12-01
Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.
Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J
2010-02-01
Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.
Spinning optical resonator sensor for torsional vibrational applications measurements
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.
2016-03-01
Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor
2013-03-01
Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.
Homodyne detection of short-range Doppler radar using a forced oscillator model
NASA Astrophysics Data System (ADS)
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-03-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Casdagli, M. C.
1997-09-01
We show that recurrence plots (RPs) give detailed characterizations of time series generated by dynamical systems driven by slowly varying external forces. For deterministic systems we show that RPs of the time series can be used to reconstruct the RP of the driving force if it varies sufficiently slowly. If the driving force is one-dimensional, its functional form can then be inferred up to an invertible coordinate transformation. The same results hold for stochastic systems if the RP of the time series is suitably averaged and transformed. These results are used to investigate the nonlinear prediction of time series generated by dynamical systems driven by slowly varying external forces. We also consider the problem of detecting a small change in the driving force, and propose a surrogate data technique for assessing statistical significance. Numerically simulated time series and a time series of respiration rates recorded from a subject with sleep apnea are used as illustrative examples.
Lattice-dynamical model for the filled skutterudite LaFe4Sb12: Harmonic and anharmonic couplings
NASA Astrophysics Data System (ADS)
Feldman, J. L.; Singh, D. J.; Bernstein, N.
2014-06-01
The filled skutterudite LaFe4Sb12 shows greatly reduced thermal conductivity compared to that of the related unfilled compound CoSb3, although the microscopic reasons for this are unclear. We calculate harmonic and anharmonic force constants for the interaction of the La filler atom with the framework atoms. We find that force constants show a general trend of decaying rapidly with distance and are very small for the interaction of the La with its next-nearest-neighbor Sb and nearest-neighbor La. However, a few rather long-range interactions, such as with the next-nearest-neighbor La and with the third neighbor Sb, are surprisingly strong, although still small. We test the central-force approximation and find significant deviations from it. Using our force constants we calculate a bare La mode Gruneisen parameter and find a value of 3-4, substantially higher than values associated with cage atom anharmonicity, i.e., a value of about 1 for CoSb3 but much smaller than a previous estimate [Bernstein et al., Phys. Rev. B 81, 134301 (2010), 10.1103/PhysRevB.81.134301]. This latter difference is primarily due to the previously used overestimate of the La-Fe cubic force constants. We also find a substantial negative contribution to this bare La Gruneisen parameter from the aforementioned third-neighbor La-Sb interaction. Our results underscore the need for rather long-range interactions in describing the role of anharmonicity on the dynamics in this material.
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Sritharan, Prasanna; Lin, Yi-Chung; Pandy, Marcus G
2012-10-01
The aims of this study were to evaluate and explain the individual muscle contributions to the medial and lateral knee compartment forces during gait, and to determine whether these quantities could be inferred from their contributions to the external knee adduction moment. Gait data from eight healthy male subjects were used to compute each individual muscle contribution to the external knee adduction moment, the net tibiofemoral joint reaction force, and reaction moment. The individual muscle contributions to the medial and lateral compartment forces were then found using a least-squares approach. While knee-spanning muscles were the primary contributors, non-knee-spanning muscles (e.g., the gluteus medius) also contributed substantially to the medial compartment compressive force. Furthermore, knee-spanning muscles tended to compress both compartments, while most non-knee-spanning muscles tended to compress the medial compartment but unload the lateral compartment. Muscle contributions to the external knee adduction moment, particularly those from knee-spanning muscles, did not accurately reflect their tendencies to compress or unload the medial compartment. This finding may further explain why gait modifications may reduce the knee adduction moment without necessarily decreasing the medial compartment force. Copyright © 2012 Orthopaedic Research Society.
A Managerial Approach to Compensation
ERIC Educational Resources Information Center
Wolfe, Arthur V.
1975-01-01
The article examines the major external forces constraining equitable employee compensation, sets forth the classical employee compensation assumptions, suggests somewhat more realistic employee compensation assumptions, and proposes guidelines based on analysis of these external constraints and assumptions. (Author)
NASA Astrophysics Data System (ADS)
Ding, Yang; Ming, Tingyu
2016-11-01
In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
Fast optimization algorithms and the cosmological constant
NASA Astrophysics Data System (ADS)
Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad
2017-11-01
Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.
Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1994-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.
Effect of genome sequence on the force-induced unzipping of a DNA molecule.
Singh, N; Singh, Y
2006-02-01
We considered a dsDNA polymer in which distribution of bases are random at the base pair level but ordered at a length of 18 base pairs and calculated its force elongation behaviour in the constant extension ensemble. The unzipping force F(y) vs. extension y is found to have a series of maxima and minima. By changing base pairs at selected places in the molecule we calculated the change in F(y) curve and found that the change in the value of force is of the order of few pN and the range of the effect depending on the temperature, can spread over several base pairs. We have also discussed briefly how to calculate in the constant force ensemble a pause or a jump in the extension-time curve from the knowledge of F(y).
NASA Astrophysics Data System (ADS)
Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul
2017-04-01
Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.
Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W
2018-01-01
The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and varus-valgus rotation through the flexion range. The computational model predicted that femoral component external rotation relative to the posterior condylar axis unloads the MCL and the medial compartment; however, these effects were inconsistent from knee to knee. When the femoral component was externally rotated by 9° rather than 0° in knees one, two, and three, the maximum force carried by the MCL decreased a respective 55, 88, and 297 N; the medial contact forces decreased at most a respective 90, 190, and 570 N; external tibial rotation in early flexion increased by a respective 4.6°, 1.1°, and 3.3°; and varus angulation of the tibia relative to the femur in late flexion increased by 8.4°, 8.0°, and 7.9°, respectively. With 3° of femoral component external rotation relative to the posterior condylar axis, the femoral component was still externally rotated by up to 2.7° relative to the sTEA in these three neutrally aligned knees. Variations in MCL force from knee to knee with 3° of femoral component external rotation were related to the ratio of the distances from the femoral insertion of the MCL to the posterior and distal cuts of the implant; the closer this ratio was to 1, the more uniform were the MCL tensions from 0° to 90° flexion. A larger ratio of distances from the femoral insertion of the MCL to the posterior and distal cuts may cause clinically relevant increases in both MCL tension and compartmental contact forces. To obtain more consistent ligament tensions through flexion, it may be important to locate the posterior and distal aspects of the femoral component with respect to the proximal insertion of the MCL such that a ratio of 1 is achieved.
Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P
2013-07-09
An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
Spring Constants for Stacks of Curved Leaves of Pyrolytic Boron Nitride
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
Stacks of curved leaves of pyrolytic boron nitride (PBN) were deflected and the force versus deflection data was recorded. From this data, the spring constant for a given spring geometry (radius of curvature of a leaf, width of a leaf, thickness of a leaf, and number of leaves in the stack) was determined. These experiments were performed at room temperature, 500 C and 1000 C. However, temperature was not found to affect the spring constant. The measured values were generally within one order of magnitude of predictions made using a previously derived equation for a simply supported cylindrical section with a line force at the center.
Elastic properties and mechanical stability of chiral and filled viral capsids
NASA Astrophysics Data System (ADS)
Buenemann, Mathias; Lenz, Peter
2008-11-01
The elasticity and mechanical stability of empty and filled viral capsids under external force loading are studied in a combined analytical and numerical approach. We analyze the influence of capsid structure and chirality on the mechanical properties. We find that generally skew shells have lower stretching energy. For large Föppl-von Kármán numbers γ (γ≈105) , skew structures are stiffer in their elastic response than nonchiral ones. The discrete structure of the capsules not only leads to buckling for large γ but also influences the breakage behavior of capsules below the buckling threshold: the rupture force shows a γ1/4 scaling rather than a γ1/2 scaling as expected from our analytical results for continuous shells. Filled viral capsids are exposed to internal anisotropic pressure distributions arising from regularly packaged DNA coils. We analyze their influence on the elastic properties and rupture behavior and we discuss possible experimental consequences. Finally, we numerically investigate specific sets of parameters corresponding to specific phages such as ϕ29 and cowpea chlorotic mottle virus (CCMV). From the experimentally measured spring constants we make predictions about specific material parameters (such as bending rigidity and Young’s modulus) for both empty and filled capsids.
Control of movement initiation underlies the development of balance
Ehrlich, David E.; Schoppik, David
2017-01-01
Summary Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay between environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do. PMID:28111151
NASA Astrophysics Data System (ADS)
Buonomo, B.; Cirillo, L.; Manca, O.; Nardini, S.; Tamburrino, S.
2017-01-01
In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar flow and different nanoparticle volume fractions have been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). The length the edge and height of the duct are 0.030 m, 1.7 x10-7 and 1.1 x10-7 m, respectively. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.
Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung
2012-09-04
In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.
A Parametric Approach to Numerical Modeling of TKR Contact Forces
Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.
2009-01-01
In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015
Biased and flow driven Brownian motion in periodic channels
NASA Astrophysics Data System (ADS)
Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.
2012-02-01
In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisneros-Parra, Joel U.; Martinez-Herrera, Francisco J.; Montalvo-Castro, J. Daniel
We recently reported on a series of equilibrium figures for a self-gravitating heterogeneous liquid body, consisting of two concentric distorted spheroids, “nucleus” and “atmosphere,” each endowed with its own internal motion of differential rotation. In our current work, we calculate the body’s force at external points and obtain a multipolar expansion of the potential. We also give an account of figures with prolate nuclei, which remained unnoticed by us in our former paper.
2005-06-24
for an adhesion-active surface. 2.8.2 Dupre’s equation Let adhesive interaction between two bodies take place. Dupre’s equation defines the...connection between work of external forces on system of two bodies with adhesive interaction contact, the potential energies these bodies and the energy...Lagrangian of system of two bodies with adhesion interaction is equal half of work of external forces enclosed to this system” With the help of
On the Ground in Afghanistan: Counterinsurgency in Practice
2012-01-01
without earning the enmity of rival factions. For Coalition forces, the political fault lines are not clear, and there is constant danger of getting drawn...Province, rival factions tried constantly to use their access to Coalition troops as leverage against their local enemies. U.S. forces had allied with...learned that it was important to maintain a light footprint in order to gain access to the population; otherwise, a team’s actions could threaten local
On the properties of a bundle of flexible actin filaments in an optical trap.
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-28
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs (H)=NfkBTln(ρ1/ρ1c)/d, independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝〈L〉(O.T.) (2) and the single filament buckling force ∝〈L〉(O.T.) (-2).
Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.
2016-10-01
The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.
Anti-control of chaos of single time-scale brushless DC motor.
Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng
2006-09-15
Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.
Dikin-type algorithms for dextrous grasping force optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, M.; Faybusovich, L.; Moore, J.B.
1998-08-01
One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less
Ponderomotive forces in electrodynamics of moving media: The Minkowski and Abraham approaches
NASA Astrophysics Data System (ADS)
Nesterenko, V. V.; Nesterenko, A. V.
2016-09-01
In the general setting of the problem, the explicit compact formulae are derived for the ponderomotive forces in the macroscopic electrodynamics of moving media in the Minkowski and Abraham approaches. Taking account of the Minkowski constitutive relations and making use of a special representation for the Abraham energy-momentum tensor enable one to obtain a compact expression for the Abraham force in the case of arbitrary dependence of the medium velocity on spatial coordinates and the time and for nonstationary external electromagnetic field. We term the difference between the ponderomotive forces in the Abraham and Minkowski approaches as the Abraham force not only under consideration of media at rest but also in the case of moving media. The Lorentz force is found which is exerted by external electromagnetic field on the conduction current in a medium, the covariant Ohm law, and the constitutive Minkowski relations being taken into account. The physical argumentation is traced for the definition of the 4-vector of the ponderomotive force as the 4-divergence of the energy-momentum tensor of electromagnetic field in a medium.
Locomotor Adaptation to an Asymmetric Force on the Human Pelvis Directed Along the Right Leg.
Vashista, Vineet; Martelli, Dario; Agrawal, Sunil
2015-09-11
In this work, we study locomotor adaptation in healthy adults when an asymmetric force vector is applied to the pelvis directed along the right leg. A cable-driven Active Tethered Pelvic Assist Device (A-TPAD) is used to apply an external force on the pelvis, specific to a subject's gait pattern. The force vector is intended to provide external weight bearing during walking and modify the durations of limb supports. The motivation is to use this paradigm to improve weight bearing and stance phase symmetry in individuals with hemiparesis. An experiment with nine healthy subjects was conducted. The results show significant changes in the gait kinematics and kinetics while the healthy subjects developed temporal and spatial asymmetry in gait pattern in response to the applied force vector. This was followed by aftereffects once the applied force vector was removed. The adaptation to the applied force resulted in asymmetry in stance phase timing and lower limb muscle activity. We believe this paradigm, when extended to individuals with hemiparesis, can show improvements in weight bearing capability with positive effects on gait symmetry and walking speed.
On the interaction between the external magnetic field and nanofluid inside a vertical square duct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Kashif; Ahmad, Shabbir; Ahmad, Shahzad, E-mail: shahzadahmadbzu@gmail.com
In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms ofmore » both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.« less
A Constant-Force Resistive Exercise Unit
NASA Technical Reports Server (NTRS)
Colosky, Paul; Ruttley, Tara
2010-01-01
A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.
NASA Astrophysics Data System (ADS)
Zhao, X.; Allen, R.
2017-12-01
In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.
From strings to coils: Rotational dynamics of DNA-linked colloidal chains
NASA Astrophysics Data System (ADS)
Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa
2017-10-01
We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.
Stress Response of Granular Systems
NASA Astrophysics Data System (ADS)
Ramola, Kabir; Chakraborty, Bulbul
2017-10-01
We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.
Flexible arms provide constant force for pressure switch calibration
NASA Technical Reports Server (NTRS)
Cain, D. E.; Kunz, R. W.
1966-01-01
In-place calibration of a pressure switch is provided by a system of radially oriented flexing arms which, when rotated at a known velocity, convert the centrifugal force of the arms to a linear force along the shaft. The linear force, when applied to a pressure switch diaphragm, can then be calculated.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-03-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.
Raichlen, David A
2008-09-01
The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.
Decreased knee adduction moment does not guarantee decreased medial contact force during gait.
Walter, Jonathan P; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J
2010-10-01
Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force-measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a "medial thrust" gait involving knee medialization during stance phase and a "walking pole" gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32-33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15-47%) corresponded to reductions in the second peak and impulse of the medial contact force (12-42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior-inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R(2) = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348-1354, 2010.
NASA Astrophysics Data System (ADS)
Li, Dawei; Zhang, Rong; Knutson, Thomas R.
2017-04-01
This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents Sea winter sea ice extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere sea ice concentration trends over the satellite period between observations and CMIP5 multi-model mean externally forced response. The CMIP5 externally forced decline in Barents Sea winter SIE is much weaker than that observed. Across CMIP5 ensemble members, March Barents Sea SIE trends have little correlation with global mean surface air temperature trends, but are strongly anti-correlated with trends in Atlantic heat transport across the Barents Sea Opening (BSO). Further comparison with control simulations from coupled climate models suggests that enhanced Atlantic heat transport across the BSO associated with regional internal variability may have played a leading role in the observed decline in winter Barents Sea SIE since 1979.
The QBO and weak external forcing by solar activity: A three dimensional model study
NASA Technical Reports Server (NTRS)
Dameris, M.; Ebel, A.
1989-01-01
A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
The external respiration and gas exchange in space missions
NASA Astrophysics Data System (ADS)
Baranov, V. M.; Tikhonov, M. A.; Kotov, A. N.
Literature data and results of our own studies into an effect of micro- and macro-gravity on an external respiration function of man are presented. It is found that in cosmonauts following the 7-366 day space missions there is an enhanced tendency associated with an increased flight duration toward a decrease in the lung volume and breathing mechanics parameters: forced vital capacity of the lungs (FVC) by 5-25 percent, peak inspiratory and expiratory (air) flows (PIF, PEF) by 5-40 percent. A decrease in FVC appears to be explained by a new balance of elastic forces of the lungs, chest and abdomen occuring in microgravity as well as by an increased blood filling and pulmonary hydration. A decline of PIF and PEF is probalbly resulted from antigravitational deconditioning of the respiratory muscles with which a postflight decreased physical performance can in part be associated. The ventilation/perfusion ratios during orthostasis and +G Z and +G X accelerations are estimated. The biophysical nature of developing the absorption atelectases on a combined exposure to accelerations and 100% oxygen breathing is confirmed. A hypothesis that hypervolemia and pulmonary congestion can increase the tendency toward the development of atelectases in space in particular during pure oxygen breathing is suggested. Respiratory physiology problem area which is of interest for space medicine is defined. It is well known that due to present-day technologic progress and accomplishments in applied physiology including applied respiration physiology there currently exist sophisticated technical facilities in operation maintaining the life and professional working capacity of a man in various natural environments: on Earth, under water and in space. By the way, the biomedical involvement in developing and constructing such facilities has enabled an accumulation of a great body of information from experimental studies and full-scale trails to examine the effects of the changed environments both and its individual systems including an external respiration function. In this case, it should be remembered that the external respiration system has some physiological and morphological properties due to which the body systems are particularly subjected to environmental effects. Thus, according to figurative comparison by Evald Veible a contact area of the lungs with an external environment i.e. an alveolar surface is large and equaled approximately to tennis-court size, as the alveolocapillary membrane thickness is negligible and amounts to one fiftieth of a writing-paper sheet [1]. From this it follows that such a fine and highly organized structure must be extremely dependent upon any external exposures including gravitational ones since from the physical viewpoint of physics the lungs represent a quasiconical three-dimensional elastic body suspended in the thoracic cavity and in which there occur the gravity-induced internal tensions incrementing in a base-to-apices direction. As a result of these tensions, in the lungs various physical gradients: hydrostatic, pleural and transpulmonary pressures, pulmonary time constant, vertical gradient of the volume and structure of alveoli, etc. are developed.
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
Wittkowski, Raphael; Löwen, Hartmut
2012-02-01
Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well as cycloids and arbitrary periodic trajectories. © 2012 American Physical Society
Impact of internal variability on projections of Sahel precipitation change
NASA Astrophysics Data System (ADS)
Monerie, Paul-Arthur; Sanchez-Gomez, Emilia; Pohl, Benjamin; Robson, Jon; Dong, Buwen
2017-11-01
The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920-2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variability of Sahel precipitation, and is representative of a CMIP5 ensemble of simulations (i.e. it simulates the same pattern of precipitation change along with equivalent magnitude and seasonal cycle changes as the CMIP5 ensemble mean). However, CESM1-CAM5 underestimates the long-term decadal variability in Sahel precipitation. For short-term (2010-2049) and mid-term (2030-2069) projections the simulated internal variability component is able to obscure the projected impact of the external forcing. For long-term (2060-2099) projections external forcing induced change becomes stronger than simulated internal variability. Precipitation changes are found to be more robust over the central Sahel than over the western Sahel, where climate change effects struggle to emerge. Ten (thirty) members are needed to separate the 10 year averaged forced response from climate internal variability response in the western Sahel for a long-term (short-term) horizon. Over the central Sahel two members (ten members) are needed for a long-term (short-term) horizon.
Ohta, Yoichi
2017-12-01
The present study aimed to clarify the effects of oncoming target velocities on the ability of rapid force production and accuracy and variability of simultaneous control of both force production intensity and timing. Twenty male participants (age: 21.0 ± 1.4 years) performed rapid gripping with a handgrip dynamometer to coincide with the arrival of an oncoming target by using a horizontal electronic trackway. The oncoming target velocities were 4, 8, and 12 m · s -1 , which were randomly produced. The grip force required was 30% of the maximal voluntary contraction. Although the peak force (Pf) and rate of force development (RFD) increased with increasing target velocity, the value of the RFD to Pf ratio was constant across the 3 target velocities. The accuracy of both force production intensity and timing decreased at higher target velocities. Moreover, the intrapersonal variability in temporal parameters was lower in the fast target velocity condition, but constant variability in 3 target velocities was observed in force intensity parameters. These results suggest that oncoming target velocity does not intrinsically affect the ability for rapid force production. However, the oncoming target velocity affects accuracy and variability of force production intensity and timing during rapid force production.
Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.
Zhang, T
2011-09-01
Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.
Load identification approach based on basis pursuit denoising algorithm
NASA Astrophysics Data System (ADS)
Ginsberg, D.; Ruby, M.; Fritzen, C. P.
2015-07-01
The information of the external loads is of great interest in many fields of structural analysis, such as structural health monitoring (SHM) systems or assessment of damage after extreme events. However, in most cases it is not possible to measure the external forces directly, so they need to be reconstructed. Load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response functions are usually the knowns. Generally, this leads to a so called ill-posed inverse problem, which involves solving an underdetermined linear system of equations. For most practical applications it can be assumed that the applied loads are not arbitrarily distributed in time and space, at least some specific characteristics about the external excitation are known a priori. In this contribution this knowledge was used to develop a more suitable force reconstruction method, which allows identifying the time history and the force location simultaneously by employing significantly fewer sensors compared to other reconstruction approaches. The properties of the external force are used to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The possibility of reconstructing loads based on noisy structural measurement signals will be demonstrated by considering two frequently occurring loading conditions: harmonic excitation and impact events, separately and combined. First a simulation study of a simple plate structure is carried out and thereafter an experimental investigation of a real beam is performed.
The influence of lower leg configurations on muscle force variability.
Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J
2018-04-11
The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p < 0.05). Regularities in force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p < 0.05). The findings support the notion that limb configuration influences the magnitude and regularities in force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.
A dynamic load estimation method for nonlinear structures with unscented Kalman filter
NASA Astrophysics Data System (ADS)
Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.
2018-02-01
A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear structure with accurate results even with measurement noise, model error and environmental disturbances.
NASA Astrophysics Data System (ADS)
Ebrahimi, Samira; Soltani, Peyman; Moradi, Ali-Reza; Tayebi, Lobat
2013-11-01
Digital holographic microscopy (DHM) is an effective and non-destructive technique for quantitative phase contrast imaging of biological samples and living organelles. In this paper, using a simple and stable common-path DHM setup we study lipid bilayer dynamics and detect their morphological changes. Stacks of lipid amphiphilic molecules in excess water and at the presence of an external stimulus, stress, or force have great capability for the formation of multilamellar cylindrical tubes that are called myelin figures(MFs). MFs can be found in various healthy and diseased living cells and their formation and dynamics in various conditions involve mysterious configurations that have been of high interest. We utilized nanoparticles solved in water with different concentrations as an external stimulus for MFs of POPC lipid. The nanoparticles are injected into the sample container via a microinjection pump in a constant rate and MFs growth rate and their volume changes are measured by a compact digital holographic system. The setup is based on a binocular conventional microscope making the setup very stable against vibrations and noises. The recorded holograms are then computationally reconstructed. The measurements and investigations are performed by analyzing the reconstruction process. We showed that nanoparticles increase the growth rate of MFs during the first few seconds. However, after few seconds, the growth rate does not alter significantly comparing to the absence of nanoparticles.
Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications.
Lü, Junchang; Currie, Philip J; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai
2013-02-01
Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.
Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications
NASA Astrophysics Data System (ADS)
Lü, Junchang; Currie, Philip J.; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai
2013-02-01
Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.
NASA Astrophysics Data System (ADS)
Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi
2017-05-01
An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.
Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping the resection thickness of each posterior femoral condyle to within ± 0.5 mm of the thickness of the respective posterior region of the femoral component, the increase in imbalance can be effectively limited to 38 N. Generally laxities were unaffected within the ± 4º range tested indicating that instability is not a clinical concern and that manual testing of laxities is not useful to detect I-E malalignment.
Validation of a dynamic linked segment model to calculate joint moments in lifting.
de Looze, M P; Kingma, I; Bussmann, J B; Toussaint, H M
1992-08-01
A two-dimensional dynamic linked segment model was constructed and applied to a lifting activity. Reactive forces and moments were calculated by an instantaneous approach involving the application of Newtonian mechanics to individual adjacent rigid segments in succession. The analysis started once at the feet and once at a hands/load segment. The model was validated by comparing predicted external forces and moments at the feet or at a hands/load segment to actual values, which were simultaneously measured (ground reaction force at the feet) or assumed to be zero (external moments at feet and hands/load and external forces, beside gravitation, at hands/load). In addition, results of both procedures, in terms of joint moments, including the moment at the intervertebral disc between the fifth lumbar and first sacral vertebra (L5-S1), were compared. A correlation of r = 0.88 between calculated and measured vertical ground reaction forces was found. The calculated external forces and moments at the hands showed only minor deviations from the expected zero level. The moments at L5-S1, calculated starting from feet compared to starting from hands/load, yielded a coefficient of correlation of r = 0.99. However, moments calculated from hands/load were 3.6% (averaged values) and 10.9% (peak values) higher. This difference is assumed to be due mainly to erroneous estimations of the positions of centres of gravity and joint rotation centres. The estimation of the location of L5-S1 rotation axis can affect the results significantly. Despite the numerous studies estimating the load on the low back during lifting on the basis of linked segment models, only a few attempts to validate these models have been made. This study is concerned with the validity of the presented linked segment model. The results support the model's validity. Effects of several sources of error threatening the validity are discussed. Copyright © 1992. Published by Elsevier Ltd.
Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series
NASA Astrophysics Data System (ADS)
Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.
2017-12-01
Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101.
A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Holton, James R.
1997-01-01
A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.
Toric-boson model: Toward a topological quantum memory at finite temperature
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio
2009-06-01
We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.
Creep anomaly in electrospun fibers made of globular proteins
NASA Astrophysics Data System (ADS)
Regev, Omri; Arinstein, Arkadii; Zussman, Eyal
2013-12-01
The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.
Manipulation of biological samples using micro and nano techniques.
Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith
2009-01-01
The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).
Hart, D J; Taylor, P N; Chappell, P H; Wood, D E
2006-06-01
Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.
Reynolds number of transition and self-organized criticality of strong turbulence.
Yakhot, Victor
2014-10-01
A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k>Λf, where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf
Aging in freely evolving granular gas with impact velocity dependent coefficient of restitution
NASA Astrophysics Data System (ADS)
Kumari, Shikha; Ahmad, Syed Rashid
2018-05-01
The evolution of granular system is governed by the concept of coefficient of restitution that gives a relationship between normal component of relative velocities before and after collision. Most of the studies consider a simplified collision model where particles interact through coefficient of restitution which is a constant while in reality, the coefficient of restitution must be a variable that depends on the impact velocity of colliding particles. In this work, we have considered the aging in the velocity autocorrelation function, A(τw, τ) for a granular gas of realistic particles interacting through coefficient of restitution that is depending on impact velocity. Molecular dynamics simulation is used to study granular gas that is evolving freely in absence of any external force. From the simulation results, we observe that A(τw, τ) depends explicitly on waiting time τw and collision time τ. Initially, the function decays exponentially but as the waiting time increases the decay of function becomes slow due to correlations that emerge in velocity field.
NASA Astrophysics Data System (ADS)
Tice, Ian
2018-04-01
This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.
Reynolds number of transition and self-organized criticality of strong turbulence
NASA Astrophysics Data System (ADS)
Yakhot, Victor
2014-10-01
A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k >Λf , where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf
Delayed demagnetization jumps in (NdDy)(FeCo)B magnets in a steady-state magnetic field
NASA Astrophysics Data System (ADS)
L'vova, G. L.; Kirman, M. V.; Koplak, O. V.; Kucheryaev, V. V.; Valeev, R. A.; Piskorskii, V. P.; Morgunov, R. B.
2017-11-01
Spontaneous demagnetization jumps are observed in sintered magnets (Nd0.6Dy0.4)16(Fe0.77Co0.23)78B6 in a constant magnetic field after a sharp decrease in an external magnetic field from the value corresponding to the saturation to a value close to the coercive force. It is shown that the number of the magnetization jumps is proportional to their amplitudes. A low value of the autocorrelation coefficient between the jump amplitude and the time of its appearance ( R < 0.1) demonstrate the stochasticity of the jumps. It is found that the spectral jump density is independent of the frequency, i.e., a white magnetic noise is observed. The distribution of the magnetic field gradient has been obtained near the sample surface that makes it possible to distinguish domains and the grain magnetization in the dependence on the direction of the texturing of the sintered magnet.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid
NASA Astrophysics Data System (ADS)
Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto
2017-08-01
The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.
Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow.
Seki, Kazuyoshi; Ueda, Ken; Okumura, Yu-ichi; Tabe, Yuka
2011-07-20
Free-standing films composed of several layers of chiral smectic liquid crystals (SmC*) exhibited unidirectional director precession under various vapor transfers across the films. When the transferred vapors were general organic solvents, the precession speed linearly depended on the momentum of the transmembrane vapors, where the proportional constant was independent of the kind of vapor. In contrast, the same SmC* films under water transfer exhibited precession in the opposite direction. As a possible reason for the rotational inversion, we suggest the competition of two origins for the torques, one of which is microscopic and the other macroscopic. Next, we tried to move an external object by making use of the liquid crystal (LC) motion. When a solid or a liquid particle was set on a film under vapor transfer, the particle was rotated in the same direction as the LC molecules. Using home-made laser tweezers, we measured the force transmitted from the film to the particle, which we found to be several pN.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-01-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends. The…
A Systems Analysis of Strike Naval Aviation Training
2013-06-01
from external nodes (yellow) and flows through the model design (gray nodes). Arrows represent information flow direction and identify what...multiple times need to be established as external functions accessible by all subroutines • Variables and constants must be defined up-front, and...Downloaded Figure 37. Blocks In Figure 38, proficiency threshold breeches are highlighted to indicate when the resulting skill proficiency drops below the
Measuring Air Force Contracting Customer Satisfaction
2015-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT MEASURING AIR FORCE CONTRACTING CUSTOMER SATISFACTION ...... satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Row, K.L.; Johnson, R.B.
1990-10-01
Maxillary right first molar teeth of rats were tipped mesially with an orthodontic appliance for 2 weeks (experimental group), {sup 3}H-proline was injected, and orthodontic forces were removed 6 hr later (time 0). The contralateral molar teeth of treated (internal control group) and age- and weight-matched untreated animals (external control group) were also studied. Diastemata were created between the molar teeth by the orthodontic appliance, and transseptal fibers between first and second (P less than 0.001) and second and third molars (P less than 0.005) were significantly lengthened as compared to external and internal controls at time 0. Diastemata betweenmore » molar teeth were closed 5 days after removal of orthodontic force. Transseptal fibers adjacent to the source of the orthodontic force (mesial region) had the highest mean number of {sup 3}H-proline-labeled proteins at time 0 and at all times following removal of the force (P less than 0.001), and had the highest rate of labeled protein removal (P less than 0.001). Half-lives for removal of 3H-proline-labeled transseptal fiber proteins were significantly greater in mesial and distal regions and significantly less in middle regions of experimentals than in corresponding regions of external controls (P less than 0.001).« less
Using AFM Force Curves to Explore Properties of Elastomers
ERIC Educational Resources Information Center
Ferguson, Megan A.; Kozlowski, Joseph J.
2013-01-01
polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…
The Adaptive Range of 1/f Isometric Force Production
ERIC Educational Resources Information Center
Sosnoff, Jacob J.; Valantine, Andrew D.; Newell, Karl M.
2009-01-01
The adaptive range of 1/f dynamics in isometric force output was investigated. Participants produced isometric force to targets with predictable demands (constant and sinusoidal) and 1/f noise waveforms (white, pink, brown, and black) that also varied in the frequency bandwidth represented in the force signal (0-4 Hz, 0-8 Hz, and 0-12 Hz). The…
Externalizing disorders: cluster 5 of the proposed meta-structure for DSM-V and ICD-11.
Krueger, R F; South, S C
2009-12-01
The extant major psychiatric classifications DSM-IV and ICD-10 are purportedly atheoretical and largely descriptive. Although this achieves good reliability, the validity of a medical diagnosis is greatly enhanced by an understanding of the etiology. In an attempt to group mental disorders on the basis of etiology, five clusters have been proposed. We consider the validity of the fifth cluster, externalizing disorders, within this proposal. We reviewed the literature in relation to 11 validating criteria proposed by the Study Group of the DSM-V Task Force, in terms of the extent to which these criteria support the idea of a coherent externalizing spectrum of disorders. This cluster distinguishes itself by the central role of disinhibitory personality in mental disorders spread throughout sections of the current classifications, including substance dependence, antisocial personality disorder and conduct disorder. Shared biomarkers, co-morbidity and course offer additional evidence for a valid cluster of externalizing disorders. Externalizing disorders meet many of the salient criteria proposed by the Study Group of the DSM-V Task Force to suggest a classification cluster.
NASA Technical Reports Server (NTRS)
Long, M. J.; Irick, S. C.
1976-01-01
Constant-value weight-relieving apparatus, which moves on rollers on overhead track, supports weight of walking, stooping, squatting, or standing patient with combination of multiple pulleys and spring clusters. Individually preselected support force is constant for all movements.
NASA Astrophysics Data System (ADS)
Newsome, Ben; Evans, Mat
2017-12-01
Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M HNO3 and O3 + NO → NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote regions such as the tropics, poles and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered alongside other processes when model results disagree with measurement. Calculations for the pre-industrial simulation allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 W m-2. This uncertainty (13 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model intercomparison studies where the rate constants used in the models are all identical or very similar. Thus, the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well-known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.
Ho, Eric Po-Yan; Lam, Mak-Ham; Chung, Mandy Man-Ling; Fong, Daniel Tik-Pui; Law, Billy Kan-Yip; Yung, Patrick Shu-Hang; Chan, Wood-Yee; Chan, Kai-Ming
2011-01-01
This study aimed to evaluate the immediate effect on knee kinematics by 2 different techniques of posterolateral corner (PLC) reconstruction. Five intact formalin-preserved cadaveric knees were used in this study. A navigation system was used to measure knee kinematics (posterior translation, varus angulation, and external rotation) after application of a constant force and torque to the tibia. Four different conditions of the knee were evaluated during the biomechanical test: intact knee and PLC-sectioned knee and PLC-reconstructed knee by the double-femoral tunnel technique and single-femoral tunnel technique. Sectioning of the PLC structures resulted in significant increases in external rotation at 30° of flexion from 11.2° (SD, 2.6) to 24.6° (SD, 6.2), posterior translation at 30° of flexion from 3.4 mm (SD, 1.5) to 7.4 mm (SD, 3.8), and varus angulation at 0° of flexion from 2.3° (SD, 2.1) to 7.9° (SD, 5.1). Both reconstruction techniques significantly restored the varus stability. The external rotation and posterior translation at 30° of flexion after reconstruction with the double-femoral tunnel technique were 10.2° (SD, 1.3) and 3.4° (SD, 2.7), respectively, which were significantly better than those of the single-femoral tunnel technique. Both techniques of reconstruction showed improved stability compared with PLC-sectioned knees. The double-femoral tunnel technique in PLC reconstruction showed better rotational stability and resistance to posterior translation than the single-femoral tunnel technique without compromising varus stability. PLC reconstruction by a double-femoral tunnel technique achieves better rotational control and resistance to posterior translation. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsuda, Tatsuya; Miura, Kinya; Sawada, Yayoi
2017-10-01
This study investigated the characteristics of wave forces loading on the detached structure that consisted of an upper structure and a pile foundation. In this study, structure stability was also considered on the results obtained from previous studies on the instability of seabed induced by wave force. When a wave force acted on the structure, an external force acted on the pile foundation as if pulling out the foundation on the outer harbor side and pushing it in on the inner harbor. The effective stress in seabed was increase so the pile foundation was considered to maintain sufficient bearing capacity. Subsequently, when the bearing capacity of the ground was decreased because the water pressure in the ground surface layer decreased, the pile foundation will be aggravated settled down. The external force acting on the pile foundation was not same on outer harbor and inner harbor with the form of the upper structure. As a result, we found that the strain will be generated on the structure.