Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung
2004-03-15
The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.
Hu, Alan Shiun Yew; Donohue, Peter O'; Gunnarsson, Ronny K; de Costa, Alan
2018-03-14
Valid and user-friendly prediction models for conversion to open cholecystectomy allow for proper planning prior to surgery. The Cairns Prediction Model (CPM) has been in use clinically in the original study site for the past three years, but has not been tested at other sites. A retrospective, single-centred study collected ultrasonic measurements and clinical variables alongside with conversion status from consecutive patients who underwent laparoscopic cholecystectomy from 2013 to 2016 in The Townsville Hospital, North Queensland, Australia. An area under the curve (AUC) was calculated to externally validate of the CPM. Conversion was necessary in 43 (4.2%) out of 1035 patients. External validation showed an area under the curve of 0.87 (95% CI 0.82-0.93, p = 1.1 × 10 -14 ). In comparison with most previously published models, which have an AUC of approximately 0.80 or less, the CPM has the highest AUC of all published prediction models both for internal and external validation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei
2018-04-15
Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.
Dong, Huan; Mukinay, Tatiana; Li, Maojun; Hood, Richard; Soo, Sein Leung; Cockshott, Simon; Sammons, Rachel; Li, Xiaoying
2017-01-01
In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO 2 rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.
Voon, V; Brezing, C; Gallea, C; Hallett, M
2014-01-01
Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985
2011 Biomass Program Platform Peer Review. Thermochemical Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, Paul E.
This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.
Raj, Manish; Kumar, Sunil; Singh, Pulkesh; Kumar, Dinesh; Singh, Jasveer; Deep, Akash
2016-01-01
Introduction Management of compound grade III fractures of both bone leg includes external stabilization for long period, followed by various soft tissue coverage procedures. Primary interlocking of tibia had been also done with variable results. External fixation for long time without any bone loss often leads to infected nonunion, loss of reduction, pin tract infection and failure of fixation, primary interlocking in compound grade III fractures had shown high medullary infection rate. We managed all cases of compound grade III A/B fractures with primary external fixation, simultaneous wound management using vacuum assisted closure (VAC) followed by early conversion to interlocking within 2 weeks of fixator application. Aim To determine the effectiveness of vacuum assisted closure (VAC) for the early conversion of external fixator to definitive interlocking in open fractures of the both bone leg. Materials and Methods In current study we selected 84 cases of compound grade IIIA/B diaphyseal fractures of both bone leg during period of May 2010 to September 2013. We managed these cases by immediate debridement and application of external fixation followed by repeated debridement, application of vacuum assisted closure (VAC) and conversion to interlocking within two weeks. Results Out of 84 cases union was achieved in 80(95%) of cases with definitive tibial interlocking. Excellent to good result were obtained in 77(91.8%) of cases and fair to poor result seen in rest of 7(8.2%) of cases according to modified Ketenjian’s criteria. 5 out of these 7 poor result group cases were from Compound Grade III B group to start with. Deep infection rate in our series were 7% i.e. total 6 cases and 4 out of these were from compound Grade III B group to start with. Conclusion Vacuum assisted closure (VAC) give a good help for rapid closure of the wound and help in early conversion to definitive intramedullary nailing. Reamed nail could well be used in compound grade IIIA/B fractures without increasing the risk of infection. It gives better stability to fracture site and lessen the risk of implant failure. PMID:27042541
The Interplay of Externalizing Problems and Physical and Inductive Discipline during Childhood
ERIC Educational Resources Information Center
Choe, Daniel Ewon; Olson, Sheryl L.; Sameroff, Arnold J.
2013-01-01
Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment…
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
Purely organic electroluminescent material realizing 100% conversion from electricity to light
Kaji, Hironori; Suzuki, Hajime; Fukushima, Tatsuya; Shizu, Katsuyuki; Suzuki, Katsuaki; Kubo, Shosei; Komino, Takeshi; Oiwa, Hajime; Suzuki, Furitsu; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya
2015-01-01
Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activated delayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state. The material contains electron-donating diphenylaminocarbazole and electron-accepting triphenyltriazine moieties. The typical trade-off between effective emission and triplet-to-singlet up-conversion is overcome by fine-tuning the highest occupied molecular orbital and lowest unoccupied molecular orbital distributions. The nearly zero singlet–triplet energy gap, smaller than the thermal energy at room temperature, results in an organic light-emitting diode with external quantum efficiency of 29.6%. An external quantum efficiency of 41.5% is obtained when using an out-coupling sheet. The external quantum efficiency is 30.7% even at a high luminance of 3,000 cd m−2. PMID:26477390
EN to RN: the transition experience pre- and post-graduation.
Rapley, Patrica A; Nathan, Pauline; Davidson, Laura
2006-01-01
The context for this study is a conversion program for enrolled nurses (ENs) or division 2 level nurses who want to further their career as a registered nurse (RN) or division 1 nurse. While the conversion program is available to both metropolitan and rural nurses, it is designed specifically for experienced rural ENs. The conversion program is able to offer an educational alternative that does not disrupt family life or adversely impact the rural nursing workforce. This alternative is necessary for both the rural EN's career opportunities and for the health outcomes of rural communities in particular. This article reports on the experiences of the first cohort to graduate from the EN to RN conversion program. The conversion program offers three semesters of advanced standing within a seven-semester Bachelor of Science (Nursing) degree. The advanced standing or recognition of prior learning is awarded to applicants with more than one year's clinical experience, regardless of the type of enrolled nurse course completed. Enrolled nurses with a technical college qualification or higher meet university entry criterion but students from a hospital-based program are required to complete a mature-age university entry test. The degree to which the three semesters of advanced standing within an external conversion course for ENs would adversely affect participants' transition to student status and course completion is not known. The conversion program: The two-year, fully external EN conversion program relies on learning centre partnerships with country hospitals and agencies. Teaching strategies consist of a mix of external-mode strategies, including fully web-based units, and a compulsory eight-day on-campus foundation study block at the beginning. The compulsory study block provides the opportunity for students to familiarize themselves with the various areas of the university they need to contact as an external student, prepare for expectations of their first unit, including assessment expectations, and to practise selected nursing skills that are not common to the EN role. With the program being delivered from the metropolitan area of a vast state that occupies one-third of the Australian landmass, a key feature is the establishment of rural learning centres to support students. Apart from two of the seven clinical units in their course, the designated rural academic mentors arrange clinical placements in school-approved health care agencies situated locally or in nearby towns. This later strategy avoids the necessity for students to relocate to the metropolitan area or larger towns to complete the clinical component of the course. The conversion program has enrolled a limited number each year since 2000 and continues to be in high demand. Rural ENs are given preference and metropolitan enrolled nurses are included when quota allows. The purpose of this article is to describe the two aspects of the transition experiences of graduates from an external conversion degree. First, their transition experience from experienced enrolled nurse to undergraduate student and, second, from graduate to novice RN. Participants were volunteer graduates from the Bachelor of Science (Nursing) two-year conversion degree. The 10 study participants were mature-age females, aged between 33 and 53 years (mean = 42 years). Five were from rural areas. Their educational background included hospital-based diploma or technical college certificate. Data were collected using open-ended questions in semi-structured interviews. The interviews were transcribed and thematic analyses of the data were undertaken. Major categories were identified and relationships among them detailed. The four categories identified included adjusting to higher education, achieving academically, becoming critical thinkers and adjusting to the RN role: accepting responsibility. Participant responses in this study have highlighted the necessity for timely responses to email, feedback on assignments and more mentor support for rural students during the course. Participants report changing the way they approached their nursing practice. The transition experiences for participants in the external conversion program are generally positive although, as with other studies, the transition to student status is stressful. However, the course is able to facilitate the career aspirations of the study participants and to contribute to the retention of nursing staff in rural areas. Strategies to provide career opportunities for health-care professionals in rural areas are always a challenge. As one such strategy, the external mode EN to RN conversion program has proven to be effective for experienced ENs.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, Roger A.; Henesian, Mark A.
1987-01-01
The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.
2009 Biochemical Conversion Platform Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, John
2009-12-01
This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.
Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.
2014-01-01
Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Jing
2008-08-07
This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients aremore » yet unknown, the results presented here fill a data gap.« less
Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark
2011-11-01
Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.
How Can We Afford This: Funding & Financing Means.
ERIC Educational Resources Information Center
Kaiser, Harvey H.
Sources of funds for campus capital renewal and replacement are discussed, including the operating budget, external sources, conversion of assets, and innovative techniques. Current funds can be obtained from tuition and fees, external sources, and sales and services of educational or auxiliary operations. Public universities are more heavily…
Graphene-based magnetless converter of terahertz wave polarization
NASA Astrophysics Data System (ADS)
Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.
2016-04-01
The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.
High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%
NASA Astrophysics Data System (ADS)
Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.
2018-06-01
We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.
The Impact of Knowledge Conversion Processes on Implementing a Learning Organization Strategy
ERIC Educational Resources Information Center
Al-adaileh, Raid Moh'd; Dahou, Khadra; Hacini, Ishaq
2012-01-01
Purpose: The purpose of this research is to explore the influence of the knowledge conversion processes (KCP) on the success of a learning organization (LO) strategy implementation. Design/methodology/approach: Using a case study approach, the research model examines the impact of the KCP including socialization, externalization, combination and…
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua
2017-01-01
The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…
Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin
2013-02-01
A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Use of near-IR to monitor the influence of external heating on dental composite photopolymerization.
Trujillo, Marianela; Newman, Sheldon M; Stansbury, Jeffrey W
2004-10-01
This study was conducted to determine the effect of modest external heating on the photopolymerization kinetics and conversion of commercial dental composite restorative materials. A transmission-mode, real-time near-infrared spectroscopic technique was used to monitor the photopolymerization process in the composite materials at various temperatures between 23 and 70 degrees C. Several light curing units, differing in spectral output and power densities were compared at the different cure temperatures. Several significantly different commercial composites were compared for their response. Regardless of the curing light or composite material used, photopolymerization at a moderate curing temperature of 54.5 degrees C resulted in significantly higher immediate and final conversion values compared with room temperature photocuring. Contrary to the room temperature cured materials, at the elevated cure temperature the extent of post-cure was minor and different curing lights produced very uniform conversion values within a given material. The time required to reach a given level of conversion, established as full conversion with the room temperature cure, was reduced typically by 80-90% using the elevated curing conditions. Complementary kinetic studies confirmed the effect of cure temperature on increasing the polymerization rate in dental composites as significant. Increasing the temperature of composite resin within potentially biologically compatible limits can significantly influences resin polymerization. These increased rates and conversion could lead to improved properties of composite restorative materials.
Solar thermal electricity generation
NASA Astrophysics Data System (ADS)
Gasemagha, Khairy Ramadan
1993-01-01
This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.
Optimization of power generating thermoelectric modules utilizing LNG cold energy
NASA Astrophysics Data System (ADS)
Jeong, Eun Soo
2017-12-01
A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.
3.1 W narrowband blue external cavity diode laser
NASA Astrophysics Data System (ADS)
Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui
2018-03-01
We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.
Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers.
Li, Guangyong; Hong, Guo; Dong, Dapeng; Song, Wenhui; Zhang, Xuetong
2018-06-14
Wearable devices and systems demand multifunctional units with intelligent and integrative functions. Smart fibers with response to external stimuli, such as electrical, thermal, and photonic signals, etc., as well as offering energy storage/conversion are essential units for wearable electronics, but still remain great challenges. Herein, flexible, strong, and self-cleaning graphene-aerogel composite fibers, with tunable functions of thermal conversion and storage under multistimuli, are fabricated. The fibers made from porous graphene aerogel/organic phase-change materials coated with hydrophobic fluorocarbon resin render a wide range of phase transition temperature and enthalpy (0-186 J g -1 ). The strong and compliant fibers are twisted into yarn and woven into fabrics, showing a self-clean superhydrophobic surface and excellent multiple responsive properties to external stimuli (electron/photon/thermal) together with reversible energy storage and conversion. Such aerogel-directed smart fibers promise for broad applications in the next-generation of wearable systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phenomenology of neutron-antineutron conversion
NASA Astrophysics Data System (ADS)
Gardner, Susan; Yan, Xinshuai
2018-03-01
We consider the possibility of neutron-antineutron (n -n ¯ ) conversion, in which the change of a neutron into an antineutron is mediated by an external source, as can occur in a scattering process. We develop the connections between n -n ¯ conversion and n -n ¯ oscillation, in which a neutron spontaneously transforms into an antineutron, noting that if n -n ¯ oscillation occurs in a theory with baryon number minus lepton number (B-L) violation, then n -n ¯ conversion can occur also. We show how an experimental limit on n -n ¯ conversion could connect concretely to a limit on n -n ¯ oscillation, and vice versa, using effective field theory techniques and baryon matrix elements computed in the MIT bag model.
Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity
NASA Astrophysics Data System (ADS)
Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong
2017-04-01
In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.
Optimize out-of-core thermionic energy conversion for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.
Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs
NASA Astrophysics Data System (ADS)
Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.
2013-12-01
Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low input, and d) subsistence management intensities. All remaining vegetated land is represented in grey, while barren land is represented in white. Globally, agricultural land cover conversion has reduced natural primary production by 3.0 × 0.68 Pg C y-1 (i.e., a ~7% reduction in biospheric NPP), with a disproportionately large percentage of this reduction attributable to the conversion of temperate (~44%) and tropical (~50%) ecosystems.
[George Herbert Mead. Thought as the conversation of interior gestures].
Quéré, Louis
2010-01-01
For George Herbert Mead, thinking amounts to holding an "inner conversation of gestures ". Such a conception does not seem especially original at first glance. What makes it truly original is the "social-behavioral" approach of which it is a part, and, particularly, two ideas. The first is that the conversation in question is a conversation of gestures or attitudes, and the second, that thought and reflexive intelligence arise from the internalization of an external process supported by the social mechanism of communication: that of conduct organization. It imports then to understand what distinguishes such ideas from those of the founder of behavioral psychology, John B. Watson, for whom thinking amounts to nothing other than subvocal speech.
Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes.
Kang, Myung-Gyu; Xu, Ting; Park, Hui Joon; Luo, Xiangang; Guo, L Jay
2010-10-15
Surface plasmon enhanced photo-current and power conversion efficiency of organic solar cells using periodic Ag nanowires as transparent electrodes are reported, as compared to the device with conventional ITO electrodes. External quantum efficiencies are enhanced about 2.5 fold around the peak solar spectrum wavelength of 560 nm, resulting in 35% overall increase in power conversion efficiency than the ITO control device under normal unpolarized light.
Natoli, R M; Baer, M R; Bednar, M S
2016-05-01
Distal radius fractures are common injuries treated in a multitude of ways. One treatment paradigm not extensively studied is initial treatment by external fixation (EF) followed by conversion to open reduction internal fixation (ORIF). Such a paradigm may be beneficial in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. There is no increased risk of infection when converting EF to ORIF in the treatment of complex distal radius fractures when conversion occurs early or if EF pin sites are overlapped by the definitive fixation. Using an IRB approved protocol, medical records over nine years were queried to identify patients with distal radius fractures that had undergone initial EF and were later converted to ORIF. Charts were reviewed for demographic data, injury characteristics, operative details, time to conversion from EF to ORIF, assessment of whether the EF pin sites overlapped the definitive fixation, presence of infection after ORIF, complications, and occupational therapy measurements of range of motion and strength. In total, 16 patients were identified, only one of which developed an infection following conversion to ORIF. Fisher's exact testing showed that infection did not depend on open fracture, time to conversion of one week or less, presence of EF pin sites overlapping definitive fixation, fracture classification, high energy mechanism of injury, or concomitant injury to the DRUJ. Planned staged conversion from EF to ORIF for complex distal radius fractures does not appear to result in an increased rate of infection if conversion occurs early or if the EF pin sites are overlapped by definitive fixation. This treatment paradigm may be reasonable for treating complex distal radius fractures in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. IV, retrospective case series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Photoassisted electrolysis of water - Conversion of optical to chemical energy
NASA Technical Reports Server (NTRS)
Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.
1976-01-01
A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.
Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)
2013-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
Megawatt Fuel Cell Systems Analysis.
1983-02-01
conversion process must be removed from the system. This heat can be rejected to air or water or recovered for cogeneration applications. The possible...powerplants are significantly lower than existing standards (Figure 2-2). External water is not required for fuel processing or powerplant cooling; only fuel...and air need to be available at the powerplant site. This lack oY’ reliance on external water supply is valuable in areas where water is scarce or
Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C
2015-09-01
In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Framework for Understanding Experiments
2008-06-01
operations. Experiments that emphasize free play and uncertainty in scenarios reflect conditions found in existent operations and satisfy external...validity Requirement 4, the ability to relate results. Conversely, experiments emphasizing similar conditions with diminished free play across multiple
Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan
2017-10-01
Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Garcia, Andres; Evans, James W.
2017-04-03
In this paper, we consider a variety of diffusion-mediated processes occurring within linear nanopores, but which involve coupling to an equilibrated external fluid through adsorption and desorption. By determining adsorption and desorption rates through a set of tailored simulations, and by exploiting a spatial Markov property of the models, we develop a formulation for performing efficient pore-only simulations of these processes. Coupling to the external fluid is described exactly through appropriate nontrivial boundary conditions at the pore openings. This formalism is applied to analyze the following: (i) tracer counter permeation (TCP) where different labeled particles adsorb into opposite ends ofmore » the pore and establish a nonequilibrium steady state; (ii) tracer exchange (TE) with exchange of differently labeled particles within and outside the pore; (iii) catalytic conversion reactions where a reactant in the external fluid adsorbs into the pore and converts to a product which may desorb. The TCP analysis also generates a position-dependent generalized tracer diffusion coefficient, the form of which controls behavior in the TE and catalytic conversion processes. We focus on the regime of single-file diffusion within the pore which produces the strongest correlations and largest deviations from mean-field type behavior. Finally, behavior is quantified precisely via kinetic Monte Carlo simulations but is also captured with appropriate analytic treatments.« less
The interplay of externalizing problems and physical and inductive discipline during childhood.
Choe, Daniel Ewon; Olson, Sheryl L; Sameroff, Arnold J
2013-11-01
Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment using cross-informant, multimethod data. We hypothesized that less inductive and more physical discipline would predict more externalizing problems, children would have evocative effects on parenting, and high levels of either form of discipline would predict low levels of the other. In a study of 241 children-spanning ages 3, 5.5, and 10-structural equation modeling indicated that 3-year-olds with higher teacher ratings of externalizing problems received higher mother ratings of physical discipline at age 5.5. Mothers endorsing more inductive discipline at child age 3 reported less physical discipline and had children with fewer externalizing problems at age 5.5. Negative bidirectional associations emerged between physical and inductive discipline from ages 5.5 to 10. Findings suggested children's externalizing problems elicited physical discipline, and maternal inductive discipline might help prevent externalizing problems and physical discipline.
NASA Technical Reports Server (NTRS)
Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.
1988-01-01
56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.
Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors.
Ramirez, Patricio; Cervera, Javier; Gomez, Vicente; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang; Mafe, Salvador
2018-05-01
The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can scale up the transduction between ionic and electronic signals. The network designs discussed here should be useful to convert the weak signals characteristic of the micro and nanoscale into robust electronic responses by interconnecting iontronics and electronic elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin
2017-09-26
The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.
NASA Astrophysics Data System (ADS)
Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team
2016-11-01
We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).
Coupled field induced conversion between destructive and constructive quantum interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong
2016-12-15
We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.
NASA Astrophysics Data System (ADS)
Taranenko, Valery; Xu, X. George
2008-03-01
Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.
1995-02-01
modification of existing JPEG compression and decompression software available from Independent JPEG Users Group to process CIELAB color images and to use...externally specificed Huffman tables. In addition a conversion program was written to convert CIELAB color space images to red, green, blue color space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.
1997-06-01
Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-01-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852
High-efficiency frequency doubling of continuous-wave laser light.
Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman
2011-09-01
We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.
The Interplay of Externalizing Problems and Physical and Inductive Discipline during Childhood
Choe, Daniel Ewon; Olson, Sheryl L.; Sameroff, Arnold J.
2013-01-01
Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment using cross-informant, multi-method data. We hypothesized that less inductive and more physical discipline would predict more externalizing problems, children would have evocative effects on parenting, and high levels of either form of discipline would predict low levels of the other. In a study of 241 children–spanning ages 3, 5.5, and 10–structural equation modeling indicated that 3-year-olds with higher teacher ratings of externalizing problems received higher mother ratings of physical discipline at age 5.5. Mothers endorsing more inductive discipline at child age 3 reported less physical discipline and had children with fewer externalizing problems at age 5.5. Negative bidirectional associations emerged between physical and inductive discipline from ages 5.5 to 10. Findings suggested children’s externalizing problems elicited physical discipline, and maternal inductive discipline might help prevent externalizing problems and physical discipline. PMID:23458660
Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules
NASA Astrophysics Data System (ADS)
Valiev, R. R.; Minaev, B. F.
2017-07-01
The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.
Towards personalized therapy for multiple sclerosis: prediction of individual treatment response.
Kalincik, Tomas; Manouchehrinia, Ali; Sobisek, Lukas; Jokubaitis, Vilija; Spelman, Tim; Horakova, Dana; Havrdova, Eva; Trojano, Maria; Izquierdo, Guillermo; Lugaresi, Alessandra; Girard, Marc; Prat, Alexandre; Duquette, Pierre; Grammond, Pierre; Sola, Patrizia; Hupperts, Raymond; Grand'Maison, Francois; Pucci, Eugenio; Boz, Cavit; Alroughani, Raed; Van Pesch, Vincent; Lechner-Scott, Jeannette; Terzi, Murat; Bergamaschi, Roberto; Iuliano, Gerardo; Granella, Franco; Spitaleri, Daniele; Shaygannejad, Vahid; Oreja-Guevara, Celia; Slee, Mark; Ampapa, Radek; Verheul, Freek; McCombe, Pamela; Olascoaga, Javier; Amato, Maria Pia; Vucic, Steve; Hodgkinson, Suzanne; Ramo-Tello, Cristina; Flechter, Shlomo; Cristiano, Edgardo; Rozsa, Csilla; Moore, Fraser; Luis Sanchez-Menoyo, Jose; Laura Saladino, Maria; Barnett, Michael; Hillert, Jan; Butzkueven, Helmut
2017-09-01
Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27 demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency, conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discontinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher probability of disability progression during treatment with injectable therapies was predominantly associated with a greater disability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with lower pretreatment relapse activity. The probability of disability regression was predominantly associated with pre-baseline disability, therapy and relapse activity. Relapse incidence was associated with pretreatment relapse activity, age and relapsing disease course, with the strength of these associations varying among therapies. Accuracy and internal validity (n = 1196) of the resulting predictive models was high (>80%) for relapse incidence during the first year and for disability outcomes, moderate for relapse incidence in Years 2-4 and for the change in the cumulative disease burden, and low for conversion to secondary progressive disease and treatment discontinuation. External validation showed similar results, demonstrating high external validity for disability and relapse outcomes, moderate external validity for cumulative disease burden and low external validity for conversion to secondary progressive disease and treatment discontinuation. We conclude that demographic, clinical and paraclinical information helps predict individual response to disease-modifying therapies at the time of their commencement. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reciprocity principle in duct acoustics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.
1979-01-01
Various reciprocity relations in duct acoustics have been derived on the basis of the spatial reciprocity principle implied in Green's functions for linear waves. The derivation includes the reciprocity relations between mode conversion coefficients for reflection and transmission in nonuniform ducts, and the relation between the radiation of a mode from an arbitrarily terminated duct and the absorption of an externally incident plane wave by the duct. Such relations are well defined as long as the systems remain linear, regardless of acoustic properties of duct nonuniformities which cause the mode conversions.
Self-seeding ring optical parametric oscillator
Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM
2005-12-27
An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.
Geraets, Liesbeth; Zeilmaker, Marco J; Bos, Peter M J
2018-01-05
Human health risk assessment of inhalation exposures generally includes a high-to-low concentration extrapolation. Although this is a common step in human risk assessment, it introduces various uncertainties. One of these uncertainties is related to the toxicokinetics. Many kinetic processes such as absorption, metabolism or excretion can be subject to saturation at high concentration levels. In the presence of saturable kinetic processes of the parent compound or metabolites, disproportionate increases in internal blood or tissue concentration relative to the external concentration administered may occur resulting in nonlinear kinetics. The present paper critically reviews human health risk assessment of inhalation exposure. More specific, it emphasizes the importance of kinetic information for the determination of a safe exposure in human risk assessment of inhalation exposures assessed by conversion from a high animal exposure to a low exposure in humans. For two selected chemicals, i.e. methyl tert-butyl ether and 1,2-dichloroethane, PBTK-modelling was used, for illustrative purposes, to follow the extrapolation and conversion steps as performed in existing risk assessments for these chemicals. Human health-based limit values based on an external dose metric without sufficient knowledge on kinetics might be too high to be sufficiently protective. Insight in the actual internal exposure, the toxic agent, the appropriate dose metric, and whether an effect is related to internal concentration or dose is important. Without this, application of assessment factors on an external dose metric and the conversion to continuous exposure results in an uncertain human health risk assessment of inhalation exposures. Copyright © 2017 Elsevier B.V. All rights reserved.
Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H.; Maekawa, T.; Igami, H.
2005-09-26
A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The surveymore » meter measurement results are found to be linear for dose rates below 3500 µSv/hr.« less
Arduino based radiation survey meter
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee
2016-01-01
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.
Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asadi, M.; Kim, K.; Liu, C.
2016-07-28
Conversion of carbon dioxide (CO2) into fuels is an attractive solution to many energy and environmental challenges. However, the chemical inertness of CO2 renders many electrochemical and photochemical conversion processes inefficient. We report a transition metal dichalcogenide nanoarchitecture for catalytic electrochemical CO2 conversion to carbon monoxide (CO) in an ionic liquid. We found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. We also applied this catalyst in a light-harvesting artificial leaf platform thatmore » concurrently oxidized water in the absence of any external potential.« less
NASA Astrophysics Data System (ADS)
Fan, Peng; Chen, Hualing; Li, Bo; Wang, Yongquan
2017-11-01
In this letter, a theoretical framework describing an energy harvesting cycle including the loss of tension (LT) process is proposed to investigate the energy harvesting performance of a dielectric elastomer generator (DEG) with a triangular energy harvesting scheme by considering material viscosity and leakage current. As the external force that is applied to the membrane decreases, the membrane is relaxed. When the external force decreases to zero, the condition is known as LT. Then the membrane undergoing LT can further relax, which is referred to as the LT process. The LT process is usually ignored in theoretical analysis but observed from energy harvesting experiments of DEGs. It is also studied how shrinking time and transfer capacitor affect the energy conversion of a DEG. The results indicate that energy density and conversion efficiency can be simultaneously improved by choosing appropriate shrinking time and transfer capacitor to optimize the energy harvesting cycle. The results and methods are expected to provide guidelines for the optimal design and assessment of DEGs.
Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience
NASA Astrophysics Data System (ADS)
Zhu, Shunmin; Yu, Aifang; Yu, Guoyao; Liu, Yudong; Zhai, Junyi; Dai, Wei; Luo, Ercang
2017-10-01
A thermoacoustic heat engine (TAHE) is a type of regenerative heat engine that converts external heat into mechanical power in the form of an acoustic wave with no moving mechanical components. One significant application of the TAHE is the generation of electricity by coupling an acoustic-to-electric conversion unit such as a linear motor or a piezoelectric ceramic assembly. However, present-day conversion technologies have considerable drawbacks, including structural complexity, high cost, and low reliability. The advent of triboelectric nanogenerators (TENGs) offers an alternative means to overcoming these shortcomings. In this paper, we propose a thermoacoustically driven TENG (TA-TENG) that continuously harvests external heat. A test rig involving a standing-wave TAHE and a contact-separation mode TENG was fabricated to demonstrate this concept. Currently, the TA-TENG produces a maximum output voltage of 10 V and a corresponding output power of 0.008 μW with a load of 400 MΩ, demonstrating the viability of this hybrid combination for electricity generation.
Dense ceramic membranes for converting methane to syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, U.; Dusek, J.T.; Picciolo, J.J.
1995-07-01
Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion,more » selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.« less
Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid.
Asadi, Mohammad; Kim, Kibum; Liu, Cong; Addepalli, Aditya Venkata; Abbasi, Pedram; Yasaei, Poya; Phillips, Patrick; Behranginia, Amirhossein; Cerrato, José M; Haasch, Richard; Zapol, Peter; Kumar, Bijandra; Klie, Robert F; Abiade, Jeremiah; Curtiss, Larry A; Salehi-Khojin, Amin
2016-07-29
Conversion of carbon dioxide (CO2) into fuels is an attractive solution to many energy and environmental challenges. However, the chemical inertness of CO2 renders many electrochemical and photochemical conversion processes inefficient. We report a transition metal dichalcogenide nanoarchitecture for catalytic electrochemical CO2 conversion to carbon monoxide (CO) in an ionic liquid. We found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. We also applied this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential. Copyright © 2016, American Association for the Advancement of Science.
On Deming and School Quality: A Conversation with Enid Brown.
ERIC Educational Resources Information Center
Brandt, Ron
1992-01-01
A Deming expert explains that his 14 principles are no recipe but must be combined with the theory of profound knowledge, which poses essential questions and recognizes the importance of human variation, intrinsic motivation, and external rewards. She also debunks grading, formal teacher evaluation, tracking, and decentralized management. (MLH)
Reciprocal Effects between Adolescent Externalizing Problems and Measures of Achievement
ERIC Educational Resources Information Center
Zimmermann, Friederike; Schütte, Kerstin; Taskinen, Päivi; Köller, Olaf
2013-01-01
Student misbehavior is a pervasive problem and may seriously affect academic achievement. Previous research hints at different effects depending on whether achievement tests or achievement judgments are used as academic outcomes. Previous research also indicates that low achievement can conversely contribute to problem behavior and that low…
Photoproduction of halogens using platinized TiO2
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E.
1981-01-01
Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.
Nonlinear generation of sum and difference frequency waves by two helicon waves in a semiconductor
NASA Astrophysics Data System (ADS)
Salimullah, M.; Ferdous, T.
1984-05-01
This paper presents a theoretical investigation of the nonlinear generation of electrostatic waves at the sum and the difference frequency when two high amplitude elliptically polarized helicon waves propagate along the direction of the externally applied static magnetic field in an n-type semiconductor. The nonlinearity arises through the ponderomotive force on electrons. It is noticed that the power conversion efficiency of the difference frequency generation is much larger than that of the sum frequency generation. The power conversion efficiency may be easily increased by increasing the density of electrons in the semiconductor.
Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film
2013-01-01
Poly(lauryl methacrylate) (PLMA) thin film doped with Mn:ZnSe quantum dots (QDs) was spin-deposited on the front surface of Si solar cell for enhancing the solar cell efficiency via photoluminescence (PL) conversion. Significant solar cell efficiency enhancements (approximately 5% to 10%) under all-solar-spectrum (AM0) condition were observed after QD-doped PLMA coatings. Furthermore, the real contribution of the PL conversion was precisely assessed by investigating the photovoltaic responses of the QD-doped PLMA to monochromatic and AM0 light sources as functions of QD concentration, combined with reflectance and external quantum efficiency measurements. At a QD concentration of 1.6 mg/ml for example, among the efficiency enhancement of 5.96%, about 1.04% was due to the PL conversion, and the rest came from antireflection. Our work indicates that for the practical use of PL conversion in solar cell performance improvement, cautions are to be taken, as the achieved efficiency enhancement might not be wholly due to the PL conversion. PMID:23787125
Bock, Matthias; Eich, Pascal; Kucera, Stephan; Kreis, Matthias; Lenhard, Andreas; Becher, Christoph; Eschner, Jürgen
2018-05-21
Entanglement between a stationary quantum system and a flying qubit is an essential ingredient of a quantum-repeater network. It has been demonstrated for trapped ions, trapped atoms, color centers in diamond, or quantum dots. These systems have transition wavelengths in the blue, red or near-infrared spectral regions, whereas long-range fiber-communication requires wavelengths in the low-loss, low-dispersion telecom regime. A proven tool to interconnect flying qubits at visible/NIR wavelengths to the telecom bands is quantum frequency conversion. Here we use an efficient polarization-preserving frequency converter connecting 854 nm to the telecom O-band at 1310 nm to demonstrate entanglement between a trapped 40 Ca + ion and the polarization state of a telecom photon with a high fidelity of 98.2 ± 0.2%. The unique combination of 99.75 ± 0.18% process fidelity in the polarization-state conversion, 26.5% external frequency conversion efficiency and only 11.4 photons/s conversion-induced unconditional background makes the converter a powerful ion-telecom quantum interface.
NASA Astrophysics Data System (ADS)
Morozov, Yurii; Kuno, Masaru K.
2017-02-01
The concept of optical cooling of solids has existed for nearly 90 years ever since Pringsheim proposed a way to cool solids through the annihilation of phonons via phonon-assisted photoluminescence (PL) up-conversion. In this process, energy is removed from the solid by the emission of photons with energies larger than those of incident photons. However, actually realizing optical cooling requires exacting parameters from the condensed phase medium such as near unity external quantum efficiencies as well as existence of a low background absorption. Until recently, laser cooling has only been successfully realized in rare earth doped solids. In semiconductors, optical cooling has very recently been demonstrated in cadmium sulfide (CdS) nanobelts as well as in hybrid lead halide perovskites. For the former, large internal quantum efficiencies, sub-wavelength thicknesses, which decrease light trapping, and low background absorption, all make near unity external quantum yields possible. Net cooling by as much as 40 K has therefore been possible with CdS nanobelts. In this study, we describe a detailed investigation of the nature of efficient anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature-dependent PL up-conversion and optical absorption studies on individual NBs together with frequency-dependent up-converted PL intensity spectroscopies suggest that ASPL in CdS nanobelts is defect-mediated through involvement of defect levels below the band gap.
Magnetic field reconnection. [energy conversion in space plasma
NASA Technical Reports Server (NTRS)
Sonnerup, U. O.
1979-01-01
A reasonably detailed description is obtained of the current status of our understanding of magnetic field reconnection. The picture that emerges is of a process, simple in concept but extremely complicated and multifaceted in detail. Nonlinear MHD processes in the external flow region, governed by distant boundary conditions, are coupled to nonlinear microscopic plasma processes in the diffusion region, in a manner not clearly understood. It appears that reconnection may operate in entirely different ways for different plasma parameters and different external boundary conditions. Steady reconnection may be allowed in some cases, forbidden in others, with intermediate situations involving impulsive or pulsative events.
Liu, Xi; Cen, Shiqiang; Xiang, Zhou; Zhong, Gang; Yi, Min; Fang, Yue; Liu, Lei; Huang, Fuguo
2017-06-01
To evaluate the safety of conversion from external fixation to internal fixation for open tibia fractures. Between January 2010 and December 2014, 94 patients (98 limbs) with open tibia fractures were initially treated with external fixators at the first stage, and the clinical data were retrospectively analyzed. In 29 cases (31 limbs), the external fixators were changed to internal fixation for discomfort, pin tract response, Schantz pin loosening, delayed union or non-union after complete wound healing and normal or close to normal levels of erythrocyte sedimentation rate (ESR), C reactive protein (CRP), and the leucocyte count as well as the neutrophil ratio (trial group); in 65 cases (67 limbs), the external fixators were used as the ultimate treatment in the control group. There was no significant difference in gender, age, side of the limbs, interval from injury to the first debridement, initial pathogenic bacteria, the limbs that skin grafting or flap transferring for skin and soft tissue defect between the two groups ( P >0.05). The incidence of Gustilo type III fractures in the control group was significantly higher than that in the trial group ( P =0.000). The overall incidence of infection was calculated respectively in the two groups. The incidence of infection according to different fracture types and whether skin grafting or flap transferring was compared between the two groups. The information of the pathogenic bacteria was recorded in the infected patients, and it was compared with the results of the initial culture. The incidence of infection in the patients of the trial group using different internal fixation instruments was recorded. The overall incidences of infection for the trial and control groups were 9.7% (3/31) and 9.0% (6/67) respectively, showing no significant difference ( χ 2 =0.013, P =0.909). No infection occurred in Gustilo type I and type II patients. The incidence of infection for Gustilo type IIIA patients in the trial group and the control group were 14.3% (1/7) and 6.3% (2/32) respectively, showing no significant difference ( χ 2 =0.509, P =0.476); the incidence of infection for type IIIB patients in the two groups were 50.0% (2/4) and 14.3% (2/14) respectively, showing no significant difference ( χ 2 =2.168, P =0.141); and the incidence of infection for type IIIC patients in the two groups were 0 and 16.7% (2/12) respectively, showing no significant difference ( χ 2 =0.361, P =0.548). Of all the infected limbs, only 1 limb in the trial group had the same Staphylococcus Aureus as the result of the initial culture. In the patients who underwent skin grafting or flap transferring, the incidence of infection in the trial and control groups were 33.3% (2/6) and 13.3% (2/15) respectively, showing no significant difference ( χ 2 =1.059, P =0.303). After conversion to internal fixation, no infection occurred in the cases that fixed with nails (11 limbs), and infection occurred in 4 of 20 limbs that fixed with plates, with an incidence of infection of 20%. Conversion from external fixation to internal fixation for open tibia fractures is safe in most cases. However, for open tibia fractures with extensive and severe soft tissue injury, especially Gustilo type III patients who achieved wound heal after flap transfer or skin grafting, the choice of secondary conversion to internal fixation should carried out cautiously. Careful pre-operative evaluation of soft tissue status, cautious choice of fixation instrument and meticulous intra-operative soft tissue protection are essential for its safety.
Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies
NASA Astrophysics Data System (ADS)
Longfellow, Brenden
2014-09-01
Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. TUNL REU Program.
Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots
Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching
2016-01-01
Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-03-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Park, Junyeong; Jones, Brandon; Koo, Bonwook; Chen, Xiaowen; Tucker, Melvin; Yu, Ju-Hyun; Pschorn, Thomas; Venditti, Richard; Park, Sunkyu
2016-01-01
Mechanical refining is widely used in the pulp and paper industry to enhance the end-use properties of products by creating external fibrillation and internal delamination. This technology can be directly applied to biochemical conversion processes. By implementing mechanical refining technology, biomass recalcitrance to enzyme hydrolysis can be overcome and carbohydrate conversion can be enhanced with commercially attractive levels of enzymes. In addition, chemical and thermal pretreatment severity can be reduced to achieve the same level of carbohydrate conversion, which reduces pretreatment cost and results in lower concentrations of inhibitors. Refining is versatile and a commercially proven technology that can be operated at process flows of ∼ 1500 dry tons per day of biomass. This paper reviews the utilization of mechanical refining in the pulp and paper industry and summarizes the recent development in applications for biochemical conversion, which potentially make an overall biorefinery process more economically viable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vandenplas, J; Janssens, S; Buys, N; Gengler, N
2013-06-01
The aim of this study was to test the integration of external information, i.e. foreign estimated breeding values (EBV) and the associated reliabilities (REL), for stallions into the Belgian genetic evaluation for jumping horses. The Belgian model is a bivariate repeatability Best Linear Unbiased Prediction animal model only based on Belgian performances, while Belgian breeders import horses from neighbouring countries. Hence, use of external information is needed as prior to achieve more accurate EBV. Pedigree and performance data contained 101382 horses and 712212 performances, respectively. After conversion to the Belgian trait, external information of 98 French and 67 Dutch stallions was integrated into the Belgian evaluation. Resulting Belgian rankings of the foreign stallions were more similar to foreign rankings according to the increase of the rank correlations of at least 12%. REL of their EBV were improved of at least 2% on average. External information was partially to totally equivalent to 4 years of contemporary horses' performances or to all the stallions' own performances. All these results showed the interest to integrate external information into the Belgian evaluation. © 2012 Blackwell Verlag GmbH.
Kim, Joon-Woo; Oh, Chang-Wug; Oh, Jong-Keon; Kyung, Hee-Soo; Park, Kyeong-Hyeon; Kim, Hee-June; Jung, Jae-Wook; Jung, Young-Soo
2017-06-01
High-energy proximal tibial fractures often accompany compartment syndrome and are usually treated by fasciotomy with external fixation followed by secondary plating. However, the initial soft tissue injury may affect bony union, the fasciotomy incision or external fixator pin sites may lead to postoperative wound infections, and the staged procedure itself may adversely affect lower limb function. We assess the results of staged minimally invasive plate osteosynthesis (MIPO) for proximal tibial fractures with acute compartment syndrome. Twenty-eight patients with proximal tibial fractures accompanied by acute compartment syndrome who underwent staged MIPO and had a minimum of 12 months follow-up were enrolled. According to the AO/OTA classification, 6 were 41-A, 15 were 41-C, 2 were 42-A and 5 were 42-C fractures; this included 6 cases of open fractures. Immediate fasciotomy was performed once compartment syndrome was diagnosed and stabilization of the fracture followed using external fixation. After the soft tissue condition normalized, internal conversion with MIPO was done on an average of 37 days (range, 9-158) after index trauma. At the time of internal conversion, the external fixator pin site grades were 0 in 3 cases, 1 in 12 cases, 2 in 10 cases and 3 in 3 cases, as described by Dahl. Radiographic assessment of bony union and alignment and a functional assessment using the Knee Society Score and American Orthopedic Foot and Ankle Society (AOFAS) score were carried out. Twenty-six cases achieved primary bony union at an average of 18.5 weeks. Two cases of nonunion healed after autogenous bone grafting. The mean Knee Society Score and the AOFAS score were 95 and 95.3 respectively, at last follow-up. Complications included 1 case of osteomyelitis in a patient with a grade IIIC open fracture and 1 case of malunion caused by delayed MIPO due to poor wound conditions. Duration of external fixation and the external fixator pin site grade were not related to the occurrence of infection. Staged MIPO for proximal tibial fractures with acute compartment syndrome may achieve satisfactory bony union and functional results, while decreasing deep infections and soft tissue complications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Creating a Campus Community for Conversation about Assessing Student Learning
ERIC Educational Resources Information Center
Musun, Linda; Baker, Aaron D.; Fulmer, Jim
2006-01-01
While assessment of student learning outcomes has become standard operating procedure on virtually every campus, the driving forces for pursuing assessment remain primarily external. For that to change, campuses must evolve toward a culture of assessment based on the shared values and expectations that arise out of a community. The first step in…
Institutionalizing Community-Based Learning and Research: The Case for External Networks
ERIC Educational Resources Information Center
Shrader, Elizabeth; Saunders, Mary Anne; Marullo, Sam; Benatti, Sylvia; Weigert, Kathleen Maas
2008-01-01
Conversations continue as to whether and how community-based learning and research (CBLR) can be most effectively integrated into the mission and practice of institutions of higher education (IHEs). In 2005, eight District of Columbia- (DC-) area universities affiliated with the Community Research and Learning (CoRAL) Network engaged in a planning…
"Family Stories" and Their Implications for Preschoolers' Memories of Personal Events
ERIC Educational Resources Information Center
Larkina, Marina; Bauer, Patricia J.
2012-01-01
Most adults experience childhood amnesia: They have very few memories of events prior to 3 to 4 years of age. Nevertheless, some early memories are retained. Multiple factors likely are responsible for the survival of early childhood memories, including external representations such as videos, photographs, and conversations about past experiences,…
K-shell photoelectric cross sections for intermediate-Z elements at 26 keV
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Singh, N.; Allawadhi, K. L.; Sood, B. S.
1986-08-01
Our earlier measurements of K-shell photoelectric cross sections for intermediate Z elements at 74 and 37 keV have been extended to 26 keV using external conversion x rays in Sn. The experimental results are found to show fairly good agreement with the theoretical values of Scofield.
NASA Astrophysics Data System (ADS)
Jin, Meng; Lu, Shi-Yu; Ma, Li; Gan, Meng-Yu; Lei, Yao; Zhang, Xiu-Ling; Fu, Gang; Yang, Pei-Shu; Yan, Mao-Fa
2017-02-01
Recently, cobalt sulfides emerge as a candidate for energy reserve and conversation. However, the problem of poor stability and low rate capability for cobalt sulfides restrict its practical application. Thin carbon layer (TCL) coated has been regarded as a promising constructing strategy for high performance supercapacitors, because TCL can promote the tremendous properties of bare materials. In this literature, we report a very interesting phenomenon that different distribution of in-situ carbon coated hollow CoS2 nanocages (external and both external and interior) can be synthesized only by adjusting sulfuration time, followed by calcination. Moreover, it is clearly observed that CoS2-C@TCL exhibits significant improvement for specific capacitance and good stability (better than CoS2@TCL and CoS2). These results compel us to design a series of experiments to figure out the reason and the more detailed mechanism is discussed in paper. More importantly, it will provide a new strategy for synthesis of special structure with in-situ carbon coated sulfide for energy conversion.
Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo
2008-02-04
We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.
The NASA thermionic-conversion (TEC-ART) program
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
The current emphasis is on out-of-core thermionic conversion (TEC). The additional degrees of freedom offer new potentialities, but high-temperature material effects determine the level and lifetime of TEC performance: New electrodes not only raise power outputs but also maintain them regardless of emitter-vapor deposition on collectors. In addition, effective electrodes serve compatibly with hot-shell alloys. Space TEC withstands external and internal high-temperature vaporization problems, and terrestrial TEC tolerates hot corrosive atmospheres outside and near-vacuum inside. Finally, reduction of losses between converter electrodes is essential even though rather demanding geometries appear to be required for some modes of enhanced operation.
Longitudinal density modulation and energy conversion in intense beams.
Harris, J R; Neumann, J G; Tian, K; O'Shea, P G
2007-08-01
Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams.
Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation
NASA Astrophysics Data System (ADS)
Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.
2018-02-01
Beta-Barium Borate (β-BBO) crystal is commonly used in nonlinear frequency conversion from visible to deep ultraviolet (DUV). However, in a single crystal BBO, its large spatial walk-off effect will reduce spatial overlap of ordinary and extraordinary beam, and thus degrade the conversion efficiency. To overcome the restrictions in current DUV conversion systems, Onyx applies adhesive-free bonding technique to replace the single crystal BBO with a spatial Walk-off Compensated (WOC) BBO stack, which is capable of correcting the spatial walk-off while retaining a constant nonlinear coefficient in the adjacent bonding layers. As a result, the β-BBO stack will provide good beam quality, high conversion efficiency, and broader acceptance angle and spectral linewidth, when compared with a single crystal of BBO. In this work, we report on performance of a spatial walk-off compensated β-BBO stack with adhesive-free bonding technique, for efficiently converting from the visible to DUV range. The physics behind the WOC BBO stack are demonstrated, followed by simulation of DUV conversion efficiency in an external resonance cavity. We also demonstrate experimentally the beam quality improvement in a 4-layer WOC BBO stack over a single BBO crystal.
Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Chao; Marin-Flores, Oscar; Davidson, Stephen D.
2016-02-01
Fatty acid has recently received considerable interest as a possible precursor for producing renewable hydrocarbon. In this study, we investigated hydrothermal catalytic deoxygenation of palmitic acid to produce paraffin over a Ni/ZrO2 catalyst with no or low-pressure (100 psi) external supply of H2. The results show that the presence of water greatly improved conversion of palmitic acid and paraffin yield. Significant improvement was attributed to the formation of in-situ H2. Without an external H2 supply, a 64.2 C% conversion of palmitic acid was achieved in the presence of water, while only a 17.2 C% conversion was achieved without water. Themore » results also show that the presence of water suppressed the side reactions of palmitic acid, specifically ketonization and esterification. We concluded that, compared with decarboxylation and hydrodeoxygenation, decarbonylation was the major route for palmitic acid deoxygenation catalyzed by Ni/ZrO2. Varieties of shorter-chain paraffin (C8–C14) were formed through hydrogenolysis, which also produced a considerable amount of CH4. A viable reaction pathway for hydrothermal catalytic deoxygenation of palmitic acid in the presence of Ni/ZrO2 was suggested. The results show that hydrogenolysis and decarbonylation were the major reactions that occurred. This study demonstrates that this hydrothermal catalytic process is a promising approach for producing liquid paraffin (C8–C15) from fatty acids under no or low-pressure H2.« less
ERIC Educational Resources Information Center
Miller-Perrin, Cindy; Thompson, Don
2010-01-01
Living and learning in another country, primary conditions of the study abroad experience, are commonly associated with two fundamental outcomes. The first outcome is an increase in "external" connections, manifested through an increased ability to converse in another language and an increased understanding and sensitivity to another…
Conversion to pine: Changes in timing and magnitude of high and low flows.
Yusuf Serengil; Wayne T. Swank; Mark S. Riedel; James M. Vose
2011-01-01
Understanding watershed responses to extreme events is important for assessing potential impacts of floods, droughts, episodic pollution, and other external driving variables on watershed resources. In this study, we combine trend and frequency analyses with paired watershed techniques to evaluate the long-term high- and low-flow data from Coweeta Hydrologic Laboratory...
Variations on a Theme: As Needs Change, New Models of Critical Friends Groups Emerge
ERIC Educational Resources Information Center
Fahey, Kevin; Ippolito, Jacy
2015-01-01
The Critical Friends Group, a highly articulated model of professional learning, posits that, in order for teachers to learn together in ways that change their practice, the content and nature of their conversations must change (National School Reform Faculty, 2012). The content needs to change from externally driven agendas that address (in a…
NASA Astrophysics Data System (ADS)
Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad
2018-05-01
Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.
Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.
Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song
2016-10-10
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mata, Fernanda; Verdejo-Roman, Juan; Soriano-Mas, Carles; Verdejo-Garcia, Antonio
2015-10-01
This study was aimed to examine if adolescent obesity is associated with alterations of insula function as indexed by differential correlations between insula activation and perception of interoceptive feedback versus external food cues. We hypothesized that, in healthy weight adolescents, insula activation will positively correlate with interoceptive sensitivity, whereas in excess weight adolescents, insula activation will positively correlate with sensitivity towards external cues. Fifty-four adolescents (age range 12-18), classified in two groups as a function of BMI, excess weight (n = 22) and healthy weight (n = 32), performed the Risky-Gains task (sensitive to insula function) inside an fMRI scanner, and completed the heartbeat perception task (measuring interoceptive sensitivity) and the Dutch Eating Behaviour Questionnaire (measuring external eating as well as emotional eating and restraint) outside the scanner. We found that insula activation during the Risky-Gains task positively correlated with interoceptive sensitivity and negatively correlated with external eating in healthy weight adolescents. Conversely, in excess weight adolescents, insula activation positively correlated with external eating and negatively correlated with interoceptive sensitivity, arguably reflecting obesity related neurocognitive adaptations. In excess weight adolescents, external eating was also positively associated with caudate nucleus activation, and restrained eating was negatively associated with insula activation. Our findings suggest that adolescent obesity is associated with disrupted tuning of the insula system towards interoceptive input. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fortunato, Christine K.; Gatzke-Kopp, Lisa M.; Ram, Nilam
2015-01-01
Internalizing and externalizing disorders are often, though inconsistently in studies of young children, associated with low baseline levels of respiratory sinus arrhythmia (RSA). RSA is thus considered to reflect the capacity for flexible and regulated affective reactivity and a general propensity for psychopathology. However, studies assessing RSA reactivity to emotional challenges tend to report more consistent associations with internalizing than with externalizing disorders, although it is unclear whether this is a function of the type of emotion challenges used. In the present study, we examined whether baseline RSA was associated with internalizing and/or externalizing severity in a sample of 273 young children (ages 5–6) with elevated symptoms of psychopathology. Following motivation-based models of emotion, we also tested whether RSA reactivity during withdrawal-based (fear, sadness) and approach-based (happiness, anger) emotion inductions was differentially associated with internalizing and externalizing symptoms, respectively. Baseline RSA was not associated with externalizing or internalizing symptom severity. However, RSA reactivity to specific emotional challenges was associated differentially with each symptom domain. As expected, internalizing symptom severity was associated with greater RSA withdrawal (increased arousal) during fearful and sad film segments. Conversely, externalizing symptom severity was related to blunted RSA withdrawal during a happy film segment. The use of theoretically derived stimuli may be important in characterizing the nature of the deficits in emotion processing that differentiate the internalizing and externalizing domains of psychopathology. PMID:23233122
Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.
2014-01-01
We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs. PMID:25382139
Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao
2016-09-07
The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.
Copper mediated polymerization without external deoxygenation or oxygen scavengers.
Liarou, Evelina; Whitfield, Richard; Anastasaki, Athina; Engelis, Nikolaos G; Jones, Glen R; Velonia, Kelly; Haddleton, David
2018-05-14
Overcoming the challenge of rigorous deoxygenation in copper mediated controlled radical polymerization processes (e.g. ATRP), we report a simple Cu(0)-RDRP system in the absence of external additives (e.g. reducing agents, enzymes etc.). By simply adjusting the headspace of the reaction vessel, a wide range of monomers, namely acrylates, methacrylates, acrylamides and styrene, can be polymerized in a controlled manner yielding polymers with low dispersities, near-quantitative conversions and high end group fidelity. Significantly, this approach is scalable (~ 125 g), tolerant to elevated temperatures, compatible with both organic and aqueous media and does not rely on external stimuli which may limit the monomer pool. The robustness and versatility of this methodology is further demonstrated by the applicability to a number of other copper mediated techniques including conventional ATRP and light-mediated approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.
2011-09-01
We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.
Virtual Conversation Partner for Adults with Autism
Trepagnier, Cheryl Y.; Olsen, Dale E.; Bell, Corinne A.
2011-01-01
Abstract Autistic Spectrum Disorder (ASD) is notable for severely impaired reciprocal social interaction skills relative to language and intellectual abilities, presenting a major barrier to social integration and vocational success. Evidence-based interventions to address these needs are lacking. We report on the development of a small, prototype conversation simulation to teach conversational skills to adolescents and adults with ASD and average to superior intellectual abilities. We also report on a test of the feasibility and acceptability of the simulation approach with a sample of the target population. The simulation engages the user in a virtual conversation with an on-screen partner whose reactions provide naturalistic feedback geared to the appropriateness of the learner's response choices. The prototype simulation, which provides for up to 12 potentially unique multi-turn conversations, was used over a period of 2 weeks by 16 adolescents and adults who then rated statements about the system on a linear scale of 1 (disagreement) to 5 (high agreement). The participants highly endorsed the majority of positive statements about the quality and credibility of the interaction and the virtual conversation partner. In contrast, agreement with positive statements about instructional features external to the conversation was moderate. Unexpectedly, most participants strongly agreed that using the simulation had been helpful to them. Further development and testing in the context of a controlled study with randomized assignment to control and experimental groups are needed to determine whether this approach is effective in improving real-world pragmatic language behavior of high-functioning adults with ASD. PMID:21329439
Sharma, Vidit; Meeks, Joshua J
2014-12-01
Despite the increased use of minimally invasive radical prostatectomy, open conversion may occur due to surgical complications, surgeon inexperience or failure to progress. We used nationally representative data to quantify the impact of open conversion compared to nonconverted minimally invasive radical prostatectomy and open radical prostatectomy, and identify predictors of open conversion. Years 2004 to 2010 of the Nationwide Inpatient Sample were queried for patients who underwent radical prostatectomy to analyze the association of open conversion during minimally invasive radical prostatectomy with Clavien complications. Multivariate regression models yielded significant predictors of open conversion. From 2004 to 2010, 134,398 (95% CI 111,509-157,287) minimally invasive radical prostatectomies were performed with a 1.8% (95% CI 1.4-2.1) open conversion rate, translating to 2,360 (95% CI 2,001-2,720) conversions. Open conversion cases had a longer length of stay (4.17 vs 1.71 days, p <0.001) and higher hospital charges ($51,049 vs $37,418, p <0.001) than nonconverted cases. Of open conversion cases 45.2% experienced a complication vs 7.2% and 12.9% of minimally invasive radical prostatectomy and open radical prostatectomy cases, respectively (p <0.001). After adjusting for age and comorbidities, open conversion was associated with significantly increased odds of a Clavien grade 1, 2, 3 and 4 complication compared to nonconverted minimally invasive radical prostatectomy and open radical prostatectomy (OR range 2.913 to 15.670, p <0.001). Significant multivariate predictors of open conversion were obesity (OR 1.916), adhesions (OR 3.060), anemia (OR 5.692) and surgeon volume for minimally invasive radical prostatectomy less than 25 cases per year (OR 7.376) (all p <0.01). Open conversion during minimally invasive radical prostatectomy is associated with a higher than expected increase in complications compared to open radical prostatectomy and minimally invasive radical prostatectomy after adjusting for age and comorbidities. External validation of predictors of open conversion may prove useful in minimizing open conversion during minimally invasive radical prostatectomy. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi; Uemura, Keiko; Suzuki, Tomiko M; Tanaka, Hiromitsu; Kajino, Tsutomu
2011-10-05
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.
Chirp and temperature effects in parametric down conversion from crystals pumped at 800 nm
NASA Astrophysics Data System (ADS)
Sánchez-Lozano, X.; Wiechers, C.; Lucio, J. L.
2018-04-01
We consider spontaneous parametric down conversion from aperiodic poled crystals pumped at 800 nm. Our analyses account the effect of internal and external parameters, where, in the former, we include the crystal chirp and length, while in the latter temperature, also the pump chirp and other beam properties. The typical distribution produced is a pop-tab like structure in frequency-momentum space, and our results show that this system is a versatile light source, appropriated to manipulate the frequency and transverse momentum properties of the light produced. We briefly comment on the potential usefulness of the types of telecom wavelength light produced, in particular for quantum information applications.
Down-conversion emission of Ce3+-Tb3+ co-doped CaF2 hollow spheres and application for solar cells
NASA Astrophysics Data System (ADS)
Cheng, Yufei; Wang, Yongbo; Teng, Feng; Dong, Hua; Chen, Lida; Mu, Jianglong; Sun, Qian; Fan, Jun; Hu, Xiaoyun; Miao, Hui
2018-03-01
Luminescent downconversion is a promising way to harvest ultraviolet sunlight and transform it into visible light that can be absorbed by solar cells, and has potential to improve their photoelectric conversion efficiency. In this work, the uniform hollow spheres and well dispersed CaF2 phosphors doped with rare-earth Ce3+ and Tb3+ ions are prepared by a one-step hydrothermal synthesis method. Benefiting from the stronger ability of absorption and emission and excellent transparency property, we demonstrate that the application of the doped nanocrystals can efficiently improve visible light transmittance. The chosen phosphors are added in the SiO2 sols so as to get the anti-reflection coatings with wavelength conversion bi-functional films, promoting the optical transmittance in the visible and near-infrared range which matches with the range of the band gap energy of silicon semiconductor. Optimized photoelectric conversion efficiency of 14.35% and the external quantum efficiency over 70% from 450 to 950 nm are obtained through the silicon solar cells with 0.10 g phosphors coating. Compared with the pure glass devices, the photoelectric conversion efficiency is enhanced by 0.69%. This work indicates that fluorescent downconversion not only can serve as proof of principles for improving photoelectric conversion efficiency of solar cells but also may be helpful to practical application in the future.
Conversion, Factitious Disorder and Malingering: A Distinct Pattern or a Continuum?
Galli, Silvio; Tatu, Laurent; Bogousslavsky, Julien; Aybek, Selma
2018-01-01
This chapter is aimed at highlighting the recent findings concerning physiopathology, diagnosis, and management of conversion, factitious disorder, and malingering. Conversion disorder is the unintentional production of neurological symptom, whereas malingering and factitious disorder represent the voluntary production of symptoms with internal or external incentives. They have a close history and this has been frequently confounded. Practitioners are often confronted to medically unexplained symptoms; they represent almost 30% of neurologist's consultation. The first challenge is to detect them, and recent studies have confirmed the importance of "positive" clinical bedside signs based on incoherence and discordance, such as the Hoover's sign for the diagnosis of conversion disorder. Functional neuroimaging has allowed a better understanding of the pathophysiology, and highlighted abnormal cerebral activation patterns in conversion disorder in relation to motor, emotional, and limbic networks, different from feigners. This supports the theory evoked by Charcot of a "psychodynamic lesion," which is also reflected by the new term introduced in the DSM-5: functional neurological disorder. Multidisciplinary therapy is recommended with behavioral cognitive therapy, antidepressant to treat frequent comorbid anxiety or depression, and physiotherapy. Factitious disorder and malingering should be clearly delineated from conversion disorder. Factitious disorder should be considered as a mental illness and more research on its physiopathology and treatment is needed, when malingering is a non-medical condition encountered in medico-legal cases. © 2018 S. Karger AG, Basel.
Weiniger, Carolyn F; Ginosar, Yehuda; Elchalal, Uriel; Sharon, Einav; Nokrian, Malka; Ezra, Yossef
2007-12-01
To compare the success of external cephalic version using spinal analgesia with no analgesia among nulliparas. A prospective randomized controlled trial was performed in a tertiary referral center delivery suite. Nulliparous women at term requesting external cephalic version for breech presentation were randomized to receive spinal analgesia (7.5 mg bupivacaine) or no analgesia before the external cephalic version. An experienced obstetrician performed the external cephalic version. Primary outcome was successful conversion to vertex presentation. Seventy-four women were enrolled, and 70 analyzed (36 spinal, 34 no analgesia). Successful external cephalic version occurred among 24 of 36 (66.7%) women randomized to receive spinal analgesia compared with 11 of 34 (32.4%) without, P=.004 (95% confidence interval [CI] of the difference: 0.0954-0.5513). External cephalic version with spinal analgesia resulted in a lower visual analog pain score, 1.76+/-2.74 compared with 6.84+/-3.08 without, P<.001. A secondary analysis logistic regression model demonstrated that the odds of external cephalic version success was 4.0-fold higher when performed with spinal analgesia P=.02 (95% CI, odds ratio [OR] 1.2-12.9). Complete breech presentation before attempting external cephalic version increased the odds of success 8.2-fold, P=.001 (95% CI, OR 2.2-30.3). Placental position, estimated fetal weight, and maternal weight did not contribute to the success rate when spinal analgesia was used. There were no cases of placental abruption or fetal distress. Administration of spinal analgesia significantly increases the success rate of external cephalic version among nulliparous women at term, which allows possible normal vaginal delivery. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00119184 I.
Smart Acoustic Network Using Combined FSK-PSK, Adaptive Beamforming and Equalization
2002-09-30
sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user
Smart Acoustic Network Using Combined FSK-PSK, Adaptive, Beamforming and Equalization
2001-09-30
sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user
Shuttle mission simulator baseline definition report, volume 2
NASA Technical Reports Server (NTRS)
Dahlberg, A. W.; Small, D. E.
1973-01-01
The baseline definition report for the space shuttle mission simulator is presented. The subjects discussed are: (1) the general configurations, (2) motion base crew station, (3) instructor operator station complex, (4) display devices, (5) electromagnetic compatibility, (6) external interface equipment, (7) data conversion equipment, (8) fixed base crew station equipment, and (9) computer complex. Block diagrams of the supporting subsystems are provided.
NASA Technical Reports Server (NTRS)
Tsu, T. C.
1976-01-01
A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.
Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao
2016-03-01
This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Diffusion and reaction within porous packing media: a phenomenological model.
Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J
1993-04-25
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.
Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity
NASA Astrophysics Data System (ADS)
Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao
2017-04-01
Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm-2 · sr-1.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.
Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.
Bhatia, S; Naidu, A D; Kamaruddin, A H
1999-01-01
Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strenge, D.L.; Peloquin, R.A.
The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure modemore » are also printed if requested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.
2005-01-01
A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.
2010-07-13
A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less
Le, Khai Q; John, Sajeev
2014-01-13
We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.
Ferroelectric Phase Transformations for Energy Conversion and Storage Applications
NASA Astrophysics Data System (ADS)
Jo, Hwan Ryul
Ferroelectric materials possess a spontaneous polarization and actively respond to external mechanical, electrical, and thermal loads. Due to their coupled behavior, ferroelectric materials are used in products such as sensors, actuators, detectors, and transducers. However, most current applications rely on low-energy conversion that involves low magnitude fields. They utilize the low-field linear properties of ferroelectric materials (piezoelectric, pyroelectric) and do not take full advantage of the large-field nonlinear behavior (irreversible domain wall motion, phase transformations) that can occur in ferroelectric materials. When external fields exceed a certain critical level, a structural transformation of the crystal can occur. These phase transformations are accompanied by a much larger response than the linear piezoelectric and pyroelectric responses, by as much as a multiple of ten times in the magnitude. This makes the non-linear behavior in ferroelectric materials promising for energy harvesting and energy storage technologies which will benefit from large-energy conversion. Yet, the ferroelectric phase transformation behavior under large external fields have been less studied and only a few studies have been directed at utilizing this large material response in applications. This dissertation addresses the development ferroelectric phase transformation-based applications, with particular focus on the materials. Development of the ferroelectric phase transformation-based applications was approached in several steps. First, the phase transformation behavior was fully characterized and understood by measuring the phase transformation responses under mechanical, electrical, thermal, and combined loads. Once the behavior was well characterized, systems level applications were addressed. This required assessing the effect of the phase transformation behavior on system performance. The performance of ferroelectric devices is strongly dependent on material properties and phase transformation behavior which can be tailored by modifying the chemical composition, processing conditions, and the loading history (poling). This results in optimization of system performance by tailoring material properties and phase transformation behavior. This approach applied to three ferroelectric phase transformation-based applications: 1. Ferroelectric energy generation 2. Ferroelectric high-energy storage capacitor 3. Ferroelectric thermal energy harvesting. This dissertation has addressed tuning the large field properties for phase transformation-based systems.
Hip rotation range of motion in sitting and prone positions in healthy Japanese adults
Han, Heonsoo; Kubo, Akira; Kurosawa, Kazuo; Maruichi, Shizuka; Maruyama, Hitoshi
2015-01-01
[Purpose] The aim of this study was to elucidate the difference in hip external and internal rotation ranges of motion (ROM) between the prone and sitting positions. [Subjects] The subjects included 151 students. [Methods] Hip rotational ROM was measured with the subjects in the prone and sitting positions. Two-way repeated measures analysis of variance (ANOVA) was used to analyze ipsilateral hip rotation ROM in the prone and sitting positions in males and females. The total ipsilateral hip rotation ROM was calculated by adding the measured values for external and internal rotations. [Results] Ipsilateral hip rotation ROM revealed significant differences between two positions for both left and right internal and external rotations. Hip rotation ROM was significantly higher in the prone position than in the sitting position. Hip rotation ROM significantly differed between the men and women. Hip external rotation ROM was significantly higher in both positions in men; conversely, hip internal rotation ROM was significantly higher in both positions in women. [Conclusion] Hip rotation ROM significantly differed between the sexes and between the sitting and prone positions. Total ipsilateral hip rotation ROM, total angle of external rotation, and total angle of internal rotation of the left and right hips greatly varied, suggesting that hip joint rotational ROM is widely distributed. PMID:25729186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel
2015-08-21
Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurementsmore » reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.« less
Design and modeling of an SJ infrared solar cell approaching upper limit of theoretical efficiency
NASA Astrophysics Data System (ADS)
Sahoo, G. S.; Mishra, G. P.
2018-01-01
Recent trends of photovoltaics account for the conversion efficiency limit making them more cost effective. To achieve this we have to leave the golden era of silicon cell and make a path towards III-V compound semiconductor groups to take advantages like bandgap engineering by alloying these compounds. In this work we have used a low bandgap GaSb material and designed a single junction (SJ) cell with a conversion efficiency of 32.98%. SILVACO ATLAS TCAD simulator has been used to simulate the proposed model using both Ray Tracing and Transfer Matrix Method (under 1 sun and 1000 sun of AM1.5G spectrum). A detailed analyses of photogeneration rate, spectral response, potential developed, external quantum efficiency (EQE), internal quantum efficiency (IQE), short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF) and conversion efficiency (η) are discussed. The obtained results are compared with previously reported SJ solar cell reports.
NASA Astrophysics Data System (ADS)
Lodhi, M. A. K.
2012-10-01
Static conversion systems are gaining importance in recent times because of newer applications of electricity like in spacecraft, hybrid-electric vehicles, military uses and domestic purposes. Of the many new static energy conversion systems that are being considered, one is the Alkali Metal Thermal Electric Converter (AMTEC). It is a thermally regenerative, electrochemical device for the direct conversion of heat to electrical power. As the name suggests, this system uses an alkali metal in its process. The electrochemical process involved in the working of AMTEC is ionization of alkali metal atoms at the interface of electrode and electrolyte. The electrons produced as a result flow through the external load thus doing work, and finally recombine with the metal ions at the cathode. AMTECs convert the work done during the nearly isothermal expansion of metal vapor to produce a high current and low voltage electron flow. Due to its principle of working it has many inherent advantages over other conventional generators. These will be discussed briefly.
Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets
NASA Astrophysics Data System (ADS)
Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin
Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).
Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
NASA Astrophysics Data System (ADS)
Boettcher, Shannon W.; Spurgeon, Joshua M.; Putnam, Morgan C.; Warren, Emily L.; Turner-Evans, Daniel B.; Kelzenberg, Michael D.; Maiolo, James R.; Atwater, Harry A.; Lewis, Nathan S.
2010-01-01
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes.
Boettcher, Shannon W; Spurgeon, Joshua M; Putnam, Morgan C; Warren, Emily L; Turner-Evans, Daniel B; Kelzenberg, Michael D; Maiolo, James R; Atwater, Harry A; Lewis, Nathan S
2010-01-08
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
A Compartmentalized Out-of-Equilibrium Enzymatic Reaction Network for Sustained Autonomous Movement
2016-01-01
Every living cell is a compartmentalized out-of-equilibrium system exquisitely able to convert chemical energy into function. In order to maintain homeostasis, the flux of metabolites is tightly controlled by regulatory enzymatic networks. A crucial prerequisite for the development of lifelike materials is the construction of synthetic systems with compartmentalized reaction networks that maintain out-of-equilibrium function. Here, we aim for autonomous movement as an example of the conversion of feedstock molecules into function. The flux of the conversion is regulated by a rationally designed enzymatic reaction network with multiple feedforward loops. By compartmentalizing the network into bowl-shaped nanocapsules the output of the network is harvested as kinetic energy. The entire system shows sustained and tunable microscopic motion resulting from the conversion of multiple external substrates. The successful compartmentalization of an out-of-equilibrium reaction network is a major first step in harnessing the design principles of life for construction of adaptive and internally regulated lifelike systems. PMID:27924313
Mode conversion at density irregularities in the LAPD
NASA Astrophysics Data System (ADS)
Kersten, Kristopher; Cattell, Cynthia; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Steve
2010-11-01
Mode conversion of electrostatic plasma oscillations to electromagnetic radiation is commonly observed in space plasmas as Type II and III radio bursts. Much theoretical work has addressed the phenomenon, but due to the transient nature and generation location of the bursts, experimental verification via in situ observation has proved difficult. The Large Plasma Device (LAPD) provides a reproducible plasma environment that can be tailored for the study of space plasma phenomena. A highly configurable axial magnetic field and flexible diagnostics make the device well suited for the study of plasma instabilities at density gradients. We present preliminary results of mode conversion studies performed at the LAPD. The studies employed an electron beam source configured to drive Langmuir waves towards high density plasma near the cathode discharge. Internal floating potential probes show the expected plasma oscillations ahead of the beam cathode, and external microwave antenna signals reveal a strong band of radiation near the plasma frequency that persists into the low density plasma afterglow.
Wang, Yongcheng; Tang, Jing; Peng, Zheng; Wang, Yuhang; Jia, Dingsi; Kong, Biao; Elzatahry, Ahmed A; Zhao, Dongyuan; Zheng, Gengfeng
2014-06-11
We report the development of a multifunctional, solar-powered photoelectrochemical (PEC)-pseudocapacitive-sensing material system for simultaneous solar energy conversion, electrochemical energy storage, and chemical detection. The TiO2 nanowire/NiO nanoflakes and the Si nanowire/Pt nanoparticle composites are used as photoanodes and photocathodes, respectively. A stable open-circuit voltage of ∼0.45 V and a high pseudocapacitance of up to ∼455 F g(-1) are obtained, which also exhibit a repeating charging-discharging capability. The PEC-pseudocapacitive device is fully solar powered, without the need of any external power supply. Moreover, this TiO2 nanowire/NiO nanoflake composite photoanode exhibits excellent glucose sensitivity and selectivity. Under the sun light illumination, the PEC photocurrent shows a sensitive increase upon different glucose additions. Meanwhile in the dark, the open-circuit voltage of the charged pseudocapacitor also exhibits a corresponding signal over glucose analyte, thus serving as a full solar-powered energy conversion-storage-utilization system.
Alexithymia in patients with conversion disorder.
Gulpek, Demet; Kelemence Kaplan, Figen; Kesebir, Sermin; Bora, Ozlem
2014-07-01
In the recent years, it has been observed that alexithymia is not specified for the psychosomatic disorders. It is known that alexithymia is observed frequently in various psychiatric disorders especially in the somatoform disorders. The aim of this study is to evaluate alexithymia in the patients with the conversion disorder. The study was performed in the Psychiatry Outpatients Clinics of the Izmir Atatürk Training and Research Hospital and Erenköy Psychiatry Education and Research Hospital. A total of 93 cases-47 outpatients who were diagnosed with conversion disorder according to the DSM-IV criteria and 46 age, gender and educational level matched healthy controls-were included in the study. All the cases were assessed by a Structured Clinical Interview for DSM-IV and were evaluated with a questionnaire (which included demographics and clinical data), the Toronto Alexithymia Scale and the Somatosensory Amplification Scale. When the two groups were compared, the Toronto Alexithymia Scale scores (except "externally oriented thinking" subscale) and the Somatosensory Amplification Scale score of the conversion disorder group were statistically significantly higher than the control group. The number of the alexithymic cases of the patient group was significantly higher than the control group's. The level of alexithymia in conversion disorder patients, without any other psychiatric disorder, is higher than that of the healthy controls. During the evaluation of the psychological state of patients with conversion disorder, it could be useful to keep in mind the probability of them having alexithymia to determine the type of suitable therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei-Shing Eugene Dai; Petty, R.H.; Ingram, C.
Substitution of transition metals for either aluminum and/or phosphorus in the AlPO{sub 4}-11 framework is found to afford novel heterogeneous catalysts for liquid phase hydroxylation of phenol with hydrogen peroxide. AlPO{sub 4}-11 is more active than SAPO-11 and MgAPO-11 for phenol conversion to hydroquinone. The Bronsted acid sites of SAPO-11 and MgAPO-11 may promote the decomposition of hydrogen peroxide to water and oxygen, thus leading to lower phenol conversions. Substitution of divalent and trivalent metal cations, such as Fe, Co and Mn appears to significantly improve the conversion of phenol. The activity follows the order of FeAPO-11>FeMnAPO-11>CoAPO-11>MnAPO-11{much_gt}ALPO{sub 4}-11. FeAPO-11, FeMnAPO-11more » and AlPO{sub 4}-11 give similar product selectivities of about 1:1 hydroquitione (HQ) to catechol (CT). MnAPO-11 and CoAPO-11 favor the production of catechol, particularly at low conversions. FeAPO-11 and TS-1 (titanium silicate with MFI topology) are comparable for the phenol conversions with TS-1 giving higher selectivities toward hydroquinone. The external surfaces of the catalysts plays a significant role in these oxidation reactions. MeAPO molecular sieves may be complementary to the metal silicalite catalysts for the catalytic oxidations in the manufacture of fine chemicals.« less
NASA Astrophysics Data System (ADS)
Kinoshita, Kosuke; Kojima, Takuto; Suzuki, Ryota; Kawatsu, Tomoyuki; Nakamura, Kyotaro; Ohshita, Yoshio; Ogura, Atsushi
2018-05-01
Si ingots were sliced using a diamond-coated wire, and saw damage was observed even after damage removal etching and texturization. Since invisible microscopic damage was observed only under uncontrolled slice conditions, such damage was identified as saw damage. The wafers with saw damage exhibited the degradation of solar cell conversion efficiency (approximately 1–2% absolute). The results of external quantum efficiency (EQE) measurements showed a slight deterioration of EQE in the short wavelength region. Current–voltage characteristic measurements showed similar results that agreed with the EQE measurement results. In addition, EQE mapping measurements were carried out at various irradiation wavelengths between 350 and 1150 nm. Areas with dark contrasts in EQE mapping correspond to saw damage. In the cells with a low conversion efficiency, both EQE mapping and PL images exhibited dark areas and lines. On the other hand, in the cells with a high conversion efficiency, a uniform distribution of saw damage was observed even with the saw damage in the PL images. We believe that sophisticated control to suppress saw damage during sawing is required to realize higher conversion efficiency solar cells in the future.
I Feel You: The Design and Evaluation of a Domotic Affect-Sensitive Spoken Conversational Agent
Lutfi, Syaheerah Lebai; Fernández-Martínez, Fernando; Lorenzo-Trueba, Jaime; Barra-Chicote, Roberto; Montero, Juan Manuel
2013-01-01
We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction. PMID:23945740
Resistance to disuse atrophy in a turtle hindlimb muscle.
McDonagh, J C; Callister, R J; Favron, M L; Stuart, D G
2004-04-01
The purpose of this study was to characterize the changes in a turtle hindlimb muscle (external gastrocnemius) after exposure to three conditions of disuse: immobilization, tenotomy, and spinalization. Histochemical analysis and measurement of muscle fiber cross-sectional area and weighted cross-sectional area were used to assess the potential conversion of muscle fiber types and changes in fiber size. It was found that unlike its counterpart in mammalian endotherms, the external gastrocnemius muscle of the adult turtle, Trachemys scripta elegans, was remarkably resistant to each model of reduced muscle function. It is suggested that such resistance to disuse is due to intrinsic mechanisms that enable heterothermic mammals and ectothermic vertebrates to tolerate an unfavorable climate and food and water shortages by using hypometabolic states.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
2017-01-01
After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon–pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene. PMID:28261671
Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu
2016-08-21
Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted andmore » mathematically controlled, which extends the design concept of unidirectional transmission devices.« less
Wang, Kai; Yi, Chao; Liu, Chang; ...
2015-03-18
The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less
Richter, Johannes M.; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P.H.; Pazos-Outón, Luis M.; Gödel, Karl C.; Price, Michael; Deschler, Felix; Friend, Richard H.
2016-01-01
In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. PMID:28008917
Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H
2016-12-23
In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.
JOVIAL (J73) to Ada Translator.
1982-06-01
editors, file managers , and other APSE , the Translator will Provide significant (though not total) Ltion of the conversion of J73 Proorams for use...vlobal knowlede only of compool declarationsi externals are not resolved until the compiled modules are linked. Creatinv a vlobal data base durin...translation (as shown in Figure 2-1) will require the Job control, file management , and text editing capabilities which are provided by a typical
ERIC Educational Resources Information Center
Goulet, Anne; Maftei, Nicolas
2005-01-01
At the Archives Departementales des Pyrenees-Atlantiques, the encoding of more than forty legacy finding aids written between 1863 and 2000 is part of a program of digitization of the collections. Because of the size of the project, an external consultant, ArchProteus, has been brought in and specific management procedures have been put in place…
Biological valorization of low molecular weight lignin.
Abdelaziz, Omar Y; Brink, Daniel P; Prothmann, Jens; Ravi, Krithika; Sun, Mingzhe; García-Hidalgo, Javier; Sandahl, Margareta; Hulteberg, Christian P; Turner, Charlotta; Lidén, Gunnar; Gorwa-Grauslund, Marie F
2016-12-01
Lignin is a major component of lignocellulosic biomass and as such, it is processed in enormous amounts in the pulp and paper industry worldwide. In such industry it mainly serves the purpose of a fuel to provide process steam and electricity, and to a minor extent to provide low grade heat for external purposes. Also from other biorefinery concepts, including 2nd generation ethanol, increasing amounts of lignin will be generated. Other uses for lignin - apart from fuel production - are of increasing interest not least in these new biorefinery concepts. These new uses can broadly be divided into application of the polymer as such, native or modified, or the use of lignin as a feedstock for the production of chemicals. The present review focuses on the latter and in particular the advances in the biological routes for chemicals production from lignin. Such a biological route will likely involve an initial depolymerization, which is followed by biological conversion of the obtained smaller lignin fragments. The conversion can be either a short catalytic conversion into desired chemicals, or a longer metabolic conversion. In this review, we give a brief summary of sources of lignin, methods of depolymerization, biological pathways for conversion of the lignin monomers and the analytical tools necessary for characterizing and evaluating key lignin attributes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha
We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gasmore » (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.« less
Evaluation of DNA damage induced by Auger electrons from 137Cs.
Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi
2016-11-01
To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.
MO-A-BRB-03: Integration Issues in Electronic Charting for External Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutlief, S.
2015-06-15
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime
NASA Astrophysics Data System (ADS)
Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.
2016-06-01
Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.
Kulshrestha, Vikas
2008-01-01
Background: A major drawback of conventional fixator system is the penetration of fixator pins into the medullary canal. The pins create a direct link between the medullary cavity and outer environment, leading to higher infection rates on conversion to intramedullary nailing. This disadvantage is overcome by the AO pinless fixator, in which the trocar points are clamped onto the outer cortex without penetrating it. This study was designed to evaluate the role of AO pinless fixators in primary stabilization of open diaphyseal tibial fractures that received staged treatment because of delayed presentation or poor general condition. We also analyzed the rate of infection on early conversion to intramedullary nail. Materials and Methods: This study is a retrospective review of 30 open diaphyseal fractures of tibia, which were managed with primary stabilization with pinless fixator and early exchange nailing. Outcome was evaluated in terms of fracture union and rate of residual infection. The data were compared with that available in the literature. Results: All the cases were followed up for a period of 2 years. The study includes Gustilo type 1 (n=10), 14 Gustilo type 2 (n=14), and type3 (n=6) cases. 6 cases (20%) had clamp site infection, 2 cases (6.7%) had deep infection, and in 28 cases (93%) the fracture healed and consolidated well. Conclusion: This study has highlighted the valuable role of pinless external fixator in the management of open tibial fractures in terms of safety and ease of application as well as the advantage of early conversion to intramedullary implant without the risk of deep infection. PMID:19753227
NASA Astrophysics Data System (ADS)
Schlattl, H.; Zankl, M.; Petoussi-Henss, N.
2007-04-01
A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.
Apparatus and method for pyroelectric power conversion
Olsen, Randall B.
1984-01-01
Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.
Optical rectification using geometrical field enhancement in gold nano-arrays
NASA Astrophysics Data System (ADS)
Piltan, S.; Sievenpiper, D.
2017-11-01
Conversion of photons to electrical energy has a wide variety of applications including imaging, solar energy harvesting, and IR detection. A rectenna device consists of an antenna in addition to a rectifying element to absorb the incident radiation within a certain frequency range. We designed, fabricated, and measured an optical rectifier taking advantage of asymmetrical field enhancement for forward and reverse currents due to geometrical constraints. The gold nano-structures as well as the geometrical parameters offer enhanced light-matter interaction at 382 THz. Using the Taylor expansion of the time-dependent current as a function of the external bias and oscillating optical excitation, we obtained responsivities close to quantum limit of operation. This geometrical approach can offer an efficient, broadband, and scalable solution for energy conversion and detection in the future.
MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit
NASA Astrophysics Data System (ADS)
Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai
2018-03-01
Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].
Cunningham, Fred; Dean, Karen; Hanson-Dorr, Katie; Harr, Kendal; Healy, Kate; Horak, Katherine; Link, Jane; Shriner, Susan; Bursian, Steven; Dorr, Brian
2017-07-01
Oral and external dosing methods replicating field exposure were developed using the double crested cormorant (DCCO) to test the toxicity of artificially weathered Deepwater Horizon Mississippi Canyon 252 oil. The majority of previous oil dosing studies conducted on wild-caught birds used gavage methods to dose birds with oil and determine toxicity. However, rapid gut transit time of gavaged oil likely reduces oil absorption. In the present studies, dosing relied on injection of oil into live feeder fish for oral dosing of these piscivorous birds, or applying oil to body contour feathers resulting in transdermal oil exposure and oral exposure through preening. Both oral and external oil dosing studies identified oil-related toxicity endpoints associated with oxidative stress such as hemolytic anemia, liver and kidney damage, and immuno-modulation or compromise. External oil application allowed for controlled study of thermoregulatory stress as well. Infrared thermal images indicated significantly greater surface temperatures and heat loss in treated birds following external oil applications; however, measurements collected by coelomically implanted temperature transmitters showed that internal body temperatures were stable over the course of the study period. Birds exposed to oil externally consumed more fish than control birds, indicating metabolic compensation for thermal stress. Conversely, birds orally dosed with oil experienced hypothermia and consumed less fish compared to control birds. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi
2011-01-01
We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.
[Preventive dentistry 3. Prevalence, aetiology and diagnosis of dentine (hyper)sensitivity].
van der Weijden, F N; van Loveren, C; Slot, D E; van der Weijden, G A
2017-02-01
Many people sometimes experience pain when they inhale breath across the cingula, or sensitivity and/or pain when they eat ice cream, for example. In some cases, however, this can become seriously unpleasant. In those cases, one can speak of dentine hypersensitivity. In Europe, an average of 27% of the population suffers from this. Dentine hypersensitivity is characterised by a short, sharp pain reaction after a warm or cold sensation. The external sensation causes an accelerated or converse flow of fluid in the dentinal tubules that excites the extremities of the nerve cells, which results in the sensation pain. For the external sensation, it is necessary that the cingula are exposed and the dentinal tubules are open. Dentine hypersensitivity is diagnosed after other possibilities have been eliminated.
War Strategy Divergence Place Cultures on a Collision Course
2012-04-23
adversary. Along that definitional continuum, there is not much maneuver space between rival—threat--enemy. Conversely, ―foreigners in the eyes of...thinking, and the American way of war.‖29 Therefore it is understandable that they are relevant to our definitions of how we describe war. In...preservation or the restoration of the perceived cosmological and moral order which the empire embodied, whether it was threatened by external enemies or
Some problems of Maryland towns as seen by their mayors
NASA Technical Reports Server (NTRS)
Peake, H. J.
1978-01-01
Conversations were held with the mayors of six Maryland towns to discuss possible models and needs for technology transfer. An unexpected outcome of the discussions was a considerable insight into local problems as perceived by the mayors. Problems, whether administrative, socio-economic, or technological, are different, from town to town, in degree, not in kind. Recognition of this feature of local priorities is vital to any considerations of external assistance.
Conversion of microwave pyrolysed ASR's char using high temperature agents.
Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer
2011-01-15
Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.
2017-07-01
Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.
Roylance, John J.; Kim, Tae Woo; Choi, Kyoung-Shin
2016-02-17
Reductive biomass conversion has been conventionally conducted using H 2 gas under high-temperature and-pressure conditions. Here, efficient electrochemical reduction of 5-hydroxymethylfurfural (HMF), a key intermediate for biomass conversion, to 2,5-bis(hydroxymethyl)furan (BHMF), an important monomer for industrial processes, was demonstrated using Ag catalytic electrodes. This process uses water as the hydrogen source under ambient conditions and eliminates the need to generate and consume H 2 for hydrogenation, providing a practical and efficient route for BHMF production. By systematic investigation of HMF reduction on the Ag electrode surface, BHMF production was achieved with the Faradaic efficiency and selectivity nearing 100%, and plausiblemore » reduction mechanisms were also elucidated. Furthermore, construction of a photoelectrochemical cell (PEC) composed of an n-type BiVO 4 semiconductor anode, which uses photogenerated holes for water oxidation, and a catalytic Ag cathode, which uses photoexcited electrons from BiVO 4 for the reduction of HMF to BHMF, was demonstrated to utilize solar energy to significantly decrease the external voltage necessary for HMF reduction. This shows the possibility of coupling electrochemical HMF reduction and solar energy conversion, which can provide more efficient and environmentally benign routes for reductive biomass conversion.« less
Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.
Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G
2018-05-10
A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SNAD: Sequence Name Annotation-based Designer.
Sidorov, Igor A; Reshetov, Denis A; Gorbalenya, Alexander E
2009-08-14
A growing diversity of biological data is tagged with unique identifiers (UIDs) associated with polynucleotides and proteins to ensure efficient computer-mediated data storage, maintenance, and processing. These identifiers, which are not informative for most people, are often substituted by biologically meaningful names in various presentations to facilitate utilization and dissemination of sequence-based knowledge. This substitution is commonly done manually that may be a tedious exercise prone to mistakes and omissions. Here we introduce SNAD (Sequence Name Annotation-based Designer) that mediates automatic conversion of sequence UIDs (associated with multiple alignment or phylogenetic tree, or supplied as plain text list) into biologically meaningful names and acronyms. This conversion is directed by precompiled or user-defined templates that exploit wealth of annotation available in cognate entries of external databases. Using examples, we demonstrate how this tool can be used to generate names for practical purposes, particularly in virology. A tool for controllable annotation-based conversion of sequence UIDs into biologically meaningful names and acronyms has been developed and placed into service, fostering links between quality of sequence annotation, and efficiency of communication and knowledge dissemination among researchers.
Durrant, James R
2013-08-13
This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, Tristan R.; Rishel, Jeremy P.
2013-09-30
The Air Pollutant Graphical Environmental Monitoring System (APGEMS) is used by the Hanford Emergency Operation Center (EOC) to provide refined plume modeling of releases involving radionuclides. The dose conversion factors (DCFs) used by APGEMS to convert air concentration to dose are stored in a file called HUDUFACT.dat; the DCFs are based primarily on ICRP 30 compiled in the late 1980’s. This report updates the DCFs using more recent values reported in the Environmental Protection Agencies (EPAs) Federal Guidance Report (FGR) 12 and 13. FGR 12 provides external exposure (air submersion) DCFs for radionuclides in air; FGR 13 provides DCFs formore » radionuclides from inhalation. DCFs were updated for only those radionuclides listed in the original HUDUFACT.dat file. Since FGR 13 provides inhalation dose conversion factors as a function of age, revised DCF files were created for APGEMS for each age group. The “adult” DCF file is the most relevant to compare to the original DCF file being used in APGEMS; these DCF values are compared in this report.« less
Correlations of External Landmarks With Internal Structures of the Temporal Bone.
Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen
2015-09-01
The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical variants encountered in temporal bone dissection can be inferred from the distance between external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.
1997-08-01
A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less
3D-printed external light trap for solar cells.
van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel
2016-05-01
We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.
Diffusion affected magnetic field effect in exciplex fluorescence
NASA Astrophysics Data System (ADS)
Burshtein, Anatoly I.; Ivanov, Anatoly I.
2014-07-01
The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Diffusion affected magnetic field effect in exciplex fluorescence.
Burshtein, Anatoly I; Ivanov, Anatoly I
2014-07-14
The fluorescence of the exciplex, (1)[D(+δ)A(-δ)], formed at contact of photoexcited acceptor (1)A(*) with an electron donor (1)D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, (1, 3)[D(+)…A(-)]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Apparatus and method for pyroelectric power conversion
Olsen, R.B.
1984-01-10
Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.
NASA Astrophysics Data System (ADS)
Jia, Yanmin; Tian, Xiangling; Si, Jianxiao; Huang, Shihua; Wu, Zheng; Zhu, Chenchen
2011-07-01
We deposited tantalum oxide film on a laminate structure composed of a Si substrate and a piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal and achieved in situ modulation of the resistance and capacitance of the Ta2O5 film. The modulation arises from the induced lattice strain in the Ta2O5 film, which is induced by the electric-field-induced strain in the piezoelectric crystal. Under an external electric field of ˜2 kV/cm, the longitudinal gauge factor of the Ta2O5 film is ˜3300. The control of the strain using the converse piezoelectric effect may be further extended to tune the intrinsic strain of other oxide thin films.
NASA Astrophysics Data System (ADS)
El Hajjaji, S.; Manov, S.; Roy, J.; Aigouy, T.; Ben Bachir, A.; Aries, L.
2001-08-01
Conversion coatings modified by deposits of electrolytic alumina added or not with yttria and/or zirconia, have been studied which are well known for their resistance to chemical attack and high temperature. Conversion coating, characterised by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. Zirconia-alumina coating behaviour at 1000°C is similar to that of alumina coating; from 800°C, the chromium diffuses from the stainless steel through the electrolytic refractory coating up to the external interface, provokes discontinuities and can modify its protective character. Yttrium stabilises the cubic and the tetragonal form of the zirconia; so, during cooling, the phase transformation near 1000°C of tetragonal zirconia to monoclinic form cannot take place.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
Method and apparatus for detection of charge on ions and particles
Fuerstenau, Stephen Douglas; Soli, George Arthur
2002-01-01
The present invention provides a tessellated array detector with charge collecting plate (or cup) electrode pixels and amplifying circuitry integrated into each pixel making it sensitive to external electrostatic charge; a micro collector/amplifier pixel design possessing a small capacitance to ensure a high charge to voltage signal conversion for low noise/high sensitivity operation; a micro-fabricated array of such pixels to create a useful macroscopic target area for ion and charged particle collection.
Peculiar behavior of MWW materials in aldol condensation of furfural and acetone.
Kikhtyanin, Oleg; Chlubná, Pavla; Jindrová, Tereza; Kubička, David
2014-07-21
MWW family of different structural types (MCM-22, MCM-49, MCM-56 and MCM-36) was used as catalysts for aldol condensation of furfural and acetone studied in a batch reactor at 100 °C, autogenous pressure and a reaction time of 0-4 h. To establish a relation between physico-chemical and catalytic properties of microporous materials, the samples were characterized by XRD, SEM, N2 adsorption, FTIR and TGA. It was found that the acidic solids possessed appreciable activity in the reaction and resulted in the formation of products of aldehyde-ketone interaction. Surprisingly, MCM-22 and MCM-49, i.e. three-dimensional materials containing internal supercages, exhibited higher activity than two MCM-36 catalysts with two-dimensional character having larger accessible external surface area due to expansion of the interlayer space by swelling and pillaring treatments. Moreover, all MWW family catalysts gave higher conversion than the large-pore zeolite BEA. Nevertheless, furfural conversion decreased rapidly for all the studied materials due to coke formation. Unexpectedly, the deactivation was found to be more severe for MCM-36 catalysts than for MCM-22 and MCM-49, which was attributed to the reaction taking place also in supercages that are protected by 10-ring channels from severe coking. In contrast the cups located on the external surface were coked rapidly.
Aggregation of model amyloid insulin protein in crowding environments and under ac-electric fields
NASA Astrophysics Data System (ADS)
Zheng, Zhongli; Jing, Benxin; Murray, Brian; Sorci, Mirco; Belfort, Georges; Zhu, Y.
2013-03-01
In vitro experiments have been widely used to characterize the misfolding/unfolding pathway characteristic of amylodogenic proteins. Conversion from natively folded amyloidogenic proteins to oligomers via nucleation is the accepted path to fibril formation upon heating over a certain lag time period. In this work, we investigate the effect of crowing environment and external electric fields on the pathway and kinetics of insulin, a well-established amyloid model protein by single fluorescence spectroscopy and imaging. With added co-solutes, such as glycerol and polyvinylpyrrolidone (PVP), to mimic the cellular crowding environments, we have observed that the lag time can be significantly prolonged. The lag time increases with increasing co-solute concentration, yet showing little dependence on solution viscosity. Conversely, applied ac-electric fields can considerably shorten the lag timewhen a critical ac-voltage is exceeded. The strong dependence of lag time on ac-frequency over a narrow range of 500 Hz-5 kHz indicates the effect of ac-electroosmosis on the diffusion controlled process of insulin nucleation. Yet, no conformational structure is detected with insulin under applied ac-fields, suggesting the equivalence of ac-polarization to the conventional thermal activation process for insulin aggregation. These finding suggest that at least the aggregation kinetics of insulin can be altered by local solution condition or external stimuli, which gives new insight to the treatment of amyloid related diseases.
Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.
Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun
2015-07-10
Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.
Li, Yaru; Liu, Xiaohui; Li, Xiaodong; Zhang, Wenjun; Xing, Feifei; Fang, Junfeng
2017-03-08
The performance of organic solar cells (OSCs) with edetate electrolytes depends on external bias, and ions are speculated to be responsible for this phenomenon. To clarify the detailed relationship between the ions of electrolytes and the bias-dependent behaviors of devices, this work introduces four edetate cathode interlayers (EDTA-X, X = nH(4-n)Na, n = 0, 1, 2, and 4) containing different kinds and number of cations into inverted OSCs. The results show that the devices initial and saturated (after external bias treatment) power conversion efficiencies (PCEs) both decrease with the increase in the number of H + . Moreover, the bias-dependent degrees increase with the increase in H + number; with that, the PCE increment of EDTA-4H device is 53.4%, while that of the EDTA-4Na device is almost unchanged. The electrical impedance spectroscopy and capacitance-voltage tests reveal that the interfacial recombination is greatly suppressed by external bias treatment, which is not a result of the decreased density of defect states. The results indicate that the ion's motion, specifically the H + motion, under external electrical field is responsible for the bias-dependent behavior, which is conducive to the design of new efficient electrolytic interlayers without bias-dependent performance.
Kaya, Mine; Hajimirza, Shima
2018-05-25
This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechalakos, J.
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
Neutron fluence-to-dose conversion coefficients for embryo and fetus.
Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica
2004-01-01
A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.
The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone
NASA Astrophysics Data System (ADS)
Liu, J.; Jiang, C.; Shi, Z.
2017-09-01
Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.
Internal phase transition induced by external forces in Finsler geometric model for membranes
NASA Astrophysics Data System (ADS)
Koibuchi, Hiroshi; Shobukhov, Andrey
2016-10-01
In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young
2013-05-08
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.
Cognitive impairment and pragmatics.
Gutiérrez-Rexach, Javier; Schatz, Sara
2016-01-01
One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.
Negative-Electrode Catalysts for Fe/Cr Redox Cells
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N.
1987-01-01
Electrodes perform more consistently and less expensive. Surfaces catalyzed by bismuth and bismuth/lead developed for application on chromium electrode in iron/chromium redox electrochemical energy storage system. NASA Fe/Cr storage system incorporates two soluble electrodes consisting of acidified solutions of iron chloride (FeC13 and FeC12) and chromium chloride (CrC13 and CrC12) oxidized and reduced in power-conversion unit to store and produce electricity. Electrolytes circulated with pumps and stored in external tanks.
Negative freedom and death in the United States.
Ackerson, Leland K; Subramanian, S V
2010-11-01
Personal freedoms have been characterized as "positive" (freedom to pursue opportunities) and "negative" (freedom from external constraints on decision making). An ecological analysis of US data revealed a strong positive association (r = 0.41; P = .003) between state-level negative personal freedom (defined in terms of regulation of personal behavior) and state-level age-adjusted rates of unintentional injury. A conceptual emphasis on positive freedom construed as freedom to pursue a life without risk of unintentional injury could help motivate a conversation to improve public health.
Hemicellulose conversion by anaerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.; Henry, M.P.; Christopher, R.W.
1982-01-01
The digestibility of an aquatic biomass (water hyacinth), a land-based biomass (Coastal Bermuda grass), and a biomass-waste blend (a mixture of hyacinth, grass, MSW, and sludge) under various digestion conditions was studied. Anaerobic digestion of hemicellulose consists of the steps of enzymatic hydrolysis of hemicellulose to glucans, mannans, galactans, xylans, and arabans, and then to simple hexose and pentose sugars; production of C/sub 2/ and higher fatty acids from the simple sugars; conversion of higher fatty acids to acetate; and finally, production of methane and CO/sub 2/ from acetate, and CO/sub 2/ and hydrogen. The conversion of hemicellulose was highermore » under mesophilic conditions than those of cellulose or protein for all biomass test feeds, probably because the hemicellulose structure was more vulnerable to enzymatic attack than that of the lignocellulosic component. Cellulose conversion efficiencies at the mesophilic and thermophilic temperatures were about the same. However, hemicellulose was converted at a much lower efficiency than cellulose during thermophilic digestion - a situation that was the reverse of that observed at the mesophilic temperature. Cellulose was utilized in preference to hemicellulose during mesophilic digestion of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the presence of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy.« less
Examining the impact of cell phone conversations on driving using meta-analytic techniques.
Horrey, William J; Wickens, Christopher D
2006-01-01
The performance costs associated with cell phone use while driving were assessed meta-analytically using standardized measures of effect size along five dimensions. There have been many studies on the impact of cell phone use on driving, showing some mixed findings. Twenty-three studies (contributing 47 analysis entries) met the appropriate conditions for the meta-analysis. The statistical results from each of these studies were converted into effect sizes and combined in the meta-analysis. Overall, there were clear costs to driving performance when drivers were engaged in cell phone conversations. However, subsequent analyses indicated that these costs were borne primarily by reaction time tasks, with far smaller costs associated with tracking (lane-keeping) performance. Hands-free and handheld phones revealed similar patterns of results for both measures of performance. Conversation tasks tended to show greater costs than did information-processing tasks (e.g., word games). There was a similar pattern of results for passenger and remote (cell phone) conversations. Finally, there were some small differences between simulator and field studies, though both exhibited costs in performance for cell phone use. We suggest that (a) there are significant costs to driver reactions to external hazards or events associated with cell phone use, (b) hands-free cell phones do not eliminate or substantially reduce these costs, and (c) different research methodologies or performance measures may underestimate these costs. Potential applications of this research include the assessment of performance costs attributable to different types of cell phones, cell phone conversations, experimental measures, or methodologies.
Quench protection analysis of the Mu2e production solenoid
NASA Astrophysics Data System (ADS)
Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas
2014-01-01
The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.
COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE
2017-01-01
Abstract A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV–50 MeV for both kerma approximation and full electron transport), electron data (10 keV–50 MeV), and positron data (1 keV–50 MeV) – neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a ‘proposal for a redefinition of the operational quantities for external radiation exposure’. PMID:27542816
Efficient nonlinear optical conversion of 1.319-micron laser radiation
NASA Astrophysics Data System (ADS)
Byer, Robert L.; Eckardt, Robert C.
1993-01-01
The accomplishments of this program are in the development and application of periodically poled nonlinear optical materials for nonlinear frequency-conversion. We have demonstrated the use of periodically poled lithium niobate (PPLN) as a bulk material for external resonant cavity second-harmonic generation with continuous-wave (cw) output power of 1.7 W. Work that is following this investigation is showing that planar waveguides of PPLN may well be the most satisfactory method of generation of 10's of mW of the 659-nm harmonic of the 1.32-micrometer Nd:YAG laser. We encountered major obstacles obtaining multilayer dielectric coatings necessary to pursue our proposed design of monolithic bulk optical harmonic generators. Additional alternative approaches such as discrete component resonant second harmonic generation employing single domain and periodically poled bulk crystals and monolithic single domain resonators formed by total internal reflection remain under investigation.
A novel energy conversion based method for velocity correction in molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hanhui; Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027; Liu, Ningning
2017-05-01
Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, themore » difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.« less
Quench protection analysis of the Mu2e production solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai
The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. Amore » 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.« less
Portable fiber-coupled diode-laser-based sensor for multiple trace gas detection
NASA Technical Reports Server (NTRS)
Lancaster, D. G.; Richter, D.; Tittel, F. K.
1999-01-01
Tunable narrowband mid-infrared radiation from 3.25 to 4.4 micrometers is generated by a compact fiber-coupled, difference-frequency-based spectroscopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2cm) (corresponding to a power of approximately equal to 3 microW at 3.3 micrometers) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work.
Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young
2016-06-29
Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.
Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung
2016-07-26
Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.
A polymer tandem solar cell with 10.6% power conversion efficiency.
You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang
2013-01-01
An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.
A polymer tandem solar cell with 10.6% power conversion efficiency
You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang
2013-01-01
An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590
Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells.
Bae, Soohyun; Kim, Seongtak; Lee, Sang-Won; Cho, Kyung Jin; Park, Sungeun; Lee, Seunghun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2016-08-18
Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage.
Enhanced hydrolysis of cellulose hydrogels by morphological modification.
Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin
2017-11-01
Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.
Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko
2015-01-01
World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Wadsworth, Martha E; Raviv, Tali; Santiago, Catherine Decarlo; Etter, Erica M
2011-01-01
This study tested the Adaptation to Poverty-related Stress Model and its proposed relations between poverty-related stress, effortful and involuntary stress responses, and symptoms of psychopathology in an ethnically diverse sample of low-income children and their parents. Prospective Hierarchical Linear Modeling analyses conducted with 98 families (300 family members: 136 adults, 82 adolescents and preadolescents, 82 school-age children) revealed that, consistent with the model, primary and secondary control coping were protective against poverty-related stress primarily for internalizing symptoms. Conversely, disengagement coping exacerbated externalizing symptoms over time. In addition, involuntary engagement stress responses exacerbated the effects of poverty-related stress for internalizing symptoms, whereas involuntary disengagement responses exacerbated externalizing symptoms. Age and gender effects were found in most models, reflecting more symptoms of both types for parents than children and higher levels of internalizing symptoms for girls.
NASA Technical Reports Server (NTRS)
Sheridan, M. F.; Wohletz, K. H.
1985-01-01
Hydrovolcanism is a common phenomena produced by the interaction of magma or magmatic heat with an external source of water, such as a surface body, an aquifer, or a glacier. The effects include hydrofracture of existing rock units in the subsurface and the formation of hyaloclastites in a subaqueous environment. Hydroexplosions originate within a few kilometers of the surface. They may be relatively small, phreatic events or devastating complex blasts. Large-scale experiments determined that the optimal mixing ratio of water to basaltic melt (thermite plus silicates) for efficient conversion of thermal energy into mechanical energy is in the range of 0.1 to 0.3. Based on experimental results, eruptions can be classified as dominantly magmatic if the ratio of external water to magma is less than 0.2. Eruptions with water/melt ratios in the range of 0.2 to 1.0 are highly explosive and carry tephra in a hot vapor that contains dominantly superheated (dry) steam.
External injuries of Morelet's crocodile Crocodylus moreletii in Campeche, Mexico.
Padilla, Sergio E; Weber, Manuel
2016-07-07
Analysis of external injuries in captive and free-ranging Morelet's crocodiles Crocodylus moreletii was performed in the northern wetlands of Campeche, Mexico. From March to September of 2007, a total of 52 free-ranging and 51 captive Morelet's crocodiles were studied. Captive crocodiles presented significantly more injuries. Sixteen free-ranging crocodiles presented some type of lesion, mostly superficial abrasions. Nineteen captive crocodiles presented lesions, mostly incisions from agonistic interactions. Overall, the injuries with highest prevalence were the incisions. The tail was the most frequently injured body region. Injuries were more common in adults than in other size classes. Conversely, the presence of lesions caused by the parasite Paratrichosoma spp. was greater in crocodiles captured in the coastal channels (mangrove habitat). The information presented here is important to understand some of the effects of individual interactions and to foresee and manage the consequences of conservation and management activities of crocodile populations.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-06-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-01-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Effects of soil water content on the external exposure of fauna to radioactive isotopes.
Beaugelin-Seiller, K
2016-01-01
Within a recent model intercomparison about radiological risk assessment for contaminated wetlands, the influence of soil saturation conditions on external dose rates was evidenced. This issue joined concerns of assessors regarding the choice of the soil moisture value to input in radiological assessment tools such as the ERICA Tool. Does it really influence the assessment results and how? This question was investigated under IAEA's Modelling and Data for Radiological Impacts Assessments (MODARIA) programme via 42 scenarios for which the soil water content varied from 0 (dry soil) to 100% (saturated soil), in combination with other parameters that may influence the values of the external dose conversion coefficients (DCCs) calculated for terrestrial organisms exposed in soil. A set of α, β, and γ emitters was selected in order to cover the range of possible emission energies. The values of their external DCCs varied generally within a factor 1 to 1.5 with the soil water content, excepted for β emitters that appeared more sensitive (DCCs within a factor of about 3). This may be of importance for some specific cases or for upper tiers of radiological assessments, when refinement is required. But for the general purpose of screening assessment of radiological impact on fauna and flora, current approaches regarding the soil water content are relevant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Contraction coupling efficiency of human first dorsal interosseous muscle.
Jubrias, Sharon A; Vollestad, Nina K; Gronka, Rod K; Kushmerick, Martin J
2008-04-01
During working contractions, chemical energy in the form of ATP is converted to external work. The efficiency of this conversion, called 'contraction coupling efficiency', is calculated by the ratio of work output to energy input from ATP splitting. Experiments on isolated muscles and permeabilized fibres show the efficiency of this conversion has a wide range, 0.2-0.7. We measured the work output in contractions of a single human hand muscle in vivo and of the ATP cost of that work to calculate the contraction coupling efficiency of the muscle. Five subjects performed six bouts of rapid voluntary contractions every 1.5 s for 42 s (28 contractions, each with time to peak force < 150 ms). The bouts encompassed a 7-fold range of workloads. The ATP cost during work was quantified by measuring the extent of chemical changes within the muscle from (31)P magnetic resonance spectra. Contraction coupling efficiency was determined as the slope of paired measurements of work output and ATP cost at the five graded work loads. The results show that 0.68 of the chemical energy available from ATP splitting was converted to external work output. A plausible mechanism to account for this high value is a substantially lower efficiency for mitochondrial ATP synthesis. The method described here can be used to analyse changes in the overall efficiency determined from oxygen consumption during exercise that can occur in disease or with age, and to test the hypothesis that such changes are due to reduced contraction coupling efficiency.
MO-A-BRB-02: Considerations and Issues in Electronic Charting for Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.
2015-06-15
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
NASA Astrophysics Data System (ADS)
Ishchuk, V. M.; Kuzenko, D. V.
2016-08-01
The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3 based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into F+- and F0-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. F-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of F-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.
NASA Astrophysics Data System (ADS)
Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl
2014-06-01
A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.
NASA Astrophysics Data System (ADS)
Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.
2015-11-01
Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with
Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium
González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David
2008-01-01
After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics. PMID:19029372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.
1997-09-01
In the oxidative conversion of natural gas to ethylene/lower olefins over SrO (17.3 wt.%)/La{sub 2}O{sub 3} (17.9 wt.%)/SA5205 catalyst diluted with inert solid particles (inerts/catalyst(w/w) = 2.0) in the presence of limited O{sub 2}, the exothermic oxidative conversion reactions of natural gas are coupled with the endothermic C{sub 2+} hydrocarbon thermal cracking reactions for avoiding hot spot formation and eliminating heat removal problems. Because of this, the process is operated in the most energy-efficient and safe manner. The influence of various process variables (viz. temperature, NG/O{sub 2} and steam/NG ratios in feed, and space velocity) on the conversion of carbonmore » and also of the individual hydrocarbons in natural gas, the selectivity for C{sub 2}-C{sub 4} olefins, and also on the net heat of reactions in the process has been thoroughly investigated. By carrying out the process at 800--850 C in the presence of steam (H{sub 2}O/NG {le} 0.2) and using limited O{sub 2} in the feed (NG/O{sub 2} = 12--18), high selectivity for ethylene (about 60%) or C{sub 2}-C{sub 4} olefins (above 80%) at the carbon conversion (>15%) of practical interest could be achieved at high space velocity ({ge}34,000 cm{sup 3}/g (catalyst) h), requiring no external energy and also without forming coke or tar-like products. The net heat of reactions can be controlled and the process can be made mildly exothermic or even close to thermoneutral by manipulating the O{sub 2} concentration in the feed.« less
NASA Astrophysics Data System (ADS)
Chang, Lienard A.
In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.
Champagne, François; Lemieux-Charles, Louise; Duranceau, Marie-France; MacKean, Gail; Reay, Trish
2014-05-02
The impact of efforts by healthcare organizations to enhance the use of evidence to improve organizational processes through training programs has seldom been assessed. We therefore endeavored to assess whether and how the training of mid- and senior-level healthcare managers could lead to organizational change. We conducted a theory-driven evaluation of the organizational impact of healthcare leaders' participation in two training programs using a logic model based on Nonaka's theory of knowledge conversion. We analyzed six case studies nested within the two programs using three embedded units of analysis (individual, group and organization). Interviews were conducted during intensive one-week data collection site visits. A total of 84 people were interviewed. We found that the impact of training could primarily be felt in trainees' immediate work environments. The conversion of attitudes was found to be easier to achieve than the conversion of skills. Our results show that, although socialization and externalization were common in all cases, a lack of combination impeded the conversion of skills. We also identified several individual, organizational and program design factors that facilitated and/or impeded the dissemination of the attitudes and skills gained by trainees to other organizational members. Our theory-driven evaluation showed that factors before, during and after training can influence the extent of skills and knowledge transfer. Our evaluation went further than previous research by revealing the influence--both positive and negative--of specific organizational factors on extending the impact of training programs.
Organic electronics on fibers for energy conversion applications
NASA Astrophysics Data System (ADS)
O'Connor, Brendan T.
Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.
Ignition feedback regenerative free electron laser (FEL) amplifier
Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max
2001-01-01
An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.
CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating.
Zhang, Jun; Peng, Hangyu; Fu, Xihong; Liu, Yun; Qin, Li; Miao, Guoqing; Wang, Lijun
2013-02-11
An external cavity structure based on the -1st transmission grating is introduced to spectral beam combining a 970 nm diode laser bar. A CW output power of 50.8 W, an electro-optical conversion efficiency of 45%, a spectral beam combining efficiency of 90.2% and a holistic M(2) value of 10.9 are achieved. This shows a way for a diode laser source with several KW power and diffraction-limited beam quality at the same time.
Integrated engine generator for aircraft secondary power
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1972-01-01
An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.
Negative Freedom and Death in the United States
Subramanian, S. V.
2010-01-01
Personal freedoms have been characterized as “positive” (freedom to pursue opportunities) and “negative” (freedom from external constraints on decision making). An ecological analysis of US data revealed a strong positive association (r = 0.41; P = .003) between state-level negative personal freedom (defined in terms of regulation of personal behavior) and state-level age-adjusted rates of unintentional injury. A conceptual emphasis on positive freedom construed as freedom to pursue a life without risk of unintentional injury could help motivate a conversation to improve public health. PMID:20167883
Optical orientation of the homogeneous nonequilibrium Bose-Einstein condensate of exciton polaritons
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2012-07-01
A simple model, describing the steady state of the nonequilibrium polarization of a homogeneous Bose-Einstein condensate of exciton polaritons, is considered. It explains the suppression of spin splitting of a nonequilibrium polariton condensate in an external magnetic field, the linear polarization, the linear-to-circular polarization conversion, and the unexpected sign of the circular polarization of the condensate all on equal footing. It is shown that inverse effects are possible, to wit, spontaneous circular polarization and the enhancement of spin splitting of a nonequilibrium condensate of polaritons.
Park, Y S; Kale, T S; Nam, C-Y; Choi, D; Grubbs, R B
2014-07-28
We report a general strategy for fine-tuning the bandgap of donor-acceptor-donor based organic molecules by modulating the electron-donating ability of the donor moiety by changing the benzochalcogenophene donor groups from benzothiophenes to benzoselenophenes to benzotellurophenes. These molecules show red-shifts in absorption and external quantum efficiency maxima from sulfur to selenium to tellurium. In bulk heterojunction solar cell devices, the benzoselenophene derivative shows a power conversion efficiency as high as 5.8% with PC61BM as the electron acceptor.
NASA Technical Reports Server (NTRS)
Coppolino, R. N.
1974-01-01
Details are presented of the implementation of the new formulation into NASTRAN including descriptions of the DMAP statements required for conversion of the program and details pertaining to problem definition and bulk data considerations. Details of the current 1/8-scale space shuttle external tank mathematical model, numerical results and analysis/test comparisons are also presented. The appendices include a description and listing of a FORTRAN program used to develop harmonic transformation bulk data (multipoint constraint statements) and sample bulk data information for a number of hydroelastic problems.
NASA Astrophysics Data System (ADS)
Suherman, A.; Rahman, M. Z. A.; Busu, I.
2014-02-01
The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.
Almansa, Josué; Vermunt, Jeroen K; Forero, Carlos G; Vilagut, Gemma; De Graaf, Ron; De Girolamo, Giovanni; Alonso, Jordi
2011-06-01
Epidemiological studies on mental health and mental comorbidity are usually based on prevalences and correlations between disorders, or some other form of bivariate clustering of disorders. In this paper, we propose a Factor Mixture Model (FMM) methodology based on conceptual models aiming to measure and summarize distinctive disorder information in the internalizing and externalizing dimensions. This methodology includes explicit modelling of subpopulations with and without 12 month disorders ("ill" and "healthy") by means of latent classes, as well as assessment of model invariance and estimation of dimensional scores. We applied this methodology with an internalizing/externalizing two-factor model, to a representative sample gathered in the European Study of the Epidemiology of Mental Disorders (ESEMeD) study -- which includes 8796 individuals from six countries, and used the CIDI 3.0 instrument for disorder assessment. Results revealed that southern European countries have significantly higher mental health levels concerning internalizing/externalizing disorders than central countries; males suffered more externalizing disorders than women did, and conversely, internalizing disorders were more frequent in women. Differences in mental-health level between socio-demographic groups were due to different proportions of healthy and ill individuals and, noticeably, to the ameliorating influence of marital status on severity. An advantage of latent model-based scores is that the inclusion of additional mental-health dimensional information -- other than diagnostic data -- allows for greater precision within a target range of scores. Copyright © 2011 John Wiley & Sons, Ltd.
Solanki, Ankur; Bagui, Anirban; Long, Guankui; Wu, Bo; Salim, Teddy; Chen, Yongsheng; Lam, Yeng Ming; Sum, Tze Chien
2016-11-30
External electric field treatment (EFT) on P3HT:PCBM bulk heterojunction (BHJ) devices was recently found to be a viable approach for improving the power conversion efficiencies (PCEs) through modulating the blend nanomorphology. However, its effectiveness over the broad family of polymer-fullerene blends remains unclear. Herein, we investigate the effects of external EFT on various polymer-fullerene blends with distinct morphologies stemming from the difference in molecular structure of the polymers (i.e., semicrystalline vs amorphous) in a bid to establish a clear morphology-function-charge dynamics relationship to the photovoltaic performance. Our findings reveal that EFT promotes self-organization of the semicrystalline thiophene-based conjugated polymers (i.e., P3HT and P3BT) while it was ineffective for the amorphous polymers (i.e., PTB7 and PCPDTBT) even at the maximum applied E-field of 8 kV cm -1 . Transient absorption spectroscopy shows an improvement in the initial charge-carrier and polaron formation from delocalized excitons in the E-field treated semicrystalline blends compared to their untreated reference samples. Interfacial trap-assisted monomolecular and trap-free bimolecular recombination at nanosecond-microsecond time scale in the E-field treated P3BT:PC60BM devices are significantly suppressed. Importantly, our findings shed new light and provide guidelines on the effectiveness of utilizing external EFT to enhance the PCEs of a larger family of conjugated polymer-based BHJ OSCs.
Ultrasound comparison of external and internal neck anatomy with the LMA Unique.
Lee, Steven M; Wojtczak, Jacek A; Cattano, Davide
2017-12-01
Internal neck anatomy landmarks and their relation after placement of an extraglottic airway devices have not been studied extensively by the use of ultrasound. Based on our group experience with external landmarks as well as internal landmarks evaluation with other techniques, we aimed use ultrasound to analyze the internal neck anatomy landmarks and the related changes due to the placement of the Laryngeal Mask Airway Unique. Observational pilot investigation. Non-obese adult patients with no evidence of airway anomalies, were recruited. External neck landmarks were measured based on a validated and standardized method by tape. Eight internal anatomical landmarks, reciprocal by the investigational hypothesis to the external landmarks, were also measured by ultrasound guidance. The internal landmarks were re-measured after optimal placement and inflation of the extraglottic airway devices cuff Laryngeal Mask Airway Unique. Six subjects were recruited. Ultrasound measurements of hyoid-mental distance, thyroid-cricoid distance, thyroid height, and thyroid width were found to be significantly ( p < 0.05) overestimated using a tape measure. Sagittal neck landmark distances such as thyroid height, sternal-mental distance, and thyroid-cricoid distance significantly decreased after placement of the Laryngeal Mask Airway Unique. The laryngeal mask airway Unique resulted in significant changes in internal neck anatomy. The induced changes and respective specific internal neck anatomy landmarks could help to design devices that would modify their shape accordingly to areas of greatest displacement. Also, while external neck landmark measurements overestimate their respective internal neck landmarks, as we previously reported, the concordance of each measurement and their respective conversion factor could continue to be of help in sizing extraglottic airway devices. Due to the pilot nature of the study, more investigations are warranted.
NASA Astrophysics Data System (ADS)
Sun, Yan; Wu, Lianghuan; Li, Xiaoyan; Sun, Li; Gao, Jianfei; Ding, Tiping
2016-11-01
Understanding the variations of silicon isotopes in terrestrial higher plants can be helpful toward elucidating the global biogeochemical silicon cycle. We studied silicon isotope fractionation in rice and cucumber plants over their entire life cycles. These two different silicon-absorbing plants were grown hydroponically at different external silicon concentrations. The ranges of δ30Si values in rice were -1.89‰ to 1.69‰, -1.81‰ to 1.96‰, and -2.08‰ to 2.02‰ at 0.17 mM, 1.70 mM, and 8.50 mM silicon concentrations, respectively. The ranges of δ30Si values in cucumber were -1.38‰ to 1.21‰, -1.33‰ to 1.26‰, and -1.62‰ to 1.40‰ at 0.085 mM, 0.17 mM, and 1.70 mM external silicon concentrations, respectively. A general increasing trend in δ30Si values from lower to upper plant parts reflected the preferential incorporation of lighter silicon isotopes from transpired water to biogenic opal. Furthermore, the active uptake mechanism regulated by several transporters might have also played an important role in the preferential transport of heavy silicon isotopes into aboveground plant parts. This suggested that silicon isotope fractionation in both rice and cucumber was a Rayleigh-like process. The data on δ30Si values for the whole plants and nutrient solutions indicated that biologically mediated silicon isotope fractionation occurred during silicon uptake by roots. At lower external silicon concentrations, heavy silicon isotopes entered plants more readily than light silicon isotopes. Conversely, at higher external silicon concentrations, light silicon isotopes entered plants more readily than heavy silicon isotopes.
Coping Responses Moderate Prospective Associations between Marital Conflict and Youth Adjustment
Tu, Kelly M.; Erath, Stephen A.; El-Sheikh, Mona
2015-01-01
Children's engaged coping responses to family conflict were examined as moderators of the prospective association between marital conflict in middle childhood and internalizing and externalizing symptoms in adolescence. Youth and their mothers participated in four waves of data collection (one-year intervals from T1 to T3, five-year interval between T3 and T4). The final analytic sample included 304 participants (51% boys; 66% European American, 34% African American). Participants were approximately 8 and 16 years old at T1 and T4, respectively. A multi-informant, longitudinal design was used to address study aims. Mothers reported on marital conflict (T1 to T3) and externalizing problems (T1 to T4); youth reported on coping responses to family conflict (T3) and internalizing symptoms (T1 to T4). Primary (e.g., problem-solving) and secondary (e.g., cognitive reappraisal) engaged coping were computed as proportion scores (out of all coping responses). Towards identifying unique effects, path models controlled for internalizing when predicting externalizing symptoms, and vice versa. Primary and secondary engaged coping emerged as moderators. In the context of marital conflict, higher levels of secondary engaged coping protected against, whereas lower levels of secondary engaged coping increased risk for, externalizing problems. Conversely, lower levels of primary and secondary engaged coping protected against, whereas higher levels of primary and secondary engaged coping increased risk for, internalizing symptoms in the context of marital conflict. Findings contribute to the small literature on the moderating role of coping in the context of marital conflict, providing further insight into the prediction of unique externalizing and internalizing symptoms. PMID:26571195
The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates.
Knauf, Felix; Mohebbi, Nilufar; Teichert, Carsten; Herold, Diana; Rogina, Blanka; Helfand, Stephen; Gollasch, Maik; Luft, Friedrich C; Aronson, Peter S
2006-07-01
A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.
ENERGY CONVERSION FOR THE TRANSITION FROM Al TO γ-Al2O3 NANOPARTICLES
NASA Astrophysics Data System (ADS)
Wang, Shulin; Li, Shengjuan; Xu, Bo; Jian, Dunliang; Zhu, Yufang
2013-07-01
We have successfully converted large volume Al particles into γ-Al2O3 nanostructures by vibration milling at room temperature and successive treatment. We show that there exist special relationships among stacking fault energy (SFE), strain energy (SRE), and surface energy (SE) of the materials, including interdependence, intercompetition, and interconversion during the phase transition. SFE and SRE perform the same changing tendency, while SE just does the opposite. However, it is not the particle size but the energy state that determines the reactivity of the materials. And it is the SE that can directly determine the physical chemical reaction and the conversion into the end product rather than SFE and SRE. When SE goes up, the material reactivity and the product yield will be enhanced; and when SE goes down, the reaction and the product yield will decay. However, the state of SE depends closely on the change tendency of the SFE and SRE. That is, when SFE and SRE goes up, SE will goes down; if SFE and SRE goes down, SE will goes up. It seems that energy conservation law may be followed in a sense in the particle system if the external input keeps constant. The work may be significant for energy conversion in nano-scale and mechanosynthesis of oxide nanoparticles.
Frequency Up-Conversion Photon-Type Terahertz Imager.
Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C
2016-05-05
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.
Frequency Up-Conversion Photon-Type Terahertz Imager
Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.
2016-01-01
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281
Tsukamoto, Hisao; Farrens, David L
2013-09-27
G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.
The role of geometry in nanoscale rectennas for rectification and energy conversion
NASA Astrophysics Data System (ADS)
Miskovsky, N. M.; Cutler, P. H.; Mayer, A.; Willis, B. G.; Zimmerman, D. T.; Weisel, G. J.; Chen, James M.; Sullivan, T. E.; Lerner, P. B.
2013-09-01
We have previously presented a method for optical rectification that has been demonstrated both theoretically and experimentally and can be used for the development of a practical rectification and energy conversion device for the electromagnetic spectrum including the visible portion. This technique for optical frequency rectification is based, not on conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a purely geometric property of the antenna tip or other sharp edges that may be incorporated on patch antennas. This "tip" or edge in conjunction with a collector anode providing connection to the external circuit constitutes a tunnel junction. Because such devices act as both the absorber of the incident radiation and the rectifier, they are referred to as "rectennas." Using current nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum (see Section 2).
COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE.
Behrens, R
2017-04-28
A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV-50 MeV for both kerma approximation and full electron transport), electron data (10 keV-50 MeV), and positron data (1 keV-50 MeV) - neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a 'proposal for a redefinition of the operational quantities for external radiation exposure'. © The Author 2016. Published by Oxford University Press.
Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi
2007-06-01
Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.
Byun, Jaewon; Han, Jeehoon
2016-07-01
A strategy is presented that produces liquid hydrocarbon fuels (butene oligomers (BO)) from cellulose (C6) fraction and commodity chemicals (tetrahydrofurfuryl alcohol (THFA)) from hemicellulose (C5) of corn stover based on catalytic conversion technologies using 2-sec-butylphenol (SBP) solvents. This strategy integrates the conversion subsystems based on experimental studies and separation subsystems for recovery of biomass derivatives and SBP solvents. Moreover, a heat exchanger network is designed to reduce total heating requirements to the lowest level, which is satisfied from combustion of biomass residues (lignin and humins). Based on the strategy, this work offers two possible process designs (design A: generating electricity internally vs. design B: purchasing electricity externally), and performs an economic feasibility study for both the designs based on a comparison of the minimum selling price (MSP) of THFA. This strategy with the design B leads to a better MSP of $1.93 per kg THFA. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gonnermann, Helge M.
2015-05-01
Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Niu, Pingjuan; Li, Yuqiang; Song, Minghui; Zhang, Jianxin; Ning, Pingfan; Chen, Peizhuan
2017-12-01
Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.
Nordvang, Emily C; Borodina, Elena; Ruiz-Martínez, Javier; Fehrmann, Rasmus; Weckhuysen, Bert M
2015-01-01
The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during catalytic testing with the single crystal in situ results. PMID:26463581
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2013-01-01
Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.
The enhanced efficiency of graphene-silicon solar cells by electric field doping.
Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren
2015-04-28
The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.
GaAs nanopillar-array solar cells employing in situ surface passivation
Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.
2013-01-01
Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode. PMID:23422665
NASA Astrophysics Data System (ADS)
Gupta, Abhishek; Rana, Goutam; Bhattacharya, Arkabrata; Singh, Abhishek; Jain, Ravikumar; Bapat, Rudheer D.; Duttagupta, S. P.; Prabhu, S. S.
2018-05-01
Photoconductive antennas (PCAs) are among the most conventional devices used for emission as well as detection of terahertz (THz) radiation. However, due to their low optical-to-THz conversion efficiencies, applications of these devices in out-of-laboratory conditions are limited. In this paper, we report several factors of enhancement in THz emission efficiency from conventional PCAs by coating a nano-layer of dielectric (TiO2) on the active area between the electrodes of a semi-insulating GaAs-based device. Extensive experiments were done to show the effect of thicknesses of the TiO2 layer on the THz power enhancement with different applied optical power and bias voltages. Multiphysics simulations were performed to elucidate the underlying physics behind the enhancement of efficiency of the PCA. Additionally, this layer increases the robustness of the electrode gaps of the PCAs with high electrical insulation as well as protect it from external dust particles.
NASA Astrophysics Data System (ADS)
Lukowski, Michal L.
Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I second harmonic generation in a V- cavity is presented. Tens of watts of output power for both blue and green wavelengths prove the viability for VECSELs to replace the other types of lasers currently used for applications in laser light shows, for Ti:Sapphire pumping, and for medical applications such as laser skin resurfacing. The novel, recently patented, two-chip T-cavity configuration allowing for spatial overlap of two, separate VECSEL cavities is described in detail. This type of setup is further used to demonstrate type II sum frequency generation to green with multi-watt output, and the full potential of the T-cavity is utilized by achieving type II difference frequency generation to the mid-IR spectral region. The tunable output around 5.4 microm with over 10 mW power is showcased. In the same manner the first attempts to generate THz radiation are discussed. Finally, a slightly modified T-cavity VECSEL is used to reach the UV spectral regions thanks to type I fourth harmonic generation. Over 100 mW at around 265 nm is obtained in a setup which utilizes no stabilization techniques. The dissertation demonstrates the flexibility of the VECSEL in achieving broad spectral coverage and thus its potential for a wide range of applications.
Prospects for energy recovery during hydrothermal and biological processing of waste biomass.
Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L
2017-02-01
Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gonçalves, A. P.; Monteiro, João; Lucchi, Chiara; Kowbel, David J.; Cordeiro, J. M.; Correia-de-Sá, Paulo; Rigden, Daniel J.; Glass, N. L.; Videira, Arnaldo
2014-01-01
Alterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the Neurospora crassa response to staurosporine. We highlight the importance of the extracellular availability of Ca2+ for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS). Conversely, an approximately 30-fold excess of external Ca2+ leads to increased drug tolerance and lower ROS generation. In line with this, distinct staurosporine-induced cytosolic Ca2+ signaling profiles were observed in the absence or presence of excessive external Ca2+. High-throughput RNA sequencing revealed that different concentrations of extracellular Ca2+ define distinct transcriptional programs. Our transcriptional profiling also pointed to two putative novel Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes, and provides a reference dataset for future investigations on the role of Ca2+ in fungal biology. PMID:28357255
Thermal electron-tunneling devices as coolers and amplifiers
NASA Astrophysics Data System (ADS)
Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo
2016-02-01
Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.
Schnabel, Thomas; Musso, Maurizio; Tondi, Gianluca
2014-01-01
Vibrational spectroscopy is one of the most powerful tools in polymer science. Three main techniques--Fourier transform infrared spectroscopy (FT-IR), FT-Raman spectroscopy, and FT near-infrared (NIR) spectroscopy--can also be applied to wood science. Here, these three techniques were used to investigate the chemical modification occurring in wood after impregnation with tannin-hexamine preservatives. These spectroscopic techniques have the capacity to detect the externally added tannin. FT-IR has very strong sensitivity to the aromatic peak at around 1610 cm(-1) in the tannin-treated samples, whereas FT-Raman reflects the peak at around 1600 cm(-1) for the externally added tannin. This high efficacy in distinguishing chemical features was demonstrated in univariate analysis and confirmed via cluster analysis. Conversely, the results of the NIR measurements show noticeable sensitivity for small differences. For this technique, multivariate analysis is required and with this chemometric tool, it is also possible to predict the concentration of tannin on the surface.
Neuhaus, H. Ekkehard; Holtum, Joseph A. M.; Latzko, Erwin
1988-01-01
Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light. PMID:16666128
Hussin, O A; Mahmoud, M A; Abdel-Fattah, M M
2013-02-01
The incidence of caesarean section for breech presentation has increased markedly in the last 20 years. A prospective, interventional cohort study was carried out of the success rate of external cephalic version (ECV) and its predictors of as well as its impact on the rate of caesarean section for vaginal breech delivery. All 128 women admitted during the study period to the obstetrics department of a tertiary care military hospital in Taif, Saudi Arabia with breech presentation at term, regardless of age and parity, who accepted ECV were recruited. ECV was successful in 53.9% of the women. Most of the women with successful ECV delivered normally (84.1%) and only 14.5% of them delivered by caesarean section. Conversely, normal vaginal delivery was reported among 8.5% of those who had spontaneous version with failed ECV and approximately two-thirds of them delivered by caesarean section (62.7%). Successful ECV reduced the breech and caesarean section rate.
Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu
2015-01-01
We examined resource allocation priorities in the framework of an updated Maslow hierarchy of fundamental human needs. In Experiment 1, the participants in the food abundance priming condition viewing photos of high-calorie food allocated more money to savings than to spending. However, the participants preferred spending to savings under the condition of mating availability priming with romantic photographs. In Experiment 2, before and after drinking either water or a sugary beverage, fasting participants rated photos of a conversation between a man and a woman. Water drinking lowered the rating scores of mating intentions as well as blood glucose (BG) levels. The sugary drink buffered this decline in sexual perceptivity. Overall, the change in BG levels was positively associated with changes in the ratings of mating intentions but was not associated with other likelihood ratings. These results suggest that both external cues of food and mating resources and internal BG fluctuation regulate the cognitive priority of physiological needs vs. mate acquisition and retention. PMID:25610412
NASA Astrophysics Data System (ADS)
Deng, Junquan; Jia, Weiyao; Chen, Yingbing; Liu, Dongyu; Hu, Yeqian; Xiong, Zuhong
2017-03-01
Non-emissive triplet excited states in devices that undergo thermally activated delayed fluorescence (TADF) can be up-converted to singlet excited states via reverse intersystem crossing (RISC), which leads to an enhanced electroluminescence efficiency. Exciton-based fluorescence devices always exhibit a positive magneto-electroluminescence (MEL) because intersystem crossing (ISC) can be suppressed effectively by an external magnetic field. Conversely, TADF devices should exhibit a negative MEL because RISC is suppressed by the external magnetic field. Intriguingly, we observed a positive MEL in TADF devices. Moreover, the sign of the MEL was either positive or negative, and depended on experimental conditions, including doping concentration, current density and temperature. The MEL observed from our TADF devices demonstrated that ISC in the host material and RISC in the guest material coexisted. These competing processes were affected by the experimental conditions, which led to the sign change of the MEL. This work gives important insight into the energy transfer processes and the evolution of excited states in TADF devices.
Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu
2014-01-01
We examined resource allocation priorities in the framework of an updated Maslow hierarchy of fundamental human needs. In Experiment 1, the participants in the food abundance priming condition viewing photos of high-calorie food allocated more money to savings than to spending. However, the participants preferred spending to savings under the condition of mating availability priming with romantic photographs. In Experiment 2, before and after drinking either water or a sugary beverage, fasting participants rated photos of a conversation between a man and a woman. Water drinking lowered the rating scores of mating intentions as well as blood glucose (BG) levels. The sugary drink buffered this decline in sexual perceptivity. Overall, the change in BG levels was positively associated with changes in the ratings of mating intentions but was not associated with other likelihood ratings. These results suggest that both external cues of food and mating resources and internal BG fluctuation regulate the cognitive priority of physiological needs vs. mate acquisition and retention.
Optimum analysis of a Brownian refrigerator.
Luo, X G; Liu, N; He, J Z
2013-02-01
A Brownian refrigerator with the cold and hot reservoirs alternating along a space coordinate is established. The heat flux couples with the movement of the Brownian particles due to an external force in the spatially asymmetric but periodic potential. After using the Arrhenius factor to describe the behaviors of the forward and backward jumps of the particles, the expressions for coefficient of performance (COP) and cooling rate are derived analytically. Then, through maximizing the product of conversion efficiency and heat flux flowing out, a new upper bound only depending on the temperature ratio of the cold and hot reservoirs is found numerically in the reversible situation, and it is a little larger than the so-called Curzon and Ahlborn COP ε(CA)=(1/√[1-τ])-1. After considering the irreversible factor owing to the kinetic energy change of the moving particles, we find the optimized COP is smaller than ε(CA) and the external force even does negative work on the Brownian particles when they jump from a cold to hot reservoir.
Thermal electron-tunneling devices as coolers and amplifiers
Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo
2016-01-01
Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109
Heuvel, Ruurd; van Franeker, Jacobus J; Janssen, René A J
2017-03-01
Six poly(phenylene- alt -dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The best performance is found for the polymer-fullerene combination with distinct phase separation and crystalline domains. This improves the maximum external quantum efficiency for charge formation and collection to 66%. The resulting higher photocurrent compensates for the relatively large energy loss per photon ( E loss = 0.97 eV) in achieving a high PCE. By contrast, the poly-mer that provides a reduced energy loss ( E loss = 0.49 eV) gives a lower photocurrent and a reduced PCE of 1.8% because the external quantum efficiency of 17% is limited by a suboptimal morphology and a reduced driving force for charge transfer.
NASA Astrophysics Data System (ADS)
Mandelis, Andreas; Zhang, Yu; Melnikov, Alexander
2012-09-01
A solar cell lock-in carrierographic image generation theory based on the concept of non-equilibrium radiation chemical potential was developed. An optoelectronic diode expression was derived linking the emitted radiative recombination photon flux (current density), the solar conversion efficiency, and the external load resistance via the closed- and/or open-circuit photovoltage. The expression was shown to be of a structure similar to the conventional electrical photovoltaic I-V equation, thereby allowing the carrierographic image to be used in a quantitative statistical pixel brightness distribution analysis with outcome being the non-contacting measurement of mean values of these important parameters averaged over the entire illuminated solar cell surface. This is the optoelectronic equivalent of the electrical (contacting) measurement method using an external resistor circuit and the outputs of the solar cell electrode grid, the latter acting as an averaging distribution network over the surface. The statistical theory was confirmed using multi-crystalline Si solar cells.
A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Junpu, E-mail: lingjunpu@163.com; Zhang, Jiande; He, Juntao
2014-02-15
A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity bymore » increasing the radial dimension of the Ku-band device. With a 550 keV and 7.5 kA electron beam, a 1.25 GW microwave pulse at 12.08 GHz has been obtained in the simulation. The power conversion efficiency is about 30%.« less
NASA Astrophysics Data System (ADS)
Tay, Z. J.; Soh, W. T.; Ong, C. K.
2018-02-01
This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.
Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; McKinney, Jonathan C.; Narayan, Ramesh
2009-07-01
Unconfined relativistic outflows from rotating, magnetized compact objects are often well modeled by assuming that the field geometry is approximately a split-monopole at large radii. Earlier work has indicated that such an unconfined flow has an inefficient conversion of magnetic energy to kinetic energy. This has led to the conclusion that ideal magnetohydrodynamical (MHD) processes fail to explain observations of, e.g., the Crab pulsar wind at large radii where energy conversion appears efficient. In addition, as a model for astrophysical jets, the monopole field geometry has been abandoned in favor of externally confined jets since the latter appeared to be generically more efficient jet accelerators. We perform time-dependent axisymmetric relativistic MHD simulations in order to find steady-state solutions for a wind from a compact object endowed with a monopole field geometry. Our simulations follow the outflow for 10 orders of magnitude in distance from the compact object, which is large enough to study both the initial "acceleration zone" of the magnetized wind as well as the asymptotic "coasting zone." We obtain the surprising result that acceleration is actually efficient in the polar region, which develops a jet despite not being confined by an external medium. Our models contain jets that have sufficient energy to account for moderately energetic long and short gamma-ray burst (GRB) events (~1051-1052 erg), collimate into narrow opening angles (opening half-angle θ j ≈ 0.03 rad), become matter-dominated at large radii (electromagnetic energy flux per unit matter energy flux σ < 1), and move at ultrarelativistic Lorentz factors (γ j ~ 200 for our fiducial model). The simulated jets have γ j θ j ~ 5-15, so they are in principle capable of generating "achromatic jet breaks" in GRB afterglow light curves. By defining a "causality surface" beyond which the jet cannot communicate with a generalized "magnetic nozzle" near the axis of rotation, we obtain approximate analytical solutions for the Lorentz factor that fit the numerical solutions well. This allows us to extend our results to monopole wind models with arbitrary magnetization. Overall, our results demonstrate that the production of ultrarelativistic jets is a more robust process than previously thought.
Healthcare workplace conversations on race and the perspectives of physicians of African descent.
Nunez-Smith, Marcella; Curry, Leslie A; Berg, David; Krumholz, Harlan M; Bradley, Elizabeth H
2008-09-01
Although experts recommend that healthcare organizations create forums for honest dialogue about race, there is little insight into the physician perspectives that may influence these conversations across the healthcare workforce. To identify the range of perspectives that might contribute to workplace silence on race and affect participation in race-related conversations within healthcare settings. In-person, in-depth, racially concordant qualitative interviews. Twenty-five physicians of African descent practicing in the 6 New England states. Line-by-line independent coding and group negotiated consensus to develop codes structure using constant comparative method. Five themes characterize perspectives of participating physicians of African descent that potentially influence race-related conversations at work: 1) Perceived race-related healthcare experiences shape how participating physicians view healthcare organizations and their professional identities prior to any formal medical training; 2) Protecting racial/ethnic minority patients from healthcare discrimination is a top priority for participating physicians; 3) Participating physicians often rely on external support systems for race-related issues, rather than support systems inside the organization; 4) Participating physicians perceive differences between their interpretations of potentially offensive race-related work experiences and their non-minority colleagues' interpretations of the same experiences; and 5) Participating physicians are uncomfortable voicing race-related concerns at work. Creating a healthcare work environment that successfully supports diversity is as important as recruiting diversity across the workforce. Developing constructive ways to discuss race and race relations among colleagues in the workplace is a key step towards creating a supportive environment for employees and patients from all backgrounds.
2014-01-01
Background The impact of efforts by healthcare organizations to enhance the use of evidence to improve organizational processes through training programs has seldom been assessed. We therefore endeavored to assess whether and how the training of mid- and senior-level healthcare managers could lead to organizational change. Methods We conducted a theory-driven evaluation of the organizational impact of healthcare leaders’ participation in two training programs using a logic model based on Nonaka’s theory of knowledge conversion. We analyzed six case studies nested within the two programs using three embedded units of analysis (individual, group and organization). Interviews were conducted during intensive one-week data collection site visits. A total of 84 people were interviewed. Results We found that the impact of training could primarily be felt in trainees’ immediate work environments. The conversion of attitudes was found to be easier to achieve than the conversion of skills. Our results show that, although socialization and externalization were common in all cases, a lack of combination impeded the conversion of skills. We also identified several individual, organizational and program design factors that facilitated and/or impeded the dissemination of the attitudes and skills gained by trainees to other organizational members. Conclusions Our theory-driven evaluation showed that factors before, during and after training can influence the extent of skills and knowledge transfer. Our evaluation went further than previous research by revealing the influence—both positive and negative—of specific organizational factors on extending the impact of training programs. PMID:24885800
Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B
2016-06-15
Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.
Healthcare Workplace Conversations on Race and the Perspectives of Physicians of African Descent
Curry, Leslie A.; Berg, David; Krumholz, Harlan M.; Bradley, Elizabeth H.
2008-01-01
Background Although experts recommend that healthcare organizations create forums for honest dialogue about race, there is little insight into the physician perspectives that may influence these conversations across the healthcare workforce. Objective To identify the range of perspectives that might contribute to workplace silence on race and affect participation in race-related conversations within healthcare settings. Design In-person, in-depth, racially concordant qualitative interviews. Participants Twenty-five physicians of African descent practicing in the 6 New England states. Approach Line-by-line independent coding and group negotiated consensus to develop codes structure using constant comparative method. Main Results Five themes characterize perspectives of participating physicians of African descent that potentially influence race-related conversations at work: 1) Perceived race-related healthcare experiences shape how participating physicians view healthcare organizations and their professional identities prior to any formal medical training; 2) Protecting racial/ethnic minority patients from healthcare discrimination is a top priority for participating physicians; 3) Participating physicians often rely on external support systems for race-related issues, rather than support systems inside the organization; 4) Participating physicians perceive differences between their interpretations of potentially offensive race-related work experiences and their non-minority colleagues’ interpretations of the same experiences; and 5) Participating physicians are uncomfortable voicing race-related concerns at work. Conclusions Creating a healthcare work environment that successfully supports diversity is as important as recruiting diversity across the workforce. Developing constructive ways to discuss race and race relations among colleagues in the workplace is a key step towards creating a supportive environment for employees and patients from all backgrounds. PMID:18618190
Kinoshita, Naoki; Kita, Akinobu; Takemura, Akihiro; Nishimoto, Yasuhiro; Adachi, Toshiki
2014-09-01
The uncertainty of the beam quality conversion factor (k(Q,Q0)) of standard dosimetry of absorbed dose to water in external beam radiotherapy 12 (JSMP12) is determined by combining the uncertainty of each beam quality conversion factor calculated for each type of ionization chamber. However, there is no guarantee that ionization chambers of the same type have the same structure and thickness, so there may be individual variations. We evaluated the uncertainty of k(Q,Q0) for JSMP12 using an ionization chamber dosimeter and linear accelerator without a specific device or technique in consideration of the individual variation of ionization chambers and in clinical radiation field. The cross calibration formula was modified and the beam quality conversion factor for the experimental values [(k(Q,Q0))field] determined using the modified formula. It's uncertainty was calculated to be 1.9%. The differences between (k(Q,Q0))field of experimental values and k(Q,Q0) for Japan Society of Medical Physics 12 (JSMP12) were 0.73% and 0.88% for 6- and 10-MV photon beams, respectively, remaining within ± 1.9%. This showed k(Q,Q0) for JSMP12 to be consistent with (k(Q,Q0))field of experimental values within the estimated uncertainty range. Although inter-individual differences may be generated, even when the same type of ionized chamber is used, k(Q,Q0) for JSMP12 appears to be consistent within the estimated uncertainty range of (k(Q,Q0)field.
Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Dionne, B.; Sikik, E.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less
Reactivation of a Tin-Oxide-Containing Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth
2010-01-01
The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment described above, the initial steady-state conversion percentage was 70 percent. After four days, this conversion percentage decreased to 67 percent. No decrease in activity is acceptable because the catalyst must maintain its activity for long periods of time. After being subjected to the reactivation process of the present invention, the conversion percentage rose to 77 percent. Such a reactivation not only returned the catalyst to its initial steady state but resulted in a 10-percent improvement over the initial steady state value.
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.
Wu, Chunwei; Guan, Qingxiao; Wang, Shumei; Rong, Yueying
2017-01-01
Root of Panax ginseng C. A. Mey (Renseng in Chinese) is a famous Traditional Chinese Medicine. Ginsenosides are the major bioactive components. However, the shortage and high cost of some ginsenoside reference standards make it is difficult for quality control of P. ginseng . A method, single standard for determination of multicomponents (SSDMC), was developed for the simultaneous determination of nine ginsenosides in P. ginseng (ginsenoside Rg 1 , Re, Rf, Rg 2 , Rb 1 , Rc, Rb 2 , Rb 3 , Rd). The analytes were separated on Inertsil ODS-3 C18 (250 mm × 4.6 mm, 5 μm) with gradient elution of acetonitrile and water. The flow rate was 1 mL/min and detection wavelength was set at 203 nm. The feasibility and accuracy of SSDMC were checked by the external standard method, and various high-performance liquid chromatographic (HPLC) instruments and chromatographic conditions were investigated to verify its applicability. Using ginsenoside Rg 1 as the internal reference substance, the contents of other eight ginsenosides were calculated according to conversion factors (F) by HPLC. The method was validated with linearity ( r 2 ≥ 0.9990), precision (relative standard deviation [RSD] ≤2.9%), accuracy (97.5%-100.8%, RSD ≤ 1.6%), repeatability, and stability. There was no significant difference between the SSDMC method and the external standard method. New SSDMC method could be considered as an ideal mean to analyze the components for which reference standards are not readily available. A method, single standard for determination of multicomponents (SSDMC), was established by high-performance liquid chromatography for the simultaneous determination of nine ginsenosides in Panax ginseng (ginsenoside Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rb3, Rd)Various chromatographic conditions were investigated to verify applicability of FsThe feasibility and accuracy of SSDMC were checked by the external standard method. Abbreviations used: DRT: Different value of retention time; F: Conversion factor; HPLC: High-performance Liquid Chromatography; LOD: Limit of detection; LOQ: Limit of quantitation; PD: Percent difference; PPD: 20(S)-protopanaxadiol; PPT: 20(S)-protopanaxatriol; RSD: Relative standard deviation; SSDMC: Single Standard for Determination of Multicomponents; TCM: Traditional Chinese Medicine.
Study of alternate space shuttle concepts
NASA Technical Reports Server (NTRS)
1971-01-01
A study of alternate space shuttle concepts was conducted to examine the stage-and-one-half concept and its potential for later conversion and use in the two stage reusable shuttle system. A study of external hydrogen tank concepts was conducted to determine the issues involved in the design and production of a low-cost expendable tank system. The major objectives of the study were to determine: (1) realistic drop tank program cost estimates, (2) estimated drop tank program cost for selected specific designs, and (3) change in program cost due to variations in design and manufacturing concepts and changes in program assumptions.
Spin-wave wavelength down-conversion at thickness steps
NASA Astrophysics Data System (ADS)
Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.
2018-05-01
We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
Computation of the shock-wave boundary layer interaction with flow separation
NASA Technical Reports Server (NTRS)
Ardonceau, P.; Alziary, T.; Aymer, D.
1980-01-01
The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behaghel, B.; Institute of Research and Development on Photovoltaic Energy; NextPV, RCAST and CNRS, The University of Tokyo, Meguro-ku, Tokyo 153-8904
We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
Work in the stabilization of monolithic Nd:YAG lasers and the application of these lasers to nonlinear optical frequency conversion is discussed. The intrinsic stability of semiconductor diode laser pumped solid state lasers has facilitated a number of demonstration in external resonant cavity harmonic generation and stable optical parametric oscillation. Relative laser frequency stabilization of 0.3 Hz was achieved, and absolute stability of a few hundred hertz is anticipated. The challenge is now to reproduce this frequency stability in the output of tunable nonlinear optical devices. Theoretical and experimental work toward this goal are continuing.
NASA Technical Reports Server (NTRS)
Robertson, G.
1982-01-01
Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.
Impact of external forcing on simulated hydroclimate from interannual to multicentennial timescales
NASA Astrophysics Data System (ADS)
Roldán, Pedro; Fidel González-Rouco, Jesús; Melo-Aguilar, Camilo
2017-04-01
During the last millennium, external forcing experienced important changes in different timescales. It has been demostrated that these changes had an impact on climate. In particular, changes in solar activity, volcanic eruptions and emissions of greenhouse gases are related to short-term and long-term changes in global temperatures, with situations of higher total external forcing generally related with higher global and hemispherical temperatures, and conversely with situations of lower forcing. This connection is clearly observed in climate simulations from different models and in proxy-based reconstructions. The changes in external forcing can also explain certain changes in atmospheric dynamics and hydroclimate, although in this case it is in general more difficult to trace causality arguments. Analyses based on simulations from two different models (ECHO-G and CESM-LME) have been performed, to assess the impact of external forcing on climate in timescales ranging from interannual to multicentennial. Various climatic variables have been analysed, including temperature, sea level pressure, surface wind, precipitation and soil moisture. For interannual timescales, composites have been defined with the years before and after the main volcanic eruptions of the last millennium as well as the minima of solar activity during this period. For longer timescales, a Principal Component analysis has been performed, to try to separate the signal of external forcing from that of internal variability. This has been done for the whole millennium and for the pre-industrial period, to assess the difference between natural and anthropogenic forcing. For multicentennial timescales, composites for the Medieval Climate Anomaly (MCA; ca. 950-1250), the Little Ice Age (LIA; ca. 1450-1850) and the 20th Century have been compared. These three periods were respectively characterised by higher, lower and higher forcing. This allows to assess the contribution of external forcing to the evolution of climate over longer time intervals. These analyses have shown that external forcing is an important factor in the evolution of the simulated hydroclimate of the last millennium. In the short-term, it has been observed that volcanic eruptions and other situations of extreme forcing significantly alter the global precipitation in the subsequent years. In the long-term, variations of external forcing can be related to changes in atmospheric dynamics and in hydroclimate. However, this impact is not homogeneously distributed. There are areas where hydroclimate is mainly influenced by the external forcing and other areas more influenced by internal variability, with spatial decorrelation being higher in precipitation or drought related variables than in temperature. The regional sensitivity to external forcing of hydroclimate is model and, to a lesser degree, simulation dependent.
Kiyonaga, Anastasia; Egner, Tobias
2013-04-01
Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus, the precise relationship between WM and attention remains unclear, but it appears that they may bidirectionally impact one another, whether or not internal representations are consistent with the external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward either actively maintained internal representations (traditionally considered WM) or external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and influencing one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention.
Kiyonaga, Anastasia; Egner, Tobias
2012-01-01
Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus the precise relationship between WM and attention remains unclear, but it appears that they may bi-directionally impact one another, whether or not internal representations are consistent with external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward actively maintained internal representations (traditionally considered WM) versus external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and impacting one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention. PMID:23233157
Hafeman, Danella M.; Merranko, John; Axelson, David; Goldstein, Benjamin I.; Goldstein, Tina; Monk, Kelly; Hickey, Mary Beth; Sakolsky, Dara; Diler, Rasim; Iyengar, Satish; Brent, David; Kupfer, David; Birmaher, Boris
2016-01-01
Objective We aimed to assess dimensional symptomatic predictors of new-onset bipolar spectrum disorder in youth at familial risk of bipolar disorder (“at-risk” youth). Method Offspring aged 6–18 of parents with bipolar-I/II disorder (n=391) and offspring of community controls (n=248) were recruited without regard to non-bipolar psychopathology. At baseline, 8.4% (33/391) of offspring of bipolar parents had bipolar spectrum; 14.7% (44/299) of offspring with follow-up developed new-onset bipolar spectrum (15 with bipolar-I/II) over eight years. Scales collected at baseline and follow-up were reduced using factor analyses; factors (both at baseline and visit proximal to conversion or last contact) were then assessed as predictors of new-onset bipolar spectrum. Results Relative to community control offspring, at-risk and bipolar offspring had higher baseline levels of anxiety/depression, inattention/disinhibition, externalizing, subsydromal manic, and affective lability symptoms (p<.05). The strongest predictors of new-onset bipolar spectrum were: baseline anxiety/depression, baseline and proximal affective lability, and proximal subsyndromal manic symptoms (p<.05). While affective lability and anxiety/depression were elevated throughout follow-up in those who later developed bipolar spectrum, manic symptoms increased up to the point of conversion. A path analysis supported the hypothesized model that affective lability at baseline predicted new-onset bipolar spectrum, in part, through increased manic symptoms at the visit prior to conversion; earlier parental age of mood disorder onset also significantly increased risk of conversion (p<.001). While youth without anxiety/depression, affective lability, and mania (and with a parent with older age of mood disorder onset) had a 2% predicted chance of conversion to bipolar spectrum, those with all risk factors had a 49% predicted chance of conversion. Conclusions Dimensional measures of anxiety/depression, affective lability, and mania are important predictors of new-onset bipolar spectrum in this population of at-risk youth. These symptoms emerged from among numerous other candidates, underscoring the potential clinical and research utility of these findings. PMID:26892940
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
Hansen, Morten T; Birkinshaw, Julian
2007-06-01
The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain.
Tsukamoto, Hisao; Farrens, David L.
2013-01-01
G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics. PMID:23940032
Ecological accounting based on extended exergy: a sustainability perspective.
Dai, Jing; Chen, Bin; Sciubba, Enrico
2014-08-19
The excessive energy consumption, environmental pollution, and ecological destruction problems have gradually become huge obstacles for the development of societal-economic-natural complex ecosystems. Regarding the national ecological-economic system, how to make explicit the resource accounting, diagnose the resource conversion, and measure the disturbance of environmental emissions to the systems are the fundamental basis of sustainable development and coordinated management. This paper presents an extended exergy (EE) accounting including the material exergy and exergy equivalent of externalities consideration in a systematic process from production to consumption, and China in 2010 is chosen as a case study to foster an in-depth understanding of the conflict between high-speed development and the available resources. The whole society is decomposed into seven sectors (i.e., Agriculture, Extraction, Conversion, Industry, Transportation, Tertiary, and Domestic sectors) according to their distinct characteristics. An adaptive EE accounting database, which incorporates traditional energy, renewable energy, mineral element, and other natural resources as well as resource-based secondary products, is constructed on the basis of the internal flows in the system. In addition, the environmental emission accounting has been adjusted to calculate the externalities-equivalent exergy. The results show that the EE value for the year 2010 in China was 1.80 × 10(14) MJ, which is greatly increased. Furthermore, an EE-based sustainability indices system has been established to provide an epitomized exploration for evaluating the performance of flows and storages with the system from a sustainability perspective. The value of the EE-based sustainability indicator was calculated to be 0.23, much lower than the critical value of 1, implying that China is still developing in the stages of high energy consumption and a low sustainability level.
NASA Astrophysics Data System (ADS)
Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.
2013-03-01
This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Robert S.; Holladay, Johnathan E.
Here, we have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals. The overall process must be able to contend with a wide range of feedstocks, must be inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply. Our current approach is based on the upgrading of bio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks. HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing biomass. Wemore » are now investigating the use of electrochemical processes for the further conversions needed to transform the bio-oil from HTL into fuel or higher value chemicals. We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the necessary generality. In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side. Therefore, the two types of reactions could, in principle, be coupled to upgrade the bio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL. Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process.« less
Weber, Robert S.; Holladay, Johnathan E.
2018-05-22
Here, we have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals. The overall process must be able to contend with a wide range of feedstocks, must be inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply. Our current approach is based on the upgrading of bio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks. HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing biomass. Wemore » are now investigating the use of electrochemical processes for the further conversions needed to transform the bio-oil from HTL into fuel or higher value chemicals. We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the necessary generality. In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side. Therefore, the two types of reactions could, in principle, be coupled to upgrade the bio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL. Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process.« less
Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria
Flynn, Jeffrey M.; Ross, Daniel E.; Hunt, Kristopher A.; Bond, Daniel R.; Gralnick, Jeffrey A.
2010-01-01
Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies. PMID:21060736
NASA Astrophysics Data System (ADS)
Brioua, Fathi; Remram, Mohamed; Nechache, Riad; Bourouina, Hicham
2017-11-01
In this work, we investigate a two-dimensional theoretical model for the photon conversion through an integration of the optical and electrical part of multilayer system in a bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT)/6,6-phenyl C61-butyric acid methyl ester (PCBM) blend. The optical properties of the studied structure ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al, such as the exciton generation rate and the electrical field distribution, are predicted at vicinity of the active layer and have been used to solve Poisson and continuity, drift-diffusion equations of the electrical model which characterize the electrical behavior of semiconductor device using finite element method (FEM). The electrical parameters such as power conversion efficiency (PCE), open voltage circuit ( V oc), short-circuit current density ( J sc) and fill factor (FF) are extracted from the current-voltage (J-V) characteristics under illumination and in dark conditions. Highest external quantum efficiency (IPCE), up to 60%, is obtained around 520 nm, while a power conversion efficiency (PCE) value of 3.62% is found to be in good agreement with the literature results. Integration of such theoretical approach into technological applications dealing with optoelectrical material performance will rapidly provide to the user accurate data outputs required for efficient validation of proof-of-concepts.
Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao
2016-05-15
A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD loading, non of which restored SRB and SOB activities for DS-EBPR; only the final novel approach of adding 25 ± 5 mg S/L of external sulfide into the reactor at the beginning of the anoxic phase could efficiently restore the DS-EBPR system from failure. The present study represents a step towards understanding the DS-EBPR metabolism and provides an effective remedial measure for recovering a deteriorating or failed DS-EBPR system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin
2016-01-01
The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Land, Victoria; Parry, Ruth; Seymour, Jane
2017-12-01
Shared decision making (SDM) is generally treated as good practice in health-care interactions. Conversation analytic research has yielded detailed findings about decision making in health-care encounters. To map decision making communication practices relevant to health-care outcomes in face-to-face interactions yielded by prior conversation analyses, and to examine their function in relation to SDM. We searched nine electronic databases (last search November 2016) and our own and other academics' collections. Published conversation analyses (no restriction on publication dates) using recordings of health-care encounters in English where the patient (and/or companion) was present and where the data and analysis focused on health/illness-related decision making. We extracted study characteristics, aims, findings relating to communication practices, how these functioned in relation to SDM, and internal/external validity issues. We synthesised findings aggregatively. Twenty-eight publications met the inclusion criteria. We sorted findings into 13 types of communication practices and organized these in relation to four elements of decision-making sequences: (i) broaching decision making; (ii) putting forward a course of action; (iii) committing or not (to the action put forward); and (iv) HCPs' responses to patients' resistance or withholding of commitment. Patients have limited opportunities to influence decision making. HCPs' practices may constrain or encourage this participation. Patients, companions and HCPs together treat and undertake decision making as shared, though to varying degrees. Even for non-negotiable treatment trajectories, the spirit of SDM can be invoked through practices that encourage participation (eg by bringing the patient towards shared understanding of the decision's rationale). © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.
Duff, Kevin; Suhrie, Kayla R; Dalley, Bonnie C A; Anderson, Jeffrey S; Hoffman, John M
2018-06-08
Within neuropsychology, a number of mathematical formulae (e.g. reliable change index, standardized regression based) have been used to determine if change across time has reliably occurred. When these formulae have been compared, they often produce different results, but 'different' results do not necessarily indicate which formulae are 'best.' The current study sought to further our understanding of change formulae by comparing them to clinically relevant external criteria (amyloid deposition and hippocampal volume). In a sample of 25 older adults with varying levels of cognitive intactness, participants were tested twice across one week with a brief cognitive battery. Seven different change scores were calculated for each participant. An amyloid PET scan (to get a composite of amyloid deposition) and an MRI (to get hippocampal volume) were also obtained. Deviation-based change formulae (e.g. simple discrepancy score, reliable change index with or without correction for practice effects) were all identical in their relationship to the two neuroimaging biomarkers, and all were non-significant. Conversely, regression-based change formulae (e.g. simple and complex indices) showed stronger relationships to amyloid deposition and hippocampal volume. These results highlight the need for external validation of the various change formulae used by neuropsychologists in clinical settings and research projects. The findings also preliminarily suggest that regression-based change formulae may be more relevant than deviation-based change formulae in this context.
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
NASA Astrophysics Data System (ADS)
Morioka, Yasuki; Nakata, Toshihiko
In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.
Burris, Silas E.; Brown, Danielle D.
2014-01-01
Narratives, also called stories, can be found in conversations, children's play interactions, reading material, and television programs. From infancy to adulthood, narrative comprehension processes interpret events and inform our understanding of physical and social environments. These processes have been extensively studied to ascertain the multifaceted nature of narrative comprehension. From this research we know that three overlapping processes (i.e., knowledge integration, goal structure understanding, and causal inference generation) proposed by the constructionist paradigm are necessary for narrative comprehension, narrative comprehension has a predictive relationship with children's later reading performance, and comprehension processes are generalizable to other contexts. Much of the previous research has emphasized internal and predictive validity; thus, limiting the generalizability of previous findings. We are concerned these limitations may be excluding underrepresented populations from benefits and implications identified by early comprehension processes research. This review identifies gaps in extant literature regarding external validity and argues for increased emphasis on externally valid research. We highlight limited research on narrative comprehension processes in children from low-income and minority populations, and argue for changes in comprehension assessments. Specifically, we argue both on- and off-line assessments should be used across various narrative types (e.g., picture books, televised narratives) with traditionally underserved and underrepresented populations. We propose increasing the generalizability of narrative comprehension processes research can inform persistent reading achievement gaps, and have practical implications for how children learn from narratives. PMID:24659973
Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop
2018-02-21
Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.
NASA Astrophysics Data System (ADS)
Roohollahi, Hossein; Halladj, Rouein; Askari, Sima; Yaripour, Fereydoon
2018-06-01
SAPO-34/AlMCM-41, as a new hierarchical nanocomposite was successfully synthesized via hydrothermal and dry-gel conversion. In an experimental and statistical study, effect of five input parameters including synthesis period, drying temperature, NaOH/Si, water/dried-gel and SAPO% were investigated on range-order degree of mesochannels and the relative crystallinity. X-ray diffraction (XRD) patterns were recorded to characterize the ordered AlMCM-41 and crystalline SAPO-34 structures. Nitrogen adsorption-desorption technique, scanning electron microscopy (SEM), field-emission SEM (FESEM) equipped with an energy-dispersive X-ray spectroscopy (EDS-Map) and transmission electron microscopy (TEM) were used to study the textural properties, morphology and surface elemental composition. Two reduced polynomials were fitted to the responses with good precision. Further, based on analysis of variances, SAPO% and time duration of dry-gel conversion were observed as the most effective parameters on the composite structure. The hierarchical porosity, narrow pore size distribution, high external surface area and large specific pore volume were of interesting characteristics for this novel nanocomposite.
Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu
2014-03-01
Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. Copyright © 2013 Elsevier Ltd. All rights reserved.
Colloidal quantum dot solar cells exploiting hierarchical structuring.
Labelle, André J; Thon, Susanna M; Masala, Silvia; Adachi, Michael M; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H; Fratalocchi, Andrea; Sargent, Edward H
2015-02-11
Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.
Ricciardi, Maria; Passarini, Fabrizio; Capacchione, Carmine; Proto, Antonio; Barrault, Joel; Cucciniello, Raffaele; Cespi, Daniele
2018-04-14
The selective preparation of monoalkylglyceryl ethers (MAGEs) is a task for researchers owing to their broad range of applications. In this work, green feedstocks such as glycidol and alcohols were used to prepare MAGEs under mild reaction conditions (80 °C, 3 h, 0.5 mol % catalyst) in the presence of acid heterogeneous catalysts. Nafion shows the best performances in terms of conversion and selectivity to MAGES and also high stability. A comparison of the environmental performances with the most consolidated pathway from glycerol has shown that the usage of glycidol (recovered as a value-added product from Epicerol process) and Nafion leads to a lower impact on ecosystems. In addition, results achieved from a simplified socio-economic analysis show that the innovative route here proposed has potential (at the laboratory scale) of enhancing potential gains and of reducing the social implications resulting from externalities associated with environmental impacts (e.g., CO 2 equivalents). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Shen, Hong-Lie; Yue, Zhi-Hao; Jiang, Feng; Wu, Tian-Ru; Pan, Yuan-Yuan
2013-01-01
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density—voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
Carnot's cycle for small systems: Irreversibility and cost of operations
NASA Astrophysics Data System (ADS)
Sekimoto, Ken; Takagi, Fumiko; Hondou, Tsuyoshi
2000-12-01
In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the recently developed framework of the energetics of stochastic processes (called ``stochastic energetics'') to reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external ``macroscopic'' operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy converters in the near future.
[H2O ortho-para spin conversion in aqueous solutions as a quantum factor of Konovalov paradox].
Pershin, S M
2014-01-01
Recently academician Konovalov and co-workers observed an increase in electroconductivity and biological activity simultaneously with diffusion slowing (or nanoobject diameter increasing) and extremes of other parameters (ζ-potential, surface tension, pH, optical activity) in low concentration aqueous solutions. This phenomenon completely disappeared when samples were shielded against external electromagnetic fields by a Faraday cage. A conventional theory of water and water solutions couldn't explain "Konovalov paradox" observed in numerous experiments (representative sampling about 60 samples and 7 parameters). The new approach was suggested to describe the physics of water and explain "Konovalov paradox". The proposed concept takes into account the quantum differences of ortho-para spin isomers of H2O in bulk water (rotational spin-selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats and spin conversion induced in the presence of a resonant electromagnetic radiation). A size-dependent self-assembly of amorphous complexes of H2O molecules more than 275 leading to the ice Ih structure observed in the previous experiments supports this concept.
A semiconductor nanowire Josephson junction microwave laser
NASA Astrophysics Data System (ADS)
Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo
We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to < 10 kHz and real time analysis of the emission statistics shows above threshold lasing with a power conversion efficiency > 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.
Generation of Electrical Power from Stimulated Muscle Contractions Evaluated
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.
2004-01-01
This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.
Bates, Richard B.; Ghoniem, Ahmed F.; Jablonski, Whitney S.; ...
2017-02-02
During fluidized bed biomass gasification, complex gas-solid mixing patterns and numerous chemical and physical phenomena make identification of optimal operating conditions challenging. In this work, a parametric experimental campaign was carried out alongside the development of a coupled reactor network model which successfully integrates the individually validated sub-models to predict steady-state reactor performance metrics and outputs. The experiments utilized an integrated gasification system consisting of an externally-heated, bench-scale, 4-in., 5 kWth, fluidized bed steam/air blown gasifier fed with woody biomass equipped with a molecular beam mass spectrometer to directly measure tar species. The operating temperature (750-850°C) and air/fuel equivalence ratiomore » (ER = 0-0.157) were independently varied to isolate their effects. Elevating temperature is shown to improve the char gasification rate and reduce tar concentrations. In conclusion, air strongly impacts the composition of tar, accelerating the conversion of lighter polycyclic-aromatic hydrocarbons into soot precursors, while also improving the overall carbon conversion.« less
High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64.
Zhang, Zheng; Li, Xiaowei; Xia, Xiaohong; Wang, Zhuo; Huang, Zhongbing; Lei, Binglong; Gao, Yun
2017-09-07
Bismuth-based solar cells have exhibited some advantages over lead perovskite solar cells for nontoxicity and superior stability, which are currently two main concerns in the photovoltaic community. As for the perovskite-related compound (CH 3 NH 3 ) 3 Bi 2 I 9 applied for solar cells, the conversion efficiency is severely restricted by the unsatisfactory photoactive film quality. Herein we report a novel two-step approach- high-vacuum BiI 3 deposition and low-vacuum homogeneous transformation of BiI 3 to (CH 3 NH 3 ) 3 Bi 2 I 9 -for highly compact, pinhole-free, large-grained films, which are characterized with absorption coefficient, trap density of states, and charge diffusion length comparable to those of some lead perovskite analogues. Accordingly, the solar cells have realized a record power conversion of efficiency of 1.64% and also a high external quantum efficiency approaching 60%. Our work demonstrates the potential of (CH 3 NH 3 ) 3 Bi 2 I 9 for highly efficient and long-term stable solar cells.
Charging a capacitor from an external fluctuating potential using a single conical nanopore.
Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador
2015-04-01
We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5-3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes.
Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore
Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador
2015-01-01
We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. PMID:25830563
Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Joyce, G.; Montgomery, D.
1977-01-01
Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wavenumbers simultaneously with a cascade of mean square vector potential to lower wavenumbers, leading to an omni-directional magnetic energy spectrum.
NASA Technical Reports Server (NTRS)
Watts, Michael E.
1991-01-01
The Acoustic Laboratory Data Acquisition System (ALDAS) is an inexpensive, transportable means to digitize and analyze data. The system is based on the Macintosh 2 family of computers, with internal analog-to-digital boards providing four channels of simultaneous data acquisition at rates up to 50,000 samples/sec. The ALDAS software package, written for use with rotorcraft acoustics, performs automatic acoustic calibration of channels, data display, two types of cycle averaging, and spectral amplitude analysis. The program can use data obtained from internal analog-to-digital conversion, or discrete external data imported in ASCII format. All aspects of ALDAS can be improved as new hardware becomes available and new features are introduced into the code.
Concept report: Microprocessor control of electrical power system
NASA Technical Reports Server (NTRS)
Perry, E.
1977-01-01
An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.
NASA Astrophysics Data System (ADS)
Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young
2015-08-01
Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.
Brown, Richard S.; Deng, Z. Daniel; Cook, Katrina V.; Pflugrath, Brett D.; Li, Xinya; Fu, Tao; Martinez, Jayson J.; Li, Huidong; Trumbo, Bradly A.; Ahmann, Martin L.; Seaburg, Adam G.
2013-01-01
Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this. PMID:24204947
Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G
2013-01-01
Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teter, Sarah A
Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000-more » 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0.5 kg kettle reactors) was performed to compare the starting enzyme mixture CZP00005 with CTec3 alone; these results indicated a 1.9X dose- reduction for 80% conversion. The CTec3 composition does not include the best available enzyme components from the DECREASE effort. While these components are not yet available in a commercial product, experimental mixtures were assayed in a smaller scale assay using DECREASE PCS, at high solids loadings (21.5% TS). The results indicated that the newer mixtures required 2.9X-less enzyme for 90% conversion, and 3.2X-less enzyme for 80% conversion, relative to the starting enzyme cocktail. In conclusion, CTec3 delivers a 1.8-1.9X dose reduction on NREL PCS at high solids loadings, and the next generation enzyme from Novozymes will continue to show dramatically improved biochemical performance. CTec3 allows reduced costs today, and the experimental cocktails point to continued biotechnological improvements that will further drive down costs for biorefineries of tomorrow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Eugene R
Quadratic corrections to the metaplectic formulation of mode conversions. In this work we showed how to systematically deal with quadratic corrections beyond the usual linearization of the dispersion matrix at a conversion. The linearization leads to parabolic cylinder functions as the local approximation to the full-wave behavior, but these do not include the variation in amplitude associated with ray refraction in the neighborhood of the conversion. Hence, the region over which they give a good fit to the incoming and outgoing WKB solutions is small. By including higher order corrections it is possible to provide a much more robust matching.more » We also showed that it was possible, in principle, to extend these methods to arbitrary order. A new normal form for mode conversion. This is based upon our earlier NSF-DOE-funded work on ray helicity. We have begun efforts to apply these new ideas in practical ray tracing algorithms. Group theoretical foundation of path integrals and phase space representations of wave problems. Using the symbol theory of N. Zobin, we developed a new understanding of path integrals on phase space. The initial goal was to find practical computational tools for dealing with non-standard mode conversions. Along the way we uncovered a new way to represent wave functions directly on phase space without the intermediary of a Wigner function. We are exploring the use of these ideas for numerical studies of conversion, with the goal of eventually incorporating kinetic effects. Wave packet studies of gyroresonance crossing. In earlier work, Huanchun Ye and Allan Kaufman -- building upon ideas due to Lazar Friedland -- had shown that gyroresonance crossings could be treated as a double conversion. This perspective is one we have used for many of our papers since then. We are now performing a detailed numerical comparison between full-wave and ray tracing approaches in the study of minority-ion gyroresonance crossing. In this study, a fast magnetosonic wave -- supported by a majority-ion species such as deuterium -- crosses the resonance layer associated with a minority species, such as hydrogen. By using wave packets instead of harmonic solutions, it becomes easy to see the evolution in k-space of the minority-ion disturbance, and the time delay for emission of the reflected fast-wave packet. Iterated conversion in a cavity. When mode conversion occurs in a cavity where rays are trapped, multiple conversions will occur and the resulting absorption profile will typically have a complicated spatial dependence due to overlapping interference patterns. The goal of this work is to develop fast and efficient ray-based methods for computing the cavity response to external driving, and to compute the spatial absorption profile. We have introduced a new approach that allows us to visualize in great detail the underlying iterated ray geometry, and should lead to simpler methods for identifying parameter values where global changes occur in the qualitative response (e.g. global bifurcations).« less
Eye movement training is most effective when it involves a task-relevant sensorimotor decision.
Fooken, Jolande; Lalonde, Kathryn M; Mann, Gurkiran K; Spering, Miriam
2018-04-01
Eye and hand movements are closely linked when performing everyday actions. We conducted a perceptual-motor training study to investigate mutually beneficial effects of eye and hand movements, asking whether training in one modality benefits performance in the other. Observers had to predict the future trajectory of a briefly presented moving object, and intercept it at its assumed location as accurately as possible with their finger. Eye and hand movements were recorded simultaneously. Different training protocols either included eye movements or a combination of eye and hand movements with or without external performance feedback. Eye movement training did not transfer across modalities: Irrespective of feedback, finger interception accuracy and precision improved after training that involved the hand, but not after isolated eye movement training. Conversely, eye movements benefited from hand movement training or when external performance feedback was given, thus improving only when an active interceptive task component was involved. These findings indicate only limited transfer across modalities. However, they reveal the importance of creating a training task with an active sensorimotor decision to improve the accuracy and precision of eye and hand movements.
THE ANATOMY OF A LONG GAMMA-RAY BURST: A SIMPLE CLASSIFICATION SCHEME FOR THE EMISSION MECHANISM(S)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bégué, D.; Burgess, J. Michael, E-mail: jamesb@kth.se, E-mail: damienb@kth.se
2016-03-20
Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were dedicated to independently treating these three mechanisms and arguing for a sole, unique origin of the prompt emission of GRBs. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected inmore » the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values, and finally, photospheric emission for large values. We present a unified framework for the emission mechanisms of GRBs with easily testable predictions for each process.« less
Design of resolution/power controllable Asynchronous Sigma-Delta Modulator
NASA Astrophysics Data System (ADS)
Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.
2016-12-01
This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.
Storage and growth of denitrifiers in aerobic granules: part I. model development.
Ni, Bing-Jie; Yu, Han-Qing
2008-02-01
A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established. (c) 2007 Wiley Periodicals, Inc.
A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.
Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun
2016-05-15
In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced proton acceleration in an applied longitudinal magnetic field
Arefiev, A.; Toncian, T.; Fiksel, G.
2016-10-31
Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.
1995-10-01
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.
1995-09-15
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells
Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari; ...
2018-05-29
The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less
Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari
The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less
Kemp, G. E.; Colvin, J. D.; Blue, B. E.; ...
2016-10-20
Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser.more » Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.« less
Origin of crashes in three US stock markets: shocks and bubbles
NASA Astrophysics Data System (ADS)
Johansen, Anders
2004-07-01
This paper presents an exclusive classification of the largest crashes in Dow Jones industrial average, SP500 and NASDAQ in the past century. Crashes are objectively defined as the top-rank filtered drawdowns (loss from the last local maximum to the next local minimum disregarding noise fluctuations), where the size of the filter is determined by the historical volatility of the index. It is shown that all crashes can be linked to either an external shock, e.g., outbreak of war, or a log-periodic power law (LPPL) bubble with an empirically well-defined complex value of the exponent. Conversely, with one sole exception all previously identified LPPL bubbles are followed by a top-rank drawdown. As a consequence, the analysis presented suggest a one-to-one correspondence between market crashes defined as top-rank filtered drawdowns on one hand and surprising news and LPPL bubbles on the other. We attribute this correspondence to the efficient market hypothesis effective on two quite different time scales depending on whether the market instability the crash represent is internally or externally generated.
Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph
2012-03-01
Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.
High frequency signal acquisition and control system based on DSP+FPGA
NASA Astrophysics Data System (ADS)
Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong
2017-10-01
This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.
Comparative recruitment dynamics of Alewife and Bloater in Lakes Michigan and Huron
Collingsworth, Paris D.; Bunnell, David B.; Madenjian, Charles P.; Riley, Stephen C.
2014-01-01
The predictive power of recruitment models often relies on the identification and quantification of external variables, in addition to stock size. In theory, the identification of climatic, biotic, or demographic influences on reproductive success assists fisheries management by identifying factors that have a direct and reproducible influence on the population dynamics of a target species. More often, models are constructed as one-time studies of a single population whose results are not revisited when further data become available. Here, we present results from stock recruitment models for Alewife Alosa pseudoharengus and Bloater Coregonus hoyi in Lakes Michigan and Huron. The factors that explain variation in Bloater recruitment were remarkably consistent across populations and with previous studies that found Bloater recruitment to be linked to population demographic patterns in Lake Michigan. Conversely, our models were poor predictors of Alewife recruitment in Lake Huron but did show some agreement with previously published models from Lake Michigan. Overall, our results suggest that external predictors of fish recruitment are difficult to discern using traditional fisheries models, and reproducing the results from previous studies may be difficult particularly at low population sizes.
NASA Astrophysics Data System (ADS)
Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza
2018-01-01
Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.
Enhanced proton acceleration in an applied longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arefiev, A.; Toncian, T.; Fiksel, G.
Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less
Hagger, C; Bachevalier, J
1991-10-25
The ability to perform on a concurrent visual discrimination task with 24-h intertrial intervals (24-h ITI task) develops a few weeks earlier in female than in male infant monkeys. To test whether this sex difference was related to the presence of perinatal androgens, plasma testosterone levels were reduced in male infant monkeys by neonatal orchiectomy and increased in neonatally ovariectomized female infant monkeys by treatment with either testosterone propionate (TP) or its reduced metabolite, dihydrotestosterone (DHT). At 3 months of age, the animals were tested on the 24-h ITI task and their performance compared with that of age-matched intact male and female monkeys. Orchiectomy which was followed by a slight but visible atrophy of the external genitalia, hastened performance of male infant monkeys to the level of intact infant females. Conversely, androgenization of ovariectomized female infant monkeys given DHT, which had only a slight virilizing effect on the external genitalia, showed the learning of these female infants to the rate of intact male infant monkeys. Curiously, although TP treatment in ovariectomized female infant monkeys was more effective than DHT in virilizing the external genitalia, it failed to slow the rate of learning. This dissociation between the effects of TP and DHT on external genital organs and learning abilities is discussed in terms of possible differences in dose-dependent, time-dependent, and receptor-binding mechanisms of the two androgens. The present study provides further evidence that early androgen secretions affect the organization not only of brain structures related to primary sexual characteristics but also of those related to learning abilities.
Carrión, Ricardo E.; Cornblatt, Barbara A.; Burton, Cynthia Z.; Tso, Ivy F; Auther, Andrea; Adelsheim, Steven; Calkins, Roderick; Carter, Cameron S.; Niendam, Tara; Taylor, Stephan F.; McFarlane, William R.
2016-01-01
Objective In the current issue, Cannon and colleagues, as part of the second phase of the North American Prodrome Longitudinal Study (NAPLS2), report on a risk calculator for the individualized prediction of developing a psychotic disorder in a 2-year period. The present study represents an external validation of the NAPLS2 psychosis risk calculator using an independent sample of subjects at clinical high risk for psychosis collected as part of the Early Detection, Intervention, and Prevention of Psychosis Program (EDIPPP). Methods 176 subjects with follow-up (from the total EDIPPP sample of 210) rated as clinical high-risk (CHR) based on the Structured Interview for Prodromal Syndromes were used to construct a new prediction model with the 6 significant predictor variables in the NAPLS2 psychosis risk calculator (unusual thoughts, suspiciousness, Symbol Coding, verbal learning, social functioning decline, baseline age, and family history). Discrimination performance was assessed with the area under the receiver operating curve (AUC). The NAPLS2 risk calculator was then used to generate a psychosis risk estimate for each case in the external validation sample. Results The external validation model showed good discrimination, with an AUC of 79% (95% CI 0.644–0.937). In addition, the personalized risk generated by the NAPLS calculator provided a solid estimation of the actual conversion outcome in the validation sample. Conclusions In the companion papers in this issue, two independent samples of CHR subjects converge to validate the NAPLS2 psychosis risk calculator. This prediction calculator represents a meaningful step towards early intervention and personalized treatment of psychotic disorders. PMID:27363511
Calculation of the store house worker dose in a lost wax foundry using MCNP-4C.
Alegría, Natalia; Legarda, Fernando; Herranz, Margarita; Idoeta, Raquel
2005-01-01
Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a silicaceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the silicaceous shell. These sands have varying concentrations of natural radionuclides: 238U, 232Th and 235U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This is the way to obtain a function giving dose rate around the source.
2017-01-01
For a bilingual human, every utterance requires a choice about which language to use. This choice is commonly regarded as part of general executive control, engaging prefrontal and anterior cingulate cortices similarly to many types of effortful task switching. However, although language control within artificial switching paradigms has been heavily studied, the neurobiology of natural switching within socially cued situations has not been characterized. Additionally, although theoretical models address how language control mechanisms adapt to the distinct demands of different interactional contexts, these predictions have not been empirically tested. We used MEG (RRID: NIFINV:nlx_inv_090918) to investigate language switching in multiple contexts ranging from completely artificial to the comprehension of a fully natural bilingual conversation recorded “in the wild.” Our results showed less anterior cingulate and prefrontal cortex involvement for more natural switching. In production, voluntary switching did not engage the prefrontal cortex or elicit behavioral switch costs. In comprehension, while laboratory switches recruited executive control areas, fully natural switching within a conversation only engaged auditory cortices. Multivariate pattern analyses revealed that, in production, interlocutor identity was represented in a sustained fashion throughout the different stages of language planning until speech onset. In comprehension, however, a biphasic pattern was observed: interlocutor identity was first represented at the presentation of the interlocutor and then again at the presentation of the auditory word. In all, our findings underscore the importance of ecologically valid experimental paradigms and offer the first neurophysiological characterization of language control in a range of situations simulating real life to various degrees. SIGNIFICANCE STATEMENT Bilingualism is an inherently social phenomenon, interactional context fully determining language choice. This research addresses the neural mechanisms underlying multilingual individuals' ability to successfully adapt to varying conversational contexts both while speaking and listening. Our results showed that interactional context critically determines language control networks' engagement: switching under external constraints heavily recruited prefrontal control regions, whereas natural, voluntary switching did not. These findings challenge conclusions derived from artificial switching paradigms, which suggested that language switching is intrinsically effortful. Further, our results predict that the so-called bilingual advantage should be limited to individuals who need to control their languages according to external cues and thus would not occur by virtue of an experience in which switching is fully free. PMID:28821648
Assembly and mechanosensory function of focal adhesions: experiments and models.
Bershadsky, Alexander D; Ballestrem, Christoph; Carramusa, Letizia; Zilberman, Yuliya; Gilquin, Benoit; Khochbin, Saadi; Alexandrova, Antonina Y; Verkhovsky, Alexander B; Shemesh, Tom; Kozlov, Michael M
2006-04-01
Initial integrin-mediated cell-matrix adhesions (focal complexes) appear underneath the lamellipodia, in the regions of the "fast" centripetal flow driven by actin polymerization. Once formed, these adhesions convert the flow behind them into a "slow", myosin II-driven mode. Some focal complexes then turn into elongated focal adhesions (FAs) associated with contractile actomyosin bundles (stress fibers). Myosin II inhibition does not suppress formation of focal complexes but blocks their conversion into mature FAs and further FA growth. Application of external pulling force promotes FA growth even under conditions when myosin II activity is blocked. Thus, individual FAs behave as mechanosensors responding to the application of force by directional assembly. We proposed a thermodynamic model for the mechanosensitivity of FAs, taking into account that an elastic molecular aggregate subject to pulling forces tends to grow in the direction of force application by incorporating additional subunits. This simple model can explain a variety of processes typical of FA behavior. Assembly of FAs is triggered by the small G-protein Rho via activation of two major targets, Rho-associated kinase (ROCK) and the formin homology protein, Dia1. ROCK controls creation of myosin II-driven forces, while Dia1 is involved in the response of FAs to these forces. Expression of the active form of Dia1, allows the external force-induced assembly of mature FAs, even in conditions when Rho is inhibited. Conversely, downregulation of Dia1 by siRNA prevents FA maturation even if Rho is activated. Dia1 and other formins cap barbed (fast growing) ends of actin filaments, allowing insertion of the new actin monomers. We suggested a novel mechanism of such "leaky" capping based on an assumption of elasticity of the formin/barbed end complex. Our model predicts that formin-mediated actin polymerization should be greatly enhanced by application of external pulling force. Thus, the formin-actin complex might represent an elementary mechanosensing device responding to force by enhancement of actin assembly. In addition to its role in actin polymerization, Dia1 seems to be involved in formation of links between actin filaments and microtubules affecting microtubule dynamics. Alpha-tubulin deacetylase HDAC6 cooperates with Dia1 in formation of such links. Since microtubules are known to promote FA disassembly, the Dia1-mediated effect on microtubule dynamics may possibly play a role in the negative feedback loop controlling size and turnover of FAs.
Ryuzaki, Sou; Onoe, Jun
2013-01-01
Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.
PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique
NASA Astrophysics Data System (ADS)
Fernandes, M.; Vygranenko, Y.; Vieira, M.
2015-05-01
Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.
Potential of sustainable hierarchical zeolites in the valorization of α-pinene.
Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F
2015-04-13
In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terahertz difference frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2017-02-01
We demonstrate that an application of a III-V-on-silicon hybrid concept to terahertz (THz) Cherenkov difference frequency generation (DFG) quantum cascade laser (QCL) sources (THz DFG-QCLs) can dramatically improve THz output power and mid-infrared-to-THz conversion efficiency. Completely processed THz DFG-QCLs grown on a 660-μm-thick native InP substrate are transfer-printed onto a 1-mm-thick high-resistive Si substrate using a 100-nm-thick SU-8 as an adhesive layer. Room temperature device performance of the reference InP and hybrid Si THz DFG-QCLs of the same ridge width (22 μm) and cavity length (4.2 mm) have been experimentally compared. The target THz frequency of 3.5 THz is selected for both devices using the dual-period first order surface gratings to select the mid-infrared pump wavelength of 994 cm-1 and 1110 cm-1. At the maximum bias current, the reference InP and hybrid Si devices produced THz power of 50 μW and 270 μW, respectively. The mid-infrared-to-THz conversion efficiency corresponds to 60 μW/W2 and 480 μW/W2, respectively, resulting in 5 times higher THz power and 8 times higher conversion efficiency from the best-performing hybrid devices. A hybrid Si device integrated in a Littrow external-cavity setup showed wavelength tuning from 1.3 THz to 4.3 THz with beam-steering free operation.
Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach
Kjellberg, Matti A.; Lönnfors, Max; Slotte, J. Peter; Mattjus, Peter
2015-01-01
Ceramides can be delivered to cultured cells without solvents in the form of complexes with cholesteryl phosphocholine. We have analysed the delivery of three different radiolabeled D-erythro-ceramides (C6-Cer, C10-Cer and C16-Cer) to HeLa cells, and followed their metabolism as well as the cell viability. We found that all three ceramides were successfully taken up by HeLa cells when complexed to CholPC in an equimolar ratio, and show that the ceramides show different rates of cellular uptake and metabolic fate. The C6-Cer had the highest incorporation rate, followed by C10-Cer and C16-Cer, respectively. The subsequent effect on cell viability strongly correlated with the rate of incorporation, where C6-Cer had the strongest apoptotic effects. Low-dose (1 μM) treatment with C6-Cer favoured conversion of the precursor to sphingomyelin, whereas higher concentrations (25–100 μM) yielded increased conversion to C6-glucosylceramide. Similar results were obtained for C10-Cer. In the lower-dose C16-Cer experiments, most of the precursor was degraded, whereas at high-dose concentrations the precursor remained un-metabolized. Using this method, we demonstrate that ceramides with different chain lengths clearly exhibit varying rates of cellular uptake. The cellular fate of the externally delivered ceramides are clearly connected to their rate of incorporation and their subsequent effects on cell viability may be in part determined by their chain length. PMID:26599810
Ryuzaki, Sou; Onoe, Jun
2013-01-01
Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells. PMID:23853702
Lyman alpha radiation in external galaxies
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Mckee, Christopher F.
1990-01-01
The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.
Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.
Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier
2018-06-01
To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.
Tang, Dianping; Zhang, Bing; Liu, Bingqian; Chen, Guonan; Lu, Minghua
2014-05-15
A new digital multimeter (DMM)-based immunosensing system was designed for quantitative monitoring of biomarker (prostate-specific antigen, PSA used in this case) by coupling with an external capacitor and an enzymatic catalytic reaction. The system consisted of a salt bridge-linked reaction cell and a capacitor/DMM-joined electronic circuit. A sandwich-type immunoreaction with target PSA between the immobilized primary antibody and glucose oxidase (GOx)-labeled detection antibody was initially carried out in one of the two half-cells. Accompanying the sandwiched immunocomplex, the conjugated GOx could catalyze the oxidation of glucose, simultaneously resulting in the conversion of [Fe(CN)6](3-) to [Fe(CN)6](4-). The difference in the concentrations of [Fe(CN)6](3-)/[Fe(CN)6](4-) in two half-cells automatically produced a voltage that was utilized to charge an external capacitor. With the closing circuit switch, the capacitor discharged through the DMM, which could provide a high instantaneous current. Under the optimal conditions, the resulting currents was indirectly proportional to the concentration of target PSA in the dynamic range of 0.05-7 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1). The reproducibility, precision, and selectivity were acceptable. In addition, the methodology was validated by analyzing 12 clinical serum specimens, receiving a good accordance with the referenced values for the detection of PSA. Copyright © 2013 Elsevier B.V. All rights reserved.
A reconfigurable image tube using an external electronic image readout
NASA Astrophysics Data System (ADS)
Lapington, J. S.; Howorth, J. R.; Milnes, J. S.
2005-08-01
We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.
Farji-Brener, Alejandro G; Elizalde, Luciana; Fernández-Marín, Hermógenes; Amador-Vargas, Sabrina
2016-05-25
Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions. © 2016 The Author(s).
Farji-Brener, Alejandro G.; Elizalde, Luciana; Amador-Vargas, Sabrina
2016-01-01
Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions. PMID:27226469
The fragmentation of ethanol cation under an electric field: An ab initio/RRKM study
NASA Astrophysics Data System (ADS)
Lu, Hsiu-Feng; Li, F.-Y.; Lin, Chun-Chin; Nagaya, K.; Chao, Ito; Lin, S. H.
2007-08-01
We present a theoretical study of ethanol cation under an electric field due to the existence of laser field in order to understand the influence of electric field on the mass spectrum of ethanol. The electric field was applied to the four major reaction channels of an ethanol cation, such as the conversion between C 2H 5OH + and c-C 2H 5OH +, CH 3-elimination and two α-H-eliminations, respectively. The correlation between product distribution and field strength is quite complex due to the different responses of the reactants and transition states toward the external electric field. This makes the product distribution change as field strength varies.
Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.
Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping
2018-01-15
Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
Transferable Output ASCII Data (TOAD) editor version 1.0 user's guide
NASA Technical Reports Server (NTRS)
Bingel, Bradford D.; Shea, Anne L.; Hofler, Alicia S.
1991-01-01
The Transferable Output ASCII Data (TOAD) editor is an interactive software tool for manipulating the contents of TOAD files. The TOAD editor is specifically designed to work with tabular data. Selected subsets of data may be displayed to the user's screen, sorted, exchanged, duplicated, removed, replaced, inserted, or transferred to and from external files. It also offers a number of useful features including on-line help, macros, a command history, an 'undo' option, variables, and a full compliment of mathematical functions and conversion factors. Written in ANSI FORTRAN 77 and completely self-contained, the TOAD editor is very portable and has already been installed on SUN, SGI/IRIS, and CONVEX hosts.
Combustion pinhole-camera system
Witte, A.B.
1982-05-19
A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.
Combustion pinhole camera system
Witte, A.B.
1984-02-21
A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.
Combustion pinhole camera system
Witte, Arvel B.
1984-02-21
A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.
“I Don’t Have a Problem With It, But Other Guys Do”
Ricks, Janelle M.; Geter, Angelica; Mcgladrey, Margaret; Crosby, Richard A.; Mena, Leandro A.; Ottmar, Jessica M.
2016-01-01
Condom negotiation among young Black men who have sex with men in the Southern United States was explored using the theory of reasoned action. Fifty-four (18- to 29-year-old) males participated in nine focus group interviews. Discussions elicited condom use and negotiation attitudes, beliefs and social norms. Positive personal attitudes (respect of self, personal health concerns) and high negotiation self-efficacy was emphasized. Conversely, social norms revealed non-prioritized condom use behavior. Divergence between individual and community indicates theoretical models targeting sexual communication must address external factors (social, economic, political context), which intersects with individual intentions, attitudes to influence HIV prevalence in this community. PMID:27239484
Low bandgap mid-infrared thermophotovoltaic arrays based on InAs
NASA Astrophysics Data System (ADS)
Krier, A.; Yin, M.; Marshall, A. R. J.; Kesaria, M.; Krier, S. E.; McDougall, S.; Meredith, W.; Johnson, A. D.; Inskip, J.; Scholes, A.
2015-11-01
We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∼3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345-950 °C suitable for electricity generation from waste heat and other applications.
Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources
NASA Astrophysics Data System (ADS)
Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy
2015-02-01
Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.
Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor.
Lahoz, F; Martín, I R; Gil-Rostra, J; Oliva-Ramirez, M; Yubero, F; Gonzalez-Elipe, A R
2016-06-27
A compact and portable optofluidic microresonator has been fabricated and characterized. It is based on a Fabry-Perot microcavity consisting essentially of two tailored dichroic Bragg mirrors prepared by reactive magnetron sputtering deposition. The microresonator has been filled with an ethanol solution of Nile-Blue dye. Infrared laser emission has been measured with a pump threshold as low as 0.12 MW/cm2 and an external energy conversion efficiency of 41%. The application of the device as a temperature and a chemical sensor is demonstrated. Small temperature variations as well as small amount of water concentrations in the liquid laser medium are detected as a shift of the resonant laser modes.
CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control
NASA Astrophysics Data System (ADS)
Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah
2017-06-01
This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.
Neuronal plasticity and antidepressant actions
Castrén, Eero; Hen, René
2013-01-01
Antidepressant treatments enhance plasticity and increase neurogenesis in the adult brain, but it has been unclear how these effects influence mood. We propose that like environmental enrichment and exercise, antidepressant treatments enhance adaptability by increasing structural variability within the nervous system at many levels, from proliferating precursors to immature synaptic contacts. Conversely, sensory deprivation and chronic stress reduce this structural variability. Activity-dependent competition within the mood-related circuits, guided by rehabilitation, then selects for the survival and stabilization of those structures that best represent the internal or external milieu. Increased variability together with competition-mediated selection facilitates normal function, such as pattern separation within the dentate gyrus and other mood-related circuits, thereby enhancing adaptability towards novel experiences. PMID:23380665
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubek, J.; Cejnarova, A.; Platkevic, M.
Single quantum counting pixel detectors of Medipix type are starting to be used in various radiographic applications. Compared to standard devices for digital imaging (such as CCDs or CMOS sensors) they present significant advantages: direct conversion of radiation to electric signal, energy sensitivity, noiseless image integration, unlimited dynamic range, absolute linearity. In this article we describe usage of the pixel device TimePix for image accumulation gated by late trigger signal. Demonstration of the technique is given on imaging coincidence instrumental neutron activation analysis (Imaging CINAA). This method allows one to determine concentration and distribution of certain preselected element in anmore » inspected sample.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-24
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
An Individualized Risk Calculator for Research in Prodromal Psychosis
Cannon, Tyrone D.; Yu, Changhong; Addington, Jean; Bearden, Carrie E.; Cadenhead, Kristin S.; Cornblatt, Barbara A.; Heinssen, Robert; Jeffries, Clark D.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming T.; Walker, Elaine F.; Woods, Scott W.; Kattan, Michael
2016-01-01
Objective About 20–35% of individuals aged 12–30 years who meet criteria for a prodromal risk syndrome convert to psychosis within two years. However, this estimate ignores the fact that clinical high-risk (CHR) cases vary considerably in risk. Here we sought to create a risk calculator that can ascertain the probability of conversion to psychosis in individual patients based on profiles of risk indicators. The high risk category predicted by this calculator can inform research criteria going forward. Method Subjects were 596 CHR participants from the second phase of the North American Prodrome Longitudinal Study (NAPLS 2) who were followed up to the time of conversion to psychosis or last contact (up to 2 years). Our scope was limited to predictors supported by prior studies and readily obtainable in general clinical settings. Time-to-event regression was used to build a multivariate model predicting conversion, with internal validation using 1000 bootstrap resamples. Results The 2-year probability of conversion to psychosis in this sample was 16%. Higher levels of unusual thought content and suspiciousness, greater decline in social functioning, lower verbal learning and memory performance, slower speed of processing, and younger age at baseline each contributed to individual risk for psychosis, while stressful life events, traumas, and family history of schizophrenia were not significant predictors. The multivariate model achieved a Concordance index of 0.71, and was validated in an independent external dataset. The results are instantiated in a web-based risk prediction tool envisioned to be most useful in research protocols involving the psychosis prodrome. Conclusions A risk calculator comparable in accuracy to those for cardiovascular disease and cancer is available to predict individualized conversion risks in newly ascertained CHR cases. Given that the risk calculator can only be validly applied for patients who screen positive on the Structured Clinical Interview for Psychosis Risk Syndromes, which requires training to administer, it's most immediate uses will be in research on psychosis risk factors and in research driven clinical (prevention) trials. PMID:27363508
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Tao, Ling; Wang, Michael
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Qualitative study about the ways teachers react to feedback from resident evaluations
2013-01-01
Background Currently, one of the main interventions that are widely expected to contribute to teachers’ professional development is confronting teachers with feedback from resident evaluations of their teaching performance. Receiving feedback, however, is a double edged sword. Teachers see themselves confronted with information about themselves and are, at the same time, expected to be role models in the way they respond to feedback. Knowledge about the teachers’ responses could be not only of benefit for their professional development, but also for supporting their role modeling. Therefore, research about professional development should include the way teachers respond to feedback. Method We designed a qualitative study with semi-structured individual conversations about feedback reports, gained from resident evaluations. Two researchers carried out a systematic analysis using qualitative research software. The analysis focused on what happened in the conversations and structured the data in three main themes: conversation process, acceptance and coping strategies. Results The result section describes the conversation patterns and atmosphere. Teachers accepted their results calmly, stating that, although they recognised some points of interest, they could not meet with every standard. Most used coping strategies were explaining the results from their personal beliefs about good teaching and attributing poor results to external factors and good results to themselves. However, some teachers admitted that they had poor results because of the fact that they were not “sharp enough” in their resident group, implying that they did not do their best. Conclusions Our study not only confirms that the effects of feedback depend first and foremost on the recipient but also enlightens the meaning and role of acceptance and being a role model. We think that the results justify the conclusion that teachers who are responsible for the day release programmes in the three departments tend to respond to the evaluation results just like human beings do and, at the time of the conversation, are initially not aware of the fact that they are role models in the way they respond to feedback. PMID:23866849
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-01
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.
An Individualized Risk Calculator for Research in Prodromal Psychosis.
Cannon, Tyrone D; Yu, Changhong; Addington, Jean; Bearden, Carrie E; Cadenhead, Kristin S; Cornblatt, Barbara A; Heinssen, Robert; Jeffries, Clark D; Mathalon, Daniel H; McGlashan, Thomas H; Perkins, Diana O; Seidman, Larry J; Tsuang, Ming T; Walker, Elaine F; Woods, Scott W; Kattan, Michael W
2016-10-01
Approximately 20%-35% of individuals 12-35 years old who meet criteria for a prodromal risk syndrome convert to psychosis within 2 years. However, this estimate ignores the fact that clinical high-risk cases vary considerably in risk. The authors sought to create a risk calculator, based on profiles of risk indicators, that can ascertain the probability of conversion to psychosis in individual patients. The study subjects were 596 clinical high-risk participants from the second phase of the North American Prodrome Longitudinal Study who were followed up to the time of conversion to psychosis or last contact (up to 2 years). The predictors examined were limited to those that are supported by previous studies and are readily obtainable in general clinical settings. Time-to-event regression was used to build a multivariate model predicting conversion, with internal validation using 1,000 bootstrap resamples. The 2-year probability of conversion to psychosis was 16%. Higher levels of unusual thought content and suspiciousness, greater decline in social functioning, lower verbal learning and memory performance, slower speed of processing, and younger age at baseline each contributed to individual risk for psychosis. Stressful life events, trauma, and family history of schizophrenia were not significant predictors. The multivariate model achieved a concordance index of 0.71 and, as reported in an article by Carrión et al., published concurrently with this one, was validated in an independent external data set. The results are instantiated in a web-based risk prediction tool envisioned to be most useful in research protocols involving the psychosis prodrome. A risk calculator comparable in accuracy to those for cardiovascular disease and cancer is available to predict individualized conversion risks in newly ascertained clinical high-risk cases. Given that the risk calculator can be validly applied only for patients who screen positive on the Structured Clinical Interview for Psychosis Risk Syndromes, which requires training to administer, its most immediate uses will be in research on psychosis risk factors and in research-driven clinical (prevention) trials.
Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahal, R.; Pantha, B. N.; Li, J.
2014-04-07
InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias,more » setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.« less
Magnon-phonon interconversion in a dynamically reconfigurable magnetic material
NASA Astrophysics Data System (ADS)
Guerreiro, Sergio C.; Rezende, Sergio M.
2015-12-01
The ferrimagnetic insulator yttrium iron garnet (YIG) is an important material in the field of magnon spintronics, mainly because of its low magnetic losses. YIG also has very low acoustic losses, and for this reason the conversion of a state of magnetic excitation (magnons) into a state of lattice vibration (phonons), or vice versa, broadens its possible applications in spintronics. Since the magnetic parameters can be varied by some external action, the magnon-phonon interconversion can be tuned to perform a desired function. We present a quantum theory of the interaction between magnons and phonons in a ferromagnetic material subject to a dynamic variation of the applied magnetic field. It is shown that when the field gradient at the magnetoelastic crossover region is much smaller than a critical value, an initial elastic excitation can be completely converted into a magnetic excitation, or vice versa. This occurs with conservation of linear momentum and spin angular momentum, implying that phonons created by the conversion of magnons have spin angular momentum and carry spin current. It is shown further that if the system is initially in a quantum coherent state, its coherence properties are maintained regardless of the time dependence of the field.
Perl, Emmett E.; Simon, John; Friedman, Daniel J.; ...
2018-01-12
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
An Efficient Framework for Development of Task-Oriented Dialog Systems in a Smart Home Environment.
Park, Youngmin; Kang, Sangwoo; Seo, Jungyun
2018-05-16
In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system's process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an Shaanxi 710024
2015-06-15
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over themore » other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.« less
NASA Astrophysics Data System (ADS)
Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong
2018-02-01
Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.
An Efficient Framework for Development of Task-Oriented Dialog Systems in a Smart Home Environment
Park, Youngmin; Kang, Sangwoo; Seo, Jungyun
2018-01-01
In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system’s process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system. PMID:29772668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Friedman, Daniel J.
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
Owiti, Edgar O; Yang, Hanning; Liu, Peng; Ominde, Calvine F; Sun, Xiudong
2018-02-03
Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.
300 mW of coherent light at 488 nm using a generic approach
NASA Astrophysics Data System (ADS)
Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter
2008-02-01
We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
Pennacchio, Angela; Rossi, Mosè; Raia, Carlo A
2013-07-01
The synthesis of the aroma chemical cinnamyl alcohol (CMO) by means of enzymatic reduction of cinnamaldehyde (CMA) was investigated using NADH-dependent alcohol dehydrogenase from Bacillus stearothermophilus both as an isolated enzyme, and in recombinant Escherichia coli whole cells. The influence of parameters such as reaction time and cofactor, substrate, co-substrate 2-propanol and biocatalyst concentrations on the bioreduction reaction was investigated and an efficient and sustainable one-phase system developed. The reduction of CMA (0.5 g/L, 3.8 mmol/L) by the isolated enzyme occurred in 3 h at 50 °C with 97% conversion, and yielded high purity CMO (≥98%) with a yield of 88% and a productivity of 50 g/genzyme. The reduction of 12.5 g/L (94 mmol/L) CMA by whole cells in 6 h, at 37 °C and no requirement of external cofactor occurred with 97% conversion, 82% yield of 98% pure alcohol and a productivity of 34 mg/gwet cell weight. The results demonstrate the microbial system as a practical and efficient method for larger-scale synthesis of CMO.
Efficient luminescent solar cells based on tailored mixed-cation perovskites
Bi, Dongqin; Tress, Wolfgang; Dar, M. Ibrahim; Gao, Peng; Luo, Jingshan; Renevier, Clémentine; Schenk, Kurt; Abate, Antonio; Giordano, Fabrizio; Correa Baena, Juan-Pablo; Decoppet, Jean-David; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Hagfeldt, Anders
2016-01-01
We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight. PMID:26767196
Charging-free electrochemical system for harvesting low-grade thermal energy
Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi; Loomis, James; Li, Xiaobo; Kraemer, Daniel; Zheng, Guangyuan; Cui, Yi; Chen, Gang
2014-01-01
Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the temperature dependence of electrochemical cell voltage to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying temperature, an electrochemical cell is charged at a lower voltage than discharge, converting thermal energy to electricity. Most TREC systems still require external electricity for charging, which complicates system designs and limits their applications. Here, we demonstrate a charging-free TREC consisting of an inexpensive soluble Fe(CN)63−/4− redox pair and solid Prussian blue particles as active materials for the two electrodes. In this system, the spontaneous directions of the full-cell reaction are opposite at low and high temperatures. Therefore, the two electrochemical processes at both low and high temperatures in a cycle are discharge. Heat-to-electricity conversion efficiency of 2.0% can be reached for the TREC operating between 20 and 60 °C. This charging-free TREC system may have potential application for harvesting low-grade heat from the environment, especially in remote areas. PMID:25404325
Measurement of Dielectron Spectra with the Hadron Blind Detector in PHENIX
NASA Astrophysics Data System (ADS)
Sun, Jiayin
2013-04-01
Dielectrons are an important color neutral probe for studying the evolution of the hot dense medium created by heavy ion collisions at RHIC. At low mass region, dielectron spectra consists mainly of direct photons and light vector mesons, and give insight on the earliest stages of the collisions and thus constrain theoretical models on thermalization and chiral symmetry restoration in heavy ion collisions. At intermediate and high mass region, there are significant contributions from charm and bottom. The region was utilized to measure cross sections of open charm and open bottom, as well as quarkonium suppression. The measurement of the dielectron spectra, however, suffers from an unfavorable signal to background ratio. Random combination of electron positron pairs from unrelated sources, mostly Dalitz decay of π0 and external conversion of decay photon to electrons, are the main contributor to the background. The Hadron Blind Detector, a windowless proximity focusing Cerenkov detector, is designed to reduce this background by identifying electron tracks from photon conversions and π0 Dalitz decays. The detector has been installed and operated in PHENIX in 2009 and 2010, where Au+Au and reference p+p data sets were taken. Results from these data sets will be presented.
NASA Astrophysics Data System (ADS)
Kou, Nannan
Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn grain) into a single primary product (ethanol). The traditional lower efficient (i.e. lower ethanol yield per bushel of corn and higher capital cost) wet-mill plant has a more diverse and adjustable product portfolio i.e. corn syrup, starch, and ethanol. The fact that only the dry-mill corn ethanol plants have bankrupted while the wet-mill corn ethanol plants have survived the late 2000s economy recession suggests that the higher conversion efficiency achieved by the dry-mill production mode has jeopardized operational flexibility, a design operational feature I agree that is indispensable for the biofuel plant's long term profit and viability. Based on the analysis of corn ethanol production, operational flexibility has been proposed as a key strategy for the next generation biofuel plants to improve its lifetime economic performance, as well as to enhance its survivability under external disturbances. This strategy requires the biofuel plant to adopt a flexible feedstock management, making it possible to utilize alternative types of biomass feedstock when the primary feedstock supply is disturbed. Biofuel plants also need to produce a wider range of final products that could meet the preference variation that either comes from the energy market or from the subsidy policy. Aspen Plus model based numerical simulations have been carried out for a thermochemical ethanol plant and a Fischer Tropsch plant (both are assumed to be located in southwest Indiana) to test this strategy under the external disturbances of extreme weather impact, different energy price projections and various subsidy policy combinations. For the thermochemical ethanol plant, effects of extreme weather conditions are mainly evaluated. It has been shown that this strategy could effectively increase the net present value of the biofuel plant and significantly decrease the GHG emission comparing with the traditional single-feedstock strategy, when the extreme weather conditions are considered. It has also been demonstrated that this strategy could significantly decrease the possibility for the biofuel plant to bankrupt. For the Fischer Tropsch diesel plant, all the three external disturbances have been examined. It has been learned that operational flexibility through full capacity power co-generation, flexible feedstock management and hydrogen production by natural gas autothermal reforming could maximize the net present value under the influence of the external disturbances. Thus it is suggested that the future biofuel plant should adopt operational flexibility to increase the lifetime economic performance and to enhance the survivability under the influence of external disturbance.
Graduate student driven efforts to increase diversity of department lecture series
NASA Astrophysics Data System (ADS)
Bryant, R.; Keisling, B. A.
2017-12-01
It is well documented that women and people of color (and especially women of color) remain underrepresented in the geoscience community. As graduate students we noticed this underrepresentation in our department lecture series. Since 2013, 40% of the invited speakers were women and 5% URM, with the majority of the URM scientists coming to campus for an annual special lecture that highlights the work of black geoscientists. Our goals for the 2017-18 lecture series are the following: 1) to increase the percentage of women speakers from 40% to 50% or higher, 2) to increase the participation of URM scientists from one per year to at least one per semester, 3) to expand the established annual special lecture highlighting contributions from black geoscientists from one lecture to four, and 4) to motivate a department-wide conversation surrounding the issues and significance of inclusion and equity in our departmental geoscience community and beyond. Our focus on gender, race, and ethnicity in diversifying the lecture series unfortunately falls short of capturing the full range of perspectives from groups that are underrepresented as defined by the NSF. We see our work as a first step and hope to encourage more conversations about broader diversity. To accomplish our goals, we will seek advice and counsel from scholars in fields like Sociology and Education, as well as pursue external funding to bolster the budget allocated by our department. As graduate students, it is important for us to envision facets of our peers and ourselves reflected in the perspectives, experiences and narratives of prominent speakers brought to campus. We find it therefore important that our department lecture series, a highly visible venue, be more inclusive and representative. Our efforts show that seeking external support and setting achievable goals can lead to better representation of underrepresented groups in such spaces.
Internal versus External Auditory Hallucinations in Schizophrenia: Symptom and Course Correlates
Docherty, Nancy M.; Dinzeo, Thomas J.; McCleery, Amanda; Bell, Emily K.; Shakeel, Mohammed K.; Moe, Aubrey
2015-01-01
Introduction The auditory hallucinations associated with schizophrenia are phenomenologically diverse. “External” hallucinations classically have been considered to reflect more severe psychopathology than “internal” hallucinations, but empirical support has been equivocal. Methods We examined associations of “internal” v. “external” hallucinations with (a) other characteristics of the hallucinations, (b) severity of other symptoms, and (c) course of illness variables, in a sample of 97 stable outpatients with schizophrenia or schizoaffective disorder who experienced auditory hallucinations. Results Patients with internal hallucinations did not differ from those with external hallucinations on severity of other symptoms. However, they reported their hallucinations to be more emotionally negative, distressing, and long-lasting, less controllable, and less likely to remit over time. They also were more likely to experience voices commenting, conversing, or commanding. However, they also were more likely to have insight into the self-generated nature of their voices. Patients with internal hallucinations were not older, but had a later age of illness onset. Conclusions Differences in characteristics of auditory hallucinations are associated with differences in other characteristics of the disorder, and hence may be relevant to identifying subgroups of patients that are more homogeneous with respect to their underlying disease processes. PMID:25530157
NASA Astrophysics Data System (ADS)
Wang, Yuxi; Niu, Shengkai; Hu, Yuantai
2017-06-01
The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.
Chen, Jing-De; Li, Yan-Qing; Zhu, Jingshuai; Zhang, Qianqian; Xu, Rui-Peng; Li, Chi; Zhang, Yue-Xing; Huang, Jing-Sheng; Zhan, Xiaowei; You, Wei; Tang, Jian-Xin
2018-03-01
Rapid progress in the power conversion efficiency (PCE) of polymer solar cells (PSEs) is beneficial from the factors that match the irradiated solar spectrum, maximize incident light absorption, and reduce photogenerated charge recombination. To optimize the device efficiency, a nanopatterned ZnO:Al 2 O 3 composite film is presented as an efficient light- and charge-manipulation layer (LCML). The Al 2 O 3 shells on the ZnO nanoparticles offer the passivation effect that allows optimal electron collection by suppressing charge-recombination loss. Both the increased refractive index and the patterned deterministic aperiodic nanostructure in the ZnO:Al 2 O 3 LCML cause broadband light harvesting. Highly efficient single-junction PSCs for different binary blends are obtained with a peak external quantum efficiency of up to 90%, showing certified PCEs of 9.69% and 13.03% for a fullerene blend of PTB7:PC 71 BM and a nonfullerene blend, FTAZ:IDIC, respectively. Because of the substantial increase in efficiency, this method unlocks the full potential of the ZnO:Al 2 O 3 LCML toward future photovoltaic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gorsche, Christian; Harikrishna, Reghunathan; Baudis, Stefan; Knaack, Patrick; Husar, Branislav; Laeuger, Joerg; Hoffmann, Helmuth; Liska, Robert
2017-05-02
In photopolymerization reactions, mostly multifunctional monomers are employed, as they ensure fast reaction times and good final mechanical properties of the cured materials. Drawing conclusions about the influence of the components and curing conditions on the mechanical properties of the subsequently formed insoluble networks is challenging. Therefore, an in situ observation of chemical and mechanical characteristics during the photopolymerization reaction is desired. By coupling of an infrared spectrometer with a photorheometer, a broad spectrum of different photopolymerizable formulations can be analyzed during the curing reaction. The rheological information (i.e., time to gelation, final modulus, shrinkage force) can be derived from a parallel plate rheometer equipped with a UV- and IR-translucent window (glass for NIR and CaF 2 window for MIR). Chemical information (i.e., conversion at the gel point and final conversion) is gained by monitoring the decrease of the corresponding IR-peak for the reactive monomer unit (e.g., C═C double bond peak for (meth)acrylates, H-S thiol and C═C double bond peak in thiol-ene systems, C-O epoxy peak for epoxy resins). Depending on the relative concentration of reactive functional groups in the sample volume and the intensity of the IR signal, the conversion can be monitored in the near-infrared region (e.g., acrylate double bonds, epoxy groups) or the MIR region (e.g., thiol signal). Moreover, an integrated Peltier element and external heating hood enable the characterization of photopolymerization reactions at elevated temperatures, which also widens the window of application to resins that are waxy or solid at ambient conditions. By switching from water to heavy water, the chemical conversion during photopolymerization of hydrogel precursor formulations can also be examined. Moreover, this device could also represent an analytical tool for a variety of thermally and redox initiated systems.
Rodriguez-Navarro, Carlos; Vettori, Irene; Ruiz-Agudo, Encarnacion
2016-05-24
Nanolimes are alcohol dispersions of Ca(OH)2 nanoparticles used in the conservation of cultural heritage. Although it was believed that Ca(OH)2 particles were inert when dispersed in short-chain alcohols, it has been recently shown that they can undergo transformation into calcium alkoxides. Little is known, however, about the mechanism and kinetics of such a phase transformation as well as its effect on the performance of nanolimes. Here we show that Ca(OH)2 particles formed after lime slaking react with ethanol and isopropanol and partially transform (fractional conversion, α up to 0.08) into calcium ethoxide and isopropoxide, respectively. The transformation shows Arrhenius behavior, with apparent activation energy Ea of 29 ± 4 and 37 ± 6 kJ mol(-1) for Ca-ethoxide and Ca-isopropoxide conversion, respectively. High resolution transmission electron microscopy analyses of reactant and product phases show that the alkoxides replace the crystalline structure of Ca(OH)2 along specific [hkl] directions, preserving the external hexagonal (platelike) morphology of the parent phase. Textural and kinetic results reveal that this pseudomorphic replacement involves a 3D diffusion-controlled deceleratory advancement of the reaction front. The results are consistent with an interface-coupled dissolution-precipitation replacement mechanism. Analysis of the carbonation of Ca(OH)2 particles with different degree of conversion into Ca-ethoxide (α up to 0.08) and Ca-isopropoxide (α up to 0.04) exposed to air (20 °C, 80% relative humidity) reveals that Ca-alkoxides significantly reduce the rate of transformation into cementing CaCO3 and induce the formation of metastable vaterite, as opposed to stable calcite which forms in untransformed Ca(OH)2 samples. Similar effects are obtained when a commercial nanolime partially transformed into Ca-ethoxide is subjected to carbonation. Such effects may hamper/delay the strengthening or consolidation effects of nanolimes, thus having important implications in the conservation of cultural heritage.
Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p.
Martín-Montalvo, Alejandro; González-Mariscal, Isabel; Padilla, Sergio; Ballesteros, Manuel; Brautigan, David L; Navas, Plácido; Santos-Ocaña, Carlos
2011-11-15
CoQ(6) (coenzyme Q(6)) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ(6) (demethoxy-CoQ(6)) into CoQ(6) in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ(6) conversion into CoQ(6). In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser(20), Ser(28) and Thr(32). The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ(6) levels (256%). Conversely, substitution with negatively charged residues decreases CoQ(6) content (57%). These modifications produced in Coq7p also alter the ratio between DMQ(6) and CoQ(6) itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ(6) synthesis.
NASA Astrophysics Data System (ADS)
Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel
2017-04-01
While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.
A finite state machine read-out chip for integrated surface acoustic wave sensors
NASA Astrophysics Data System (ADS)
Rakshit, Sambarta; Iliadis, Agis A.
2015-01-01
A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.
1990-08-01
reference signal 25 5 A METHOD FOR MEASURING LOW-PRF PULSED SIGNALS 28 5.1 Using a NWA with a smaller BPF 28 5.2 Using the HP 8510B external trigger...2nd LO 11Q 3MHz BPF lOkHz BPF Fig. 4: Receiver block diagram The receiver is a double conversion superheterodyne with a 10 kHz wide BandPass Filter... BPF ) in the second IF. This 10 kHz filter is the component that dictates how the HP 8510B responds to pulsed signals. For the pulsed-RF test signal
Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells
Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei
2018-01-01
Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research. PMID:29342950
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica
Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.
Coupling movement and landscape ecology for animal conservation in production landscapes.
Doherty, Tim S; Driscoll, Don A
2018-01-10
Habitat conversion in production landscapes is among the greatest threats to biodiversity, not least because it can disrupt animal movement. Using the movement ecology framework, we review animal movement in production landscapes, including areas managed for agriculture and forestry. We consider internal and external drivers of altered animal movement and how this affects navigation and motion capacities and population dynamics. Conventional management approaches in fragmented landscapes focus on promoting connectivity using structural changes in the landscape. However, a movement ecology perspective emphasizes that manipulating the internal motivations or navigation capacity of animals represents untapped opportunities to improve movement and the effectiveness of structural connectivity investments. Integrating movement and landscape ecology opens new opportunities for conservation management in production landscapes. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza
2017-02-01
In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.
NASA Astrophysics Data System (ADS)
Andreades, Charalampos
The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The fourth section lays out the cost structure of the Mk1 Pebble-Bed Fluoride-salt-cooled High-temperature Reactor (FHR) with the NACC, since the NACC cannot be treated separately from its heat source. The fifth section evaluates the cost structure of a twelve-unit Mk1 FHR and NACC, including capital construction costs, operating costs, fuel and decommissioning costs in bottom up methodology. The sixth section proposes alternative NACC configurations and scales (mobile, remote NACC) or alternative power cycles to the NACC that can be coupled to the FHR (supercritical carbon dioxide Brayton cycle).
AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth.
Hu, Brian R; Fairey, Adrian S; Madhav, Anisha; Yang, Dongyun; Li, Meng; Groshen, Susan; Stephens, Craig; Kim, Philip H; Virk, Navneet; Wang, Lina; Martin, Sue Ellen; Erho, Nicholas; Davicioni, Elai; Jenkins, Robert B; Den, Robert B; Xu, Tong; Xu, Yucheng; Gill, Inderbir S; Quinn, David I; Goldkorn, Amir
2016-05-01
Treatment of prostate cancer (PCa) may be improved by identifying biological mechanisms of tumor growth that directly impact clinical disease progression. We investigated whether genes associated with a highly tumorigenic, drug resistant, progenitor phenotype impact PCa biology and recurrence. Radical prostatectomy (RP) specimens (±disease recurrence, N = 276) were analyzed by qRT-PCR to quantify expression of genes associated with self-renewal, drug resistance, and tumorigenicity in prior studies. Associations between gene expression and PCa recurrence were confirmed by bootstrap internal validation and by external validation in independent cohorts (total N = 675) and in silico. siRNA knockdown and lentiviral overexpression were used to determine the effect of gene expression on PCa invasion, proliferation, and tumor growth. Four candidate genes were differentially expressed in PCa recurrence. Of these, low AXIN2 expression was internally validated in the discovery cohort. Validation in external cohorts and in silico demonstrated that low AXIN2 was independently associated with more aggressive PCa, biochemical recurrence, and metastasis-free survival after RP. Functionally, siRNA-mediated depletion of AXIN2 significantly increased invasiveness, proliferation, and tumor growth. Conversely, ectopic overexpression of AXIN2 significantly reduced invasiveness, proliferation, and tumor growth. Low AXIN2 expression was associated with PCa recurrence after RP in our test population as well as in external validation cohorts, and its expression levels in PCa cells significantly impacted invasiveness, proliferation, and tumor growth. Given these novel roles, further study of AXIN2 in PCa may yield promising new predictive and therapeutic strategies. © 2016 Wiley Periodicals, Inc.
LCA and emergy accounting of aquaculture systems: towards ecological intensification.
Wilfart, Aurélie; Prudhomme, Jehane; Blancheton, Jean-Paul; Aubin, Joël
2013-05-30
An integrated approach is required to optimise fish farming systems by maximising output while minimising their negative environmental impacts. We developed a holistic approach to assess the environmental performances by combining two methods based on energetic and physical flow analysis. Life Cycle Assessment (LCA) is a normalised method that estimates resource use and potential impacts throughout a product's life cycle. Emergy Accounting (EA) refers the amount of energy directly or indirectly required by a product or a service. The combination of these two methods was used to evaluate the environmental impacts of three contrasting fish-farming systems: a farm producing salmon in a recirculating system (RSF), a semi-extensive polyculture pond (PF1) and an extensive polyculture pond (PF2). The RSF system, with a low feed-conversion ratio (FCR = 0.95), had lower environmental impacts per tonne of live fish produced than did the two pond farms, when the effects on climate change, acidification, total cumulative energy demand, land competition and water dependence were considered. However, RSF was clearly disconnected from the surrounding environment and depended highly on external resources (e.g. nutrients, energy). Ponds adequately incorporated renewable natural resources but had higher environmental impacts due to incomplete use of external inputs. This study highlighted key factors necessary for the successful ecological intensification of fish farming, i.e., minimise external inputs, lower the FCR, and increase the use of renewable resources from the surrounding environment. The combination of LCA and EA seems to be a practical approach to address the complexity of optimising biophysical efficiency in aquaculture systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tandukar, Madan; Pavlostathis, Spyros G
2015-12-15
A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weinisch, Lea; Kühner, Steffen; Roth, Robin; Grimm, Maria; Roth, Tamara; Netz, Daili J. A.; Pierik, Antonio J.
2018-01-01
Hypersaline environments pose major challenges to their microbial residents. Microorganisms have to cope with increased osmotic pressure and low water activity and therefore require specific adaptation mechanisms. Although mechanisms have already been thoroughly investigated in the green alga Dunaliella salina and some halophilic yeasts, strategies for osmoadaptation in other protistan groups (especially heterotrophs) are neither as well known nor as deeply investigated as for their prokaryotic counterpart. This is not only due to the recent awareness of the high protistan diversity and ecological relevance in hypersaline systems, but also due to methodological shortcomings. We provide the first experimental study on haloadaptation in heterotrophic microeukaryotes, using the halophilic ciliate Schmidingerothrix salinarum as a model organism. We established three approaches to investigate fundamental adaptation strategies known from prokaryotes. First, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used for the detection, identification, and quantification of intracellular compatible solutes. Second, ion-imaging with cation-specific fluorescent dyes was employed to analyze changes in the relative ion concentrations in intact cells. Third, the effect of salt concentrations on the catalytic performance of S. salinarum malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH) was determined. 1H-NMR spectroscopy identified glycine betaine (GB) and ectoine (Ect) as the main compatible solutes in S. salinarum. Moreover, a significant positive correlation of intracellular GB and Ect concentrations and external salinity was observed. The addition of exogenous GB, Ect, and choline (Ch) stimulated the cell growth notably, indicating that S. salinarum accumulates the solutes from the external medium. Addition of external 13C2-Ch resulted in conversion to 13C2-GB, indicating biosynthesis of GB from Ch. An increase of external salinity up to 21% did not result in an increase in cytoplasmic sodium concentration in S. salinarum. This, together with the decrease in the catalytic activities of MDH and ICDH at high salt concentration, demonstrates that S. salinarum employs the salt-out strategy for haloadaptation. PMID:29357351
Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier
2016-10-01
Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujimura, Maya Sophia; Komasa, Yukako; Kimura, Shinzo; Shibanuma, Akira; Kitamura, Akiko; Jimba, Masamine
2017-01-01
On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0-15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection.
Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium
NASA Technical Reports Server (NTRS)
Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey
2006-01-01
A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long life, limited only by the half-life of Cm-244. A cell having a volume less than 25 cu mm, containing 1 curie of Cm-244 (the curie is a unit of radioactivity equal to 3.7 10(exp 10) disintegrations per second) is expected to deliver a current between 7 and 12 mA, which, at the expected open-circuit potential, would provide a power in the approximate range of 11 to 20 mW.
Nanoscale TiO2 and Fe2O3 Architectures for Solar Energy Conversion Schemes
NASA Astrophysics Data System (ADS)
Sedach, Pavel Anatolyvich
The direct conversion of sunlight into more useable forms of energy has the potential of alleviating the environmental and social problems associated with a dependence on fossil fuels. If solar energy is to be utilized en-masse, however, it must be inexpensive and widely available. In this vein, the focus of this thesis is on nanostructured materials relevant to solar energy conversion and storage. Specifically, this thesis describes the ambient sol-gel synthesis of titanium dioxide (Ti02) nanowires designed for enhanced charge-transfer in solar collection devices, and the synthesis of novel disordered metal-oxide (MOx) catalysts for water oxidation. The introductory chapter of this thesis gives an overview of the various approaches to solar energy conversion. Sol---gel reaction conditions that enable the growth of one-dimensional (1-D) anatase TiO2 nanostructures from fluorine-doped tin oxide (FTO) for photovoltaics (PVs) are described in the second chapter. The generation of these linear nanostructures in the absence of an external bias or template is achieved by using facile experimental conditions (e.g., acetic acid (HOAc) and titanium isopropoxide (Ti(OiPr)4) in anhydrous heptane). The procedure was developed by functionalizing base-treated substrates with Ti-oxide nucleation sites that serve as a foundation for the growth of linear Ti-oxide macromolecules, which upon calcination, render uniform films of randomly oriented anatase TiO2 nanowires. A systematic evaluation of how reaction conditions (e.g., solvent volume, stoichiometry of reagents, substrate base treatment) affect the generation of these TiO 2 films is presented. A photo-organic MO. deposition route (i.e., photochemical metal-organic deposition (PMOD)) used to deposit thin-films of amorphous iron oxide (a-Fe2O3) for water oxidation catalysis is detailed in third chapter. It is shown that the irradiation of a spin-coated metal-organic film produces a film of non-crystalline a-Fe203. It is shown that annealing at various temperatures produces a-Fe 2O3 films with variable electronic properties and catalytic activities in the context of water oxidation. The study revealed that a-Fe2O3 are superior water oxidation catalysts (WOCs) relative to crystalline forms produced by high temperature annealing of the thin-films. This research has important implications in the conversion of sunlight into electricity, and then into hydrogen fuels.
Fenton, Susan H; Benigni, Mary Sue
2014-01-01
The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data.
Listening to Schneiderian Voices: A Novel Phenomenological Analysis
Rosen, Cherise; Chase, Kayla A.; Jones, Nev; Grossman, Linda S.; Gin, Hannah; Sharma, Rajiv P.
2016-01-01
Background/Aims This paper reports on analyses designed to elucidate phenomenological characteristics, content and experience specifically targeting participants with Schneiderian voices conversing/commenting (VC) while exploring difference in clinical presentation and quality of life compared to those with voices not conversing (VNC). Methods This mixed-method investigation of Schneiderian voices included standardized clinical metrics and exploratory phenomenological interviews designed to elicit in-depth information about characteristics, content, meaning and personification of AVHs. Results The subjective experience of VC show a striking pattern of VC that are experienced as internal at initial onset and during longer-term course of illness when compared to the VNC group. Participants in the VC group were more likely to attribute origins of their voices to an external source such as God, telepathic communication, or mediumistic sources. VC and VNC were described as characterological entities that were distinct from self (I/we versus you). We also found an association between VC and positive, cognitive, and depression symptom profile. However, we did not find a significant group difference in overall quality of life. Conclusions The clinical portrait of VC is complex, multisensory, and distinct, and suggests a need for further research into biopsychosocial interface between subjective experience, socioenvironmental constraints, individual psychology, and biological architecture of intersecting symptoms. PMID:27304081
Brown, Patrick R; Lunt, Richard R; Zhao, Ni; Osedach, Timothy P; Wanger, Darcy D; Chang, Liang-Yi; Bawendi, Moungi G; Bulović, Vladimir
2011-07-13
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.
Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun
2014-11-07
Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clovas, A.; Zanthos, S.; Antonopoulos-Domis, M.
2000-03-01
The dose rate conversion factors {dot D}{sub CF} (absorbed dose rate in air per unit activity per unit of soil mass, nGy h{sup {minus}1} per Bq kg{sup {minus}1}) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: (1) The MCNP code of Los Alamos; (2) The GEANT code of CERN; and (3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained bymore » the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the {dot D}{sub CF} values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20--30%) for the low energy photons.« less
Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin
2017-01-01
Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675
InGaAs concentrator cells for laser power converters and tandem cells
NASA Technical Reports Server (NTRS)
Wojtczuk, S.; Vernon, S.; Gagnon, E.
1993-01-01
In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.
Public health evolutionary biology of antimicrobial resistance: priorities for intervention
Baquero, Fernando; Lanza, Val F; Cantón, Rafael; Coque, Teresa M
2015-01-01
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR. PMID:25861381
NASA Technical Reports Server (NTRS)
Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.
2013-01-01
A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.
Guastello, Stephen J; Craven, Joanna; Zygowicz, Karen M; Bock, Benjamin R
2005-07-01
The process by which an initially leaderless group differentiates into one containing leadership and secondary role structures was examined using the swallowtail catastrophe model and principles of selforganization. The objectives were to identify the control variables in the process of leadership emergence in creative problem solving groups and production groups. In the first of two experiments, groups of university students (total N = 114) played a creative problem solving game. Participants later rated each other on leadership behavior, styles, and variables related to the process of conversation. A performance quality measure was included also. Control parameters in the swallowtail catastrophe model were identified through a combination of factor analysis and nonlinear regression. Leaders displayed a broad spectrum of behaviors in the general categories of Controlling the Conversation and Creativity in their role-play. In the second experiment, groups of university students (total N = 197) engaged in a laboratory work experiment that had a substantial production goal component. The same system of ratings and modeling strategy was used along with a work production measure. Leaders in the production task emerged to the extent that they exhibited control over both the creative and production aspects of the task, they could keep tension low, and the externally imposed production goals were realistic.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.
Müller, Roland H.; Rohwerder, Thore; Harms, Hauke
2007-01-01
The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE. PMID:17220260
Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang
2005-03-01
Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.
The Impact of Operating Room Distractions on Stress, Workload, and Teamwork.
Wheelock, Ana; Suliman, Amna; Wharton, Rupert; Babu, E D; Hull, Louise; Vincent, Charles; Sevdalis, Nick; Arora, Sonal
2015-06-01
To investigate whether distractions in the operating room (OR) are associated with higher mental workload and stress, and poorer teamwork among OR personnel. Engaging in multiple tasks can affect performance. There is little research on the effect of distractions on surgical team members' behavior and cognitive processes. Ninety general surgery cases were observed in real time. Cases were assessed by a surgeon and a behavioral scientist using 4 validated tools: OR Distractions Assessment Form, the Observational Teamwork Assessment for Surgery tool, NASA-Task Load Index, and short form of the State Trait Anxiety Inventory. Analysis of variance was performed to evaluate significant differences between teamwork, workload, and stress level among team members. Correlations (Pearson r) were computed to evaluate associations between variables. The most prevalent distractions were those initiated by external staff, followed by case-irrelevant conversations. Case-irrelevant conversations were associated with poorer team performance. Irrelevant conversations initiated by surgeons were associated with lower teamwork in surgeons (across team skills: r = -0.44 to -0.58, P < 0.05 to 0.01) and anesthesiologists (r = -0.38 and r = -0.40, for coordination and leadership; P < 0.05). Equipment-related distractions correlated with higher stress (r = 0.48, P < 0.05) and lower teamwork (across team skills: r = -0.42 to -0.50, P < 0.05) in nurses. Acoustic distractions correlated with higher stress in surgeons (r = 0.32, P < 0.05) and higher workload in anesthesiologists (r = 0.30, P < 0.05). Although some distractions may be inevitable in the OR, they can also be detrimental to the team. A deeper understanding of the effect of distractions on teams and their outcomes can lead to targeted quality improvement.
Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.
King, Paul W
2013-01-01
The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
In the spring and summer of 2015, the Bioenergy Technologies Office (BETO or the Office) of the U.S. Department of Energy (DOE) implemented an external peer review of the projects in its research, development and demonstration (RD&D) portfolio. The Office manages a diverse portfolio of technologies across the spectrum of applied RD&D within the dynamic context of changing budgets and Administration priorities. The Office portfolio is organized according to the biomass-to-bioenergy supply chain—from the feedstock source to the end user (see Figure 1)—with major focus on feedstock supply and biomass conversion. The 2015 Project Peer Review took place March 23-27,more » 2015, outside of Washington, D.C., in Alexandria, Virginia, and evaluated most of the publicly funded projects in BETO’s portfolio. The subsequent Program Management Review took place on June 25, 2015, in Washington, D.C., and provided an Office- level assessment of strategic planning and programmatic initiatives. The peer review process enables external stakeholders to provide feedback on the responsible use of taxpayer funding and develop recommendations for the most efficient and effective ways to accelerate the development of an advanced bioenergy industry. The planning and execution of these reviews was completed over the course of 10 months, and this report includes the results of both events.« less
Life-saving automated external defibrillation in a teenager: a case report
Rey, Corsino; Rodríguez-Nuñez, Antonio; Medina, Alberto; Mayordomo, Juan
2007-01-01
Background Adolescent sudden death during sport participation is commonly due to cardiac causes. Survival is more likely when an automated external defibrillator (AED) is used soon after collapse. Case presentation We describe a case of sudden death in a 14 year old boy with two remarkable points, successful resuscitation at school using an AED and diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). Bystander cardiopulmonary resuscitation (CPR) was immediately started by a witness and 5 minutes after the event the child was placed on an AED monitor that determined he was in a non shockable rhythm, therefore CPR was continued. Two minutes later, the AED monitor detected a shockable rhythm and recommended a shock, which was then administered. One minute after the shock, a palpable pulse was detected and the child began to breathe by himself. Four days after cardiac arrest, the boy was conversing and self-caring. Cardiac magnetic resonance imaging was suggestive of ARVC. Conclusion Ventricular fibrillation secondary to ARVC may be a devastating event and places young patients and athletes at high risk of sudden death. Immediate CPR and AED have been demonstrated to be lifesaving in such events. Therefore, we suggest that schools should have teachers skilled in CPR and accessible AEDs. PMID:17767706
Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere
NASA Technical Reports Server (NTRS)
Singh, Hanwant B. (Editor); Salstein, David A.
1994-01-01
The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
Reactive granular optics for passive tracking of the sun
NASA Astrophysics Data System (ADS)
Frenkel, I.; Niv, A.
2017-08-01
The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.
NASA Astrophysics Data System (ADS)
Engel, Leeya; Van Volkinburg, Kyle R.; Ben-David, Moti; Washington, Gregory N.; Krylov, Slava; Shacham-Diamand, Yosi
2016-04-01
In this paper, we report on the fabrication of a self-sensing electroactive polymer cantilevered bimorph beam actuator and its frequency response. Tip deflections of the beam, induced by applying an AC signal across ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene chlorotrifluoroethylene (P(VDF-TrFE-CTFE)), reached a magnitude of 350μm under a field of ~55MV/m and were recorded externally using a laser Doppler vibrometer (LDV). Deflections were determined simultaneously by applying a sensing model to the voltage measured across the bimorph's integrated layer of piezoelectric polymer polyvinylidene fluoride (PVDF). The sensing model treats the structure as a simple Euler- Bernoulli cantilevered beam with two distributed active elements represented through the use of generalized functions and offers a method through which real time tip deflection can be measured without the need for external visualization. When not being used as a sensing element, the PVDF layer can provide an additional means for actuation of the beam via the converse piezoelectric effect, resulting in bidirectional control of the beam's deflections. Integration of flexible sensing elements together with modeling of the electroactive polymer beam can benefit the developing field of polymer microactuators which have applications in soft robotics as "smart" prosthetics/implants, haptic displays, tools for less invasive surgery, and sensing.
NASA Technical Reports Server (NTRS)
1992-01-01
NASA science publications have used the metric system of measurement since 1970. Although NASA has maintained a metric use policy since 1979, practical constraints have restricted actual use of metric units. In 1988, an amendment to the Metric Conversion Act of 1975 required the Federal Government to adopt the metric system except where impractical. In response to Public Law 100-418 and Executive Order 12770, NASA revised its metric use policy and developed this Metric Transition Plan. NASA's goal is to use the metric system for program development and functional support activities to the greatest practical extent by the end of 1995. The introduction of the metric system into new flight programs will determine the pace of the metric transition. Transition of institutional capabilities and support functions will be phased to enable use of the metric system in flight program development and operations. Externally oriented elements of this plan will introduce and actively support use of the metric system in education, public information, and small business programs. The plan also establishes a procedure for evaluating and approving waivers and exceptions to the required use of the metric system for new programs. Coordination with other Federal agencies and departments (through the Interagency Council on Metric Policy) and industry (directly and through professional societies and interest groups) will identify sources of external support and minimize duplication of effort.
NASA Astrophysics Data System (ADS)
Ni, Qiao; Luo, Yangyang; Li, Mingwu; Yan, Hao
2017-09-01
Structural model for a slender and uniform pipe conveying fluid, with axially moving supports on both ends, immersed in an incompressible fluid, is formulated. Free vibration and stability of the system are studied through numerical calculation. First, the equations of motion of the system are derived in an absolute coordinate system. An "axial added mass coefficient" is adopted to amend the forces caused by the external fluid. Boundary conditions are fixed by using coordinated conversion. Then, numerical results of the natural frequency are obtained via the Galerkin method, both for pinned-pinned and clamped-clamped supports. The critical speeds of supports and several instability types are discussed. Last, the effects of the system parameters on the dynamics and instability of the system are investigated.
STS-114 Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
The major activities of Day 8 for the STS-114 crew of the Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) are a press conference and a conversation with President Bush. The two crews are interviewed by American, Japanese, and Russian media. Discovery crew members on the shuttle's mid-deck review paperwork regarding the impending extravehicular activity (EVA) to remove gap fillers from underneath the orbiter, and the Space Station Remote Manipulator System grapples the External Stowage Platform-2 in the Shuttle's payload bay. Finally, Mission control grants the shuttle crew some time off.
6.5% efficient perovskite quantum-dot-sensitized solar cell.
Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu
2011-10-05
Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.
The Mu2e Solenoid Cold Mass Position Monitor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
The Mu2e Solenoid Cold Mass Position Monitor System
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...
2018-01-23
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film
NASA Astrophysics Data System (ADS)
Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping
2018-04-01
Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.
Miniband-related 1.4–1.8 μm luminescence of Ge/Si quantum dot superlattices
Cirlin, GE; Tonkikh, AA; Zakharov, ND; Werner, P; Gösele, U; Tomm, JW; Elsaesser, T
2006-01-01
The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4–1.8 µm range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 µm.
Gravity fields of the solar system
NASA Technical Reports Server (NTRS)
Zendell, A.; Brown, R. D.; Vincent, S.
1975-01-01
The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.
Liquid metal magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lielpeteris, J.; Moreau, R.
1989-01-01
Liquid metal MHD is the subject of this book. It is of central importance in fields like metals processing, energy conversion, nuclear engineering (fast breeders or fusion reactors), geomagnetism and astrophysics. In some circumstances fluid flow phenomena are controlled by an existing magnetic field; the melts in induction furnaces or the liquid metal blanket around future tokamak fusion reactors being significant examples. In other cases the application of an external magnetic field (or of an electric current) may generate drastic modifications in the fluid motion and in the transfer rates; such effects may be used to develop new technologies (electromagneticmore » shaping) or to improve existing techniques (electromagnetic stirring in continuous casting). In the core of the Earth, fluid motion and magnetic fields are both present and their interaction governs important phenomena.« less
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1987-01-01
A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.
Tunnel and field effect carrier ballistics
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Bell, L. Douglas (Inventor)
1989-01-01
Methods and apparatus for interacting carriers with a structure of matter employ an electrode for emitting said carriers at a distance from a surface of that structure, and cause such carriers to travel along ballistic trajectories inside that structure by providing along the mentioned distance a gap for performance of a process selected from the group of carrier tunneling and field emission and injecting carriers emitted by the mentioned electrode and that process ballistically into the structure through the gap and the mentioned surface. The carriers are collected or analyzed after their travel along ballistic trajectories in the structure of matter. Pertinent information on the inside of the structure is obtained by conducting inside that structure what conventionally would have been considered external ballistics, while performing the carrier-propelling internal ballistics conversely outside that structure.
Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants
NASA Astrophysics Data System (ADS)
Cheraghizade, Mohsen; Jamali-Sheini, Farid; Yousefi, Ramin
2017-06-01
Lead sulfide (PbS) thin films were deposited by CVD method to examine the effects of anionic and cationic dopants on optical and electrical properties for photovoltaic applications. XRD diffractograms verified the formation of cubic phase of multicrystalline PbS thin films. FESEM images showed surface morphologies in nano-dimensions (rods and flowers). UV-Vis-NIR spectrum revealed absorbance in the visible and NIR regions for all samples, in which dopants decreased the intensity of absorbance. Se as an anionic dopant for PbS thin films increased electrical resistance, acceptor concentrations, and crystallite defects, and decreased flat-band voltage and depletion width. Finally, photovoltaic measurements indicated that Zn-doped PbS thin film, as a photovoltaic cell, exhibited higher conversion efficiency and external quantum efficiency (EQE).
Electromagnetic radiation accompanying gravitational waves from black hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiationmore » with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.« less
Vanhaudenhuyse, A; Laureys, S; Faymonville, M-E
2014-10-01
We here review behavioral, neuroimaging and electrophysiological studies of hypnosis as a state, as well as hypnosis as a tool to modulate brain responses to painful stimulations. Studies have shown that hypnotic processes modify internal (self awareness) as well as external (environmental awareness) brain networks. Brain mechanisms underlying the modulation of pain perception under hypnotic conditions involve cortical as well as subcortical areas including anterior cingulate and prefrontal cortices, basal ganglia and thalami. Combined with local anesthesia and conscious sedation in patients undergoing surgery, hypnosis is associated with improved peri- and postoperative comfort of patients and surgeons. Finally, hypnosis can be considered as a useful analogue for simulating conversion and dissociation symptoms in healthy subjects, permitting better characterization of these challenging disorders by producing clinically similar experiences. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Wei-Ping; Zhang, Yu-Ying; Li, Zhi-Jian; Nie, Yi-Hang
2017-08-01
We investigate the thermoelectric properties of a ferromagnet-quantum dot-superconductor hybrid system with the intradot spin-flip scattering and the external microwave field. The results indicate that the increase of figure of merit in the gap is very slight when the spin-flip scattering strength increases, but outside the gap it significantly increases with enhancing spin-flip scattering strength. The presence of microwave field results in photon-assisted Andreev reflection and induces the satellite peaks in conductance spectrum. The appropriate match of spin-flip scattering strength, microwave field strength and frequency can significantly enhances the figure of merit of thermoelectric conversion of the device, which can be used as a scheme improving thermoelectric efficiency using microwave frequency.
Optimal laser wavelength for efficient laser power converter operation over temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höhn, O., E-mail: oliver.hoehn@ise.fraunhofer.de; Walker, A. W.; Bett, A. W.
2016-06-13
A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined tomore » be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.« less
Manipulation based on sensor-directed control: An integrated end effector and touch sensing system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.
Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions.
Chen, Yiyong; Zhou, Bo; Li, Jianlong; Tang, Hao; Tang, Jinchi; Yang, Ziyin
2018-02-26
Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.
Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms.
Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi
2016-02-15
Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.
Exploring the Photovoltaic Performance of All-Inorganic Ag2PbI4/PbI2 Blends.
Frolova, Lyubov A; Anokhin, Denis V; Piryazev, Alexey A; Luchkin, Sergey Yu; Dremova, Nadezhda N; Troshin, Pavel A
2017-04-06
We present an all-inorganic photoactive material composed of Ag 2 PbI 4 and PbI 2 , which shows unexpectedly good photovoltaic performance in planar junction solar cells delivering external quantum efficiencies of ∼60% and light power conversion efficiencies of ∼3.9%. The revealed characteristics are among the best reported to date for metal halides with nonperovskite crystal structure. Most importantly, the obtained results suggest a possibility of reaching high photovoltaic efficiencies for binary and, probably, also ternary blends of different inorganic semiconductor materials. This approach, resembling the bulk heterojunction concept guiding the development of organic photovoltaics for two decades, opens wide opportunities for rational design of novel inorganic and hybrid materials for efficient and sustainable photovoltaic technologies.
An inverter/controller subsystem optimized for photovoltaic applications
NASA Technical Reports Server (NTRS)
Pickrell, R. L.; Merrill, W. C.; Osullivan, G.
1978-01-01
Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).
Cummins, Cloe; McLean, Blake; Halaki, Mark; Orr, Rhonda
2017-07-01
To quantify the external training loads of positional groups in preseason training drills. Thirty-three elite rugby league players were categorized into 1 of 4 positional groups: outside backs (n = 9), adjustables (n = 9), wide-running forwards (n = 9), and hit-up forwards (n = 6). Data for 8 preseason weeks were collected using microtechnology devices. Training drills were classified based on drill focus: speed and agility, conditioning, and generic and positional skills. Total, high-speed, and very-high-speed distance decreased across the preseason in speed and agility (moderate, small, and small, respectively), conditioning (large, large, and small) and generic skills (large, large, and large). The duration of speed and generic skills also decreased (77% and 48%, respectively). This was matched by a concomitant increase in total distance (small), high-speed running (small), very-high-speed running (moderate), and 2-dimensional (2D) BodyLoad (small) demands in positional skills. In positional skills, hit-up forwards (1240 ± 386 m) completed less very-high-speed running than outside backs (2570 ± 1331 m) and adjustables (2121 ± 1163 m). Hit-up forwards (674 ± 253 AU) experienced greater 2D BodyLoad demands than outside backs (432 ± 230 AU, P = .034). In positional drills, hit-up forwards experienced greater relative 2D BodyLoad demands than outside backs (P = .015). Conversely, outside backs experienced greater relative high- (P = .007) and very-high-speed-running (P < .001) demands than hit-up forwards. Significant differences were observed in training loads between positional groups during positional skills but not in speed and agility, conditioning, and generic skills. This work also highlights the importance of different external-load parameters to adequately quantify workload across different positional groups.
Catargi, B; Breilh, D; Gin, H; Rigalleau, V; Saux, M C; Roger, P; Tabarin, A
2001-06-01
To compare a non-programmable and a programmable insulin external pump using regular insulin on glycemic stability, the risk of severe hypoglycemia and metabolic control in type 1 diabetic patients. Ten type 1 diabetic patients were involved in a randomized, crossover study comparing two periods of 3 months with continuous subcutaneous insulin infusion (CSII) either with a non-programmable insulin pump or a programmable insulin pump. Comparisons were made among mean blood glucose values before and after meals, at bedtime and at 2: 00 a.m.; the risk of severe hypoglycemia assessed by the low blood glucose index (LBGI); and HbA1c. Mean average blood glucose (BG) measurements were significantly lower with the programmable in comparison with the non-programmable insulin pump (respectively 157+/-78 vs. 165+/-79, p=0.034). While postprandial values for BG were not different between the two pumps, the use of the programmable pump resulted in a significant decrease in mean preprandial BG levels (140+/-68 vs. 150+/-73 mg/dl p=0.039). Conversely mean BG level was lower at 2 a.m. with the non-prgrammable pump (125+/-81 vs. 134 +/-93 mg/dl, p=0.02) but with a higher incidence of hypoglycemia. Mean LBGI was comparable with the two pumps (3.1+/-8.6 vs. 2.8+/-6.9, p=0.1). There was a 0.2% decrease in HbA1c during the programmable pump period that did not reach statistical significance (p=0.37). The present study suggests that programmable external insulin pumps, although more complex and more expensive than non-programmable insulin pumps, significantly reduce fasting glycemia during the day without increasing the risk of severe hypoglycemia and are safer during the night.
Al-Hakim, Latif; Xiao, Jiaquan; Sengupta, Shomik
2017-12-01
The aim of this study is to examine operative flow disruption that occurs inside the surgical field, (internal operative flow disruption (OFD)), during urological laparoscopies, and to relate those events to external ergonomics environment in terms of monitor location, level of instruments' handles, and location of surgical team members. According to the our best knowledge, this is the first study of its kind. A combination of real and video-aided observational study was conducted in the operating rooms at hospitals in Australia and China. Brain storming sessions were first conducted to identify the main internal OFD events, and the observable reasons, potential external, and latent ergonomic factors were listed. A prospective observational study was then conducted. The observer's records and the related video records of internal surgical fields were analysed. Procedures were categorised into groups based on similarity in ergonomics environment. The mapping process revealed 39 types of internal OFD events resulted from six reasons. A total of 24 procedures were selected and arranged into two groups, each with twelve procedures. Group A was carried out under satisfactory ergonomics environment, while Group B was conducted under unsatisfactory ergonomics environment. A total of 1178 OFD events were detected delaying the total observed operative times (2966 min) by 220 min (7.43%). Average OFD/h in group A was less than 15, while in group B about 29 OFD/h. There are two main latent ergonomics factors affecting the surgeon's performance; non-physiological posture and long-period static posture. The delays and number of internal OFD were nearly doubled where procedures were conducted under unsatisfactory external ergonomics environment. Some events such as stopping operation and irrelevant conversations during long procedures may have a positive influence on the surgeon's performance.
A Regional Multi-permit Market for Ecosystem Services
NASA Astrophysics Data System (ADS)
Bernknopf, R.; Amos, P.; Zhang, E.
2014-12-01
Regional cap and trade programs have been in operation since the 1970's to reduce environmental externalities (NOx and SOx emissions) and have been shown to be beneficial. Air quality and water quality limits are enforced through numerous Federal and State laws and regulations while local communities are seeking ways to protect regional green infrastructure and their ecosystems services. Why not combine them in a market approach to reduce many environmental externalities simultaneously? In a multi-permit market program reforestation (land offsets) as part of a nutrient or carbon sequestration trading program would provide a means to reduce agrochemical discharges into streams, rivers, and groundwater. Land conversions also improve the quality and quantity of other environmental externalities such as air pollution. Collocated nonmarket ecosystem services have societal benefits that can expand the crediting system into a multi-permit trading program. At a regional scale it is possible to combine regulation of water quality, air emissions and quality, and habitat conservation and restoration into one program. This research is about the economic feasibility of a Philadelphia regional multi-permit (cap and trade) program for ecosystem services. Instead of establishing individual markets for ecosystem services, the assumption of the spatial portfolio approach is that it is based on the interdependence of ecosystem functions so that market credits encompasses a range of ecosystem services. Using an existing example the components of the approach are described in terms of scenarios of land portfolios and the calculation of expected return on investment and risk. An experiment in the Schuylkill Watershed will be described for ecosystem services such as nutrients in water and populations of bird species along with Green House Gases. The Philadelphia regional market includes the urban - nonurban economic and environmental interactions and impacts.
Al-Jundi, J; Ulanovsky, A; Pröhl, G
2009-10-01
The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.
Suarez-Arrones, L; Torreño, N; Requena, B; Sáez De Villarreal, E; Casamichana, D; Barbero-Alvarez, J C; Munguía-Izquierdo, D
2015-12-01
The aim was to quantify for the first time the physical and physiological profile of professional soccer players in official games using GPS and heart rate (HR) response. Thirty professional soccer players were investigated during a half in competitive club level matches (N.=348) using GPS devices. The relative total distance was 118.9±10.7 m∙min(-1) and player's Work-To-Rest Ratio was 2.1:1. Defenders covered the lowest total distance, while Second-Strikers (2(nd)S) and Wide-Midfielders (W-MD) traveled the greatest total distance. Defenders presented the lowest Work-To-Rest Ratio values. Playing position also impacted on all sprinting performance results, except in average sprint distance and time of sprint. The number of sprints and repeated-sprint sequences recorded by the W-MD and Strikers (S) were significantly greater than any other group. The average HR recorded was 87.1%HRmax and the relationship between the external and internal load value (Effindex) was 1.4 with significant differences in both between playing positions. W-MD recorded a significantly smaller average HR than any other group and Centre-Backs showed a significantly smaller Effindex value than any other group. Conversely, W-MD showed a significantly greater Effindex value than any other group, except the 2(nd)S. This study has verified a number of statistically significant differences between the different playing positions. Coaches should be focused on the specific physical and physiological requirements of the playing positions to optimize the training prescription in soccer. The relationships between external and internal load measures among position-specific indicates that players with less overall running performance during match-play were the worst in Effindex.
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
Xiang, Chengxiang; Haber, Joel; Marcin, Martin; Mitrovic, Slobodan; Jin, Jian; Gregoire, John M
2014-03-10
Combinatorial synthesis and screening of light absorbers are critical to material discoveries for photovoltaic and photoelectrochemical applications. One of the most effective ways to evaluate the energy-conversion properties of a semiconducting light absorber is to form an asymmetric junction and investigate the photogeneration, transport and recombination processes at the semiconductor interface. This standard photoelectrochemical measurement is readily made on a semiconductor sample with a back-side metallic contact (working electrode) and front-side solution contact. In a typical combinatorial material library, each sample shares a common back contact, requiring novel instrumentation to provide spatially resolved and thus sample-resolved measurements. We developed a multiplexing counter electrode with a thin layer assembly, in which a rectifying semiconductor/liquid junction was formed and the short-circuit photocurrent was measured under chopped illumination for each sample in a material library. The multiplexing counter electrode assembly demonstrated a photocurrent sensitivity of sub-10 μA cm(-2) with an external quantum yield sensitivity of 0.5% for each semiconductor sample under a monochromatic ultraviolet illumination source. The combination of cell architecture and multiplexing allows high-throughput modes of operation, including both fast-serial and parallel measurements. To demonstrate the performance of the instrument, the external quantum yields of 1819 different compositions from a pseudoquaternary metal oxide library, (Fe-Zn-Sn-Ti)Ox, at 385 nm were collected in scanning serial mode with a throughput of as fast as 1 s per sample. Preliminary screening results identified a promising ternary composition region centered at Fe0.894Sn0.103Ti0.0034Ox, with an external quantum yield of 6.7% at 385 nm.
Myers, Tony; Balmer, Nigel
2012-01-01
Numerous factors have been proposed to explain the home advantage in sport. Several authors have suggested that a partisan home crowd enhances home advantage and that this is at least in part a consequence of their influence on officiating. However, while experimental studies examining this phenomenon have high levels of internal validity (since only the "crowd noise" intervention is allowed to vary), they suffer from a lack of external validity, with decision-making in a laboratory setting typically bearing little resemblance to decision-making in live sports settings. Conversely, observational and quasi-experimental studies with high levels of external validity suffer from low levels of internal validity as countless factors besides crowd noise vary. The present study provides a unique opportunity to address these criticisms, by conducting a controlled experiment on the impact of crowd noise on officiating in a live tournament setting. Seventeen qualified judges officiated on thirty Thai boxing bouts in a live international tournament setting featuring "home" and "away" boxers. In each bout, judges were randomized into a "noise" (live sound) or "no crowd noise" (noise-canceling headphones and white noise) condition, resulting in 59 judgments in the "no crowd noise" and 61 in the "crowd noise" condition. The results provide the first experimental evidence of the impact of live crowd noise on officials in sport. A cross-classified statistical model indicated that crowd noise had a statistically significant impact, equating to just over half a point per bout (in the context of five round bouts with the "10-point must" scoring system shared with professional boxing). The practical significance of the findings, their implications for officiating and for the future conduct of crowd noise studies are discussed.
Myers, Tony; Balmer, Nigel
2012-01-01
Numerous factors have been proposed to explain the home advantage in sport. Several authors have suggested that a partisan home crowd enhances home advantage and that this is at least in part a consequence of their influence on officiating. However, while experimental studies examining this phenomenon have high levels of internal validity (since only the “crowd noise” intervention is allowed to vary), they suffer from a lack of external validity, with decision-making in a laboratory setting typically bearing little resemblance to decision-making in live sports settings. Conversely, observational and quasi-experimental studies with high levels of external validity suffer from low levels of internal validity as countless factors besides crowd noise vary. The present study provides a unique opportunity to address these criticisms, by conducting a controlled experiment on the impact of crowd noise on officiating in a live tournament setting. Seventeen qualified judges officiated on thirty Thai boxing bouts in a live international tournament setting featuring “home” and “away” boxers. In each bout, judges were randomized into a “noise” (live sound) or “no crowd noise” (noise-canceling headphones and white noise) condition, resulting in 59 judgments in the “no crowd noise” and 61 in the “crowd noise” condition. The results provide the first experimental evidence of the impact of live crowd noise on officials in sport. A cross-classified statistical model indicated that crowd noise had a statistically significant impact, equating to just over half a point per bout (in the context of five round bouts with the “10-point must” scoring system shared with professional boxing). The practical significance of the findings, their implications for officiating and for the future conduct of crowd noise studies are discussed. PMID:23049520
Shepherd, Andrew; Sanders, Caroline; Doyle, Michael; Shaw, Jenny
2015-02-19
Internet based social media websites represent a growing space for interpersonal interaction. Research has been conducted in relation to the potential role of social media in the support of individuals with physical health conditions. However, limited research exists exploring such utilisation by individuals with experience of mental health problems. It could be proposed that access to wider support networks and knowledge could be beneficial for all users, although this positive interpretation has been challenged. The present study focusses on a specific discussion as a case study to assess the role of the website www.twitter.com as a medium for interpersonal communication by individuals with experience of mental disorder and possible source of feedback to mental health service providers. An electronic search was performed to identify material contributing to an online conversation entitled #dearmentalhealthprofessionals. Output from the search strategy was combined in such a way that repeated material was eliminated and all individual material anonymised. The remaining textual material was reviewed and combined in a thematic analysis to identify common themes of discussion. 515 unique communications were identified relating to the specified conversation. The majority of the material related to four overarching thematic headings: The impact of diagnosis on personal identity and as a facilitator for accessing care; Balance of power between professional and service user; Therapeutic relationship and developing professional communication; and Support provision through medication, crisis planning, service provision and the wider society. Remaining material was identified as being direct expression of thanks, self-referential in its content relating to the on-going conversation or providing a link to external resources and further discussion. The present study demonstrates the utility of online social media as both a discursive space in which individuals with experience of mental disorder may share information and develop understanding, and a medium of feedback to mental health service providers. Further research is required to establish potential individual benefit from the utilisation of such networks, its suitability as a means of service provision feedback and the potential role for, and user acceptability of, mental health service providers operating within the space.
Generation of thermo-acoustic waves from pulsed solar/IR radiation
NASA Astrophysics Data System (ADS)
Rahman, Aowabin
Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals also showed "transient" behavior, meaning that the RMS amplitudes of TA signals varied over a time interval much greater than the time period of acoustic cycles. Acoustic amplitudes in the range of 75-95 dB were obtained using solar energy as the heat source, within the frequency range of 200 Hz-3 kHz.
Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Little, Reginald B.; Lochner, Eric; Goddard, Robert
2005-01-01
Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (>15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.
First light of an external occulter testbed at flight Fresnel numbers
NASA Astrophysics Data System (ADS)
Kim, Yunjong; Sirbu, Dan; Hu, Mia; Kasdin, Jeremy; Vanderbei, Robert J.; Harness, Anthony; Shaklan, Stuart
2017-01-01
Many approaches have been suggested over the last couple of decades for imaging Earth-like planets. One of the main candidates for creating high-contrast for future Earth-like planets detection is an external occulter. The external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The occulter is typically tens of meters in diameter and the separation from the telescope is of the order of tens of thousands of kilometers. Optical testing of a full-scale external occulter on the ground is impossible because of the long separations. Therefore, laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The goal of this experiment is to demonstrate a pupil plane suppression of better than 1e-9 with a corresponding image plane contrast of better than 1e-11. The occulter testbed uses a 77.2 m optical propagation distance to realize the flight Fresnel number of 14.5. The scaled mask is placed at 27.2 m from the artificial source and the camera is located 50.0 m from the scaled mask. We will use an etched silicon mask, manufactured by the Microdevices Lab(MDL) of the Jet Propulsion Laboratory(JPL), as the occulter. Based on conversations with MDL, we expect that 0.5 μm feature size is an achievable resolution in the mask manufacturing process and is therefore likely the indicator of the best possible performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the experimental setup of the testbed. We compare the experimental results with simulations that predict the ultimate contrast performance.
Kitamura, Akiko
2017-01-01
Introduction On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. Methods This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0–15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. Results The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Conclusion Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection. PMID:29236725
Laparoscopic approach to incarcerated inguinal hernia in children.
Kaya, Mete; Hückstedt, Thomas; Schier, Felix
2006-03-01
The purpose of this study was to describe the laparoscopic approach to incarcerated inguinal hernia in children. After unsuccessful manual reduction, 29 patients (aged 3 weeks to 7 years; median, 10 weeks; 44 boys, 15 girls) with incarcerated inguinal hernia underwent immediate laparoscopy. The hernial content was reduced in a combined technique of external manual pressure and internal pulling by forceps. The bowel was inspected, and the hernia was repaired. In all patients, the procedure was successful. No conversion to the open approach was required. Immediate laparoscopic herniorrhaphy in the same session was added. No complications occurred. Laparoscopy allowed for simultaneous reduction under direct visual control, inspection of the incarcerated organ, and definitive repair of the hernia. Technically, it appears easier than the conventional approach because of the internal inguinal ring being widened by intraabdominal carbon dioxide insufflation. The hospital stay is shorter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo
2015-03-02
The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less
Ternary bulk heterojunction for wide spectral range organic photodetectors
NASA Astrophysics Data System (ADS)
Shin, Hojung; Kim, Jaehoon; Lee, Changhee
2017-08-01
Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.
Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; McCabe, Kevin
This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal Energy for Production of Heat and electricity (IR) Economically Simulated). GEOPHIRES combines reservoir, wellbore, surface plant and economic models to estimate the capital, and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy of a geothermal plant. The available end-use options are electricity, direct-use heat and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to couple to an external reservoir simulator, updated cost correlations, and more flexibility in selecting themore » time step and number of injection and production wells. An overview of all the updates and two case-studies to illustrate the tool's new capabilities are provided in this paper.« less
NASA Astrophysics Data System (ADS)
Saintillan, David
2018-01-01
An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.
Interfacial reactions between DBD and porous catalyst in dry methane reforming
NASA Astrophysics Data System (ADS)
Kameshima, Seigo; Mizukami, Ryo; Yamazaki, Takumi; Prananto, Lukman A.; Nozaki, Tomohiro
2018-03-01
Interaction between dielectric barrier discharge (DBD) and porous catalyst in dry methane reforming (CH4 + CO2 = 2H2 + 2CO) was studied. Coke formation behavior and coke morphology, as well as material conversion and selectivity, over the cross-section of porous pellets was investigated comprehensively by SEM analysis, Raman spectroscopy and pulsed reforming diagnosis, showing DBD and porous pellet interaction is possible only in the interfacial region (the external surface of the pellet): neither generation of DBD nor the diffusion of plasma generated reactive species in the internal micropores is possible. Coke formation and gasification mechanism in nonthermal plasma catalysis of DMR were discussed based on the catalyst effectiveness factor: low-temperature plasma catalysis is equivalent to the high-temperature thermal catalysis.
Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbin, Christopher R.; Maier, Stefan A.; Kéna-Cohen, Stéphane, E-mail: s.kena-cohen@polymtl.ca
2014-06-09
We demonstrate electroluminescence from Frenkel molecular excitons ultrastrongly coupled to photons of a metal-clad microcavity containing a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene emissive layer. Thin layers of molybdenum oxide and 4,7-diphenyl-1,10-phenanthroline are used as hole and electron injection layers, respectively. The fabricated devices exhibit an electroluminescence threshold of 3.1 V, a value that is below the bare exciton energy. This result is found to be independent of detuning and consistent with a two-step process for polariton formation. Moreover, we investigate the quantum efficiency of carrier to polariton to photon conversion and obtain an external quantum efficiency of 0.1% for the fabricated structures, an improvement ofmore » 5 orders of magnitude over previous reports.« less
Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong
2015-01-01
An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.
Cacucciolo, Vito; Shigemune, Hiroki; Cianchetti, Matteo; Laschi, Cecilia; Maeda, Shingo
2017-09-01
Electrohydrodynamics (EHD) refers to the direct conversion of electrical energy into mechanical energy of a fluid. Through the use of mobile electrodes, this principle is exploited in a novel fashion for designing and testing a millimeter-scale untethered robot, which is powered harvesting the energy from an external electric field. The robot is designed as an inverted sail-boat, with the thrust generated on the sail submerged in the liquid. The diffusion constant of the robot is experimentally computed, proving that its movement is not driven by thermal fluctuations, and then its kinematic and dynamic responses are characterized for different applied voltages. The results show the feasibility of using EHD with mobile electrodes for powering untethered robots and provide new evidences for the further development of this actuation system for both mobile robots and compliant actuators in soft robotics.
Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes
NASA Astrophysics Data System (ADS)
Li, Jinghai; Cai, Feilong; Yang, Liyan; Ye, Fanghao; Zhang, Jinghui; Gurney, Robert S.; Liu, Dan; Wang, Tao
2017-07-01
Organometal halide perovskite is a promising material to fabricate light-emitting diodes (LEDs) via solution processing due to its exceptional optoelectronic properties. However, incomplete precursor conversion and various defect states in the perovskite light-emitting layer lead to low luminance and external quantum efficiency of perovskite LEDs. We show here the addition of an optimum amount of sodium bromide in the methylammonium lead bromide (MAPbBr3) precursor during a one-step perovskite solution casting process can effectively improve the film coverage, enhance the crystallinity, and passivate ionic defects on the surface of MAPbBr3 crystal grains, resulting in LEDs with a reduced turn-on voltage from 2.8 to 2.3 V and an enhanced maximum luminance from 1059 to 6942 Cd/m2 when comparing with the pristine perovskite-based device.
Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation
NASA Astrophysics Data System (ADS)
Prasad Mandal, Ranju; Sekh, Sanoyaz; Sarkar, Neera Sen; Chattopadhyay, Dipankar; De, Swati
2016-05-01
The present work is a study on the biological synthesis of cadmium sulphide (CdS) nanoparticles using blue-green algae that is popularly used as a food supplement. This synthesis is unique in the sense that no external sulphur precursor is required, the CdS nanoparticles are synthesized in situ in the algal medium. The CdS nanoparticles thus synthesized are photoluminescent and can act as highly efficient photocatalysts for degradation of the dye pollutant malachite green. Thus the CdS nanoparticles synthesized in situ in the algae conform to the desired criteria of waste water treatment i.e. biosorption of the pollutant and its subsequent degradation. The novelty of this work also lies in its potential for use in bioremediation by conversion of the toxic Cd(II) ion to less toxic CdS nanoparticles within the algal framework.
Investigation of the hydrogenation of SiCl4
NASA Technical Reports Server (NTRS)
Mui, J. Y. P.; Seyferth, D.
1981-01-01
A laboratory scale pressure reactor was constructed to study the 3 SiCl + 2H2 + Si yields 4 SiHCl3 reaction at pressures up to 500 psig. Reaction kinetic measurements were carried out as a function of reactor pressure, reaction temperature and H2/SiCl4 feed ratio. Based on the reaction kinetic data, the hydroclorination of SiCl4 and m.g. silicon metal is found to be an efficient process to produce SiHCl3 in good conversions and in high yields. Copper is an effective catalyst. Results of the corrosion study show that conventional nickel chromium alloys are suitable material of construction for the hydrochlorination reactor. The hydrochlorination reaction is relatively insensitive to external process parameters such as silicon particle size distribution and the impurities in the m.g. silicon metal.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.
2003-05-01
The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.
Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires
NASA Astrophysics Data System (ADS)
Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang
2016-03-01
Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.
Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires.
Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang
2016-03-28
Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.
Global rotation of mechanical metamaterials induced by their internal deformation
NASA Astrophysics Data System (ADS)
Dudek, K. K.; Gatt, R.; Mizzi, L.; Dudek, M. R.; Attard, D.; Grima, J. N.
2017-09-01
In this work, we propose the concept that a device based on mechanical metamaterials can be used to induce and control its own rotational motion as a result of internal deformations due to the conversion of translational degrees of freedom into rotational ones. The application of a linear force on the structural units of the system may be fine-tuned in order to obtain a desired type of rotation. In particular, we show, how it is possible to maximise the extent of rotation of the system through the alteration of the geometry of the system. We also show how a device based on this concept can be connected to an external body in order to rotate it which result may potentially prove to be very important in the case of applications such as telescopes employed in space.
NASA Astrophysics Data System (ADS)
Jung, Heon; Yoon, Wang Lai; Lee, Hotae; Park, Jong Soo; Shin, Jang Sik; La, Howon; Lee, Jong Dae
A palladium-washcoated metallic monolith catalyst is applied to the partial oxidation of methane to syngas. This catalyst is highly active at a gas hourly space velocity (GHSV) of 100,000 h -1. The compact partial oxidation (POX) reactor equipped with both 96 cc of the metallic monolith catalyst and an electrically-heated catalyst (EHC) has a start-up time of less than 1.5 min and a syngas generation capacity of 9.5 Nm 3 h -1. The POX reaction is sustained without the need for an external heater. With the stand-alone POX reactor, the methane conversion can be increased either by preheating the reactant mixture heat-exchanged with the product gas, or by supplying a larger amount of oxygen than is necessary for the reaction stoichiometry.
Active control of thermoacoustic amplification in a thermo-acousto-electric engine
NASA Astrophysics Data System (ADS)
Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick
2014-05-01
In this paper, a new approach is proposed to control the operation of a thermoacoustic Stirling electricity generator. This control basically consists in adding an additional acoustic source to the device, connected through a feedback loop to a reference microphone, a phase-shifter, and an audio amplifier. Experiments are performed to characterize the impact of the feedback loop (and especially that of the controlled phase-shift) on the overall efficiency of the thermal to electric energy conversion performed by the engine. It is demonstrated that this external forcing of thermoacoustic self-sustained oscillations strongly impacts the performance of the engine, and that it is possible under some circumstances to improve the efficiency of the thermo-electric transduction, compared to the one reached without active control. Applicability and further directions of investigation are also discussed.